
March 20, 2002
Functional Requirements Specification:
Standard Co-Emulation Modeling
Interface (SCE-MI)

John Stickley and Duaine Pryor with feedback contributions
from the SCE-API Technical Group

Copyright (c) 2001 Ikos Systems, Inc. all rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopy, recording or otherwise without the prior written permission of the
copyright holder. This document is under NDA with the SCE-API consortium.

Ikos Systems, Inc.
79 Great Oaks Blvd.
San Jose, CA 95119

SCE-API
Standard Co-Emulation API
Consortium
Abstract

This document describes a proposal for a standard C/C++ modeling interface for
emulators and other verification platforms. The interface provides multiple
communication channels between software models running on a host workstation and a
device under test (DUT) represented as a structural hardware netlist running on a
verification platform such as an emulator. The channel end points are presented as
message ports to the DUT model and as message port proxies to the software models.

Revision 1.9
SCE-API Version 1.0
1 of 94

Introduction

2 o
1.0 Introduction

1.1 Purpose
There is an urgent need for the EDA industry to meet the exploding verification requirements of SoC
design teams. While the industry has delivered verification performance in the form of a variety of
emulation and rapid prototyping platforms, there remains the problem of connecting them into SoC
modeling environments while realizing their full performance potential. Existing standard verification
interfaces were designed to meet the needs of design teams of over 10 years ago. A new type of
interface is needed to meet the verification challenges of the next 10 years. This document is a proposal
for a multichannel communication interface that addresses these challenges. This new interface must
cater to the needs of both emulation end users and emulation suppliers.

1.1.1 Emulation Customer Problems to be Solved by SCE-API
• All emulators on the market today have proprietary APIs. The proliferation of APIs makes it very

difficult for software-based verification products to port to the different emulators, thus restricting
the solutions available to customers. This also leads to low productivity and low return on
investment (ROI) for emulator customers who build their own solutions.

• The emulation “APIs” which exist today are oriented to gate-level and not system-level
verification.

• The industry needs an API which takes full advantage of emulation performance.

1.1.2 Emulation Suppliers Problems to be Solved
• Customers are reluctant to invest in building applications on proprietary APIs.
• Traditional simulator APIs like programmable language interface (PLI) and VHDL PLI slow down

emulators.
• Third parties are reluctant to invest in building applications on proprietary APIs.

1.2 Scope
This document is directed to members of the Standard Co-Emulation API (SCE-API) technical
committee. The committee members represent a consortium of EDA customers and EDA tool suppliers
dedicated to the creation of a breakthrough high-performance common emulation API. The founding
participants in the consortium are Aptix, CoWare, Ikos Systems, Mentor Graphics, ST Microelectronics,
Synopsys, and TransEDA.

The scope of this document shall be restricted to what is specifically referred to herein as the Standard
Co-Emulation API: Modeling Interface (SCE-MI). This modeling interface is intended to be one of
possibly several parts making up the whole SCE-API standard. In the future, SCE-API may be
expanded to include additional parts to handle such features as debug and control, code coverage, etc.

This document is intended to describe an overall use model of the SCE-MI, a tutorial illustrating this
use model, and a formal functional specification of the SCE-MI API itself. Future revisions of the
document will continue to reflect the feedback from members of the SCE-API technical committee. It is
hoped that the document will undergo a relatively quick evolution phase which culminates with a
common industry standard that can be used by simulation and emulation tool vendors to provide plug-
and-play high speed verification solutions to end users on SoC design teams.
f 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Introduction
1.3 Revision History

1.4 Definitions, Acronyms, and Abbreviations
A formal glossary of terms used in this document can be found in the appendices. Some of the acronyms
referenced in the document are defined here.

BCA - Bus Cycle Accurate model - sometimes used interchangeably with RTL model

BCASH - CoWare style Bus Cycle Accurate SHell model

Revision # Date Revised by Summary of revision
1.0 12-11-00 Duaine Pryor Initial draft based on discussions at SCE-API kickoff

meeting that occurred in Oct. 2000 in Paris, France.

1.2 1-15-01 John Stickley Revised document to incorporate feedback and action
items from second SCE-API meeting on Dec 14-15,
2000 in Cupertino, CA.

