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Abstract

Thisdocument describes a proposal for a standard C/C++ modeling interface for
emulatorsand other verification platforms. Theinterface provides multiple
communication channels between software modelsrunning on a host workstation and a
device under test (DUT) represented as a structural hardware netlist running on a
verification platform such asan emulator. The channd end pointsare presented as
message portsto the DUT model and as message port proxiesto the software models.
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1.2

Purpose

Thereis an urgent need for the EDA industry to meet the exploding verification requirements of SoC
design teams. While the industry has delivered verification performance in the form of avariety of
emulation and rapid prototyping platforms, there remains the problem of connecting them into SoC
modeling environments while realizing their full performance potential. Existing standard verification
interfaces were designed to meet the needs of design teams of over 10 years ago. A new type of
interface is needed to meet the verification challenges of the next 10 years. This document is a proposal
for amultichannel communication interface that addresses these challenges. This new interface must
cater to the needs of both emulation end users and emulation suppliers.

Emulation Customer Problemsto be Solved by SCE-API

*  All emulators on the market today have proprietary APIs. The proliferation of APIs makesit very
difficult for software-based verification products to port to the different emulators, thus restricting
the solutions available to customers. This also leads to low productivity and low return on
investment (ROI) for emulator customers who build their own solutions,

e Theemulation “APIS’ which exist today are oriented to gate-level and not system-level
verification.
*  Theindustry needs an API which takes full advantage of emulation performance.

Emulation Suppliers Problemsto be Solved
* Customers are reluctant to invest in building applications on proprietary APIs.

e Traditional simulator APIslike programmable language interface (PLI) and VHDL PLI slow down
emulators.

*  Third parties are reluctant to invest in building applications on proprietary APIs.

Scope

This document is directed to members of the Sandard Co-Emulation API (SCE-API) technical
committee. The committee members represent a consortium of EDA customers and EDA tool suppliers
dedicated to the creation of a breakthrough high-performance common emulation API. The founding
participantsin the consortium are Aptix, CoWare, Ikos Systems, Mentor Graphics, ST Microel ectronics,
Synopsys, and TransEDA.

The scope of this document shall be restricted to what is specifically referred to herein as the Sandard
Co-Emulation API: Modeling Interface (SCE-MI). This modeling interface is intended to be one of
possibly several parts making up the whole SCE-API standard. In the future, SCE-API may be
expanded to include additional parts to handle such features as debug and control, code coverage, etc.

This document is intended to describe an overall use model of the SCE-MI, atutorial illustrating this
use model, and aformal functional specification of the SCE-MI API itself. Future revisions of the
document will continue to reflect the feedback from members of the SCE-API technical committee. It is
hoped that the document will undergo arelatively quick evolution phase which culminates with a
common industry standard that can be used by simulation and emulation tool vendors to provide plug-
and-play high speed verification solutions to end users on SoC design teams.
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1.3 Revision History

Revision # Date Revised by  Summary of revision

1.0 12-11-00 Duaine Pryor  Initial draft based on discussions at SCE-API kickoff
meeting that occurred in Oct. 2000 in Paris, France.

12 1-15-01  John Stickley  Revised document to incorporate feedback and action

items from second SCE-API meeting on Dec 14-15,
2000 in Cupertino, CA.

13 2-2-01 John Stickley  Revised document to incorporate feedback from e-
mail review with SCE-API committee after the revi-
sion 1.2 release. Also completed Routed tutorial sec-
tion.

14 2-16-01  John Stickley, Incorporated comments from committee received dur-
Susan Ross ing SCE-API phase 1 ratification process. Added
minor corrections and converted hand drawn figures
to electronic drawings.

15 5-6-01 John Stickley ~ Corrections to SceMiParameters accessors, added sec-
tion on controlled reset semantics and clarification of
controlled clock semantics, added typedefs for call-
back function pointer types, added port width acces-
sorsto port proxies, changed VHDL macro data types
from std_ulogic(_vector) to std_logic(_vector).

16 7-20-01  John Stickley  Changes based on feedback to 1.5 changes, added bit
accessors to message data object, changed version for-
mat from major.minor.minor to major.major.minor.

17 10-19-01 John Stickley ~ Added clarification to how theg() function works
with : : Servi ceLoop() , added note about memory
alocation and deletion, added : : Repl aceBi nd-
ing() calls ::SceM MessagePort[1n/

Qut] Proxy classes, added info message callback
handler support, added clarification about parameters
database structure, added clarification about input
ready semantics.

18 11-14-01 John Stickley  Incorporated feedback, correctionsto above.

19 2-26-02  John Stickley ~ Added support for “don’t care duty cycle’, clarifica
tions about duty cycles, clock ratios. Changed default
duty cycles on SceMiMacros. Added explanation
about deriving clock ratios from clock frequencies.
Added section about multi-clock alignment. Minor
modifications to the SceMil C info message handler
structure.

1.4 Definitions, Acronyms, and Abbreviations

A formal glossary of terms used in this document can be found in the appendices. Some of the acronyms
referenced in the document are defined here.

BCA - Bus Cycle Accurate model - sometimes used interchangeably with RTL model
BCASH - CoWare style Bus Cycle Accurate SHell model

Functional Requirements Specification: Standard Co-Emulation M odeling I nterface (SCE-MI) 3of 94



Introduction

15

1.6

BFM - Bus Functional Model

DUT - Device or Design Under Test

HDL - Hardware Description Language such as Verilog or VHDL
I SS - Instruction Set Simulator

RTC - Register Transfer Level C model

SCE-API - Standard Co-Emulation AP

SCE-MI - Standard Co-Emulation APl - Modeling Interface

UT or UTC - Untimed or untimed C model

References

1. Functional Specification for SystemC 2.0 - Synopsys, Inc.; CoWare, Inc.; Frontier Design, Inc.
2. CoWareN2C User Manual - CoWare, Inc.

3. |EEE Standard Hardware Description L anguage Based on the Verilog Har dware Description
Language (IEEE Std 1364-1995) - IEEE Computer Society

4. |EEE Standard VHDL L anguage Reference Manual (IEEE Std 1076-1993) - |EEE Computer
Society

Overview

This specification describes amodeling interface that provides multiple channels of communication that
allow software model s describing system behavior to connect to structural models describing
implementation of a device under test (DUT). Each communication channel is designed to transport
untimed messages of arbitrary abstraction between its two end points or “ports’ of a channel.

These message channels are not meant to connect software models to each other but rather to connect
software proxy models to message port interfaces on the hardware side of the design. The meansto
interconnect software models to each other must be provided by a software modeling and simulation
environment such as SystemC which is beyond the scope of this document.

Although the software side of a system can be modeled at several different levels of abstraction
including untimed, cycle accurate, and even gate level, the focus of the SCE-MI isto interface purely
untimed software models with an RTL or gate level DUT. This can be summarized with the following
recommendations regarding the API:

* Do not useit to bridge event based or sub-cycle accurate simulation environments

* Itispossible but not ideal to bridge cycle accurate simulation environments

* |tisideal for bridging an untimed simulation environment with a cycle accurate simulation
environment

There are many references in the document to SystemC as the modeling environment for untimed
software models. This is because, although SystemC is capable of modeling at the cycle accurate RTL
abstraction level, it isalso considered ideally suited for untimed modeling. As such, it has been chosen
for use in many of the examplesin this document.
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Performance Goals

While the software side of the described interface is generic in its ability to be used in any C/C++
modeling environment, it is optimized to be compatible with SystemC (see reference [1]). Similarly, its
hardware side is optimized to prevent undue throttling of an emulator during a co-modeling session run.

Throughout this document the term emulation or emulator is used to denote a structural or RTL model
of aDUT running in an emulator, rapid prototype, or other simulation environment including software
HDL simulators.

That said however, the focus of the design of this interface isto avoid communication bottlenecks that
might become most apparent when interfacing software models to an emulator as compared to
interfacing them to a slower software HDL simulator or even an HDL accelerator. Such bottlenecks
could severely compromise the performance of an emulator which is otherwise very fast. Although
some implementations of the interface can be more inefficient than others, there should be nothing in
the specification of the interface itself that renders it inherently susceptible to such bottlenecks.

For this reason, the communication channels described herein are message or transaction oriented
rather than event oriented with the idea that a single message over a channel originating from a software
model can trigger dozens to hundreds of clocked eventsin the hardware side of the channel. Similarly, it
can take thousands of clocked events on the hardware side to generate the content of a message on a
channel originating from the hardware that is ultimately destined for an untimed software model.

Document L ayout

The document is divided into the following three major chapters:

e Chapter 2.0: Anoverall description and use model for the SCE Modeling Interface (SCE-MI).
e Chapter 3.0: A tutorial that shows how the use model is used in a simple application.

*  Chapter 4.0: A formal functional specification of the APl itself.

Document Conventions
* Anyreferencesto actual literal namesthat might be found in source code, identifiers that are part of
the API, file names, and other literal names are represented in couri er font.

* Key conceptswords, or phrases are often italicized. Also, thereis agood chance that any italicized
text may have a definition in the glossary, so the reader is directed there for a more detailed
meaning of aterm.
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2.0 Overall Description and Use M odel

2.1 High Level Description

The diagram in Figure 1 shows a high level view of how SCE-MI interconnects untimed software
models to structural hardware transactor and DUT models.

FIGURE 1. High Level View Of Run Time Components
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The SCE-MI provides a transport infrastructure between the emulator and host workstation sides of
each channel, that interconnects transactor modelsin the emulator to C (untimed or RTL) modelson the
workstation. Again it is important to note that for purposes of this document, the term emulator can be
used interchangeably with any simulator capable of executing RTL or gate-level models, including
software HDL simulators. These interconnects are provided in the form of message channels that run
between the software side and the hardware side of the SCE-MI infrastructure. Each message channel
has two ends. The end on the software side is called a message port proxy which is a C++ object that
gives APl accessto the channel. The end on the hardware side is a message port macro that is
instantiated inside a transactor and connected to other components in the transactor. Each message
channel is either an input or an output channel with respect to the hardware side.

It isimportant to note that message channels are not unidirectional or bidirectional bussesin the sense
of hardware signals, but are rather more like network sockets that use message passing protocols. It is
the job of the transactors to serve as abstraction gaskets that decompose messages arriving on input
channels from the software side into sequences of cycle accurate events that are to be clocked into the
DUT. For the other direction of flow, transactors recompose sequences of events coming from the DUT
back into messages to be sent via output channels to the software side.
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In addition, the SCE-MI infrastructure provides clock (and reset) generation and shared clock control
using handshake signal s with the transactor. This allowsthe transactor to “freeze” controlled time while
performing message composition and decomposition operations.

Support for Multi-Threaded Environments

The SCE-MI isdesigned to couple easily with multi-threaded environments such as SystemC, yet it also
functionsjust as easily in single-threaded environments such as simple C programs. A special service
loop function (see section 4.3.3.6 on page 68) is provided by the SCE-MI that can be called from an
application to give the SCE-MI infrastructure an opportunity to service its communication channels. It
isinside this function that queued up input messages can be sent to the hardware side and arriving
output messages can be dispatched to the appropriate software models.

While there is no thread specific code inside the service loop function or elsewherein the SCE-MI, in a
multi-threaded environment this function is designed to be called periodically from a dedicated thread
so that the interface is automatically serviced while other threads are running.

In a single-threaded environment, the service loop function can be “sprinkled” throughout the
application code at strategically placed pointsto alow it to frequently yield CPU cyclesto the SCE-MI
infrastructure so that it can service its messages channels.

Usersof the Interface

A major goal of this specification isto address the needs of three target audiences, each with adistinct
interest in their use of the interface. The target audiences are as follows:

e End user
*  Transactor implementor
e SCE-MI infrastructure implementor

End User

The end user isinterested in quickly and easily establishing a bridge between a software testbench that
can be composed of high level, untimed, algorithmic software models, and a hardware DU that can be
modeled at the RTL, cycle accurate level of abstraction.

While end users might be aware of the need for a*“gasket” that bridges these two levels of abstraction,
they want the creation of these abstraction bridges to be as painless and automated as possible. Ideally,
the end users are not required to be familiar with the details of SCE-MI API.

Rather, on the hardware side, they might wish to rely on the transactor implementor (see next section)
to provide predefined transactor models that can directly interface to their DUT. This would remove
any requirement for them to be familiar with any of the SCE-MI hardware-side interface macros (see
section 4.1 on page 46) except possibly the SceM d ockPort macro whose interface is easy to
understand because all it realy doesis furnish a clock and a reset.

Similarly, on the software side, the end users can also rely on the transactor implementors to furnish
them with plug-and-play software models, custom tailored for a software modeling environment such
as SystemC. Such modelswould encapsul ate the detail s of interfacing to the SCE-MI software side and,
might present a fully untimed, easy to use interface to the rest of the software testbench.
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2.2.2 Transactor I mplementor
The transactor implementor is familiar with the interface presented by the SCE-MI but is not concerned
with itsimplementation.

Thejob of the transactor implementor is to provide plug-and-play transactor models on the hardware
side and proxy models on the software side that might be used by end usersto easily bridge their
untimed software models with their RTL-represented DUT. Additionally, the transactor implementor
can supply proxy models on the software side that provide untimed “sockets” to the transactors.

Using the modelsiis like using any other vendor supplied, stand-alone IP models and the detail s of
bridging not only two different abstraction levels but possibly two different verification platforms (such
as SystemC and an emulator), is completely hidden within the implementations of the models. They
must be distributed with appropriate object code, netlists, RTL code, configuration files, and all
necessary documentation.

2.2.3 SCE-MI Infrastructure Implementor
The SCE-MI infrastructure implementor is interested in furnishing a working implementation of an
SCE-MI that runs on some vendor supplied verification platform (probably their own). Any distributed
product release from the infrastructure implementor will necessarily include both the software side and
the hardware side components of the SCE-MI. For such arelease to be complaint, it must conform to all
the requirements set forth in this specification.

2.3 Bridging Levelsof Modeling Abstraction

The central goal of this specification isto provide an interface designed to bridge two modeling
environments, each of which supports a different level of modeling abstraction.

2.3.1 Untimed Software L evel Modeling Abstraction
Suppose we have a testbench consisting of several, possibly independent models that stimulate and
respond to aDUT at different interface points. Figure 2 depicts such a system. Such a configuration can
be used to test a processor DUT that has some communications interfaces that can include an ethernet
adapter, PCl interface, and a USB interface. The testbench can consist of several models that
independently interact with these interfaces, playing their protocols and exchanging packets with them.
These packets might be recoded as messages with the intent of verifying the processor DUT’s ability to
deal with them. The system in Figure 2 might initially be implemented fully at the untimed level of
abstraction using the SystemC software modeling environment.
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FIGURE 2.
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Now suppose that we ultimately want to create cycle accurate RTL models of the DUT model and eventually
synthesize it to gates that can be verified on a high speed emulation platform. Once we do this however, we
might still want to test them with the unaltered, untimed testbench models. Doing so requires a way of
somehow bridging the untimed level of abstraction to the bus cycle accurate (BCA) level.

Cycle Accurate Hardware Level Modeling Abstraction

Suppose now that we take the purely untimed system shown in Figure 2, “pry apart” the direct coupling
between the testbench models and the untimed DUT model, and insert an abstraction bridge in order to
bridge the still untimed system testbench model to what is now a emulator resident, RTL-represented DUT.
Figure 3 depicts this new configuration.

This bridge consists of a set of DUT proxy models, SCE-MI message input and output port proxies, a set of
message channels which are transaction conduits between the software simulator and the emulator, message
input and output ports, and a set of user implemented transactors.

The SCE-MI infrastructure performs the task of serving as a transport layer that guarantees delivery of
messages back and forth between the message port proxy and message port ends of each channel. Messages
arriving on input channels are presented to the transactors through message input ports. Similarly, messages

Functional Requirements Specification: Standard Co-Emulation M odeling I nterface (SCE-MI) 9of 94
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arriving on output channels are dispatched to the DUT proxy software models via message output port

proxies that present them to the rest of the testbench asiif they had come directly from original untimed
DUT model as depicted in Figure 2. In fact, the testbench models do not know that the messages have

actually come from and gone to atotally different abstraction level.

The DUT input proxies have the job of accepting untimed messages from various C models and sending
them to the message input port proxies for transport to the hardware side. The DUT output proxies
establish callbacks that monitor the message output port proxies for arrival of messages from the
hardware side. In other words, the SCE-MI infrastructure dispatches these messages to the specific
DUT proxy models to which they are addressed.

Taking this discussion back to the context of users of the interface described in section 2.2 on page 7,
the end user only has to know how to interface with the DUT proxy models on the software side of
Figure 3 with the transactor models on the hardware side; whereas, the transactor implementor authors
the proxy and transactor models using the SCE-M| message port and clock control components between
them, and provides those models to the end user.
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FIGURE 3. Multichannel Abstraction Bridge Architecture
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2.3.3 Messages and Transactions
At this point, it makes sense to describe in more detail what amessage is and how it isused in an
untimed software modeling environment. In the discussion above, the implied meaning of amessage is
that it isaunit of data of arbitrary size and abstraction to be transported over a channel.
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In a purely untimed modeling environment, messages are not associated with specific clocks or events.
Rather, they can be considered arbitrary data types ranging in abstraction from a simple bit, boolean or
integer, on up to something as complex as a C++ class or even some aggregate of objects.

It isin this form that messages can be transported either by value or by reference over abstract ports
between fully untimed software models of the sort described in Figure 2 and, in substantially more
detail in reference [1].

However, before messages can be transported over an SCE-MI message channel, their content must be
seridlized into alarge bit vector by the DUT proxy model. Conversely, after amessage arrives on a
message output channel and is dispatched to aDUT output proxy model, it might be de-serialized back
into an abstract C++ datatype. At this point, it is ready for presentation at the abstract output ports (to
use SystemC terminology) of the DUT proxy to the connected software testbench models.

Meanwhile, on the hardware side, a message arriving on the message input channel can trigger many
dozens to hundreds of clocks of event activity. It isthe job of the transactor to perform this
decomposition of message data content to sequences of clocked events that are presented to the DUT
hardware model inputs. Conversely, for output messages, it might be the job of the transactor to accept
possibly hundreds to thousands of clocked events originating from the DUT hardware model, and
assemble them into serialized bit streams that are sent back to the software side for de-serialization back
into abstract data types.

Note that, for the most part, the term message can be used interchangeably with transaction. However,
in some contexts, transaction can be thought of asincluding infrastructure overhead content in addition
to user payload data (and handled at alower layer of the interface) whereas, the term message denotes
only user payload data.

Controlled and Uncontrolled Time

One of the implications of the transactor’s job of converting between message bit streams and clocked
eventsisthat it might need the ability to “freeze” controlled time while performing these operations
such that the controlled clock that feeds the DUT is stopped long enough for the operations to occur.

If one visualizes the transactor operations strictly in terms of controlled clock cycles, they appear
between edges of the controlled clock. Thisis depicted in the controlled time view shown in Figure 4.
But if they are shown for al cycles of the uncontrolled clock, the waveforms would appear more like the
uncontrolled time view shown in Figure 4. In this view, the controlled clock is suspended or disabled
and the DUT is“frozen in controlled time.”

Suppose a system has multiple controlled clocks (of possibly differing frequencies) and multiple
transactors controlling them. Any one of these transactors has the option of stopping any clock. If this
happens, all controlled clocks in the system stop in unison. Furthermore, all other transactors that did
not themselves stop the clock, must still sense that the clocks were globally stopped and continue to
function correctly even though they themselves had no need to stop the clock. In this case, they might
typically idle for the number of uclocks during which the cclocks are stopped asiillustrated in Figure 4.
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FIGURE 4.
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In the SCE-MI use model, the semantics of clock control can be described as follows:

Any transactor can instruct the SCE-MI infrastructure to stop the controlled clock and thus cause
controlled time to freeze.

All transactors are told by the SCE-MI infrastructure when the controlled clock is stopped.

Any transactor must function correctly if controlled timeis stopped due to operations of another
transactor, even if the transactor in question does not itself need to stop the clock.

A transactor might need to stop the controlled clock when performing operations that involve
decomposition or composition of transactions arriving from, or going to a message channel.

The DUT is adways clocked by one or more controlled clocks that are controlled by one or more
transactors.

All transactors are clocked by a free running uncontrolled clock that is provided by the SCE-MI
hardware side infrastructure.
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Work Flow

There are four major aspects of work flow involved in constructing a system verification with the SCE-
MI environment. They are asfollows:

e Software model compilation

* Infrastructure linkage

e Hardware model elaboration

*  Software model construction and binding

Software M odel Compilation

The models to be run on the workstation are compiled using a common C/C++ compiler or possibly
obtained from other sources such as third party vendorsin the form of IP, ISS simulators, etc. The
compiled models are linked with the software side of the SCE-MI infrastructure to form an executable
program.