1.3 2-2-01 John Stickley Revised document to incorporate feedback from e-
mail review with SCE-API committee after the revi-
sion 1.2 release. Also completed Routed tutorial sec-
tion.

1.4 2-16-01 John Stickley,
Susan Ross

Incorporated comments from committee received dur-
ing SCE-API phase 1 ratification process. Added
minor corrections and converted hand drawn figures
to electronic drawings.

1.5 5-6-01 John Stickley Corrections to SceMiParameters accessors, added sec-
tion on controlled reset semantics and clarification of
controlled clock semantics, added typedefs for call-
back function pointer types, added port width acces-
sors to port proxies, changed VHDL macro data types
from std_ulogic(_vector) to std_logic(_vector).

1.6 7-20-01 John Stickley Changes based on feedback to 1.5 changes, added bit
accessors to message data object, changed version for-
mat from major.minor.minor to major.major.minor.

1.7 10-19-01 John Stickley Added clarification to how the g() function works
with ::ServiceLoop(), added note about memory
allocation and deletion, added ::ReplaceBind-
ing() calls ::SceMiMessagePort[In/
Out]Proxy classes, added info message callback
handler support, added clarification about parameters
database structure, added clarification about input
ready semantics.

1.8 11-14-01 John Stickley Incorporated feedback, corrections to above.

1.9 2-26-02 John Stickley Added support for “don’t care duty cycle”, clarifica-
tions about duty cycles, clock ratios. Changed default
duty cycles on SceMiMacros. Added explanation
about deriving clock ratios from clock frequencies.
Added section about multi-clock alignment. Minor
modifications to the SceMiIC info message handler
structure.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 3 of 94

Introduction

4 o
BFM - Bus Functional Model

DUT - Device or Design Under Test

HDL - Hardware Description Language such as Verilog or VHDL

ISS - Instruction Set Simulator

RTC - Register Transfer Level C model

SCE-API - Standard Co-Emulation API

SCE-MI - Standard Co-Emulation API - Modeling Interface

UT or UTC - Untimed or untimed C model

1.5 References
1. Functional Specification for SystemC 2.0 - Synopsys, Inc.; CoWare, Inc.; Frontier Design, Inc.
2. CoWare N2C User Manual - CoWare, Inc.
3. IEEE Standard Hardware Description Language Based on the Verilog Hardware Description

Language (IEEE Std 1364-1995) - IEEE Computer Society
4. IEEE Standard VHDL Language Reference Manual (IEEE Std 1076-1993) - IEEE Computer

Society

1.6 Overview
This specification describes a modeling interface that provides multiple channels of communication that
allow software models describing system behavior to connect to structural models describing
implementation of a device under test (DUT). Each communication channel is designed to transport
untimed messages of arbitrary abstraction between its two end points or “ports” of a channel.

These message channels are not meant to connect software models to each other but rather to connect
software proxy models to message port interfaces on the hardware side of the design. The means to
interconnect software models to each other must be provided by a software modeling and simulation
environment such as SystemC which is beyond the scope of this document.

Although the software side of a system can be modeled at several different levels of abstraction
including untimed, cycle accurate, and even gate level, the focus of the SCE-MI is to interface purely
untimed software models with an RTL or gate level DUT. This can be summarized with the following
recommendations regarding the API:

• Do not use it to bridge event based or sub-cycle accurate simulation environments
• It is possible but not ideal to bridge cycle accurate simulation environments
• It is ideal for bridging an untimed simulation environment with a cycle accurate simulation

environment

There are many references in the document to SystemC as the modeling environment for untimed
software models. This is because, although SystemC is capable of modeling at the cycle accurate RTL
abstraction level, it is also considered ideally suited for untimed modeling. As such, it has been chosen
for use in many of the examples in this document.
f 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Introduction
1.6.1 Performance Goals
While the software side of the described interface is generic in its ability to be used in any C/C++
modeling environment, it is optimized to be compatible with SystemC (see reference [1]). Similarly, its
hardware side is optimized to prevent undue throttling of an emulator during a co-modeling session run.

Throughout this document the term emulation or emulator is used to denote a structural or RTL model
of a DUT running in an emulator, rapid prototype, or other simulation environment including software
HDL simulators.