Infrastructure Linkage

Infrastructure linkage is the process that reads a user description of the hardware, namely the source or
bridge netlist that describes the interconnect between the transactors, the DUT, and the SCE-MI
interface components, and compiles that netlist into aform suitable for emulation. Part of this compile
process can involve adding additional structure to the bridge netlist, that properly interfaces the user
supplied netlist to the SCE-MI infrastructure implementation components. Put more simply, the
infrastructure linker is responsible for providing the core of the SCE-MI interface macros on the
hardware side.

As part of this process, the infrastructure linker also looks at the parameters specified on the instantiated
interface macros in the user-supplied bridge netlist and uses them to properly establish the dimensions
of the interface. Among the parameters it analyzes are the following:

*  Number of transactors

*  Number of input and output channels
*  Width of each channel

*  Number of clocks

e Clock ratios

* Clock duty cycles

Oncethe fina netlist is created, the infrastructure linker can then appropriately compile it for the
emulation platform and accordingly convert it to aform suitable to run on the emulator.

Hardware Model Elaboration
The compiled netlist is downloaded to the emulator, elaborated, and prepared for binding to the
software.

Software M odel Construction and Binding

The software executable compiled and linked in the software compilation phaseis now executed which
causes all the software models to be constructed in the workstation process image space. Once
construction takes place, the software model s bind themsel ves to the message port proxies using special
calls provided in the API. Parameters passed to these calls establish a means by which specific message
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port proxies can rendezvous with its associated message port macro in the hardware. Once this binding
occurs, the co-modeling session can proceed.

2.5 SCE-MI Interface Components

The SCE-MI run time environment consists of a set of interface components on both the hardware side
and the software side of the interface, each of which providesadistinct level of functionality. They are
introduced in this section, and each is discussed in more detail later in this document.

251 Hardware Side I nterface Components
The interface components presented by the SCE-MI hardware side consist of asmall set of macros that
provide connection points between the transactors and the SCE-MI infrastructure. These compactly
defined and simple to use macros fully present all necessary aspects of the interface to the transactors
and the DUT.

From the point of view of this specification, these macros are simply represented as empty Verilog or
VHDL models with clearly defined port and parameter interfaces. This is analogous to a software API
specification that defines function prototypes of the API calls without showing their implementations.
Future implementations of the interface can also accommodate modeling hardwarein RTL C (a.k.a
RTC) using a C modeling language like SystemC, rather than RTL Verilog or VHDL. Such
implementations would need to provide the RTC equivalents of the same macros defined in this
specification.

Briefly stated, the four macros present the following interfaces to the transactors and DUT:
* Message input port interface

*  Message output port interface

e Controlled clock and controlled reset generator interface

* Uncontrolled clock, uncontrolled reset, clock control logic interfaces

25.2 Software Side Interface Components
Theinterface presented by SCE-MI infrastructure to the software side consists of a set of C++ objects
and methods which provide the following functionality:
*  Version discovery
*  Parameter access
* Initiaization and shutdown
e Message input and output port proxy binding and callback registration
*  Rendezvous operations with the hardware side
* Infrastructure service loop polling function
*  Message input send function
*  Message output receive callback dispatching
*  Message input ready callback dispatching
e Error handling

In addition to the C++ object oriented interface, a set of C API functionsis also provided for the benefit
of pure C applications.
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Hardware Side Interfacing

The hardware side interface of the SCE-MI consists of a set of parametrized macros which can be
instantiated inside transactors that are to interact which the SCE-MI infrastructure. The macros are
parametrized such that, at the point of instantiation, crucial parameters that will dictate the dimensions
of the SCE-MI bridge to software can be easily specified by the user. It isthe job of the infrastructure
linker to learn the values of these parameters and customize implementation components inserted
underneath the macros accordingly.

The following four macros fully characterize how the hardware side interface of the SCE-MI is
presented to the transactors and the DUT:

i SceM Messagel nPort macro
° SceM MessageCQut Port macro
* SceM C ockCont rol macro

. SceM C ockPort macro

Any number of these macros can be instantiated asis required by the system. One SceM Messagel nPor t
macro must be instantiated for each required message input channel, and one SceM MessageQut Por t
macro for each output channel. Message port macro bit-widths are parametrized at the point of
instantiation.

Exactly one sceM d ockPort macro isinstantiated for each defined clock in the system. This

SceM d ockPort macro instance will, via a set of parameters, fully characterize aparticular clock. The
SceM d ockPort macro isinstantiated at the top level and provides a controlled clock and reset directly
tothe DUT. The SceM d ockPort macro instance is named and assigned a reference d ockNum
parameter that is used to associate it with one or more counterpart SceM Cl ockCont rol macrosinside
one or more transactors. The SceM Cl ockCont r ol macro is used by its transactor for all clock
controlling operations for its associated clock. These two macros are mutually associated by the

d ockNumparameter and every SceM d ockPort macro must have a minimum of one

SceM O ockCont rol macro associated with it.

Theinfrastructure linker (not the user) is responsible for properly hooking up these, essentially empty,
macro instances to the internally generated SCE-MI infrastructure and clock generation circuitry.

The following parameters specified at the points of instantiation of the macros fully specify the required
dimensions of the SCE-MI infrastructure components (see 4.2.1 on page 59 for more details):

*  Number of transactors

*  Number of input and output channels

*  Name and width of each channel

*  Number of controlled clocks

* Name, clock ratio, and duty cycle of each controlled clock

Figure 5 shows a simple example of how atransactor and DUT might connect to the hardware side
interface of the SCE-MI.

16 of 94

Functional Requirements Specification: Standard Co-Emulation M odeling I nterface (SCE-MI)



User’s Guide and Tutorial

FIGURE 5. Connection of SCE-MI Macros on Hardware Side to Transactor and DUT
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This example features a single transactor interacting with aDUT and interfacing to the software side
through a SceM Messagel nPort and a SceM MessageQut Por t . In addition, it defines asingle clock that
is controlled by the transactor internally using the SceM C ockCont rol macro. This clock drivesthe
DUT from the top level through a SceM d ockPort macro.

A key point that this exampleillustrates is that only the transactor implementor (see 2.2 on page 7)
needs to be aware of all SCE-MI interface macros (except for the SceM C ockPort ). Because the
transactor encapsulates the message port macros and the SceM d ockCont r ol macro, the end user only
has to be aware of how to hook up to the transactor itself and to the SceM c ockPort macro.

The sceM d ockPort macro instantiation is where all the clock parameters are specified. The numbers
shown (see Figure 5) in the component instantiation label as,

#(1, 1, 1, 50, 50, 0, 8) cclock
map to the parameters defined for the SceM d ockPort macro (see 4.1.4 on page 51). They are

summarized here:

e dockhNum=1
® RatioNunerator =1

® RatioDenonminator =1
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e DutyH =50

* DutyLo=50

* Phase =0

® ResetCycles =8

Of these parameters, the d ockNumparameter is used to uniquely identify this particular clock and also
toassociateit withits 1 or more counterpart SceM d ockCont r ol macros which must be parametrized to
the same d ockNumvalue, in this case 1. In addition to learning the clock specification parameters, the
infrastructure linker also learns the name of each clock by looking at the instance label of each

SceM O ockPort instance, in thiscaseccl ock.

Similarly, message ports have a parametrized Por t W dt h parameter.

To summarize, the infrastructure linker learns the following specific information from analyzing this
netlist:

* Singletransactor called “Bridge.ul” (assuming top level moduleis called “Bridge”).
e Single“divide-by-1" controlled clock called “cclock”

*  Controlled clock hasa 1/1 ratio which, when enabled, isideally (depending on implementation) the
same frequency as the uncontrolled clock

e Controlled clock is parametrized to 50/50 duty cycle with O phase shift (a user can also specify a
don’t care duty cycle - see 4.1.4.1 on page 52 for details)

e Controlled reset is parametrized to 8 controlled clock cycles of reset
e Single sceM Messagel nPort called “pl”, parametrized to bit-with of 64
* Single SsceM MessageQut Port called “p2” parametrized to bit-width of 128

A more complicated exampl e that involves two transactors and three clocks is shown in Appendix B: on
page 90.

The Rout ed Tutorial

The Rout ed tutorial documents areal life example that uses the SCE-MI to interface between untimed
software models modeled in SystemC, and hardware models of transactors and a DUT modeled in RTL
Verilog. Thistutorial triesto illustrate how the use model of the SCE-MI can be applied in amulti-
threaded SystemC environment. It assumes some familiarity with the concepts of SystemC including
abstract ports, autonomous threads, slave threads, module and port definition, and modul e instantiation
and interconnect. Reference [1] has a description of these concepts.

What the Design Does

The Rout ed design isasmall design that simulates air passengers traveling from ori gi nsto

Dest i nat i ons by traversing various interconnected Pi pes and Hubs in aRout eMap. In this design, the
Ori gi nsand Dest i nat i onS are the transactors and the Rout evap model isthe DUT. Each Ori gi n
transactor interfaces to a SceM Messagel nPort t0 gain access to messages arriving from the software
side. Each Dest i nat i on transactor interfacesto a SceM MessageQut Port to send messagesto the
software side. Thereisaso an o i gbest module that has both an O i gi n and Dest i nat i on transactor
contained within it.
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The “world” consists of these Ori gi ns,

Anchor age, Cupertino, Noida, Seal Beach, UK, Waltham

and these Dest i nat i onsS,

Anchor age, Cupertino, Mui, Seal Beach, UK

Travel fromany Ori gi n to any Dest i nati on is possible by traversing the Rout evap (DUT) containing
the following pi pe interconnected Hubs,

Chi cago, Dallas, Newark, SanFran, Seattle.

Each controlled clock cycle represents one hour of travel or layover time.

Figure 6 shows how the Rout ed world is interconnected.
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FIGURE 6. The Rout ed World
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The numbers shown by the directed arcs are the travel time (in hours) to travel the indicated pi pe.
Layover timein each Hub istwo hours.
The Rout eMap isinitialized by injecting TeachRout e messages for the entire system through the
wal t ham Ori gi n transactor. Each TeachRout e message contains a piece of routing information
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addressed to a particular Hub to load the route into its Rout eTabl e module (see Figure 9 on page 25).
Using this simple mechanism, the software side Rout eConf i g model progressively teaches each Hub its
routes (viawval t ham) so that it can, in turn, pass additional TeachRout e tokensto Hubs more distant from
val t ham In other words, by first teaching closer hubs, the RouteMap learns to pass routes bound for
more distant hubs. This process continues until the entire mesh isinitialized, at which point it isready to
serve as a backbone for all air travel activity.

After initiating the route configuration, the testbench then executes theitineraries of 4 passengersover a
period of 22 days. Each itinerary consists of several legs, each with scheduled departure from a
specified ori gi n and each with a specified Dest i nati on. The scheduled leg is sent as a message token
to itsdesignated ori gi n transactor. It isthe job of the transactor to count the number of clocks until the
specified departure time before sending the token into the Rout evap mesh.

3.22 System Hierarchy
The hierarchy of the whole system is textually shown in the following subsections.

3.2.2.1 Software Side Hierarchy

System

Test bench

Cal endar <--> Cl ockAdvancer

Schedul er <--> OrigDest, Oigin, Destination
Rout eConfi g

SceM Di spat cher

Note that the interactions shown between the Cal endar and Schedul er software side models and the
Ori gDest, Ori gi n, and Dest i nat i on hardware side models. These interactions occur over SCE-M|
message channels.
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Hardware Side Hierarchy
Following is the hierarchy of the hardware side componentsinstantiated under the Bri dge netlist:

Bri dge
SceM C ockPort

O i gDest anchorage, cupertino, seal Beach, UK
Oigin
SceM Messagel nPor t
SceM Cl ockContr ol
Desti nati on
SceM MessageQut Por t
SceM Cl ockContr ol

Origin noida, waltham

Desti nati on maui

Rout eMap
Hub chi cagoHub, dal | asHub, newar kHub, sanFranHub, seattl eHub
Funnel
Nozzl e
Rout eTabl e
Pi pe

Cl ockAdvancer
SceM Messagel nPort
SceM MessageQut Por t
SceM C ockContr ol

Notice that at the Bri dge level only the SceM d ockPort macro, transactor components, and the DUT
appear. Encapsulated within the ori gi n and Dest i nat i on transactors are the SceM Messagel nPort ,
SceM MessageQut Port , and SceM d ockCont r ol macros. The d ockAdvancer transactor has both
message input and output ports in addition to the required SceM C ockCont r ol macro.

Hardware Side

Bridge

The bridge between the hardware and software side of the design isdepicted in Figure 7. Notice that this
diagram more or less follows the structure of the generalized abstraction bridge shown in Figure 3 on
page 11. The design uses 13 message channelsin all. Two (message input and output) for the cal endar
<-> d ockAdvancer connection, six message input channelsfor the Schedul er <-> Origin
connections, and five output channels for the Schedul er <-> Desti nati on connections.
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The two software models that interact with the hardware side are the cal endar model and the

Schedul er model. These model s encapsul ate message port proxies which give them direct access to the
message channelsleading to the ori gi n and Dest i nat i on transactors on the hardware side. These two

software models are the only ones that are aware of the SCE-MI link. They converse with the other
models through SystemC abstract ports.

On the hardware side, thereisa set of ori gi n and Dest i nat i on transactors that service the message

channels that interface with the schedul er and route tokens to or from the DUT. Some locations, such

as Anchor age and the UK, are both i gi n and Dest i nati on (called o i gDest ).
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In addition, thereisac ockAdvancer transactor that interfaces directly with the cal endar model. The
d ockAdvancer isastand-alone transactor that does not converse with the DUT. Itsonly jobisto alow
time to advance a day at atime (see section 3.2.3.5 on page 28 for more details).

3.2.3.2 DUT and Transactor Interconnect
Figure 8 shows a representative portion of the Rout eMap to show how it interconnects DUT components
to form the Rout eMap mesh.

FIGURE 8. DUT and Transactor Interconnect
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Pi pes areinserted between two Hubs or between an Ori gi n Or Dest i nat i on transactor and a Hub.
Longer Pi pes can be created by cascading primitive one hour Pi pesto form the proper length. Each

Pi pe primitive represents one hour of travel (one clock). In this diagram, aPi pe4 model isinserted
between the Seatt1 e Hub and Maui Desti nati on for afour hour flight leg. Since travel can occur in
either direction between Anchor age and Seat t | e, aPi pe5 isinserted between them for each direction.

3.2.3.3 DUT and Transactor Components
Figure 9 shows the structure of the DUT and transactor components.

FIGURE 9. DUT and Transactor Components
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Each ori gi n transactor contains a clock control macro and a message input port macro to receive
departure tokens from the Schedul er on the software side. Each received token is passed to the
Tokencut port when the scheduled departure time has matured. Although the ori gi n transactor has a
clock control macro, it does not actively control the clock. Its only use of the clock control macroisto
monitor the ReadyFor Ccl ock signal to know on which uclocks the cclock is active so that it can
properly count cclocks until the scheduled departure time of a pending departure token.

Each Dest i nat i on transactor contains a clock control macro and a message output port macro to send
arrival tokens back to the schedul er on the software side. The arrival tokens represent a passenger
emerging from the Rout eMap mesh and arriving at aDest i nat i on through its Tokenl n port. See section
3.2.3.4 on page 26 for a detailed description of the Dest i nat i on transactor. This transactor was chosen
to be described in detail because it provides a simple example of clock control and message port
interfacing.

Each token is a 32-bit vector signal. There are no handshakes in the system. Rather, the tokens are “ self
announcing.” Normally, Os are clocked through the mesh so if, on any given cycle, aHub or

Dest i nati on senses a non-0 value on itsinput port, it knows it has received atoken that needs to be
processed.

Token formats are also shown in Figure 9. A departure token contains the passenger I1D, destination ID,
and scheduled time of departure. As the departure token travel s through the mesh, it collects layover
information consisting of the IDs of all the Hubs encountered before reaching its Dest i nat i on, having
been transformed into an arrival token. The arrival token then has a complete record of layover
information that is passed back to the software side and displayed to the console.

A Hub consists of aFunnel that accepts tokens from up to four different sources, and aNozzl e that
routes a token up to four different destinations. The Nozzl e contains asmall Rout eTabl e that is
initialized at the beginning of the simulation with routing information by receiving TeachRout e tokens.

3.234 Thebestination Transactor: Interfacing with the DUT and Controlling the Clock
The Dest i nat i on transactor accepts tokens arriving from a point-of-exit on the Rout eMap and passes
them to the message output port.

The Dest i nat i on transactor uses clock control to avoid losing potentially successive tokens arriving
from the Rout emap (through the Tokenl n input) to this destination portal. It de-asserts the

readyFor Ccl ock in the event that atoken comesin, but the message output port is not able to take it
because of tokens simultaneously arriving at other destination portals. Thisway, it guarantees that the
entire Rout eMap is disabled until all tokens are off-loaded from the requesting Dest i nat i on transactors.

The Verilog source code for the Dest i nat i on transactor is shown in the following listing:
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nmodul e Destination ( Tokenln );
i nput [31:0] Tokenln;

1 q

wire [3:0] destlD;

reg [31:0] nessage;

reg transmt Ready, readyForCcl ock;
assign destl D = Tokenln[7:4];

SceM MessageQut Port #32 nessageQut Port (
/1l nput Cut put

[----

. Transm t Ready(transm t Ready), . Recei veReady(r ecei veReady),
. Message(nessage) );

SceM C ockControl cl ockControl (
/1l nput Cut put

. Ucl ock(ucl ock),
. Ureset (ureset),

. ReadyFor Ccl ock( readyFor Ccl ock), . Ccl ockEnabl ed( ccl ockEnabl ed) );

al ways@ posedge uclock ) begin // {

i f(

end

ureset == 1) begin
readyFor Ccl ock <= 1;
message <= 0;

transm t Ready <= 0;

el se begin // {

end

end // }

/1 if( DUT clock has been disabled)

11 It neans that this destination transactor is waiting to

11 unload its pending token and does not want to re-enable the
11 DUT until that token has been off-1oaded or else it m ght
11 |l ose arriving tokens in subsequent DUT cl ocks.

if( readyForCclock == 0 ) begin

/1 When the MessageQutPort portal finally signals acceptance
/1 of the token, we can re-enable the DUT cl ock.
if( receiveReady ) begin
readyFor Ccl ock <= 1;
transm t Ready <= 0;
end
end
el se if( cclockEnabled &% destID != 0 ) begin
nmessage <= Tokenl n;
transm t Ready <= 1;

/1 if( token arrives but portal is not ready )
/1 Stop the assenbly line ! (a.k.a. disable the DUT)
if( receiveReady == 0 )
readyFor Ccl ock <= 0;
end
I}

endnodul e // }
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3.235 Thed ockAdvancer Transactor: Controlling Time Advance
The d ockAdvancer transactor simply counts controlled clocks until the requested number of cycles has
transpired, then sends back areply transaction.
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The Verilog source code for the ClockAdvancer islisted here:

nmodul e C ockAdvancer () ;

I {
wire [31:0] advanceDel ta, nessageln, nmessageQut;
reg [31:0] cycleCount;

assign receiveReadyln = 1;
assi gn advanceDel ta = nmessagel n[ 31: 0] ;
assi gn nmessageQut = 0;

SceM Messagel nPort #32 nessagel nPort (
/11 nput Qut put
T R
. Recei veReady(recei veReadyl n), . Transm t Ready(transni t Readyl n),
. Message( nmessagel n) );
SceM MessageQut Port #32 nessageQut Port (
/1l nput Cut put

. Transm t Ready(transm t ReadyQut), . Recei veReady(r ecei veReady),
. Message(nessageQut) );

SceM O ockControl cl ockControl (
/1l nput Cut put
R e R
. Ucl ock(ucl ock), .Ureset(ureset),
. ReadyFor Ccl ock(readyFor Ccl ock), . Ccl ockEnabl ed(ccl ockEnabl ed) );

al ways @ posedge uclock ) begin // {
if( ureset ) begin
transm t ReadyQut <= O0;
cycl eCount <= 0;
readyFor Ccl ock <= 0;
end
el se begin // {
/'l Received a clock advance command - Initialize cycle counter.
if( transm tReadyln && !transm t ReadyQut ) begin
cycl eCount <= advanceDel t a;
readyFor Ccl ock <= 1,
end
/1 Decrenment cycle count. Wen count gets down to 1,
/1l prepare to send a response that the tinme has expired.
i f( readyForCcl ock && ccl ockEnabl ed ) begin
if (cycleCount == 1) begin
transm t ReadyQut <= 1;
readyFor Ccl ock <= 0;
end
cycl eCount <= cycleCount - 1;
end
if( receiveReadyQut == 1)
transm t ReadyQut <= 0;
end // }
end // }
endnodul e // }

Notice that the SceM O ockCont r ol macro references the same cclock as that in the Dest i nati on
transactor (i.e., usesthe default d ockNume1). This meansthat the d ockAdvancer and the Desti nati on
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transactor share in the control of the same cclock. In fact there is only one cclock in the entire system
that is specified at the default 1/1 ratio.