That said however, the focus of the design of this interface is to avoid communication bottlenecks that
might become most apparent when interfacing software models to an emulator as compared to
interfacing them to a slower software HDL simulator or even an HDL accelerator. Such bottlenecks
could severely compromise the performance of an emulator which is otherwise very fast. Although
some implementations of the interface can be more inefficient than others, there should be nothing in
the specification of the interface itself that renders it inherently susceptible to such bottlenecks.

For this reason, the communication channels described herein are message or transaction oriented
rather than event oriented with the idea that a single message over a channel originating from a software
model can trigger dozens to hundreds of clocked events in the hardware side of the channel. Similarly, it
can take thousands of clocked events on the hardware side to generate the content of a message on a
channel originating from the hardware that is ultimately destined for an untimed software model.

1.6.2 Document Layout
The document is divided into the following three major chapters:

• Chapter 2.0: An overall description and use model for the SCE Modeling Interface (SCE-MI).
• Chapter 3.0: A tutorial that shows how the use model is used in a simple application.
• Chapter 4.0: A formal functional specification of the API itself.

1.6.3 Document Conventions
• Any references to actual literal names that might be found in source code, identifiers that are part of

the API, file names, and other literal names are represented in courier font.
• Key concepts words, or phrases are often italicized. Also, there is a good chance that any italicized

text may have a definition in the glossary, so the reader is directed there for a more detailed
meaning of a term.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 5 of 94

Overall Description and Use Model

6 o
2.0 Overall Description and Use Model

2.1 High Level Description
The diagram in Figure 1 shows a high level view of how SCE-MI interconnects untimed software
models to structural hardware transactor and DUT models.

FIGURE 1. High Level View Of Run Time Components

The SCE-MI provides a transport infrastructure between the emulator and host workstation sides of
each channel, that interconnects transactor models in the emulator to C (untimed or RTL) models on the
workstation. Again it is important to note that for purposes of this document, the term emulator can be
used interchangeably with any simulator capable of executing RTL or gate-level models, including
software HDL simulators. These interconnects are provided in the form of message channels that run
between the software side and the hardware side of the SCE-MI infrastructure. Each message channel
has two ends. The end on the software side is called a message port proxy which is a C++ object that
gives API access to the channel. The end on the hardware side is a message port macro that is
instantiated inside a transactor and connected to other components in the transactor. Each message
channel is either an input or an output channel with respect to the hardware side.

It is important to note that message channels are not unidirectional or bidirectional busses in the sense
of hardware signals, but are rather more like network sockets that use message passing protocols. It is
the job of the transactors to serve as abstraction gaskets that decompose messages arriving on input
channels from the software side into sequences of cycle accurate events that are to be clocked into the
DUT. For the other direction of flow, transactors recompose sequences of events coming from the DUT
back into messages to be sent via output channels to the software side.

DUT

 C/C++ kernel

UTC Model

UTC Model

RTC Model

UTC Model

Software Side (host workstation) Hardware Side (emulator)

SCE-MI Infrastructure

Message Port
Proxy 1

Message Port
Proxy 2

Message Port
Proxy 3

Transactor 2

Transactor 1Message
Port 1

Message
Port 2

Message
Port 3

Clock/Reset
Generation
and Control

such as SystemC
f 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Overall Description and Use Model
In addition, the SCE-MI infrastructure provides clock (and reset) generation and shared clock control
using handshake signals with the transactor. This allows the transactor to “freeze” controlled time while
performing message composition and decomposition operations.

2.1.1 Support for Multi-Threaded Environments
The SCE-MI is designed to couple easily with multi-threaded environments such as SystemC, yet it also
functions just as easily in single-threaded environments such as simple C programs. A special service
loop function (see section 4.3.3.6 on page 68) is provided by the SCE-MI that can be called from an
application to give the SCE-MI infrastructure an opportunity to service its communication channels. It
is inside this function that queued up input messages can be sent to the hardware side and arriving
output messages can be dispatched to the appropriate software models.

While there is no thread specific code inside the service loop function or elsewhere in the SCE-MI, in a
multi-threaded environment this function is designed to be called periodically from a dedicated thread
so that the interface is automatically serviced while other threads are running.

In a single-threaded environment, the service loop function can be “sprinkled” throughout the
application code at strategically placed points to allow it to frequently yield CPU cycles to the SCE-MI
infrastructure so that it can service its messages channels.

2.2 Users of the Interface
A major goal of this specification is to address the needs of three target audiences, each with a distinct
interest in their use of the interface. The target audiences are as follows:

• End user
• Transactor implementor
• SCE-MI infrastructure implementor

2.2.1 End User
The end user is interested in quickly and easily establishing a bridge between a software testbench that
can be composed of high level, untimed, algorithmic software models, and a hardware DU that can be
modeled at the RTL, cycle accurate level of abstraction.

While end users might be aware of the need for a “gasket” that bridges these two levels of abstraction,
they want the creation of these abstraction bridges to be as painless and automated as possible. Ideally,
the end users are not required to be familiar with the details of SCE-MI API.

Rather, on the hardware side, they might wish to rely on the transactor implementor (see next section)
to provide predefined transactor models that can directly interface to their DUT. This would remove
any requirement for them to be familiar with any of the SCE-MI hardware-side interface macros (see
section 4.1 on page 46) except possibly the SceMiClockPort macro whose interface is easy to
understand because all it really does is furnish a clock and a reset.

Similarly, on the software side, the end users can also rely on the transactor implementors to furnish
them with plug-and-play software models, custom tailored for a software modeling environment such
as SystemC. Such models would encapsulate the details of interfacing to the SCE-MI software side and,
might present a fully untimed, easy to use interface to the rest of the software testbench.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 7 of 94

Overall Description and Use Model

8 o
2.2.2 Transactor Implementor
The transactor implementor is familiar with the interface presented by the SCE-MI but is not concerned
with its implementation.

The job of the transactor implementor is to provide plug-and-play transactor models on the hardware
side and proxy models on the software side that might be used by end users to easily bridge their
untimed software models with their RTL-represented DUT. Additionally, the transactor implementor
can supply proxy models on the software side that provide untimed “sockets” to the transactors.

Using the models is like using any other vendor supplied, stand-alone IP models and the details of
bridging not only two different abstraction levels but possibly two different verification platforms (such
as SystemC and an emulator), is completely hidden within the implementations of the models. They
must be distributed with appropriate object code, netlists, RTL code, configuration files, and all
necessary documentation.

2.2.3 SCE-MI Infrastructure Implementor
The SCE-MI infrastructure implementor is interested in furnishing a working implementation of an
SCE-MI that runs on some vendor supplied verification platform (probably their own). Any distributed
product release from the infrastructure implementor will necessarily include both the software side and
the hardware side components of the SCE-MI. For such a release to be complaint, it must conform to all
the requirements set forth in this specification.

2.3 Bridging Levels of Modeling Abstraction
The central goal of this specification is to provide an interface designed to bridge two modeling
environments, each of which supports a different level of modeling abstraction.

2.3.1 Untimed Software Level Modeling Abstraction
Suppose we have a testbench consisting of several, possibly independent models that stimulate and
respond to a DUT at different interface points. Figure 2 depicts such a system. Such a configuration can
be used to test a processor DUT that has some communications interfaces that can include an ethernet
adapter, PCI interface, and a USB interface. The testbench can consist of several models that
independently interact with these interfaces, playing their protocols and exchanging packets with them.
These packets might be recoded as messages with the intent of verifying the processor DUT’s ability to
deal with them. The system in Figure 2 might initially be implemented fully at the untimed level of
abstraction using the SystemC software modeling environment.
f 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Overall Description and Use Model
FIGURE 2. Untimed Software Testbench and DUT Models

Now suppose that we ultimately want to create cycle accurate RTL models of the DUT model and eventually
synthesize it to gates that can be verified on a high speed emulation platform. Once we do this however, we
might still want to test them with the unaltered, untimed testbench models. Doing so requires a way of
somehow bridging the untimed level of abstraction to the bus cycle accurate (BCA) level.

2.3.2 Cycle Accurate Hardware Level Modeling Abstraction
Suppose now that we take the purely untimed system shown in Figure 2, “pry apart” the direct coupling
between the testbench models and the untimed DUT model, and insert an abstraction bridge in order to
bridge the still untimed system testbench model to what is now a emulator resident, RTL-represented DUT.
Figure 3 depicts this new configuration.