Notice also that, although the a ockAdvancer handshakes with the message output port, the data that it
sendsisaways0. Thisis because the only thing that the software side needsfromthe d ockAdvancer is
the cycle stamp which is automatically included in each message output response (see 4.3.5.3 on

page 75).

3.24 The Software Side
The software side of the Routed design iswritten completely in SystemC and C++. It is compiled as an
executable program that links with the SCE-MI software side.

3.24.1 The systemModel: Interconnect of SystemC M odules
The syst emmodel isthe top level “software netlist” of SystemC modules ( SC_MODULE() ). It specifies
the construction and interconnect of the component models aswell. A block diagram of the System
model is shown in Figure 10.

FIGURE 10. Interconnect of SystemC Models
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Following is the source code for the System model:

SC_MODULE( System){

}

sc_l i nk_np<unsi gned> newDay ;

sc_l i nk_np<const Routed::Arrival Record *> announceArrival;
sc_l i nk_np<unsi gned> advanceCal endar ;
sc_l i nk_np<const Routed::ltinerary *> schedul elLeg;
sc_link_nmp<> | oadRout eMap;
sc_link_nmp<> done;

sc_li nk_np<> advanced ock;
sc_l i nk_np<Rout ed: : Dat e> t odaysDat e;

sc_l i nk_np<const Routed::Route *> | oadRout e;
e e
/'l Modul e decl arations

Test bench *t est bench;

Cal endar *cal endar;

Schedul er *schedul er;

Rout eConfi g *rout eConfig;
SceM Di spat cher *di spat cher;

SC_CTOR( System){
test bench = new Testbench( “testbench” );
t est bench- >NewDay ( newDay );
t est bench- >AnnounceArrival ( announceArrival );
t est bench- >AdvanceCal endar ( advanceCal endar );

t est bench- >Schedul eLeg( schedul eLeg );
t est bench- >LoadRout eMap( | oadRout eMap ) ;
t est bench- >Done( done );

cal endar = new Cal endar( “cal endar” );
cal endar - >AdvanceCal endar ( advanceCal endar );

cal endar - >AdvanceC ock( advanced ock );
cal endar - >NewDay ( newbDay );
cal endar - >TodaysDat e( todaysDate );

schedul er = new Schedul er ( “scheduler” );

schedul er - >TodaysDat e( todaysDate );
schedul er - >Schedul eLeg( schedul eLeg );
schedul er - >LoadRout e( | oadRoute );

schedul er - >AnnounceArrival ( announceArrival );

routeConfig = new RouteConfig( “routeConfig” );
rout eConf i g- >LoadRout eMap( | oadRout eMap );
rout eConf i g- >LoadRout e( | oadRout e );
rout eConfi g- >AdvanceCl ock( advanceC ock );

di spat cher = new SceM Di spat cher( “dispatcher” );
di spat cher->Done( done );

SystemC interconnect channels are declared assc_| i nk_np<> data types. These can be thought of as
abstract signals that interconnect abstract ports. The parametrized data type associated with each

sc_l i nk_np<> denotes the data type of the message that the channel is capable of transferring from an
output abstract port to an input abstract port. Notice that the t odaysbat e channel is declared with a*“ by
value” datatype (i.e., Rout ed: : Dat e) Whereas some of the other channels such asthe announceArri val
are declared as “ by reference” datatypes (i.e., const Routed:: Arrival Record *). Theformerisless
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efficient but safer because the message is passed by value and therefore there is no danger of the
receiver corrupting the sender’s data or worse, having the sender’s data go out of scope leaving the
receiver with a possibly dangling reference. However, passing messages by reference is more efficient
but care must be taken in their use. Declaring them asconst pointers helps alleviate some, but not all of
the safety problems.

Module pointers are declared inside the SC_MODULE( Syst en) object and constructed in its SystemC
constructor ( SC_CTOR( Syst enj ). After each child moduleis constructed, its abstract ports are mapped
to one of the declared interconnect channels.

It isimportant to stress that SystemC channels, while conceptually the same, are distinctly different
from SCE-MI message channels. Both types of channels pass messages, but SystemC channels are
designed strictly to pass messages of arbitrary C++ data types between SystemC modules. An entire
simulation can be built of just software models communicating with each other. See reference [1] for
more details about SystemC interconnect channels.

SCE-MI message channels have a completely different interface and are optimized for implementing
abstraction bridges between a software subsystem and a hardware subsystem. In the use model
presented in this example, their interfaces are encapsulated by SystemC models.

The thick round arrows in Figure 10 represent the SystemC autonomous threads contained in the
Test bench and SceM Di spat cher modules. These two threads are the only autonomous threadsin the
system. All the other code is executed inside slave threads.
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Thesc_min() Routineand Error Handler

Thefollowing listing showsthesc_mai n() routine which isthe top level entrypoint to the program. The
sc_mai n() isrequired when linking to a SystemC kernel facility, but it is very much like a conventional
mai n() C or C++ entrypoint and has the same program argument passing semantics.

static void errorHandl er( void */*context*/, SceMEC *ec ) {

int

}

char buf[32];

sprintf( buf, “%l”, (int)ec->Type );
string messageText( “SCE-M Error[" );
messageText += buf;

messageText += “]: Function: “;
messageText += ec->Cul prit;
messageText += “\n”;

messageText += ec->Message;

t hrow nessageText ;

sc_main( int argc, char *argv[] ){
SceM : : Regi sterErrorHandl er ( errorHandl er, NULL );
SceM *scem = NULL,;

try {
SceM Paraneters paraneters( “./paranms.scem” );
scem = SceM::Init( 1, &paraneters );

System systen( “systen ); // Instantiate the system

/1 Establish proper bindings between the SCE-M and the nodul es
/1 that directly interact with it.

syst em di spat cher->Bi nd( scem );

system cal endar ->Bind( scem );

system schedul er ->Bind( scem );

e R T T T
Il Kick off SystenC kernel
cerr << “Let ‘er rip !” << endl;

sc_start(-1);

}

catch( string nessage ) {
cerr << nessage << endl;
cerr << “Fatal Error: Program aborting.” << endl;
SceM : : Shut Down( scem );
return -1,

}

catch(...) {
cerr << “Error: Unclassified exception.” << endl;
cerr << “Fatal Error: Program aborting.” << endl;
SceM : : Shut Down( scem );
return -1,

}

return O;

Thefirst routine defined isthe er r or Handl er () . Thisisthe master error handling function that is
registered with the SCE-MI. Whenever an error occurs, this function is called to format the message
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before throwing a C++ exception. The exceptions are caught inthecatch { ... } blocksat the end of
thesc_mai n() routine where they are displayed before exiting the program.

Once the error handler is registered, the SCE-MI isinitialized by calling SceM : : 1 ni t () . This method
returns a pointer to an SceM object that manages the whole SCE-MI software side infrastructure.

Next the syst emmodel described in the previous section is constructed. The constructor
(sc_cTor(system ) causes al of its child software models to get constructed by calling, in turn, their
SC_CTOR() constructors.

Once the whole system is statically constructed, models that interface with SCE-MI are given the
master SceM object pointer so that they can access its methods, by calling special : : Bi nd() accessor
methods on those models.

Finally, the SystemC main kernel loop isinitialized by calling thesc_start () function. The -1
parameter tellsit to go indefinitely until the program decides to end. How the program ends is explained
in the next section.

The sceM Di spat cher Module: Interfacing with the SCE-M| Service L oop

The SceM Di spat cher modul e contains an autonomous thread that yields to the SCE-MI infrastructure
so that it may service its message port proxies, by making repeated callsto the SceM : : Servi ceLoop()
method (see section 4.3.3.6 on page 68). By placing thislogic on its own dedicated thread, other models
in the system do not have to worry about yielding to the SCE-MI.
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Following is the source code for the SceM Di spat cher :

SC_MODULE( SceM Di spatcher ){
sc_sl ave<> Done;

private:

[ T
/1 Context declarations

SceM *dSceM ;

/'l Thread decl arations
voi d di spatchThread(); // Autononmous SceM dispatcher thread
voi d doneThread() {

SceM : : Shut Down( dSceM );

exit(0); // This is a normal exit.

}

public:

R R R
/'l Accessors

void Bind( SceM *scem ){ dSceM = scem; };

SC CTOR( SceM Di spatcher ){
R
/1 Thread bindings
SC_THREAD( di spatchThread );
sensitive << UTick;

SC SLAVE( doneThread, Done );
}

voi d SceM Di spat cher: : di spatchThread() {
/1 This is all the dispatcher does
/1 1t just calls the SceM dispatcher poll function and returns.
for(;;){
wai t();
dSceM - >Servi ceLoop();

}

Between each call to the service loop, the autonomous thread yields to other threads in the system by
calingthewai t () function. Actually, the only other autonomousthread in the Rout ed system isthe one
inthe Test bench model. Both of these threads are represented by the thick round arrowsin Figure 10 on

page 30.

The other job of the SceM Di spat cher isshut down the system when it detects a notification on its Done
port that the simulation is complete. The bone inslave port is bound to the slave thread,

:: doneThr ead() on construction. The Done port isdriven from its associated outmaster port on the
Test bench module, so it isthe Test bench that ultimately decides when the simulation is complete (see
next section).
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Application Specific Data Typesfor the Routed System

The following data types are defined in the Rout ed. hxx header file. They will be referenced throughout
the subsequent discussion. They are data types that are specific to this application.

class Routed {

publi c:
typedef enum Paraneters {

NunPassengers = 4,
NumLocations = 12,
MessageSi ze = 15
I
typedef enum Passenger|Ds {
Nobody,
BugsBunny,
Daf f yDuck,
El mer Fudd,
Syl vest er TheCat
i
typedef enum Locationl Ds {
/'l Location Origin Destination Hub
I
Unspeci fi ed,
Anchor age, /1 1. X X
Chi cago, I 2: X
Cuperti no, /1 3: X X
Dal | as, I 4 X
Maui , /Il 5: X
Newar Kk, /Il 6: X
Noi da, 17 X
SanFr an, /Il 8: X
Seal Beach, I 9: X X
Seattl e, /1 10: X
UK, /1 11: X X
Wal t ham /1 12: X
I
typedef struct Itinerary {
unsi gned Dat eCf Tr avel ;
unsi gned Ti meOf Departure;
Passenger | Ds Passenger| D;
LocationlDs OriginlD;
Locationl Ds DestinationlD;
i

typedef struct Arrival Record {
Passenger| Ds Passenger| D;

unsi gned Dat eCf Arrival ;
unsi gned Ti meOf Arrival ;
unsi gned Layover Count ;

LocationlDs OriginlD;
Locationl Ds Layover|Ds[4];
Locationl Ds DestinationlD;

b

typedef struct Route {
Locationl Ds Routerl D,
Locationl Ds DestinationlD;
unsi gned Port | D

I

typedef struct Date {
SceM U64 Cycl eSt anp;
unsi gned Day;
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b
b

The Test bench Model: Main Control L oop

The Test bench model contains a SystemC autonomous thread that serves as the main driver for the

Rout ed design. Itsjob istolook at the four passenger itineraries and schedule the legs in those

itineraries on the appropriate dates and at the appropriate departure times by interacting with the

Schedul er model.

The condensed source code for the passenger itinerary declarations for the Test bench model is as

follows:

const Routed::Iltinerary Routed::BugsesTrip[] = {

/*

On day, at, departs from

{ 2, 8, BugsBunny, Anchor age,

{ 20, 10, BugsBunny, Seal Beach,

{ 0, 0, BugsBunny, Unspeci fi ed,

const Routed::Itinerary Routed:
/*

:Daf fysTrip[] = {

On day, at, departs from

{ 1, 8, DaffyDuck, Wal t ham

{ 4, 2, DaffyDuck, Cuperti no,

{ 22, 7, DaffyDuck, Cupertino,

{ 0, 0, DaffyDuck, Unspeci fi ed,

const Routed::Itinerary Routed:
/*

cElmersTrip[] = {

On day, at, departs from

{ 3, 5, El mer Fudd, Seal Beach,

{ 23, 3, El mer Fudd, Cuperti no,

{ 0, 0, El nmer Fudd, Unspeci fi ed,

const Routed::Itinerary Routed:
/*

On day, at, departs from
{ 1, 1, Syl vesterTheCat, Noi da,
{ 4, 2, SylvesterTheCat, Seal Beach,
{ 20, 7, SylvesterTheCat, Anchor age,
{ 0, 0, SylvesterTheCat, Unspeci fi ed,
static const char *passengerNanes[] = {
“Nobody “, “BugsBunny , “DaffyDuck
“El mer Fudd “, “SylvesterTheCat” };
static const char *locationNanes[] = {
“Unspeci fied”, “Anchorage”, “Chicago “,
“Cupertino”, “Dal | as ‘. “Maui ,
“ Newar k “, “Noi da “, “SanFran *“,
“ Seal Beach”, “Seattle *, “UK

:SylvestersTrip[] = {

enroute to, */
Cupertino },
Maui },

Unspecified } };

enroute to, */

Cupertino },
Seal Beach },

Maui },
Unspecified } };

enroute to, */

Anchor age 1},

Maui },
Unspecified } };

enroute to, */

Seal Beach },
Cupertino },

Maui },
Unspecified } };

“Wal tham *“ };
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There are four passengers whose itineraries are given aslistsof Rout ed: : I'tinerary records. Each
record represents a leg of that passenger’s journey consisting of a date of departure, time of departure,
passenger, origin, and destination. The passenger Names and | ocat i onNares are strings use for printing

of messages.

Following is the SystemC module definition ( SC_MoDULE() ) for the Test bench model with its standard
SystemC constructor ( SC_CTOR() ):

SC_MODULE( Testbench ){

R e R R
/'l Abstract port declarations

sc_mast er <> LoadRout eMap;

sc_mast er <> Done;

sc_out mast er <unsi gned> AdvanceCal endar ;
sc_i nsl ave<unsi gned> NewDay;;

sc_out mast er<const Routed::Iltinerary *> Schedul eLeg;
sc_i nsl ave<const Routed::Arrival Record *> AnnounceArrival;

private:
e e

/1 Context declarations

unsi gned dNunmVaui Arrival s;

unsi gned dDayNum

const Routed::Itinerary *dltineraries[Routed::NunPassengers];

/'l Thread decl arations

voi d driverThread(); // Autononous “master” thread.
voi d newbDayThread() { dDayNum = NewDay; }

voi d announceArrival Thread();

e e
/'l Hel per declarations
public:
SC CTOR( Testbench ) : dNumMaui Arrival s(0), dDayNun{0) {
[ R
/1 Thread bindi ngs
/1 This autononous thread fornms the main body of the Routed driver.
SC THREAD( driverThread );
sensitive << UTick;
SC SLAVE( newDayThread, NewDay );
SC SLAVE( announceArrival Thread, AnnounceArrival );
/'l Initialize itinerary pointers.
dlitineraries[0] = Routed::BugsesTrip;
ditineraries[1l] = Routed::DaffysTrip;
dlitineraries[2] = Routed::ElnmersTrip;
dlitineraries[3] = Routed::SylvestersTrip;
}
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Following is the autonomous thread for the main driver loop:

voi d Testbench::driverThread(){
LoadRout eMap(); // Signal RouteConfig nodel to begin configuration RouteMap.
unsi gned dayNum = dDayNum
AdvanceCal endar = 1; // Advance to day 1.

for(;:){
wait(); // Wait for day to advance (i.e., ‘NewDay' arrives.)

if( dayNum != dDayNum ){
unsi gned date, mnDate = 1000;

/1l Check itineraries to see if any passengers are
/1l traveling today. |If so, advance cal endar to tonorrow
/1 in case next leg of itinerary is tonorrow.
for( int i=0; i<Routed::NunPassengers; i++ ){
if( (date=dltineraries[i]->DateC Travel) ){
if( date == dDayNum ) {
cout << “On day “ << setw(2) << dDayNum << “ at
<< setwm(2) << dltineraries[i]->Ti neOf Departure
<< “:00 hrs, “
<< passenger Nanes[dltineraries[i]->Passenger| D]
<< “ departs “
<< | ocationNanmes[dltineraries[i]->OiginlD
<< “ enroute to “
<< | ocationNanmes[dltineraries[i]->DestinationlD]
<< endl ;

Schedul eLeg = dltineraries[i]++;
mi nDate = dDayNumt1;
}
else if( date < minDate )
m nDat e = date;
}

}
dayNum = dDayNum
AdvanceCal endar = minDate - dDayNum

}

Before entering its main loop, the autonomous: : dri ver Thread() doestwo things. First, by signaling
the LoadRout eMap outmaster port, it triggers the Rout eConf i g model to teach all the routesto the

Rout eTabl es of al the Hubs in the Rout eMap. Each taught route that isinjected to the hardware is
staggered by one clock. These small one clock advances are achieved when the Rout eConf i g model
signalsthe Advanced ock port on the cal endar model. Passenger travel in the Rout eMap is not possible
until all the Hubs have been properly programmed with their routes.

Once all the routes have been taught to the Rout eMap, the Cal endar isadvanced to day one. Thiswill, in
turn, causethe cal endar model to announce the arrival of day one viathe NewDay inslave port. Oncethe
day change has been detected, the: : dri ver Thread() then entersinto aloop where it schedules any
travel on theitineraries scheduled for the current day. If no travel is scheduled, it advancesthe cal endar
to the first day on which travel is scheduled to occur. Legs of each itinerary are scheduled by sending
theltinerary record over the Schedul eLeg outmaster port to the Schedul er model which encodes it
into atoken and sendsit to the hardware.
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This operation continues for each leg of each itinerary until al passengers have traveled al legs of their
trip and have finally arrived at the Maui Dest i nat i on. This serves as the termination condition that is
conveyed to the SceM Di spat cher model by signaling the Done outmaster port (see code for
::announceArrival Thread() below). Upon receiving this notification, the SceM Di spat cher model
gracefully shuts down the SCE-MI and exits the program with a normal exit status.

The Test bench model also announces arrivals of passengers at their destinations as they occur. The
::announceArrival Thread() Slavethread detects an arrival by receiving an Arri val Record On its
AnnounceArri val inslave port (which was sent from the message output port proxy receive callback in
the Schedul er). It prints out the arrival information to the console. Following is the source code:

voi d Testbench: : announceArrival Thread() {
const Routed::Arrival Record *arrival Record = AnnounceArrival ;

cout << “On day “ << setw(2) << arrival Record->DateCf Arrival
<< “ at * << setw(2) << arrival Record->TimeCf Arrival << “:00 hrs,\n”

<< “ << passenger Nanmes[ arri val Recor d- >Passenger | D]
<< “ arrives in “ << |ocationNanes[arrival Record->Destinationl D]
<< from*“ << | ocationNanes[arrival Record->0OriginlD

<< “ after layovers in,”;

for( unsigned i=0; i<arrival Record->LayoverCount; i++ )
cout << “\n )
<< | ocationNanes[ arrival Record->Layover|Ds[i]];
cout << endl;
/1 Check for termnation condition.
if( arrival Record->Destinationl D == Routed:: Maui &&
++dNumMVhaui Arrival s == Rout ed: : NunPassengers ) {
cout << “Everyone has arrived in Maui. W' re done. Let’'s party !”
<< endl;
Done(); // Signal the dispatcher that the simulation has ended.
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3.24.6 Theschedul er Module: Interfacing with M essage Port Proxies
Following is the SystemC module definition and constructor for the Schedul er model:

SC_MODULE( Schedul er ){

R e R TR R R
/] Abstract port declarations

sc_i nmast er <Rout ed: : Dat e> TodaysDat e;
sc_insl ave<const Routed::ltinerary *> Schedul eLeg;
sc_i nsl ave<const Routed::Route *> LoadRout e;

sc_out mast er <const Routed:: Arrival Record *> AnnounceArrival;
private:

/1 Context declarations

SceM MessageDat a dSendDat a;

SceM Messagel nPort Proxy *dOri gi nAnchor age;
SceM Messagel nPort Proxy *dOri gi nCuperti no;
SceM Messagel nPort Proxy *dOri gi nNoi da;
SceM Messagel nPort Proxy *dOri gi nSeal Beach;
SceM Messagel nPort Proxy *dOri gi nUK;

SceM Messagel nPort Proxy *dOri gi n\Wal t ham

SceM MessageQut Port Proxy *dDesti nati onAnchor age;
SceM MessageQut Port Proxy *dDesti nati onCuperti no;
SceM MessageQut Port Proxy *dDesti nati onMaui ;

SceM MessageQut Port Proxy *dDesti nati onSeal Beach;
SceM MessageQut Port Proxy *dDesti nati onUK;

Rout ed: : Arrival Record dArrival Record;

/1 Thread decl arations
voi d schedul eLegThread();
voi d | oadRout eThread();

/'l Hel per declarations
static void replyCallback( void *context, const SceM MessageData *data );
voi d announceArrival ( SceM U64 cycl eStanmp, SceM U32 arrival Token );

publi c:
void Bind( SceM *scem );

SC_CTOR( Schedul er )
: dSendDat a( Rout ed: : MessageSi ze),

dOri gi nAnchor age( NULL) ,
dOri gi nCupertino(NULL),
dOri gi nNoi da( NULL) ,
dOri gi nSeal Beach( NULL) ,
dOri gi nUK(NULL) ,
dOri gi nWal t ham( NULL) ,
dDest i nati onAnchor age( NULL) ,
dDest i nati onCupertino( NULL),
dDest i nati onMaui ( NULL),
dDest i nat i onSeal Beach( NULL),
dDest i nat i onUK( NULL)

SC_SLAVE( schedul eLegThr ead, Schedul eLeg );
SC_SLAVE( | oadRout eThr ead, LoadRoute );
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}s

There are two slave threads defined in this model: the: : schedul eLegThread() and the

:: 1 oadRout eThread() . The: : 1 oadRout eThr ead() , though not described in detail here, isresponsible
for sending TeachRout e tokens into the Rout evap mesh viathe wal t ham Ori gi n transactor when the
Rout eMap isfirst being configured at the beginning of the simulation. This thread is activated each time
the Rout eConf i g module wants to teach a new route during its LoadRout eMap Operation.