This bridge consists of a set of DUT proxy models, SCE-MI message input and output port proxies, a set of
message channels which are transaction conduits between the software simulator and the emulator, message
input and output ports, and a set of user implemented transactors.

The SCE-MI infrastructure performs the task of serving as a transport layer that guarantees delivery of
messages back and forth between the message port proxy and message port ends of each channel. Messages
arriving on input channels are presented to the transactors through message input ports. Similarly, messages

T
B

 M
od

el
 0

Untimed
Testbench (TB) Models

Untimed
DUT Model

T
B

 M
od

el
 1

T
B

 M
od

el
 N

-1

DUT Model
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 9 of 94

Overall Description and Use Model

10
arriving on output channels are dispatched to the DUT proxy software models via message output port
proxies that present them to the rest of the testbench as if they had come directly from original untimed
DUT model as depicted in Figure 2. In fact, the testbench models do not know that the messages have
actually come from and gone to a totally different abstraction level.

The DUT input proxies have the job of accepting untimed messages from various C models and sending
them to the message input port proxies for transport to the hardware side. The DUT output proxies
establish callbacks that monitor the message output port proxies for arrival of messages from the
hardware side. In other words, the SCE-MI infrastructure dispatches these messages to the specific
DUT proxy models to which they are addressed.

Taking this discussion back to the context of users of the interface described in section 2.2 on page 7,
the end user only has to know how to interface with the DUT proxy models on the software side of
Figure 3 with the transactor models on the hardware side; whereas, the transactor implementor authors
the proxy and transactor models using the SCE-MI message port and clock control components between
them, and provides those models to the end user.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Overall Description and Use Model

l
)

FIGURE 3. Multichannel Abstraction Bridge Architecture

2.3.3 Messages and Transactions
At this point, it makes sense to describe in more detail what a message is and how it is used in an
untimed software modeling environment. In the discussion above, the implied meaning of a message is
that it is a unit of data of arbitrary size and abstraction to be transported over a channel.

User Defined DUT
Proxy

Abstraction Bridge

Untimed
Testbench Models

SCE-MI Infrastructure User Defined
Transactors

DUT Mode
(RTL, BCA

Message Input
Port Proxy 0

T
B

 M
od

el
 0

T
B

 M
od

el
 1

T
B

 M
od

el
 N

-1

Message Output
Port Proxy 0

Message Input
Port Proxy 1

Message Output
Port Proxy N-1

X
ac

to
r

0
X

ac
to

r
1

Message Output
Port 0

Message Input
Port 0

Message Input
Port 1

Message Output
Port N-1

X
ac

to
r

N
-1

Message Channels

DUTDUT
Proxy

Hardware SideSoftware Side
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 11 of 94

Overall Description and Use Model

12
In a purely untimed modeling environment, messages are not associated with specific clocks or events.
Rather, they can be considered arbitrary data types ranging in abstraction from a simple bit, boolean or
integer, on up to something as complex as a C++ class or even some aggregate of objects.

It is in this form that messages can be transported either by value or by reference over abstract ports
between fully untimed software models of the sort described in Figure 2 and, in substantially more
detail in reference [1].

However, before messages can be transported over an SCE-MI message channel, their content must be
serialized into a large bit vector by the DUT proxy model. Conversely, after a message arrives on a
message output channel and is dispatched to a DUT output proxy model, it might be de-serialized back
into an abstract C++ data type. At this point, it is ready for presentation at the abstract output ports (to
use SystemC terminology) of the DUT proxy to the connected software testbench models.

Meanwhile, on the hardware side, a message arriving on the message input channel can trigger many
dozens to hundreds of clocks of event activity. It is the job of the transactor to perform this
decomposition of message data content to sequences of clocked events that are presented to the DUT
hardware model inputs. Conversely, for output messages, it might be the job of the transactor to accept
possibly hundreds to thousands of clocked events originating from the DUT hardware model, and
assemble them into serialized bit streams that are sent back to the software side for de-serialization back
into abstract data types.

Note that, for the most part, the term message can be used interchangeably with transaction. However,
in some contexts, transaction can be thought of as including infrastructure overhead content in addition
to user payload data (and handled at a lower layer of the interface) whereas, the term message denotes
only user payload data.

2.3.4 Controlled and Uncontrolled Time
One of the implications of the transactor’s job of converting between message bit streams and clocked
events is that it might need the ability to “freeze” controlled time while performing these operations
such that the controlled clock that feeds the DUT is stopped long enough for the operations to occur.

If one visualizes the transactor operations strictly in terms of controlled clock cycles, they appear
between edges of the controlled clock. This is depicted in the controlled time view shown in Figure 4.
But if they are shown for all cycles of the uncontrolled clock, the waveforms would appear more like the
uncontrolled time view shown in Figure 4. In this view, the controlled clock is suspended or disabled
and the DUT is “frozen in controlled time.”

Suppose a system has multiple controlled clocks (of possibly differing frequencies) and multiple
transactors controlling them. Any one of these transactors has the option of stopping any clock. If this
happens, all controlled clocks in the system stop in unison. Furthermore, all other transactors that did
not themselves stop the clock, must still sense that the clocks were globally stopped and continue to
function correctly even though they themselves had no need to stop the clock. In this case, they might
typically idle for the number of uclocks during which the cclocks are stopped as illustrated in Figure 4.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Overall Description and Use Model
FIGURE 4. Controlled and Uncontrolled Time Views

In the SCE-MI use model, the semantics of clock control can be described as follows:

• Any transactor can instruct the SCE-MI infrastructure to stop the controlled clock and thus cause
controlled time to freeze.

• All transactors are told by the SCE-MI infrastructure when the controlled clock is stopped.
• Any transactor must function correctly if controlled time is stopped due to operations of another

transactor, even if the transactor in question does not itself need to stop the clock.
• A transactor might need to stop the controlled clock when performing operations that involve

decomposition or composition of transactions arriving from, or going to a message channel.
• The DUT is always clocked by one or more controlled clocks that are controlled by one or more

transactors.
• All transactors are clocked by a free running uncontrolled clock that is provided by the SCE-MI

hardware side infrastructure.

cclock

Controlled Time View

uclock

cclock

uclock

Transactor operation occurs
while controlled time is
suspended by using extra
uncontrolled clock cycles.

Transactor operation occurs
between edges of controlled clock.

Uncontrolled Time View
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 13 of 94

Overall Description and Use Model

14
2.4 Work Flow
There are four major aspects of work flow involved in constructing a system verification with the SCE-
MI environment. They are as follows:

• Software model compilation
• Infrastructure linkage
• Hardware model elaboration
• Software model construction and binding

2.4.1 Software Model Compilation
The models to be run on the workstation are compiled using a common C/C++ compiler or possibly
obtained from other sources such as third party vendors in the form of IP, ISS simulators, etc. The
compiled models are linked with the software side of the SCE-MI infrastructure to form an executable
program.

2.4.2 Infrastructure Linkage
Infrastructure linkage is the process that reads a user description of the hardware, namely the source or
bridge netlist that describes the interconnect between the transactors, the DUT, and the SCE-MI
interface components, and compiles that netlist into a form suitable for emulation. Part of this compile
process can involve adding additional structure to the bridge netlist, that properly interfaces the user
supplied netlist to the SCE-MI infrastructure implementation components. Put more simply, the
infrastructure linker is responsible for providing the core of the SCE-MI interface macros on the
hardware side.

As part of this process, the infrastructure linker also looks at the parameters specified on the instantiated
interface macros in the user-supplied bridge netlist and uses them to properly establish the dimensions
of the interface. Among the parameters it analyzes are the following:

• Number of transactors
• Number of input and output channels
• Width of each channel
• Number of clocks
• Clock ratios
• Clock duty cycles

Once the final netlist is created, the infrastructure linker can then appropriately compile it for the
emulation platform and accordingly convert it to a form suitable to run on the emulator.

2.4.3 Hardware Model Elaboration
The compiled netlist is downloaded to the emulator, elaborated, and prepared for binding to the
software.

2.4.4 Software Model Construction and Binding
The software executable compiled and linked in the software compilation phase is now executed which
causes all the software models to be constructed in the workstation process image space. Once
construction takes place, the software models bind themselves to the message port proxies using special
calls provided in the API. Parameters passed to these calls establish a means by which specific message
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Overall Description and Use Model
port proxies can rendezvous with its associated message port macro in the hardware. Once this binding
occurs, the co-modeling session can proceed.