The: : schedul eLegThread() isactivated when the Schedul er receivesRout ed: : I ti ner ary messages
on its Schedul eLeg indave port from the Test bench model. It sends those legs encoded as departure
tokens across the message input channels to their designated o i gi n transactors. The Schedul er has
pointers to each of the message input port proxies that are connected to o i gi n transactors. Each
departure token is encoded with the passenger 1D and destination ID from the Rout ed: : I ti nerary
record. Following is the source code for the : : schedul eLegThread() :

voi d Schedul er: : schedul eLegThread() {
const Routed::Itinerary *leg = Schedul eLeg;

/1l Form a ‘Passenger Departure’ token based on the contents of the given
/1 ‘ltinerary’ record.
SceM U32 passenger DepartureToken =

| eg- >Passenger | D |

(leg->DestinationlD << 4) |

(leg->OriginlD << 12) |

(1l eg->Ti neOf Departure << 16);

dSendDat a. Set ( 0, passenger DepartureToken );

switch( leg->OiginlD){

case Routed:: Anchorage: dOrigi nAnchorage->Send( dSendData ); break;
case Routed:: Cupertino: dOiginCupertino->Send( dSendData ); break;
case Rout ed: : Noi da: dOri gi nNoi da ->Send( dSendData ); break;
case Routed:: Seal Beach: dOri gi nSeal Beach->Send( dSendData ); break;
case Routed:: UK dOrigi nUK ->Send( dSendData ); break;
case Routed:: Wl t ham dOri gi nWal tham ->Send( dSendData ); break;
defaul t:
assert (0);

}

The Schedul er: : Bi nd() method is called prior to simulation from the sc_mai n() routine (see section
Figure 3.2.4.2 on page 33). Here iswhere the SCE-MI message input and output port proxies leading to
each of the i gi n and Dest i nat i on transactors are bound. Notice that for each of the output port
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proxies, the output receive callback, r epl yCal | back() , is specified in the binding structure. See section
4.3.3.5 on page 67 for more information about message output port binding.

voi d Schedul er::Bind( SceM *scem ){

/'l Establish nessage input portals.

dOri gi nAnchorage = scemi - >Bi ndMessagel nPort ( “anchorage”, “Tokenln” );
dOrigi nCupertino = sceni ->Bi ndMessagel nPort ( “cupertino”, “Tokenln” );
dOri gi nNoi da = scem - >Bi ndMessagel nPort ( “noi da”, “Tokenln” );
dOri gi nSeal Beach = scemni - >Bi ndMessagel nPort ( “seal Beach”, “Tokenln” );
dOri gi nUK = scem - >Bi ndMessagel nPort ( “uk”, “Tokenln” );
dOrigi nWal tham = sceni - >Bi ndMessagel nPort ( “wal t hant, “Tokenln” );

/] Establish nmessage output portals.

SceM MessageQut Port Bi nding binding = { this, replyCallback, NULL };

dDest i nati onAnchorage = scem - >Bi ndMessageQut Port (
“anchorage”, “TokenQut”, &binding );

dDest i nati onCupertino = scem - >Bi ndMessageQut Port (
“cupertino”, “TokenQut”, &binding );

dDest i nat i onMaui = scem - >Bi ndMessageQut Port (
“maui ", “TokenQut”, &binding );

dDest i nati onSeal Beach = scem - >Bi ndMessageQut Port (
“seal Beach”, “TokenQut”, &binding );

dDest i nati onUK = scem - >Bi ndMessageQut Port (
“uk”, “TokenQut”, &binding );

}

The Schedul er isalso responsible for processing of arrivals. Once the cal endar isadvanced, arrivals
can occur at any time over the course of 24 hours (i.e., 24 clocks). Each arrival token is sent by a
Dest i nati on transactor, over a message output port to the Schedul er. The SCE-MI infrastructure
dispatches the arriving messagesto ther epl ycCal | back() function that was registered in the: : Bi nd()
method described above. The repl ycal | back() function, in turn, passes the message to the private
:announceArrival () method described below. Following isthe code for ther epl yCal | back()
function:

voi d Schedul er::replyCall back( void *context, const SceM MessageData *data ){
((Schedul er *)context)->announceArrival ( data->CycleStanp(), data->Get(0) ); }

The: : announceArrival () method processes the arrival token. It converts the encoded arrival token to
the Rout ed: : Arri val Recor d datatype, stamps it with TodaysDat e (an output from the cal endar ), and
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sends it out through the AnnounceArri val outmaster port to the Test bench model which displays the
arrival information to the console as follows:

voi d Schedul er::announceArrival ( SceM U64 cycl eStanp, SceM U32 arrival Token ){
Rout ed: : Date todaysDate = TodaysDate; // Read today’'s date from Cal endar

dArrival Record. Dat eCf Arri val
dArrival Record. Ti meCf Arri val
dArrival Record. Passenger | D

t odaysDat e. Day;
cycl eStanp - todaysDate. Cycl eSt anp;
(Rout ed: : Passenger | Ds)
( arrival Token & Oxf );
dArrival Record. Destinationl D = (Routed:: Locationl Ds)
( (arrival Token >> 4) & Oxf );

dArrival Record. OriginlD = (Rout ed: : Locati onl Ds)
( (arrival Token >> 12) & Oxf );
dArrival Record. Layover Count = (arrival Token >> 8) & Oxf ;

assert( dArrival Record. LayoverCount < 5 );
arrival Token >>= 16;
for( unsigned i=0; i<dArrival Record. LayoverCount; i++ ){
dArrival Record. LayoverI Ds[i] = (Routed::Locationl Ds)
( arrival Token & Oxf );
arrival Token >>= 4;

}

AnnounceArrival = & JArrival Record; // Arrival record is passed by reference.

3.24.7 Thecal endar Module: Interfacing with the Clock Advancer

The cal endar model is responsible for advancing time on the Rout eMap One or more days at atime.
Once a set of scheduled departures has been programmed in each Ori gi n transactor that has departures
scheduled for aparticular day, the cal endar alowsthe DUT to advance by 24 clocks (24 hours) or
some multiple of 24 clocks if the next scheduled departure occurs more than one day from now. The
Cal endar advances time by sending amessage to the d ockAdvancer transactor in the hardware which
has direct control of the DUT clock viathe d ockCont r ol macro. The source code for the Cal endar
module is very similar in structure to that for the Schedul er ; therefore, most of it is not shown here.

The cal endar model has two slave threads that respond to requests to advance time. The
:  advanceCal endar Thread() responds to requests on the AdvancecCal endar port to advance agiven
number of days.
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The: : advanceC ockThr ead() respondsto requests to advance one clock at atime which occurs during
Rout eMap configuration to stagger the injection of each TeachRout e token by one clock. This method is
asfollows:

voi d Cal endar: : advanceCd ockThread() {
dSendData. Set( 0, 1 ); /1 Tell C ockAdvancer to advance by 1 cl ock.
dl nput Port->Send( dSendData ); // Send nessage out on port proxy.

/1 Pend until the cycle stanp gets updated by the output port proxy reply call back.
SceM U64 current Cycl eStanp = dCycl eSt anp;
whi | e( dCycl eStanp == current Cycl eStanp )

wai t () ;

}

Notice that this method enters aloop that callswai t () to yield to the SystemC kernel. The reason for
thisisthat it wants to guarantee that the clock has completed its advance before returning. By yielding
to the SystemC kernel whileit iswaiting for this condition, the autonomous SceM Di spat cher thread
(see section 3.2.4.3 on page 34) is naturally given a chance to service the message output ports. Thisis
necessary to reach the condition that the : : advanced ockThread() iswaiting for, namely, for the

Cal endar : : dCycl eSt anp data member to change value.

The: : doycl eStanp changes value when the d ockAdvancer (on the hardware side) responds on its
output port that it has completed its one clock time advance which, in turn, causes the

Cal endar: : repl yCal | back() function to get called from the SceM : : Servi ceLoop() . The

repl yCal | back() function isasfollows:

voi d Cal endar: :replyCall back( void *context, const SceM MessageData *data ){
((Cal endar *)context)->dCycl eStanp = data->CycleStanmp(); }

The cycle stamp isupdated directly fromthe: : cycl eSt anp() method on the SceM MessageDat a Object.
Thisreflects a count of elapsed controlled clock counts that had occurred from the beginning of the
simulation to the time this message was sent from the hardware side. Thisis a convenient way for
software to keep track of elapsed clock timein the hardware. Oncethe: : dCycl eSt anp is updated, the
wai t () loopinthe: : advanced ockThread() described above, isreleased and the function can return.

Keepinmindthe: : advanced ockThread() andrepl yCal | back() functionsare being called under two
different autonomous threads that each frequently yield to each other. The former is called from the
autonomous Test bench: : dri ver Thread() and the latter is called ultimately from the

SceM : : Servi ceLoop() function that is called from underneath the autonomous

SceM Di spat cher: : di spat chThread() . Thisillustrates the clean interaction between a general multi-
threaded application software environment and the SCE-MI service loop.
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4.0 Formal Functional Specification

4.1 Hardware Side Interface M acros

4.1.1 Dual Ready Protocol

The message port macros on the hardware side use ageneral PCI-like dual ready protocol. Before going
into detail about how these macroswork, the dual ready handshake protocol that they useisexplainedin
this section. The waveformsin Figure 11 depict several dual ready handshake scenarios.

FIGURE 11. Dual Ready Handshake Protocol
ureset™ |
udock M MLy oo
TransmitReady [ ‘ | [ ]
ReceiveReady ||
M essage [ [aT aZ [ d3 | [ do |

receiver ready for d1 1st y
clock after reset:

d1 arrives and moveSe—m— |

receiver ready for dA2— —_|

d2 arrivesand moveSem—m— |

receiver ready and d3 arrives and moves
d4 arrives.

A
L Lreceiver ready for d7

d6 arrives and moves
L_receiver ready for d6
receiver ready and d5 moves
d5 arrives

receiver ready and d4 moves

Briefly, the dual ready handshake works as follows. The transmitter asserts Tr ansni t Ready On any
clock cyclewhen it has data, and de-assertswhen it does not. The receiver assertsRecei veReady on any
cyclewhen it isready for data, and de-assertswhen it isnot. In any clock cycleinwhich Tr ansni t Ready
and Recei veReady are both asserted, data“moves’ meaning that it is taken by the receiver.

The dual ready protocol has the following two advantages:

e Signasarelevel-based; therefore, they are easily sampled by posedge clocked logic

*  However, if both Tr ansni t Ready and Recei veReady stay asserted, sequences of data can still move
every clock cycle and therefore, the same performance can be realized as, for example, atoggle

based protocol.
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4.1.2 SceM Messagel nPort Macro
The SceM Messagel nPort macro presents messages arriving from the software side of a channel to the
transactor. The macro consists of two handshake signals that play a dual-ready protocol and a data bus
that presents the message itself. Figure 12 shows the symbol for the SceM Messagel nPort macro aswell
as Verilog and VHDL source code for the empty macro wrappers.

FIGURE 12. SceM Messagel nPort Macro

Verilog Macro Wrapper:

#<PortWidth> <PortName>
SoENTM esSagelnPort rmdu! e SceM Messagel nPort (
] /1inputs out put s
TransmitReady—» Recei veReady, Transni t Ready,
RecelveReadyje—— Message ) :
Message [ —» 2

paranmeter PortWdth = 1,
i nput Recei veReady; out put Transmi t Ready;
out put [PortWdth-1:0] Message;
endnodul e

VHDL Macro Wrapper:

entity SceM Messagel nPort is
generic( PortWdth: natural );
port (
Recei veReady: in std_logic; Transm tReady: out std_|l ogic;
Message: out std_logic_vector( PortWdth-1 dowmto 0 ) );

end;

architecture EnptyMacro of SceM Messagel nPort is begin end;

41.21 Parametersand Signals

Port W dt h
The message width in bits is derived from the setting of this parameter.

Por t Nane
The port’s name is derived from its instance label.

Recei veReady

A value of one on this signal indicates that the transactor is ready to accept data from the software. By
asserting this signal, the hardware indicates to the software that it has alocation into which it can put
any datathat might arrive on the message input port. When a new message arrives, as indicated by the
Transni t Ready and Recei veReady both being true, that location is consumed (see Figure 11 on

page 46). When this happens, a notification is sent to the software side that a new empty location is
available and this triggers an input ready callback to occur on the software side (see section 4.1.2.2 on
page 48). The next section explains in detail when input ready propagation notifications are done with
respect to the timing of the Tr ansni t Ready and Recei veReady handshakes.

Notethat it is possible for transactors not to utilize Recei veReady and theinput ready callback. If thisis
the case, the Recei veReady input must be permanently asserted (i.e., “tied high”) and, on the software
side, no input ready callback is registered. In this case, Tr ansni t Ready merely acts as a strobe for each
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arriving message. The transactor must be designed to take any arriving dataimmediately asit is not
guaranteed to be held for subsequent uclock cycles.

Transm t Ready

A value of one on this signal sampled on any posedge of the uclock indicates that the channel has
message data ready for the transactor to take. If Recei veReady IS not asserted, the Tr ansni t Ready
remains asserted until and during the first clock in which Recei veReady finally becomes asserted.
During this clock data moves and, if no more messages have arrived from the software side, the
Transm t Ready iS de-asserted.

Message
This vector signal congtitutes the payload data of the message.

Input Ready Propagation

If the software client code registers an input ready callback when it first binds to a message input port
proxy (see section 4.3.3.4 on page 66), the hardware side of the infrastructure must notify the software
side each timeit is ready for more input. Each time it is so notified, the port proxy on the software side
makes a call to the user registered input ready callback. This mechanismis called input ready
propagation. The prototype for the input ready callback is as follows:

void (*lsReady)(void *context);

When this function is called, a software model can assume that a message can be sent to the message
input port proxy for transmission to the message input port on the hardware side. The cont ext argument
can be a pointer to any user-defined object, presumably the software model that has bound the proxy.

An important point to noteisthat it istotally up to the application to follow the protocol that if, the
transactor is not ready to receive input, the software model should not do a send. A well behaved
software model should know not to do asend if it has not received an input ready callback (assuming
the input ready propagation mechanism is being deployed).

The SCE-MI infrastructure will not enforce this. So, the idea is that, when the transactor wants to say,
"I'm ready for input", it will assert the Recei veReady input to the SceM Messagel nPort which will
cause an input ready callback to be called on the software side, the next time: : Ser vi ceLoop() iS
entered. The software model should then typically either set aflag that can be consulted later on outside
:: Servi ceLoop(), indicating that the transactor is ready for input, or, in some cases, it may choose to
do a send right then and there (i.e. inside the callback). The point is that a send should not be done by
the software model until some time (either immediately or deferred) after the input ready callback has
been received.

A second point to be made isthat it should be fine for an application to service as many output callbacks
asisdesired while pending an input callback. In other words, the software model may have an outer
loop that checks the status of an application defined OKToSend flag on each iteration and skips the send
if theflagisfalse.

So suppose an application has an outer loop that repeatedly calls : : Servi ceLoop() and checks for
arriving output messages and input ready notifications. Each callback function setsaflagin the context
that the outer loop uses to know if an output message has arrived and needs processing, or an input port
needs more input.
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It is possible that, before an input ready callback gets called, that outer loop may have called
:: Servi ceLoop() say 50 times each time resulting in an output message callback and the subsequent
processing of that output message.

Finally, onthe 51'st time : : Servi ceLoop() iscalled, the input ready callback is called which sets the
OKToSend flag in its context, after which the outer loop would detect the new flag status and initiate a
send on that input channel.

The handshake waveformsin Figure 11 on page 46 are intended purely to illustrate the semantics of the
dual ready protocol. There can be a couple of reasons why these waveforms might not be realistic in an
actual implementation of aSceM Messagel nPort macro. First, if input ready propagation is enabled
(because an optional callback was registered on the software side), the sender on the software side
might expect input ready notifications before transmitting messages so that two back-to-back messages,
and hence Tr ansni t Ready assertions on consecutive clocks might be impossible. Second, even if input
ready callbacks were not registered on a given port, the timing of the physical layer of the SCE-MI
bridge might be such that two successive transmissions are not possible unless the software end
somehow batched consecutive message transmissions to the hardware.

All of this said however, the hardware in the transactor should be designed so asto anticipate any of the
above scenarios whether or not they are likely to happen.

The waveforms shown in Figure 13 are typical of what one might see with input ready callbacks
enabled. It shows four possible scenarios in which an input ready notification occurs.

FIGURE 13. SceMiMessagelnPort Handshake Waveforms With Input Ready Propagation
ureset™ |
wdock [ Lo
TransmitReady [ ] 1 [ ]
ReceiveReady | |
Message | [az [d2 [d3 |
I I I I
1st *input ready” for d1 A A A A A A
propagates after reset
“input ready” for
d1 arrives and moveSe— | d3 propagates—
“input ready” for d2 propagateS—m d3 arrives and moves
d2 arrives and moves.
“input ready” for d4 propagatéS—m——_
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In the depicted scenarios, an input ready notification is propagated to the software if,

*  Recei veReady from transactor is asserted in the first clock following areset or,
* Recei veReady from transactor transitionsfromaOtoal or,

* Recei veReady from transactor remains asserted in a clock following one in which atransfer
occurred due to a assertions on both Tr ansni t Ready and Recei veReady.

4.1.3 SceM MessageCut Port Macro
The SceM MessageQut Port macro allows transactors to send messages to the software side. Like the
SceM Messagel nPort macro, it also uses adual ready handshake except that in this case, the transmitter
isthe transactor and the receiver isthe SCE-MI interface. A transactor can have any number of
SceM MessageQut Port macro instances. Figure 14 shows the symbol for the SceM MessageQut Por t
macro as well as Verilog and VHDL source code for the empty macro wrappers.

FIGURE 14. SceM MessageQut Port Macro

Verilog Macro Wrapper:

#(<PortWidth>,<PortPriority>) <PortName> nmodul e SceM MessageQut Por t (

>ceM 1M essageOutPort .
//inputs out put's
TransmitReadyle—— Transmi t Ready, Recei veReady,
RecelveReadyl——» Message );
Message [ Jla——vo e T
paraneter PortWdth = 1;

paranmeter PortPriority = 10;

i nput Transm t Ready; out put Recei veReady;
i nput [PortWdth-1:0] Message;
endnodul e

VHDL Macro Wrapper:

entity SceM MessageQut Port is
generic( PortWdth: natural; PortPriority: natural := 10 );
port (
Transmit Ready: in std_logic; ReceiveReady: out std_l ogic;
Message: in std_logic_vector( PortWdth-1 downto 0 ) );

end;

architecture EnmptyMacro of SceM MessageQutPort is begin end;

41.3.1 Parametersand Signals
Port W dt h
The message width in bits is derived from the setting of this parameter.

PortPriority

The priority for determining which output messages are sent to the output channel first, should more
than one arrive on the same uclock. See section 4.2.1 on page 59 for details on the meaning of this
parameter.

Por t Nane
The port’s name is derived from itsinstance label.
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4.1.4

Transm t Ready

A value of one on thissignal indicates that the transactor has message data ready for the output channel
to take. If Recei veReady iS ot asserted, the Tr ansni t Ready must remain asserted until and during the
first clock in which Recei veReady finally becomes asserted. During this clock data moves and, if the
transactor has no more messages for transmission, it de-asserts the Tr ansni t Ready.