2.5 SCE-MI Interface Components
The SCE-MI run time environment consists of a set of interface components on both the hardware side
and the software side of the interface, each of which provides a distinct level of functionality. They are
introduced in this section, and each is discussed in more detail later in this document.

2.5.1 Hardware Side Interface Components
The interface components presented by the SCE-MI hardware side consist of a small set of macros that
provide connection points between the transactors and the SCE-MI infrastructure. These compactly
defined and simple to use macros fully present all necessary aspects of the interface to the transactors
and the DUT.

From the point of view of this specification, these macros are simply represented as empty Verilog or
VHDL models with clearly defined port and parameter interfaces. This is analogous to a software API
specification that defines function prototypes of the API calls without showing their implementations.
Future implementations of the interface can also accommodate modeling hardware in RTL C (a.k.a.
RTC) using a C modeling language like SystemC, rather than RTL Verilog or VHDL. Such
implementations would need to provide the RTC equivalents of the same macros defined in this
specification.

Briefly stated, the four macros present the following interfaces to the transactors and DUT:

• Message input port interface
• Message output port interface
• Controlled clock and controlled reset generator interface
• Uncontrolled clock, uncontrolled reset, clock control logic interfaces

2.5.2 Software Side Interface Components
The interface presented by SCE-MI infrastructure to the software side consists of a set of C++ objects
and methods which provide the following functionality:

• Version discovery
• Parameter access
• Initialization and shutdown
• Message input and output port proxy binding and callback registration
• Rendezvous operations with the hardware side
• Infrastructure service loop polling function
• Message input send function
• Message output receive callback dispatching
• Message input ready callback dispatching
• Error handling

In addition to the C++ object oriented interface, a set of C API functions is also provided for the benefit
of pure C applications.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 15 of 94

User’s Guide and Tutorial

16
3.0 User’s Guide and Tutorial

3.1 Hardware Side Interfacing
The hardware side interface of the SCE-MI consists of a set of parametrized macros which can be
instantiated inside transactors that are to interact which the SCE-MI infrastructure. The macros are
parametrized such that, at the point of instantiation, crucial parameters that will dictate the dimensions
of the SCE-MI bridge to software can be easily specified by the user. It is the job of the infrastructure
linker to learn the values of these parameters and customize implementation components inserted
underneath the macros accordingly.

The following four macros fully characterize how the hardware side interface of the SCE-MI is
presented to the transactors and the DUT:

• SceMiMessageInPort macro
• SceMiMessageOutPort macro
• SceMiClockControl macro
• SceMiClockPort macro

Any number of these macros can be instantiated as is required by the system. One SceMiMessageInPort
macro must be instantiated for each required message input channel, and one SceMiMessageOutPort
macro for each output channel. Message port macro bit-widths are parametrized at the point of
instantiation.

Exactly one SceMiClockPort macro is instantiated for each defined clock in the system. This
SceMiClockPort macro instance will, via a set of parameters, fully characterize a particular clock. The
SceMiClockPort macro is instantiated at the top level and provides a controlled clock and reset directly
to the DUT. The SceMiClockPort macro instance is named and assigned a reference ClockNum
parameter that is used to associate it with one or more counterpart SceMiClockControl macros inside
one or more transactors. The SceMiClockControl macro is used by its transactor for all clock
controlling operations for its associated clock. These two macros are mutually associated by the
ClockNum parameter and every SceMiClockPort macro must have a minimum of one
SceMiClockControl macro associated with it.

The infrastructure linker (not the user) is responsible for properly hooking up these, essentially empty,
macro instances to the internally generated SCE-MI infrastructure and clock generation circuitry.

The following parameters specified at the points of instantiation of the macros fully specify the required
dimensions of the SCE-MI infrastructure components (see 4.2.1 on page 59 for more details):

• Number of transactors
• Number of input and output channels
• Name and width of each channel
• Number of controlled clocks
• Name, clock ratio, and duty cycle of each controlled clock

Figure 5 shows a simple example of how a transactor and DUT might connect to the hardware side
interface of the SCE-MI.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
FIGURE 5. Connection of SCE-MI Macros on Hardware Side to Transactor and DUT

This example features a single transactor interacting with a DUT and interfacing to the software side
through a SceMiMessageInPort and a SceMiMessageOutPort. In addition, it defines a single clock that
is controlled by the transactor internally using the SceMiClockControl macro. This clock drives the
DUT from the top level through a SceMiClockPort macro.