Recei veReady

A value of one on this signal sampled on any uclock posedge indicates that the output channel is ready
to accept data from the transactor. By asserting this signal, the SCE-MI hardware side indicates to the
transactor that the output channel has alocation into which it can put any datathat is destined for the
software side of the channel. In any cycle during which both the Tr ansni t Ready and Recei veReady are
asserted, the transactor can assume that the data moved. If, in the subsequent cycle, the Recei veReady
remains asserted, that means that a new empty location is avail able which the transactor can load any
time by asserting Tr ansni t Ready again. Meanwhile, the last message data, upon arrival to the software
side, triggers areceive callback on its message output port proxy (see section 4.3.7.1 on page 77).

Message
This vector signal constitutes the payload data of the message originating from the transactor, to be sent
to the software side of the channel.

SceM d ockPort Macro

The SceM d ockPort macro supplies a controlled clock to the DUT. The SceM d ockPort macrois
parametrized such that each instance of aSceM d ockPort fully specifies a controlled clock of agiven
frequency, phase shift, and duty cycle.

The SceM d ockPort macro aso supplies a controlled reset whose duration is the specified number of
cycles of the cclock.

Figure 15 shows the symbol for the SceM d ockPort macro aswell as Verilog and VHDL source code
for the empty macro wrappers.
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FIGURE 15. SceMiClockPort Macro
Verilog Macro Wrapper:
#(<ClockNum>,
<RatioNumerator>, nodul e SceM Cl ockPort (
<RatioDenominator>, /1inputs out put s
<DutyHi>, <DutyL 0>, <Phase>, Ccl ock, Creset );
<ResetCycles>) <ClockName> e LR LR R LR LR

paraneter O ockNunel;

>ceMICIockPort
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Celock paranmet er Rati oNumer at or=1, RatioDenom nator=1;
Cresel 1 par aneter DutyHi =0, Dut yLo=100, Phase=0;
par anet er Reset Cycl es=8;
endnodul e

VHDL Macro Wrapper:

entity SceM C ockPort is

generic( CockNum natural := 1;
Rati oNunerator: natural := 1; RatioDenom nator: natural := 1;
| Dut yHi : natural := 0; DutylLo: natural := 100;
Phase: natural := 0; ResetCycles: natural :=8);
port( Cclock: out std_logic; Creset: out std_logic );

end;

architecture EnptyMacro of SceM Cl ockPort is begin end;

Note that all of the clock parameters have default values. In smpler systems where only one controlled
clock is needed, exactly one instance of a SceM C ockPort can be instantiated at the top level with no
parameters specified. Thisresultsin asingle controlled clock with aratio of 1/1, adon’t care duty cycle
(see discussion of duty cyclein section 4.1.4.3 on page 54), and a phase shift of 0. Ideally, thisclock’s
frequency matchesthat of the uclock during cyclesin which it is enabled.

The SCE-MI infrastructure always implicitly creates a controlled clock with a 1/1 ratio which is the
highest frequency controlled clock in the system. Whether or not it is visible to the user’s design
depends on whether asceM d ockPort with a1/l ratio is explicitly declared (instantiated).

In more complex systems that require multiple clocks, a SceM d ockPort instance must be created for
each required clock. The clock ratio that is specified in the instantiation parameters always specifies the
frequency of the clock as aratio relative to the highest frequency controlled clock in the system (whose
ratio is 1/1 whether explicitly or implicitly defined).

For exampleif acclock is defined with aratio of 4/1 thisisinterpreted as, “for every 4 edges of the 1/1
cclock thereis only 1 edge of this cclock”. Thiswould be a*“divide-by-four” clock.

Parametersand Signals

G ockNum=1

This parameter is used to assign a unigue number to a clock that is used to differentiate it from other
SceM d ockPor t instances. It shall be considered an error (by the infrastructure linker) if more than one
SceM O ockPort instances share the same ¢ ockNum The default d ockNumis 1.
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Rat i oNuner at or =1, Rati oDenoni nator=1

These parameters constitute the numerator and denominator respectively of this clock’sratio. The
numerator always designates the number of cycles of the fastest 1/1 controlled clock that occur during
the number of cycles of “this’ clock specified in the denominator. For example, with

Rat i oNuner at or =5 and Rat i oDenoni nat or =2 a5/2 clock is specified which meansthat for every 5
cycles of the /1 clock that occur, only 2 cycles of this clock occur. The default clock ratio is 1/1.

Dut yH =0, DutylLo=100, Phase=0

The duty cycleisexpressed with arbitrary integers that are normalized to their sum such that the sum of
butyH and Dut yLo represent the number of units for awhole cycle of the clock. For example, with

but yH =75 and Dut yLo=25 the high time of the clock is 75 out of 100 units or 75% of the period.
Similarly, the low time would be 25% of the period. The phase shift is expressed in the same units so
that if Phase=30, that would mean that the clock should be shifted by 30% of its period before the first
low to high transition occurs.

The default duty cycle shown in the macro wrappers in figure 15 aboveis a don't care duty cycle of 0/
100 (see section 4.1.4.3 on page 54).

Reset Cycl es=8
This parameter specifies how many cycles of this controlled clock shall occur before the controlled reset
transitions from itsinitial value of 1 back to 0.

Cl ockNane
The clock port’s name is derived from its instance label.

Ccl ock

Thisisthe controlled clock signal that is supplied to the DUT by the SCE-MI infrastructure viathis
macro. This clock’s characteristics is derived from the parameters specified on instantiation of this
macro.

Creset
Thisisthe controlled reset signal that is supplied to the DUT by the SCE-MI infrastructure viathis
macro.

Deriving Clock Ratios from Frequencies

Another way of to specify clock ratios is enter them directly as frequencies all normalized to the clock
with the highest frequency. To specify ratios this way requires the following:

* make each ratio numerator equal to the highest frequency

e useconsistent unitsfor all ratios

e omit those units and simply state them as integers

For example, suppose a system has 100Mhz, 25Mhz, and 10Mhz, 7.5 Mhz, and 32kHz clocks. To
specify the ratios, the frequencies can be directly entered as integers using kHz as the unit (but omitting
ith:

100000 / 100000 - the fastest clock

100000 / 25000

100000 / 10000
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100000 / 7500
100000/ 32

Userswho liketo think in frequencies rather than ratios can use this simple technique. It is also possible
that an implementor of the SCE-MI APl may wish to provide atool to assist in deriving clock ratios
from frequencies. Such atool could alow a user to enter clock specificationsin terms of frequencies
and then generate a set of equivalent ratios.

In addition, the tool could post process waveforms (such as .ved files) generated by the simulation in
such away that the defined clocks appear in the waveform display to be the exact same frequencies
given by the user.

Don’t Care Duty Cycle

The default duty cycle shown in the macro wrappersin figure 15 aboveis adon't care duty cycle. Users
can specify that they only care about posedges of the cclock and do not care where the negedge falls.
Thisisknown as a posedge active don't care duty cycle. In such acase, thebutyH isgivenasa0. The
Dut yLo can be given as an arbitrary number of units such that the Phase offset can still be expressed asa
percentage of the whole period (i.e but yHi +Dut yLo).

For exampleif a user specifies this combination:
Dut yHi =0, DutyLo=100, Phase=30
The user is saying the following:

e | don't care about the duty cycle. Specifically | don't care where the negedge of the clock falls.

* |f thetotal period is expressed as 100 units (0+100), the phase should be shifted by 30 of those
units. This represents a phase shift of 30%.

Another example;
Dut yH =3, DutylLo=1, Phase=2
This says,

* | careabout both intervals of the duty cycle. Duty cycleis 75%/25%.
e Phase shift is 50% of period (expressed as 3+1 units).

It is also possible to have a negedge active don't care duty cycle. In this case, the but yLo parameter is
given asa0 and the but yH is given as a positive number > 0.

For example:
DutyH =1, DutyLo=0, Phase=0

It means,

* | don't care about duty cycle. Specifically | don’t care where the posedge of a clock falls.
e PhaseshiftisO.

In any clock specification, it is considered an error if Phase >= DutyH + DutyLlo.
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Controlled Reset Semantics
The creset output of the SceM d ockPort macro shall obey the following semantics:

* Creset will start low (deasserted) and transition to high one or more uclocks later. It will then
remain high (asserted) for a at least a minimum duration specified by the Reset Cycl es parameter
adorning the SceM d ockPor t macro. Thisduration is expressed as anumber of edges of associated
Ccl ock. Following the reset duration, the cr eset will then go low (deasserted) and remain low for
the remaining duration of the simulation. Some applications require 2 edged resets at the beginning
of asimulation.

e For multiple cclocks, the reset duration must have a minimum length such that it is guaranteed to
span the Reset Cycl es parameter of any clock. In other words, the controlled reset duration for al
clocks must be, as a mininum,
max( Reset Cycles for cclockl, ResetCycles for cclock2, ...)

*  Some implementations may chose to use areset duration that is larger than the quantify shown
aboveif it isrequired to achieve proper alignment of multiple cclocks on the edges of the controlled
reset as described in section 4.1.4.5 on page 55.

*  During the assertion of creset, Ccl ock edges shall be forced regardless of the state of the
ReadyFor Ccl ock inputsto the SceM C ockCont rol macros. Once the reset duration completes, the
Ccl ock will be controlled normally by the ReadyFor Ccl ock inputs.

Note: The operation of controlled reset just described provides the default controlled reset behavior
generated by the SceM d ockPort macro. If more sophisticated reset handling is required it will have
implemented with a specially written reset transactor that is used in lieu of the simpler controlled resets
that come from the SsceM C ockPort instances. For example, if a software controlled reset is required,
an application would need to create areset transactor that respondsto aspecial software originated reset
command that arrives on its message input port.

Multiple Cclock Alignment

In general, al cclocks should align on the first rising uclock edge following the trailing edge of the
creset. This uclock edge shall be referred to as the point of alignment. For cclocks with phases of 0 this
means that rising edges of these clocks should coincide with the point of alignment. For cclocks with
phases > 0 edges will occur some time after the point of alignment. Figure 16 shows an assortment of
cclocks with the uclock and creset. It also shows how those cclocks behave at the point of alignment.

In the diagram, ccl ock1, ccl ock2, and ccl ock3 have phases of 0 and therefore have rising edges at the
point of alignment.

ccl ock4 hasthe same duty cycle asccl ock2 but aphase shift of 50%. Therefore itsrising edge occurs
2 uclocks (1/2 cycle) after the point of alignment. Its starting value at the point of alignment is still O.

ccl ock5 hasthe same duty cycle as cclock3 but a phase of 50%. Again, itsrising edge occurs 1/2 cycle
after the point of alignment. But noticethat its starting value at the point of alignment is1. Thiscan be
alternatively thought of as an inverted phase. Anytime the phase is greater than theinitial duty cycle
interval, the starting value at the point of alignment will bea 1.
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| FIGURE 16. Multi-Clock Alignment
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4.1.5 sceM d ockControl Macro
For every sceM d ockPor t macro instance there must be at least one counterpart SceM d ockCont r ol
macro instance presumably encapsulated in atransactor. The SceM d ockCont r ol macro isthe means
by which atransactor can control aDUT’s clock and by which the SCE-MI infrastructure can indicate
to atransactor on which uclock cyclesthat controlled clock have edges.

Figure 17 shows the symbol for the SceM d ockCont r ol macro aswell as Verilog and VHDL source
code for the empty macro wrappers.
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FIGURE 17. SceMiClockControl Macro

Verilog Macro Wrapper:

#<ClockNum> c1

<V TCToeRCORTTal nmodul e SceM Cl ockControl (

//inputs out put's
Uclockf > Ucl ock, Ureset;
Ureset|——» ReadyFor Ccl ock, Ccl ockEnabl ed,
ReadyFor Ccl ockNegEdge, Ccl ockNegEdgeEnabl ed ) ;

ReadyForCclock |

CelockEnabled paraneter O ockNum = 1;

ReadyForCclockNegEdge |« output Ucl ock, Ureset;
CelockNegEdgeEnabledf—» i nput ReadyFor Ccl ock; out put Ccl ockEnabl ed;
i nput ReadyFor Ccl ockNegEdge, output Ccl ockNegEdgeEnabl ed;
endnodul e

VHDL Macro Wrapper:

entity SceM Cl ockControl is
generic( CockNum natural :=1);
port (

Ucl ock, Ureset: out std_logic;
ReadyFor Ccl ock: in std_l ogic;
Ccl ockEnabl ed: out std_| ogic;
ReadyFor Ccl ockNegEdge: in std_l ogic;
Ccl ockNegEdgeEnabl ed: out std_| ogic;
)

end;

architecture EnptyMacro of SceM C ockControl is begin end,

For each sceM d ockPor t defined in the system, at |east one corresponding SceM Cl ockCont r ol macro
must be instantiated in one or more transactors. In addition to providing uncontrolled clocks and resets,
this macro also provides handshakes that provide explicit control of both edges of the generated cclock.

4151 Parametersand Signals
Cl ockNum=1
Thisisthe only parameter given tothe SceM d ockCont r ol macro. This parameter isused to associate a
SceM d ockCont rol instance with its counterpart SceM d ockPor t instance that is defined at the top
level. The default A ockNumis 1.

Note that associated with each instance of SceM G ockCont rol there must be exactly oneinstancein the
system of SceM d ockPor t . But for each instance of SceM d ockPor t, there can be one or more
instances of SceM C ockControl . A SceM C ockCont rol instance identifies the SceM d ockPort itis
associated with by properly specifying a d ockNumparameter matching that of its associated

SceM d ockPort.

Ucl ock
Thisisthe uncontrolled clock signal generated by the SCE-MI infrastructure.

Ur eset
Thisisthe uncontrolled reset generated by the SCE-MI infrastructure. This signal is high at the
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beginning of simulated time and transitionsto alow an arbitrary (implementation dependent) number of
uclocks later. It can be used to reset the transactor.

Note: The uncontrolled reset must have a duration spanning that of the longest controlled reset (Cr eset
output from each SceM d ockPort - see section 4.1.4.4 on page 55) as measured in uclocks. This
guarantees that all DUTs and transactors properly wake up in an initialized state the first uclock
following expiration of the last controlled reset.

ReadyFor Ccl ock

Thisinput to the macro indicates to the SCE-MI infrastructure that a transactor is willing to alow its
associated DUT clock to advance. The transactor de-asserts this signal when it needs to perform
operations during which the DUT must be frozen. One of the most useful applications of thisfeatureis
to perform complex algorithmic operations on the data content of a transaction before presenting it to
the DUT.

If thisinput to one of the SceM d ockCont r ol instancesthat are associated with a given controlled clock
is deasserted, the next posedge of that cclock will be disabled. In reacting to a ReadyFor Ccl ock of a
slower clock, the infrastructure must not prematurely disable posedges of other faster clocks that occur
prior to the last possible uclock preceding the edge to be disabled. In other words, that edge is disabled
“just in time” so asto allow faster clock activity to proceed until the last moment possible. Oncethe
edgeisfinally disabled, al posedges of all controlled clocks are a so disabled.

ReadyFor Ccl ockNegEdge

Similarly, for negedge control, if thisinput to one of the SceM d ockCont r ol instances that are
associated with agiven controlled clock is deasserted, the next negedge of that clock will be disabled. In
reacting to aReadyFor Ccl ockNegEdge Of aslower clock, the infrastructure must not prematurely
disable negedges of other faster clocks that occur prior to the last possible uclock preceding the edge to
be disabled. In other words, that edge is disabled “just in time” so asto allow faster clock activity to
proceed until the last moment possible. Once the edge isfinally disabled, all negedges of all controlled
clocks are also disabled.

Support for explicit negedge control is needed because without it, transactor logic that only cares about
controlling posedge clocks could not inadvertently disable the next negedge of a clock when it only
intended to disable the next posedge of a clock. Transactors that do not care about controlling negedges
(such as the one shown in Figure 5 on page 17) should tie thissignal high.

Ccl ockEnabl ed

This macro output signals the transactor that on the next posedge of uclock there is a posedge of the
controlled clock. The transactor can thus sample thissignal to know if aDUT clock edge occurs. The
SCE-MI infrastructure looks at the ReadyFor Ccl ock from all the transactors and asserts ccl ockEnabl ed
only if they are all asserted. This means that any transactor can stop al the clocksin the system by
simply de-asserting ReadyFor Ccl ock.

Note: for a negedge active don't care duty cycle (see 4.1.4.3 on page 54), since the user does not care
about the posedge, the ccl ockEnabl ed will always be 0.

Ccl ockNegEdgeEnabl ed

This signal works like ccl ockEnabl ed except that it indicates if the negedge of a controlled clock
occurs on the next posedge of the uclock. This can be useful for transactors that control double pumped
DUTs. Transactors that do not care about negedge control can ignore this signal.
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Note: for a posedge active don't care duty cycle (see 4.1.4.3 on page 54), since the user does not care
about the negedge, the Ccl ockNegEdgeEnabl ed will always be 0.

Infrastructure Linkage

The contents of this section is strictly the concern of the infrastructure implementor class of user, as
defined in section 2.2.3 on page 8. End users and transactor implementors can assume that the
operations described herein are automatically handled by the infrastructure linker.

Asdescribed in section 2.4.2 on page 14, infrastructure linkage is the process that analyzes the user’s
bridge netlist on the hardware side and compilesit into aform suitable to run on the emulator. This may
involve expanding the interface macros into infrastructure components that are added to the existing
structure as well as to generate parameter information that is used to bind the hardware side to the
software side. In order to determine this information, the infrastructure linker analyzes the netlist and
searches for instances of the SCE-MI hardware side macros, read the parameter values from those
instances, and generate a parameters file that can be read during software side initialization to properly
bind message port proxiesto the hardware side.

It can also betypical for theinfrastructure linker to provide options either in the form of switches and/or
aninput configuration file that allow auser to pass along or override implementation specific options. A
well crafted infrastructure linker however, should maximize ease-of-use by transparently providing the
end user with a suitable set of default values for implementation specific parameters, so that most, if not
all of these parameters need not be overridden.

Parameters
The following set of parameters define the minimum set that is needed for all implementations of the
SCE-MI standard. Specific implementations might require additional parameters.

Number of Transactors

The number of transactors shall be derived by counting the number of modulesin the user’s design that
contain SceM d ockCont r ol macros. It shall be assumed that any module that is to be officially
considered a transactor must have at least one SceM d ockCont rol instance immediately inside it.

Transactor Name

The transactor name shall be derived from the hierarchical path name to an instance of a module that
qualifies as atransactor as per the above definition. Naturally, if there are multiple instances of a given
type of transactor, they shall be uniquely distinguished by their instance path names. The syntax used to
express the path name must be that of the HDL language that the bridge netlist is expressed in.

Number of Message Input or Output Channels
Theinfrastructure linker derives the number of message input and output ports by counting instances of
the SceM Messagel nPort and SceM MessageQut Port Macros.

Port Name

The name of each port shall be derived from the relative instance path name to that port relative to its
containing transactor module. For example, if the full path name to a message input port macro instance
is, using Verilog notation, Bri dge. ul. t x1. i p1 and the transactor nameisBri dge. ul. t x1, then the port
nameisi p1. If an output port isinstantiated one level down from the input port and its full pathis
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Bridge. ul.tx1. nl. opl, thenitsport nameisnt. opl sinceitisinstantiated alevel down relative to the
transactor root level.

The full pathname to a port can be derived by concatenating the transactor name to the port name (with
ahierarchical separator inserted between).

Message I nput or Output Port Width

The width of a port in bits shall be derived from the Por t W dt h parameter defined in the message port
macro. Thiswidth defaultsto 1 but is almost always overridden to asignificantly larger value at the
point of instantiation.

Message Output Port Priority

The priority of amessage output port shall be derived from the Por t Prori t y parameter defined in the
SceM MessageQut Port macro. For certain implementations, it might be useful asa“hint” to the
infrastructure linker to decide which output ports should be serviced first, should they happen to present
message data on the same uclock, and are implemented over a number of “physical message channels’
that is less than the limitless number of virtual message channels. To some users this might be
important. For those who do not care, the default value of 10 does not need to be overridden and need
not be specified in the instantiation statement.

With some exceptions, the output port priority generally follows the semantics of the UNIX ni ce
command as follows:

e O<alowed priority values< 20

*  Default priority valueis 10

*  Thelower the number the higher the priority

e Output port priority O isreserved for internal use by the infrastructure

*  For message output ports with the same priority number, their relative priority is undetermined and
gtrictly an artifact of infrastructure linker implementation

Number of Controlled Clocks
This number shall be derived by counting all instances of the SceM d ockPort macro.

Controlled Clock Name

The name of a controlled clock is derived from the instance label (not path name) of its

SceM d ockPor t instance, necessarily instantiated at the top level of the user’s bridge netlist and unique
among all instances of SceM d ockPort .

Controlled Clock Ratio

The clock ratio is determined from the Rat i oNurrer at or and Rat i oDenoni nat or parameters of the
SceM d ockPort macro. The Rati oNuner at or designates the number of cycles of the fastest 1/1
controlled clock that occur during the number of cycles of “this’ clock specified in Rat i oDenoni nat or.
See 4.1.4 on page 51 for more detail s about the clock ratio.

Controlled Clock Duty Cycle and Phase

The duty cycle is determined from the Dut yHi , Dut yLo, and Phase parameters of the SceM d ockPor t
macro. The duty cycleis expressed as a pair of arbitrary integers, but yH and but yLo interpreted as
follows: if the sum of but yH and Dut yLo represents the number of unitsin a period of the clock, then
Dut yH represents the number of units of high time and Dut yLo, the number of units of low time.
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Similarly, Phase represents the number of units the clock is phase shifted relative to the reference 1/1
cclock. It isalso possible for a user to specify adon't care duty cycle. See 4.1.4 on page 51 for more
details about the duty cycle and phase.

Controlled Reset Cycles
The duration of a controlled reset expressed in terms of cclock cyclesis determined from the
Reset Cycl es parameter of the d ockPort macro.

Parameter File

A parameter file should be automatically generated by the infrastructure linker after analyzing the user
supplied netlist and determining all the parametersidentified in the previous section. The parameter file
can be read by the software side of the SCE-MI infrastructure to facilitate binding operations that occur
after software model construction.

Because it is automatically generated, content and syntax of the parameter file is left to specific
implementors of the SCE-MI. The content itself is not intended to be portable. However, on the
software side, a parameter access APl must be provided by the infrastructure implementor that
conforms to the specification in 4.3.4 on page 70. This access block must support accessto a
specifically named set of parameters required by the SCE-MI as well as an optional, implementation
specified set of named parameters.

All SCE-MI required parameters are read-only because their values are automatically determined by the
infrastructure linker by analyzing the user supplied netlist. Implementation specific parameters can be
read-only or read-write as required by the implementation.

Softwar e Side I nterface - C++ API

To gain access to the hardware side of the SCE-MI, the software side must first initialize the SCE-MI
software side infrastructure and then bind to port proxies representing each message port defined on the
hardware side. Part of initializing the SCE-MI involvesinstructing the SCE-MI to load the parameter
file that was generated by the infrastructure linker. The information in the parameter file gives the SCE-
M1 software side the means to establish rendezvous with the hardware side in response to port binding
calls from the user’s software models. Rendezvous during port binding is achieved primarily by name
association involving transactor names and port names.

Note that clock names and properties identified in the parameter file are of little significance during the
binding process although thisinformation is procedurally available to applications that might need it
through the parameter file APl (see section 4.3.4 on page 70).
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Access to the software side of the interface is facilitated by a number of C++ classesthat are as follows:

cl ass SceM EC

cl ass SceM

cl ass SceM Par aneters

cl ass SceM MessageDat a

cl ass SceM Messagel nPort Pr oxy
cl ass SceM MessageQut Port Pr oxy

Primitive Data Types

In addition to C datatypes such asi nt eger, unsi gned, and const char *, many of the argumentsto the
methods in the API require unsigned data types of specific width. To support these, the following data
types are placed in the header files for the API:

typedef unsigned int SceM U32;
typedef unsigned | ong | ong SceM U64;

Miscellaneous I nter face | ssues

class sceM EC- Error Handling

Note that most of the callsin theinterfacetake an SceM EC * ec asthelast argument. Because the usage
of thisargument is consistent for all methods, error handling semantics are explained in detail in this
section rather than documenting error handling for each method in the API.

Error handling in SCE-MI was designed to be flexible enough to either use atraditiona style of error
handling where an error statusis returned and checked with each call, or a callback based scheme where
aregistered error handler is called when an error occurs.

enum SceM ErrorType {
SceM X,
SceM Error

}s

struct SceM EC {
const char *Cul prit;
const char *Message;
SceM Error Type Type;
int 1d;
b
typedef void (*SceM ErrorHandl er)(void *context, SceM EC *ec);
static void
SceM : : Regi st erError Handl er (

SceM Error Handl er errorHandl er,
void *context );

This method registers an optional error handler with the SCE-MI that is to be called in the event that an
€rror occurs.

When any SCE-MI operation encounters an error, the following procedure is foll owed:

e |f thesceM EC * pointer passed into the function was non-NULL, the values of the SceM EC
structure are filled out by the errant call with appropriate information describing the error, and
control isreturned to the caller. This can be thought of as atraditional approach to error handling
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such as one might find in C applications. It is up to the application code to check the error status
after each call to the API and take appropriate abortive action if an error is detected.

* Elseif thesceM EC * pointer passed to the functionis NULL (or nothing is passed since the
default isNULL in each API function), and an error handler was registered, that error handler is
called from within the errant API call. The error handler is passed an internally allocated SceM EC
structure filled out with the error information. In this error handler callback approach, the
user-defined code within the handler can initiate abort operations. If itisa C++ application, acat ch
and t hr ow mechanism might be deployed. A C application can simply call the abort () or exit ()
function after printing out or logging the error information.

e Elseif thesceM EC * pointer passed to the functionisNULL, and no error handler isregistered, an
SceM EC structure is constructed and passed to adefault error handler. The default error handler
attempts to print a message to the console and to alog file and then callsabort () .

It isimportant to note that this error handling facility only supportsirrecoverable errors. This means that
if an error isreturned through the SceM EC object, either viaahandler or areturn object, that thereis no
point in continuing with the co-modeling session. Any calls that support returning a recoverable error
status should return that status using a separate, dedicated return argument.

A second point to note isthat the Message text filled out in the error structure is meant to fully describe
the nature of the error and can be logged or displayed to the console verbatim by the application error
handling code. The cul pri t text isthe name of the errant API function and can optionally be added to
the message that is displayed or logged.

Because every API call returns either a success or fatal error status, and because the detailed nature of
errorsis fully described within the returned error message, the SceM Er r or Type enum has only two
values pertaining to success (SceM ) or failure (SceM Error ). The SceM EC: : Type returned from API
functions to the caller can be either of these two values depending on whether the call was a success or
afailure. However the sceM EC: : Type passed into an error handler will, by definition, always have the
value SceM Er r or, since otherwise the error handler would not have been called in the first place.

The optional 1 d field can be used further classify different major error types, or even to tag each distinct
error message with a unique integer identifier.

class sceM I C- Informational Status and Warning Handling (Info Handling)
The SCE-MI also provides a means of conveying warnings and informational status messages to the
application.
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Like error handling, info handling is done with callback functions and a special structure that is used to
convey the warning information.

enum SceM I nf oType {
SceM I nf o,
SceM War ni ng,
SceM NonFat al Error

3

struct SceM | C {
const char *Originator;
const char *Message;
SceM I nf oType Type;
int 1d;

b

typedef void (*SceM I nfoHandl er)(void *context, SceMIC *ic);

static void

SceM : : Regi st erl nf oHandl er (
SceM I nf oHandl er i nfoHandl er,
void *context );

This method registers an optional info handler with the SCE-MI that isto be called in the event that a
warning or informational status message occurs.

When any SCE-MI operation encounters a warning or wishes to issue an informational message, the
following procedure is followed:

e |If aninfo handler was registered, that info handler is called from within the API call that wantsto
issue the warning. The info handler is passed an internally allocated SceM | C structure filled out
with thewarning information. In thisinfo handler callback approach, the user-defined code within
the handler can convey the warning to the user in amanner that is appropriate for that application.
For example, it can be displayed to the console, or logged to afile, or both.

e Elseif noinfo handler isregistered, aSceM I C structure is constructed and passed to a default,
implementation defined error handler. The default error handler can attempt to print a message to
the console and/or to alog file in an implementation specific format.

It isimportant to note that the Message text filled out in the error structure is meant to fully describe the
nature of the info message and can be logged or displayed to the console verbatim by the application’s
warning and info handling code. The ori gi nat or text isthe name of the API function that detected the
message and can optionally be added to the message that is displayed or logged.

The sceM | nf oType is an extra piece of information that indicates if the message isawarning or just
some informational status. An additional category called SceM NonFat al Error can be used tolog all
error conditions leading up to afatal error. Thefinal fatal error message should always be logged using
asceM ECstructure and SceM Er r or Handl er function so that an abort sequenceis properly handled (see
section 4.3.2.1 on page 62). In addition, the info message can optionally be tagged with a unique
identifying integer specified inthe 1 d field.

Memory Allocation Semantics
Regarding memory allocation semantics of the SCE-MI API. the following rules apply:

e Anything constructed by the user is the user’s responsibility to delete.

64 of 94

Functional Requirements Specification: Standard Co-Emulation M odeling I nterface (SCE-MI)



Formal Functional Specification

433

4331

4332

e Anything constructed by the API is the API’s responsibility to delete.

So this means that any object, such as SceM MessageDat a, that is created by the application using that
object’s constructor, must be deleted by the application when it is no longer in use. Some objects, such
as SceM Message[ | n/ Qut ] Por t Proxy Objects, are constructed by the API then handed over to the
application as pointers. Those objects must not be deleted by the application. Rather, they are deleted
when the entire interface is shut down during the call to SceM : : Shut Down() .

Similarly, non-null sceM EC structures that are passed to functions are assumed to be allocated and
deleted by the application. If aNULL sceM EC pointer is passed to afunction and an error occurs, the
API alocates the structure to pass to the error handler and therefore is responsible for freeing it.

class sceM - SCE-MI Software Side Interface
Thisisthe singleton object that represents the software side of the SCE-MI infrastructure itself.
Operations global to the interface are performed using methods of this class.

Version Discovery

static int
SceM :: Versi on(
const char *versionString );

This method allows an application to make queries about the version prior to initiaizing the SCE-MI
that givesit its best chance of specifying aversion that it is compatible with. A series of calls can be
made to this function until a compatible version is found. With each call, the application can pass
version numbers corresponding to those it is familiar with and the SCE-MI can respond with aversion
handle that is compatible with the queried version. This handle can then be passed onto the initialization
call described in the next section.

If the given version string is not compatible with version of the SCE-MI that the application is
interfacing to, a-1 isreturned. At this point, the application has the option of aborting with afatal error
or attempting other versions that it might also know how to use.

This process is sometimes referred to as mutual discovery.

versionString
This argument is of the form “ <maj or Nun». <maj or Nun. <ni nor Nun»"  and can be obtained by the
application code from the header file of a particular SCE-MI installation.

Initialization

static SceM *

SceM ::lnit(
int version,
SceM Par aneters *paraneters,
SceM EC *ec=NULL );

Thiscall isthe constructor of the SCE-MI interface. It gives accessto all the other global methods of the
interface.

The return argument is a pointer to an object of cl ass SceM on which al other methods can be called.
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version

Thisinput argument is the version number returned by the: : Ver si on() method described in the
previous section. An error resultsif the version number is not compatible with the SCE-MI
infrastructure being accessed.

par anet ers

Thisinput argument is a pointer to the parameter block object (cl ass SceM Par anet er s) that is
initialized from the parameter file generated by the infrastructure linker. See section 4.3.4 on page 70
for a description of how this object is obtained.

Shutdown

static void
SceM : : Shut down(
SceM *sceM,
SceM EC *ec=NULL );

Thisisthe destructor of the SCE-MI infrastructure object that must be called when connection to the
interface isto be terminated. This call is the means by which graceful decoupling of the hardware side
and the software side is achieved. It is aso during this call that termination (d ose() ) callbacks
registered by the application are called.

Message I nput Port Proxy Binding

SceM Messagel nPor t Proxy *
SceM : : Bi ndMessagel nPort (
const char *transact or Nane,
const char *portNane,
const SceM Messagel nPort Bi ndi ng *bi ndi ng,
SceM EC *ec=NULL );

This call searchesthe list of input ports learned from the parameter file that is generated during
infrastructure linkage for one whose names match thet r ansact or Name and por t Name arguments. If one
isfound, an object of cl ass SceM Messagel nPor t Pr oxy iS constructed to serve asthe proxy interface to
that port and the pointer to the constructed object is returned to the caller to serve al future accessesto
that port. It is considered an error if no match isfound.

transact or Nane, port Nane

These arguments uniquely identify a specific message input port in a specific transactor on the hardware
side to which the caller wishes to bind. These names must be the path names (described in 4.2.1 on
page 59) expressed in the syntax of the HDL language that the hardware side bridge netlist is expressed
in.

bi ndi ng
The binding argument is a pointer to an object defined as follows:

struct SceM Messagel nPort Bi ndi ng {
voi d *Cont ext;
void (*1sReady)(void *context);
void (*Cl ose)(void *context);

b

whose data members are used for the following:
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Cont ext

The application is free to use this pointer for any purposes it wishes. Neither cl ass SceM nor cl ass
SceM Messagel nPor t Proxy interpret this pointer other than to storeit and passit when calling either the
I sReady() or O ose() callbacks.

| sReady/()

Thisisthe function pointer for the callback that is to be called whenever an input ready notification has
been received from the hardware side. This call signalsthat it is okay to send a new message to the input
port. If this pointer is given asa NULL, the SCE-MI assumes that this port does not need to deploy
input ready notification on this particular channel. See 4.1.2.2 on page 48 for a detailed description of
the input ready callback.

Cl ose()
Thisis atermination callback function pointer. It is called during destruction of the SCE-MI. This
pointer can also be optionally specified asNULL.

Message Output Port Proxy Binding

SceM MessageQut Port Proxy *
SceM : : Bi ndMessageCQut Port (
const char *transact or Nane,
const char *portNane,
const SceM MessageQut Port Bi ndi ng *bi ndi ng,
SceM EC *ec=NULL );

This call searchesthelist of output ports learned from the parameter file that was generated during
infrastructure linkage for one whose names match the t r ansact or Nane and por t Name argument. If one
isfound, an object of cl ass SceM MessageQut Por t Pr oxy IS constructed to serve as the proxy interface
to that port and the handle to the constructed object is returned to the caller to serve all future accesses
to that port. It is considered an error if no match is found.

transact or Nane, port Nane

These arguments uniquely identify a specific message output port in a specific transactor on the
hardware side to which the caller wishes to bind. These names must be the path names (described in
4.2.1 on page 59) expressed in the syntax of the HDL language that the hardware side bridge netlist is
expressed in.

bi ndi ng
The binding argument is a pointer to an object defined as follows:

struct SceM MessageCQut Port Bi ndi ng {
voi d *Cont ext;
voi d (*Receive) (
voi d *context,
const SceM MessageDat a *dat a);
void (*C ose)(void *context);

H

whose data members are used for the following:

Cont ext
The application is free to use this pointer for any purposes it wishes. Neither cl ass SceM nor cl ass

Functional Requirements Specification: Standard Co-Emulation M odeling I nterface (SCE-MI) 67 of 94



Formal Functional Specification

SceM MessageQut Por t Proxy interpret this pointer other than to store it and pass it when calling either
the | sReady() or d ose() callbacks.

Recei ve()

Thisisthe function pointer for the receive callback that isto be called whenever an output message
arrives on the port. This callback is required on every output port proxy so it is considered an error if
this function pointer is given asaNULL. See 4.3.7.1 on page 77 for more information about how
receive callbacks process output messages.

Cl ose()
Thisis atermination callback function pointer. It is called during destruction of the SCE-MI. This
pointer can also be optionally specified asNULL.

4.3.3.6 Serviceloop
typedef int (*SceM ServiceLoopHandl er)( void *context, bool pending );

int

SceM : : Servi ceLoop(
SceM Ser vi ceLoopHandl er g=NULL,
voi d *cont ext =NULL,
SceM EC *ec=NULL );

Thisis the main workhorse method that yields CPU processing time to the SCE-MI. In both single-
threaded and multi-threaded environments, calls to this method gives the SCE-MI an opportunity to
service all its port proxies and check for arriving messages or messages that are pending to be sent. It is
also inside this call that the SCE-MI dispatches any input ready or receive callbacks that might be
needed. The underlying transport mechanism that supports the port proxies must respond in arelatively
timely manner to messages enqueued on the input or output port proxies. Since these messages cannot
be handled until acall to: : Servi ceLoop() ismade, it isadvisable that applications call this function
frequently.

The return argument isthe number of output messages that arrived and were processed since thelast call
to:: ServiceLoop().

a()
If gisNULL, check for transfers to be performed and dispatch them, returning immediately afterwards.

If gisnon-NULL, enter aloop of performing transfersand calling g() . When g() returns O, return from
the loop. When g() iscaled, an indication of whether there is at least one message pending is made
with the pending flag. The cont ext argument to g() isthe pointer which is passed as the cont ext
argument to : : Ser vi ceLoop() .

cont ext
Context argument to be passed to the g() function.

4.3.3.6.1Example of Usingtheg() Function to Return on Each Call to : : Servi ceLoop()
There are severa different waysto usethe g() function.

Some applications might like to force areturn from the : : Servi ceLoop() call after processing each
message. The :: Servi ceLoop() call will always guarantee that a separate call is made to the g()

68 of 94 Functional Requirements Specification: Standard Co-Emulation M odeling I nterface (SCE-MI)



Formal Functional Specification

function for each message processed. Infact, it is possibleto force: : Servi ceLoop() to return back to
the application once per message by having the g() function return aO.

So evenif all g() doesisreturn 0 as follows,

int g( void */*context*/, bool /*pending*/ ){ return O; }

the application will forcesareturn from : : Servi ceLoop() for each processed message.

Note, inthiscase, the : : Servi ceLoop() will not block because it also returns even if no message was
found (i.e. pendi ng == 0). Sobasically, : : Servi ceLoop() will return no matter what in thiscase. No

messages or 1 message.

4.3.3.6.2Example of Using theg() Function toBlock :: Servi ceLoop() Until Exactly 1 Message

An application can usethe g() functionto put : : Servi ceLoop() into ablocking mode rather than its
default polling mode. The g() function can be written to cause : : Servi ceLoop() to block until it gets
1 message then return on the message it got:

Thisis done by making use of the pendi ng argument to the g() function. This argument simply
indicates if there is a message to be processed or not. Hereis how it would be written in this case:
int g( void */*context*/, bool pending ){

return pending == true ?2 0 : 1}

What this does it to block until a message occurs then return on processing the first message.

4.3.3.6.3Example of Using the g() function to Block : : Servi ceLoop() Until At Least 1 Message

Alternatively, suppose the application would like : : Servi ceLoop() to block until at least 1 message
occurs, then return only after al the currently pending messages have been processed.
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434.1

To do this the application can define ahavePr ocessedAt Least 1Message flag as follows:

int haveProcessedAt Least 1Message = 0;

Call : : servi ceLoop() givingthe g() function and thisflag's address as the context:

havePr ocessedAt Least 1Message = 0;
sceM - >Servi ceLoop( g, &haveProcessedAtLeast 1Message );

Now definethe g() function asfollows:

int g( void *context, bool pending ){

int *haveProcessedAt Least 1IMessage = (int *)context;

if( pending == 0 )
/1 1f no nore nessages, kick out of loop if at I|east
/'l one previous nessage has been processed, otherw se
/1 block until the first nessage arrives.
return *haveProcessedAt Least 1IMessage ? 0 : 1;

el se {
*havePr ocessedAt Least 1Message = 1;
return 1;

}

In conclusion, depending on precisely what type of operation of : : Servi ceLoop() isdesired, the g()
function can be tailored accordingly.

class SceM Par anet er s - Parameter Access

Thisclass provides a generic API that can be used by application code to access the interface parameter
set described in section 4.2.1 on page 59. It isbasically initialized with the contents of the parameter file
that is generated during infrastructure linkage. It provides accessors that facilitate the reading and
possibly overriding of parameters and their values. All SCE-MI required parameters are read-only
because their values are automatically determined by the infrastructure linker by analyzing the user
supplied netlist. Implementation specific parameters can be read-only or read-write as required by the
implementation. All parametersin asSceM Par anet er s object must be overridden before that object is
passed to the sceM : : 1 ni t () call to construct the interface (see 4.3.3.2 on page 65). Overriding
parameters afterwards has no effect.

Parameter Set

While the format of the parameter file isimplementation specific, the set of parameters required by the
SCE-API and the methods used to access them must conform to the specifications described in this
section. For purposes of access, the parameter set shall be organized as a database of attributed objects,
where each object instance is decorated with a set of attributes expressed as name/val ue pairs. There can
be zero or more instances of each object kind. The API shall provide a simple accessor to return the
number of objects of a given kind, and read and write accessors (described below) to allow reading or
overriding attribute values of specific objects.

The objects in the database are composed of the set of necessary interfacing components that interface
the SCE-MI infrastructure to the application. For example, there is a distinct object instance for each
message port and a distinct object instance representing each defined clock in the system. Attributes of
each of the objects then represent, collectively, the parametersthat uniquely characterize the dimensions
and constitution of the interface components needed for a particular application.
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So, for example, a system that requires 1 input port, 2 output ports and 2 distinct clocksis represented
with 5 objects parametrized such that each port object has name and width attributes, each clock object
has ratio, duty cycle attributes, etc. These objects and their attributes precisely and fully describe the
interfacing requirements between that application and the SCE-MI infrastructure.

The following table gives the minimal, predefined set of objects and attributes required by the SCE-MI.
Additional objects and attributes can be added by implementations. For example, there may beasingle,
implementation specific object representing the entire SCE-MI infrastructure facility itself. The
attributes of this singleton object might be the set of implementation specific parameters that an
implementor of the SCE-MI needs to allow the user to specify. For more details of attribute meanings,
see section 4.2.1 on page 59.

Attribute
Value
Object Kind Attribute Name Type M eaning
Messagel nPor t Transact or Nane String Name of the transactor enclosing the message
input port.
Por t Name String Name of the message input port.
Port W dt h Integer Width of the message input port in bits.
MessageQut Port | Transact or Name String Name of the transactor enclosing the message
output port.
Por t Nane String Name of the message output port.
Port W dth Integer Width of the message output port in bits.
PortPriority Integer Priority of the message output port.
C ock d ockNane String Name of the clock.
Rat i oNumer at or Integer Numerator (“fast” clock cycles) of clock ratio.
Rat i oDenoni nat or Integer Denominator (“this’ clock cycles) of clock
ratio.
Dut yHi Integer High cycle percentage of duty cycle.
Dut yLo Integer Low cycle percentage of duty cycle.
Phase Integer Phase shift as percentage of duty cycle.
Reset Cycl es Integer Number of controlled clock cycles of reset.
C ockBi ndi ng Tr ansact or Name String Name of the transactor that contributes to the
control of this clock.
C ockNane String Name of the clock that this transactor helps con-
trol.

For simplicity, values can be either signed integer or string values. More complex data types can be
derived by the application code from string values. Each attribute definition of each object kind implies
a specific value type.

4.3.4.2 Parameter Set Semantics
Although the accessors provided by the SceM Par anet er s class directly provide the information given
in the above table, other implied parameters can be easily derived by the application. Following are
some of the implied parameters and how they are determined:
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4343

4.3.4.4

* O ockBi ndi ng objectsindicate the total number of transactor - clock control macro combinations.
From the d ockBi ndi ng objects, one can ascertain the number of distinct contributorsto the control
of agiven clock, aswell asthe number of distinct transactors in the system.

e The number of transactorsin the system is determined by counting the number of distinct
Transact or Nane’ s encountered in the d ockBi ndi ng objects.

e  The number of controlled clocksis determined by reading the number of ¢ ock objects (using the
;- Number OF Obj ect s() accessor described below).

*  The number of input and output ports are determined by reading the number of Messagel nPort and
MessageCQut Port oObjects, respectively.

In addition, the following semantics characterize the parameter set:

*  Transactor names are absol ute hierarchical path names, and must conform to the syntax of the HDL
language that the bridge netlist is expressed in.

*  Port names are relative hierarchical path names (relative to the enclosing transactor), and must
conform to the syntax of the HDL language that the bridge netlist is expressed in.

*  Clock names are identifiers, not path names, and must conform to identifier naming syntax of the
HDL language that the bridge netlist is expressed in.

Constructor

SceM Par anet ers: : SceM Par anet er s(
const char *paransFile,
SceM EC *ec=NULL );

The constructor constructs an object containing all the default values of parameters and then overrides
them with any settingsit findsin the specified parameter file. All parameters, whether specified by the
user or not must have default values. Once constructed, parameters can be further overridden
procedurally.

paransFil e

Thisisthe name of thefile generated by the infrastructure linker that contains all the parameters derived
from the user’s hardware side netlist. This name can be either afull pathname to afile or pathname
relative to the local directory.

Destructor

SceM Par anet ers: : ~SceM Par anet er s()

Thisisthe destructor for the parameters object.
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4.3.4.5

Accessors

unsi gned int

SceM Par anet er s: : Nunber Of Obj ect s(
const char *objectKind,
SceM EC *ec=NULL ) const;

This accessor returns the number of instances of objects of the specified obj ect Ki nd name.
int
SceM Paranet ers: : Attri butel nt eger Val ue(

const char *objectKi nd

unsi gned int index,

const char *attributeNane,

SceM EC *ec=NULL ) const;

const char *
SceM Paranmeters:: AttributeStringVal ue(
const char *objectKind
unsi gned int index,
const char *attributeNane,
SceM EC *ec=NULL ) const;

These two accessors read return an integer or string attribute value.

voi d
SceM Paraneters:: OverrideAttri butel ntegerVal ue(
const char *objectKind
unsi gned i nt index,
const char *attributeNane,
int val ue
SceM EC *ec=NULL );

voi d
SceM Parameters:: OverrideAttributeStringVval ue(
const char *objectKind
unsi gned int index,
const char *attributeNane,
const char *val ue
SceM EC *ec=NULL );

These two accessors override an integer or string attribute value. It is considered an error to attempt to
override any of the object attributes shown in the table in section 4.3.4.1 on page 70 or any
implementation specific attributes designated as read-only.

The following argument descriptions generally apply to all the accessors shown above:

obj ect Ki nd
Name of the kind of object for which an attribute value is being accessed. It is considered an error to
pass an unrecoghized obj ect Ki nd name to any of the accessors.

i ndex
Index of the instance of the object for which an attribute value is being accessed. It is considered an
error if thei ndex >= the number returned by the : : Nunber Of Obj ect s() accessor.
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attribut eName
Name of the attribute whose value is being read or overwritten. It is considered an error if the
att ri but eName does not identify one of the attributes allowed for the given obj ect Ki nd.

val ue
Returned or passed in val ue of the attribute being read or overridden respectively. Two overloaded
variants of each accessor are provided. One for string values and one for integer values.

class SceM MessageDat a - M essage Data Object

Thecl ass SceM MessageDat a represents the vector of message data that can be transferred from a
SceM Messagel nPor t Proxy on the software side to its associated SceM MessageCQut Port on the
hardware side, or from a SceM MessageQut Port on the hardware side to its associated

SceM MessageQut Por t Proxy on the software side. The message data payload is represented as a fixed
length array of sceM U32 data words large enough to contain the bit vector being transferred to or from
the hardware side message port. For example if the message port had awidth of 72 bits, the following
diagram shows how the those bits would be organized in the data array contained inside the

SceM MessageDat a object:

| SceM Message[ | n/ Qut] Port. Message[] bits:

o , e ssageDat a wor
31 1,] 0| SceM Me Da do
S , e ssageDat a wor
63 33,B2| SceM Me Da d1
| 71...65,p4 SceM MessageData word 2

Constructor

SceM MessageDat a: : SceM MessageDat a(
const SceM Messagel nPort Proxy &mressagel nPort Proxy,
SceM EC *ec=NULL );

Construct a message data object whose size matches the width of the specified input port. The
constructed message data object can only be used for sends on that port (or another of identical size) or
an error will result.

Destructor
SceM MessageDat a: : ~SceM MessageDat a()

Destruct the object, free data array.
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AcCCcessors

unsi gned int
SceM MessageDat a: : Wdt hl nBits() const;

Return the width of the message in terms of number of hits.

unsi gned int
SceM MessageDat a: : W dt hl nWwords() const;

Return the size of the data array in terms of number of sceM U32 words.

voi d
SceM MessageData: : Set ( unsigned int i, SceM U32 word, SceM EC *ec = NULL );

Set word element i of array to word.

voi d
SceM MessageData:: SetBit( unsigned int i, int bit, SceMEC *ec = NULL );

Set bit element i of the message vector to O if bit == 0, 1 otherwise. Itisan error if i >=
WdthlnBits().
voi d
SceM MessageDat a: : Set Bi t Range(
unsigned int i, unsigned int range, SceM U32 bits, SceM EC *ec = NULL );

Set r ange bit elements whose L SB’s start at bit element i of the message vector to the value of bi ts. It
isan error if i +range >=::WdthlnBits().

SceM U32
SceM MessageData: : Get ( unsigned int i, SceMEC *ec = NULL ) const;

Returntheword at dloti inthe array. Itisan error if i >=:: W dt hl nWords() .

int
SceM MessageData: : GetBit( unsigned int i, SceMEC *ec = NULL ) const;

Return the value of bit element i in the message vector. It isanerrorifi >=:: wWdthinBits().

SceM U32

SceM MessageDat a: : Get Bi t Range( unsigned int i, unsigned int range, SceM EC *ec = NULL )
const;

Return the value of r ange bit elementswhose LSB’s start at i of the message vector. It isan error if
i+range >=::WdthlnBits().

SceM U64
SceM MessageDat a: : Cycl eStanp() const;

The SCE-MI supports afeature called cycle stamping. Each output message sent to the software sideis
stamped with the number of cycles of the 1/1 controlled clock elapsed since the beginning of emulation
time. This provides a convenient way for applications to keep track of elapsed cyclesin their respective
transactors as the simulation proceeds. The returned valueis an absolute, 64-bit unsigned quantity.
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4.3.6

43.6.1

4.3.6.2

4.3.6.3

class SceM Messagel nPor t Pr oxy
Thecl ass SceM Messagel nPort Proxy presents to the application a proxy interface to a transactor
message input port.

Sending Input M essages
voi d
SceM Messagel nPor t Proxy: : Send(

const SceM MessageDat a &dat a,
SceM EC *ec=NULL );

This method sends a message to the message input channel. This message appears on the hardware side
as abit vector presented to the transactor viathe SceM Messagel nPort macro (see 4.1.2 on page 47)
instance bound to this proxy.

data
M essage data object containing the message to be sent.

Replacing Port Binding

voi d Repl aceBi ndi ng(
const SceM Messagel nPort Bi ndi ng* bi ndi ng,
SceM EC* ec=NULL );

This method replaces the sceM Messagel nPor t Bi ndi ng object originally furnished to the

SceM : : Bi ndMessagel nPor t Proxy() call that created this port proxy object (see 4.3.3.4 on page 66).
This can be useful for replacing contexts or input ready callback functions some time after the input
message port proxy has been established.

binding
New callback and context information to be associated with this message input port proxy.

Accessors

const char *
SceM Messagel nPort Proxy: : Transact or Nane() const;

This method returns the name of the transactor that is connected to the port. Thisis the absolute
hierarchical path name to the transactor instance expressed in the syntax of HDL language that the
netlist is expressed in.

const char *
SceM Messagel nPort Proxy: : Port Nane() const;

This method returns the port name. Thisis the path name to the SceM Messagel nPort macro instance
relative to the containing transactor expressed in the syntax of HDL language that the netlist is
expressed in.

unsi gned
SceM Messagel nPort Proxy: : Port Wdt h() const;

This method returns the port width. Thisisthe value of the Por t W dt h parameter that was passed to the
associated SceM Messagel nPort instance on the hardware side.
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4.3.6.4

4.3.7

4371

4.3.7.2

Destructor
Thereis no public destructor for this class. Destruction of all message input ports shall automatically
occur when the SceM : : shut Down() functionis called.

class SceM MessageQut Por t Pr oxy
Thecl ass MessageQut Por t Proxy presents to the application a proxy interface to the transactor
message output port.

Receiving Output M essages

There are no methods on this object specifically for reading messages that arrive on the output port
proxy. Rather, that operation is handled by the receive callbacks. Receive callbacks are registered with
an output port proxy when it isfirst bound to the channel (see 4.3.3.5 on page 67). The prototype for the
receive callback is asfollows:

void (*Receive)( void *context, const SceM MessageData *data );

When called, the receive callback is passed a pointer to acl ass SceM MessageDat a Object (See section
4.2.1.1 on page 61) that contains the content of the received message. It is also passed the context
pointer. The context pointer istypically a pointer to the object representing the software model that is
interfacing to the port proxy. Proper usage of this callback is to process the data quickly and return as
soon as possible. The reference to the SceM MessageDat a is of limited lifetime and ceases to exist once
the callback returns and goes out of scope.

Typically in a SystemC context, the callback might do some minor manipulation to the context object
then immediately return and let a suspended thread resume and do the main processing of the received
transaction.

Notice that no sceM EC * error status object is passed to the call. Thisis because if an error occurs
within the SceM : : Servi ceLoop() function (from which the receive callback is normally called), the
callback isnever called in thefirst place and standard error handling procedures (see 4.3.2.1 on page 62)
are followed by the service loop function itself. If an error occurs inside the receive callback, by
implication it is an application error not an SCE-MI error and thusit is the responsibility of the
application to handle the error by perhaps setting a flag in the context object before returning from the
callback.

Replacing Port Binding

voi d Repl aceBi ndi ng(
const SceM MessageQut Port Bi ndi ng* bi ndi ng,
SceM EC* ec=NULL );

This method replaces the sceM MessageQut Por t Bi ndi ng object originally furnished to the

SceM : : Bi ndMessageQut Por t Proxy() call that created this port proxy object (see 4.3.3.5 on page 67).
This can be useful for replacing contexts or receive callback functions some time after the output
message port proxy has been established.

binding
New callback and context information to be associated with this message output port proxy.
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4.3.7.3
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4.4

AcCCcessors

const char *
SceM MessageQut Port Proxy: : Transact or Name() const;

This method returns the name of the transactor that is connected to the port. Thisis the absolute
hierarchical path name to the transactor instance expressed in the syntax of HDL language that the
netlist is expressed in.

const char *
SceM MessageQut Port Proxy: : Port Name() const;

This method returns the port name. Thisis the path name to the SceM MessageCut Port macro instance
relative to the containing transactor expressed in the syntax of HDL language that the netlist is
expressed in.

unsi gned
SceM MessageQut Port Proxy: : Port Wdt h() const;

This method returns the port width. Thisisthe value of the Por t W dt h parameter that was passed to the
associated SceM MessageQut Por t instance on the hardware side.

Destructor
Thereis no public destructor for this class. Destruction of all message output ports shall automatically
occur when the SceM : : shut Down() function is called.

Software Side Interface - C API

The SCI-MI software side also provides an ANSI standard C API. All of the subsections to follow will
parallel thosein the C++ API described starting in section 4.3 on page 61. It is possible to implement
the C API asfunctions that wrap calls to methods described in the C++ API. The prototypes of those
functions shall follow with a minimum of explanatory text. For full documentation about afunction, see
its corresponding subsection of section 4.3 on page 61.
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Primitive Data Types
The C API hasits own header file with the following minimum content:

typedef unsigned SceM U32;
typedef unsigned |ong | ong SceM U64;

typedef void SceM ;

typedef void SceM Paraneters;

typedef void SceM MessageDat a;

typedef void SceM Messagel nPort Proxy;
typedef void SceM MessageCQut Port Proxy;

typedef int (*ServiceLoopHandler)( void *context, int pending );

typedef enum {
SceM X,
SceM Error,
} SceM Error Type;
typedef struct {
const char *Cul prit;
const char *Message;
SceM Error Type Type;
int 1d;
} SceM EC,
typedef void (*SceM ErrorHandl er)(void *context, SceM EC *ec);

typedef enum {
SceM I nf o,
SceM War ni ng

} SceM I nfoType;

typedef struct {
const char *Cul prit;
const char *Message;
SceM I nf oType Type;
int 1d;

} SceMIC,

typedef void (*SceM I nfoHandl er)(void *context, SceMIC *ic);

typedef struct {
voi d *Cont ext;
void (*1sReady)(void *context);
void (*C ose)(void *context);
} SceM Messagel nPort Bi ndi ng;
typedef struct {
voi d *Cont ext;
voi d (*Receive)(
voi d *context,
const SceM MessageData *data );
void (*Cl ose)(void *context);
} SceM MessageCut Por t Bi ndi ng;

An application must include either the C API header or the C++ API header, but not both.

Note that because ANSI C does not support default argument values, the last SceM EC *ec argument to
each function must be explicitly passed when called, even if only to passaNULL.
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4421

4422

443

4431

4432

4.4.3.3

4.4.3.4

4.4.35

4.4.3.6

Miscellaneous I nterface Support |ssues

SceM EC - Error Handling
voi d
SceM Regi st er Err or Handl er (

SceM Error Handl er errorHandl er,
voi d *context );

SceM | C- Informational Status and Warning Handling (Info Handling)
voi d
SceM Regi st er | nf oHandl er (

SceM I nf oHandl er i nfoHandl er,
voi d *context );

SceM - SCE-MI Software Side | nterface

Version Discovery
int
SceM Versi on( const char *versionString );

Initialization

SceM *

SceM Init(
int version,
const SceM Paranet ers *paranet er Obj ect Handl e,
SceM EC *ec );

Shutdown

voi d

SceM Shut down(
SceM *sceM Handl e,
SceM EC *ec );

Message I nput Port Proxy Binding

SceM Messagel nPor t Proxy *
SceM Bi ndMessagel nPor t (
SceM *sceM Handl e,
const char *transact or Nane,
const char *port Nane,
const SceM Messagel nPort Bi ndi ng *bi ndi ng,
SceM EC *ec );

M essage Output Port Proxy Binding

SceM MessageQut Port Proxy *
SceM Bi ndMessageQut Por t (
SceM *sceM Handl e,
const char *transact or Nane,
const char *port Nane,
const SceM MessageQut Port Bi ndi ng *bi ndi ng,
SceM EC *ec );

Service Loop
int
SceM Ser vi ceLoop(
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SceM *sceM Handl e,

SceM Servi ceLoopHandl er g,
voi d *context,

SceM EC *ec );

444 sceM Paraneters - Parameter Access

4441 Constructor

SceM Par aneters *

SceM Par anet er sNew(
const char *paransFile,
SceM EC *ec );

This function returns the handle to a parameters object.
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4.4.42 Destructor
voi d
SceM Par anet er sDel et e(
SceM Par anmet ers *paranetersHandle );

4443 Accessors

unsi gned i nt

SceM Par anet er sNunber Of Cbj ect s(
const SceM Paraneters *paranetersHandl e,
const char *objectKind,
SceM EC *ec );

int
SceM Par amet er sAttri but el nt eger Val ue(
const SceM Paraneters *paranetersHandl e,
const char *objectKind,
unsi gned int index,
const char *attributeNane,
SceM EC *ec );

const char *
SceM Par anet er sAttri buteStringVal ue(
const SceM Paranet ers *paranet er sHandl e,
const char *objectKind,
unsi gned int index,
const char *attributeNane,
SceM EC *ec );

voi d
SceM Par anmet ersOverri deAttri but el nt eger Val ue(
SceM Par anmet ers *par anet er sHandl e,
const char *objectKind,
unsi gned i nt index,
const char *attributeNane,
int val ue,
SceM EC *ec );

voi d
SceM Par anmet ersOverrideAttri buteStringVal ue(
SceM Par anmet ers *par anet er sHandl e,
const char *objectKind,
unsi gned i nt index,
const char *attributeNane,
const char *val ue,
SceM EC *ec );

445 sceM MessageData - M essage Data Object

4.45.1 Constructor

SceM MessageData *

SceM MessageDat aNew(
const SceM Messagel nPort Proxy *messagel nPort ProxyHandl e,
SceM EC *ec );

This function returns the handle to a message data object suitable for sending messages on the specified
input port proxy.
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4452

4453

Destructor
voi d
SceM MessageDat aDel et e(
SceM MessageDat a *nessageDat aHandl e );

AcCcessors

unsi gned i nt
SceM MessageDat aW dt hl nBi t s(
const SceM MessageDat a *nmessageDat aHandl e ) ;

unsi gned int
SceM MessageDat aW dt hl nWor ds(
const SceM MessageData *nmessageDat aHandl e ) ;

voi d
SceM MessageDat aSet (
SceM MessageDat a *nessageDat aHandl e,
unsigned int i,
SceM U32 word,
SceM EC *ec );

voi d
SceM MessageDat aSet Bi t (
SceM MessageDat a *nessageDat aHandl e,
unsigned int i,
int bit,
SceM EC *ec );

voi d
SceM MessageDat aSet Bi t Range(
SceM MessageDat a *nessageDat aHandl e,
unsigned int i,
unsi gned int range,
SceM U32 bits,
SceM EC *ec );

SceM U32

SceM MessageDat aCGet (
const SceM MessageDat a *nmessageDat aHandl e,
unsigned int i
SceM EC *ec );

int
SceM MessageDat aGet Bi t (
const SceM MessageDat a *nmessageDat aHandl e,
unsigned int i,
SceM EC *ec );
SceM U32
SceM MessageDat aGet Bi t Range(
const SceM MessageDat a *nmessageDat aHandl e,
unsigned int i,
unsi gned int range,
SceM EC *ec );

SceM U64
SceM MessageDat aCycl eSt anp(
const SceM MessageDat a *nmessageDat aHandl e ) ;
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4.4.6

4.4.6.1

4.4.6.2

4.4.6.3

4.4.7

44.7.1

4.4.7.2

SceM Messagel nPor t Proxy - Message I nput Port Proxy

Sending Input M essages

voi d

SceM Messagel nPor t Pr oxySend(
SceM Messagel nPort Proxy *messagel nPort ProxyHandl e,
const SceM MessageDat a *nmessageDat aHandl e,
SceM EC *ec );

Replacing Port Binding

voi d SceM Messagel nPort Pr oxyRepl aceBi ndi ng(
SceM Messagel nPort Proxy *messagel nPort ProxyHandl e,
const SceM Messagel nPort Bi ndi ng* bi ndi ng,
SceM EC* ec );

AcCCcessors

const char *
SceM Messagel nPort ProxyTransact or Name(
const SceM Messagel nPort Proxy *messagel nPort ProxyHandl e );

const char *
SceM Messagel nPor t ProxyPor t Name(
const SceM Messagel nPort Proxy *messagel nPort ProxyHandl e );

unsi gned
SceM Messagel nPor t ProxyPort W dt h(
const SceM Messagel nPort Proxy *messagel nPort ProxyHandl e );

SceM MessageQut Por t Proxy - Message Output Port Proxy

Replacing Port Binding

voi d SceM MessageQut Port ProxyRepl aceBi ndi ng(
SceM MessageQut Port Proxy *messageCQut Port ProxyHandl e,
const SceM MessageQut Port Bi ndi ng* bi ndi ng,
SceM EC* ec );

AcCCcessors

const char *
SceM MessageQut Port ProxyTransact or Name(
const SceM MessageQut Port Proxy *nmessageQut Port ProxyHandle );

const char *
SceM MessageQut Por t Pr oxyPor t Nane(
const SceM MessageQut Port Proxy *nmessageCQut Port ProxyHandle );

unsi gned
SceM MessageQut Por t ProxyPort W dt h(
const SceM Messagel nPort Proxy *messageCQut Port ProxyHandl e );
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Appendix A:

Glossary

Abstraction Bridge
A collection of abstraction gasket components that disguise a bus cycle accurate (BCA) RTL
DUT mode as a purely untimed model. The ideais that to the untimed testbench models, the
DUT itself appears untimed (see Figure 2 on page 9) when, in fact, it is a disguised BCA
model (see Figure 3 on page 11).

Abstraction Gasket
A specia model that can change the level of abstraction of dataflowing from itsinput to output
and vice versa. For example, an abstraction gasket might convert an untimed transaction to a
series of cycle accurate events. Or it might assemble a series of eventsinto a single message.
Examples of abstraction gaskets are CoWare or SystemC BCASH models, and 1kos
transactors.

Behavioral Model
See definition for untimed model.

Bridge Netlist
The bridge netlist is the top level of the user supplied netlist of components making up the
hardware side of a co-modeling process. The components typically found instantiated
immediately under the bridge netlist are transactors, DUT, and SceM O ockPor t macros. By
convention, thetop level netlist module supplied by the user to the infrastructure linker is often
called Bri dge and, for Verilog, isplaced in afile called Bri dge. v.

Co-Emulation
A shorthand notation for co-emulation modeling also known as co-modeling. See definition for
co-modeling.

Co-Modeling
Although it has broader meanings outside this document, within this document co-modeling
specifically refersto transaction oriented co-modeling in contrast to a broader definition of co-
modeling that might include event oriented co-modeling. Also known as co-emulation
modeling, transaction oriented co-modeling describes the process of modeling and simulating
amixture of software models represented with an untimed level of abstraction, simultaneously
executing and inter-communicating through an abstraction bridge, with hardware models
represented with the RTL level of abstraction, running on an emulator. The following diagram
depicts such a configuration where the SCE-MI is being used as the abstraction bridge. See
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section 1.4 on page 3 for meanings of acronyms. Another illustration can be seenin Figure 1

on page 6.
Software Abstraction Hardware
Models Bridge Models
BCASH | Emulator
1SS F SCE-MI gate
M RTC netlist

Controlled Clock (cclock)
The clock that drives the DUT and can be disabled by any transactor during operations that
would result in erroneous operation of the DUT if it is clocked. When performing such
operations, any transactor can “freeze”’ controlled time long enough to complete the operation
before allowing clocking of the DUT to resume. The term cclock is often used throughout this
document as a synonym for controlled clock.

Controlled Time
Time which is advanced by the controlled clock and frozen when the controlled clock is
suspended by one or more transactors. Operations occurring in uncontrolled time while
controlled time is frozen appear between controlled clock cycles.

Co-Simulation
Execution of software models modeled with different levels of abstraction that interact with
each other through abstraction gaskets similar to CoWare's BCASH models. The following
diagram illustrates such a configuration. See section 1.4 on page 3 for meanings of acronyms.
The key difference between co-simulation and co-emulation isthat the former typically
couples software modelsto atraditional HDL simulator interface through a proprietary API
whereas the latter couples software models to an emulator through an optimized transaction
oriented message passing interface such as SCE-MI.

C-algorithm

ISS BCASH UTC |— BCASH RTC

HDL
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Cycle Stamping

A process by which messages are tagged with the number of elapsed counts of the fastest
controlled clock in the hardware side of a co-modeled design.

Don’t Care Duty Cycle

DUT

A posedge active don't care duty cycleis away of specifying aduty cycle where the user only
cares about the posedge of the clock and does not care about where in the period the negedge
fals, particularly in relation to other cclocksin afunctional simulation. In such a case, the
DutyH parameter isgiven asa0. The but yLo can be given as an arbitrary number of units that
represent the whole period such that the Phase offset can till be expressed as a percentage of
the period (i.e. Dut yH +Dut yLo). See4.1.4.1 on page 52 for more details.

A negedge active don't care duty cycleis away of specifying aduty cycle where the user only
cares about the negedge of the clock and does not care about where in the period the posedge

fals, particularly in relation to other cclocksin afunctional simulation. In such a case, the

Dut yLo parameter isgiven asa0. Thebut yH can be given as an arbitrary number of units that
represent the whole period such that the Phase offset can till be expressed as a percentage of

the period (i.e. Dut yH +Dut yLo). See4.1.4.1 on page 52 for more details.

Device or Design Under Test that might be modeled in hardware and stimulated and responded
to by a software testbench through an abstraction bridge such as the SCE-MI.

Hardware Emulator

SW model
(testbench)

— SCE-M| —

Ly

In Out
file file

DUT Proxy

Software model which acts asa* socket” that disguises an abstraction bridgeto look to therest
of a software testbench like an untimed DUT model. If the abstraction bridge is the SCE-MI,
the job of the DUT proxy is to encapsul ate the message port proxy interfaces to the message
channelsin the interface. See Figure 3 on page 11 for an illustration of DUT proxies.

Hardware Model

Model of ablock that has a structural representation (i.e., as aresult of synthesis or agate
netlist generated by an appropriate tool) that is mapped onto the hardware side of a co-
modeling process (i.e., an emulator or other hardware simulation platform). It could also be
real silicon (i.e., a CPU core or memory chip) plugged into an emulator or simulation
accelerator.

Hardware Side

See definition for software side.
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Infrastructure Linkage Process
The process that reads a user description of the hardware, namely the source or bridge netlist
that describes the interconnect between the transactors, the DUT, and the SCE-MI interface
components, and compiles that netlist into a form suitable for executing in a co-modeling
session. Part of this compile process can involve adding additional structure to the bridge
netlist that properly interfaces the user supplied netlist to the SCE-MI infrastructure
implementation components.

Macros
Implementation components provided by the hardware emulator vendor to implement the
hardware side of the SCE-MI infrastructure. The required macros as defined in this
specification are the SceM Messagel nPort, SceM MessageQut Port,
SceM d ockControl ,and SceM C ockPort macros.

M essage
A unit of data of arbitrary size and abstraction to be transported over a channel. M essages are
generally not associated with specific clocked events but may trigger or result from, many
clocks of event activity. Note that, for the most part, the term message can be used
interchangeably with transaction. However, in some contexts, transaction could be thought of
asincluding infrastructure overhead content in addition to user payload data (and handled at a
lower layer of the interface) whereas the term message denotes only user payload data.

M essage Channel

A two ended conduit of messages between the software and hardware sides of an abstraction
bridge.

M essage Port
The hardware side end of a message channel. A message port is the means by which
transactors gain access to messages being sent across the channel to or from the software side.

M essage Port Proxy
The software side end of a message channel. A message port proxy is the means by which
DUT proxies or other software models gain access to messages being sent across the channel to
or from the hardware side.

Negedge
See definition for posedge.

Posedge
Although thisis a Verilog specific term that refers to the rising edge of aclock, it is used
generically throughout this document to refer to the same thing. The same applies to negedge
referring to the falling edge of a clock.

Service Loop
Thisisthe method that provides a means for a set of software models running on a host
workstation to yield access to the SCE-MI software side so that any pending input or output
messages on the channels can be serviced. This method should be called frequently by the
software, throughout the co-modeling session in order to avoid backup of messages and
minimizethe possibility of system deadlock. In multi-threaded environments, it makes senseto
place the service loop call in its own continually running thread.

Software M odel
Model of ablock (hardware or software) that is simulated on the software side of a co-
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modeling session (i.e., the host workstation). Such amodel can be an algorithm (C or C++)
running on an ISS or a hardware model that is modeled using an appropriate language
environment such as CoWare, SystemC, or an HDL simulator.

Software Side
Thisterm refersto the portion of a user’s design which, during a co-modeling session, runs on
the host workstation as opposed to the portion running on the emulator which is referred to as
the hardware side. The SCE-MI infrastructure itself is also considered to have software side
and hardware side components.

Structural Model
A netlist of hardware models or other structural models. Because this definition isrecursive, it
isimplied that structural models have hierarchy.

Transaction
See definition for message.

Transactor
A form of abstraction gasket. The job of atransactor is to decompose an untimed transaction
to a series of cycle accurate clocked events, or, conversely, to compose a series of clocked
eventsinto a single message. When receiving messages, transactors have the ability to “freeze”
controlled time long enough to allow message decomposition operations to compl ete before
presenting clocked datato a DUT. And when sending messages, they can freeze controlled
time and allow message composition operations to complete before new clocked datais
flooded in from a DUT.

Uncontrolled Clock (uclock)
Free running system clock internally generated by the SCE-MI infrastructure used only within
transactor modules to advance states in uncontrolled time. The term uclock is often used
throughout this document as a synonym for uncontrolled clock.

Uncontrolled Reset
Thisisthe system reset internally generated by the SCE-MI infrastructure and used only with
transactor modules. Thissignal is high at the beginning of simulated time and transitionsto a
low an arbitrary (implementation dependent) number of uclocks later. It can be used to reset a
transactor. The controlled reset is generated exactly once by the SCE-MI hardware side
infrastructure at the very beginning of a co-modeling session.

Uncontrolled Time
Time that is advanced by the uncontrolled clock even when the controlled clock is suspended
(and controlled time is frozen).

Untimed M odel
A block that is modeled algorithmically at the functional level and exchanges data with other
models in the form of messages. An untimed model has no notion of aclock. Rather, its
operationistriggered by arriving messages and can, in turn, trigger operationsin other untimed
models by sending messages.
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Appendix B: Multiclock Hardware Side I nterface Example

The following diagram shows the top level structure of a simple multiclock, multitransactor example:

FIGURE 18. Multiclock, Multitransactor Example
ul
#64 pl TxTransactor t1
SceM iM essagel nPort TxTransactorCore
dl
TransmitRead) >
ReceiveReadyl< :'I'—{yl%(cji I|pl IxbuT
Message| ] 1M essageln [63:0]
#1cl Dutll?n%ggfr]l > DutInCitrl
SceM iClockControl > [PutinData[ ]
Uclock sluclk DutOutCirlj= DutOutCtrl
Uresef >IRst Dutdiida af I} DutOutData[ ]
ReadyForCc|ocklee R
CHbckERSD! >R on G are
ReadyForCclockNegEdgg—*1’ ForCclockDiv2
CclockNegEdgeEnabledf— > ngkE”alﬁ edbiv?
7 00 (_:clock
- SceMiClockPort
SceM iClockControl - _
Cclock >1Clk
UcI ock — Creset >{Rst
Re orCclocklee
eadyForCelg #2,2, 1) cclock2 1
ReadyForCclockNegEdgd SceMiClockPort ivi
ColbckNegEdgeEnabled 1 Celock|—cIkDivideBYl ey by
Creset
u2
#128 pl RxTransactor t1
SceM iM essageQutPort RxTransactorCore
TransmitReadyj«« TXRdyQut d2
ReceiveReady) > |RXRdyOut RxDUT
Message [ ]| M essageOut [127:0]
#3cl DutlangEri > DutInCitrl
SceM iClockControl > [PutinData[ ]
Uclock sluclk r] DutOutCtrl
Ureset >IRst DutOutDaIaE I} DutOutData[ ]
ReadyForCclockl«e ReadyForCclockDiv4
CclockEnabled >|CclockEnabledDiv4
ReadyForCclockNegEdgel—*1’
CclockNegEdgeEnabled—
#(3,4,1, 75, 25, 30, 8) cclock4 1
SceM iClockPort
Celock clkDivideBy4 Clk
Creset] >Rt

This design demonstrates the following points:

e Threed ockPort instances define clocks named ccl ock, ccl ock2_1, and ccl ock4_1.

*  Because no parameters are given with the SceM C ockPort instanceccl ock, all default parameters
are used. This meansthat ccl ock hasad ockNum=1, aclock ratio of 1/1, adon't care duty cycle, a
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phase shift of 0, and the controlled reset it supplies has an active duration of 8 controlled clock
cycles.

* Theccl ock2_1 instance of sceM O ockPort overridesthefirst three parameters and leaves the rest
at their default values. Thismeansthe ccl ock2_1 hasad ockNune2, aclock ratio of 2/1 (i.e, a
“divide-by-2" clock), a duty cycle of 50%, a phase shift of 0, and an 8 clock cycle reset duration.

* Theccl ock4_1 instance of SceM d ockPort hasad ockNunme3, aclock ratio of 4/1 (i.e., a“divide-
by-4" clock), aduty cycle of 75%, a phase shift of 30% of the clock period, and an 8 clock cycle
reset duration.

e TheTxTransact or transactor model, named Bri dge. ul, controls clocks ccl ock and ccl ock2_1
sinceits SceM O ockCont rol Macro instances have d ockNumr1 and G ockNun=2, respectively.

* ThisTxTransact or model interfacesto a message input port called p1 that is parametrized to a
bit-width of 64.

e TheRxTransact or transactor model, named Bri dge. u2, controls clock ccl ock4_1 sinceits
SceM O ockCont rol macro instance has Cl ock Nume3.

* ThisrxTransact or model interfacesto a message input port called p1 that is parametrized to a
bit-width of 128.

Functional Requirements Specification: Standard Co-Emulation M odeling I nterface (SCE-MI) 91 of 94



Formal Functional Specification

The following listing shows some of the VHDL source code for the above schematic:

library ieee;

use ieee.std_logic_1164.all;
library SceM ;

use SceM . SceM Macros. al | ;

entity Bridge is end;
architecture Structural of Bridge is
conponent TxTransactor is
port(
DutInCtrl: out std_logic;
Dutl nData: out std_logic_vector(31 downto 0);
DutQutCtrl: in std_logic;
DutQutData: in std_logic_vector(31 dowto 0) );
end conponent TxTransactor;
conmponent TxDUT is
port(
DutInCtrl: in std_logic;
DutlnData: in std_logic_vector(31 dowto 0);
DutQutCtrl: out std_logic;
Dut Qut Dat a: out std_logic_vector(31 downto 0);
Gk, Rst, AkDv2: in std_logic );
end conponent TxDUT;
conponent RxTransactor is
port(
DutInCtrl: out std_logic;
Dutl nData: out std_logic_vector(31 downto 0);
DutQutCtrl: in std_logic;
DutQutData: in std_logic_vector(31 dowto 0) );
end conponent RxTransactor;
conponent RxDUT is
port(
DutInCtrl: in std_logic;
DutlnData: in std_logic_vector(31 dowto 0);
DutQutCtrl: out std_logic;
Dut Qut Dat a: out std_logic_vector(31 downto 0);
Gk, Rst: in std_logic );
end conponent RxDUT;
signal txDutlnCtrl, txDutQutCtrl: std_l ogic;
signal txDutlnData, txDutQutData: std_|ogic_vector(31 downto 0);
signal rxbutlnCtrl, rxbDutQutCrl: std_logic;
signal rxDutlnData, rxDutQutData: std_|logic_vector(31 downto 0);

signal cclock, creset, clkbDivideBy2, clkDivideBy4 cresetDivideBy4: std_| ogic;

begi n
ul: TxTransactor port map( txDutlnCtrl, txDutlnData, txDutQutCirl, txDutCQutData );
dl: TxDUT port map( txDutlnCtrl, txDutlnData, txDutQutCtrl, txDutQutData,
cclock, creset, clkDivideBy2 );
ccl ock: SceM Cl ockPort port map( cclock, creset );

cclock2_1: SceM Cl ockPort
generic map( 2, 2, 1, 50, 50, 0, 8)
port map( cl kDi vi deBy2, open );
u2: RxTransactor port map( txDutlnCtrl, txDutlnData, txDutQutCirl, txDutCQutData );
d2: RxDUT port map( txDutlnCtrl, txDutlnData, txDutQutCtrl, txDutCutData,
cl kDi vi deBy4, cresetDivideBy4 );
ccl ock4_1: SceM Cl ockPort
generic map( 3, 4, 1, 75, 25, 30, 8)
port map( cl kDi vi deBy2, open );
end;
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library ieee;

use ieee.std_logic_1164.all;
library SceM ;

use SceM . SceM Macros. al | ;

entity TxTransactor is
port(
DutlnCtrl: out std_logic;
Dutl nData: out std_logic_vector(31 dowto 0);
DutQutCrl: in std_logic;
DutQutData: in std_logic_vector(31 dowto 0) );
end;
architecture Structural of TxTransactor is
conponent TxTransactorCore is
port(
TxRdyln: in std_l ogic; RxRdyl n: out std_l ogic;
Message: in std_|l ogic(63 downto 0);
DutInCtrl: out std_logic;
DutlnData: out std_logic_vector(31 dowto 0);
DutQutCtrl: in std_logic;
DutQutData: in std_logic_vector(31 dowto 0) );
Ucl k, Rst: in std_logic;
ReadyFor Ccl ock: in std_|logic; CclockEnabl ed: out std_l ogic;
ReadyFor Ccl ockDi v2: in std_logic; CclockEnabl edDi v2: out std_I ogic;
end conponent TxTransactor;
signal transm t Ready, receiveReady: std_l ogic;
si gnal nessage: std_|l ogic_vector(63 downto 0);
signal uclock, ureset: std_|logic;
si gnal readyFor Ccl ock, ccl ockEnabl ed: std_Il ogic;
si gnal readyFor Ccl ockDi v2, ccl ockEnabl edDi v2;
begi n
t1l: TxTransactorCore port map(
transm t Ready, receiveReady, nessage,
DutInCtrl, DutlnData, DutCQutCtrl, DutQutData,
ucl ock, ureset,
readyFor Ccl ock, ccl ockEnabl ed, readyFor Ccl ockDi v2, ccl ockEnabl edDiv2 );
pl: SceM Messagel nput Port
generic map( 64 )
port map( transm t Ready, receiveReady, nessage );
cl: SceM d ockControl
port map( uclock, ureset, readyForCcl ock, cclockEnabled, ‘1, open );
c2: SceM C ockControl
generic map( 2 )
port map( open, open, readyForCcl ockDiv2, cclockEnabledDiv2, ‘1", open );
end;
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Appendix C: VHDL SceMiM acros Package

The following package can be used to supply SCE-MI macro component declarationsto an application.
It is suggested that this package be compiled into alibrary ‘ SceMi’ and that it be included in the
application code as,

library SceM ;
use SceM . SceM Macros. al | ;

Here is the source code for the package:

library ieee;
use ieee.std_logic_1164.all;

package SceM Macros is

conponent SceM Messagel nPort
generic( PortWdth: natural );

port (
ReceiveReady : in std_logic;
Transm t Ready : out std_| ogic;
Message : out std_logic_vector( PortWdth-1 downto 0 ) );

end conponent;

conponent SceM MessageCQut Port

generic( PortWdth: natural; PortPriority: natural := 10 );
port(
TransmtReady : in std_logic;
Recei veReady : out std_l ogic;
Message :in std_logic_vector( PortWdth-1 downto 0 ) );

end conponent;

conmponent SceM Cl ockPort

generi c(
Cl ockNum : natural := 1;
Rat i oNuner at or : natural = 1;
Rati oDenom nator : natural := 1;
Dut yHi : natural := 0;
DutyLo : natural := 100;
Phase : natural := 0;
Reset Cycl es : natural :=8);
port(
Ccl ock : out std_logic;
Creset : out std_logic );
end conponent;
conponent SceM Cl ockContr ol
generic( C ockNum natural :=1);
port (
Ucl ock,
Ur eset . out std_logic;
ReadyFor Ccl ock :in std_logic;
Ccl ockEnabl ed : out std_l ogic;

ReadyFor Ccl ockNegEdge : in std_|l ogic;
Ccl ockNegEdgeEnabl ed : out std_logic );
end conponent;
end SceM Macr os;
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