A key point that this example illustrates is that only the transactor implementor (see 2.2 on page 7)
needs to be aware of all SCE-MI interface macros (except for the SceMiClockPort). Because the
transactor encapsulates the message port macros and the SceMiClockControl macro, the end user only
has to be aware of how to hook up to the transactor itself and to the SceMiClockPort macro.

The SceMiClockPort macro instantiation is where all the clock parameters are specified. The numbers
shown (see Figure 5) in the component instantiation label as,

#(1, 1, 1, 50, 50, 0, 8) cclock

map to the parameters defined for the SceMiClockPort macro (see 4.1.4 on page 51). They are
summarized here:

• ClockNum = 1
• RatioNumerator = 1
• RatioDenominator = 1

TransmitReady
ReceiveReady

Message []

SceMiMessageInPort
#64 p1

TransmitReady
ReceiveReady

Message []

SceMiMessageOutPort
#128 p2

TxRdyIn

Uclock
Ureset

ReadyForCclock

SceMiClockControl
#1 c1

CclockEnabled

CclockNegEdgeEnabled

RxRdyIn

Uclk
Rst

ReadyForCclock
CclockEnabled

MessageIn [63:0]

TxRdyOut
RxRdyOut

MessageOut [127:0]

TransactorCore

DutInCtrl
DutInData []

DutOutCtrl
DutOutData []

UserDefinedTransactor
t1

u1

DutInCtrl
DutInData []

DutOutCtrl
DutOutData []

Clk
Rst

d1
DUT

Cclock
Creset

SceMiClockPort
#(1, 1, 1, 50, 50, 0, 8) cclock

ReadyForCclockNegEdge ‘1’
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 17 of 94

User’s Guide and Tutorial

18
• DutyHi = 50
• DutyLo = 50
• Phase = 0
• ResetCycles = 8

Of these parameters, the ClockNum parameter is used to uniquely identify this particular clock and also
to associate it with its 1 or more counterpart SceMiClockControl macros which must be parametrized to
the same ClockNum value, in this case 1. In addition to learning the clock specification parameters, the
infrastructure linker also learns the name of each clock by looking at the instance label of each
SceMiClockPort instance, in this case cclock.

Similarly, message ports have a parametrized PortWidth parameter.

To summarize, the infrastructure linker learns the following specific information from analyzing this
netlist:

• Single transactor called “Bridge.u1” (assuming top level module is called “Bridge”).
• Single “divide-by-1” controlled clock called “cclock”
• Controlled clock has a 1/1 ratio which, when enabled, is ideally (depending on implementation) the

same frequency as the uncontrolled clock
• Controlled clock is parametrized to 50/50 duty cycle with 0 phase shift (a user can also specify a

don’t care duty cycle - see 4.1.4.1 on page 52 for details)
• Controlled reset is parametrized to 8 controlled clock cycles of reset
• Single SceMiMessageInPort called “p1”, parametrized to bit-with of 64
• Single SceMiMessageOutPort called “p2” parametrized to bit-width of 128

A more complicated example that involves two transactors and three clocks is shown in Appendix B: on
page 90.

3.2 The Routed Tutorial
The Routed tutorial documents a real life example that uses the SCE-MI to interface between untimed
software models modeled in SystemC, and hardware models of transactors and a DUT modeled in RTL
Verilog. This tutorial tries to illustrate how the use model of the SCE-MI can be applied in a multi-
threaded SystemC environment. It assumes some familiarity with the concepts of SystemC including
abstract ports, autonomous threads, slave threads, module and port definition, and module instantiation
and interconnect. Reference [1] has a description of these concepts.

3.2.1 What the Design Does
The Routed design is a small design that simulates air passengers traveling from Origins to
Destinations by traversing various interconnected Pipes and Hubs in a RouteMap. In this design, the
Origins and Destinations are the transactors and the RouteMap model is the DUT. Each Origin
transactor interfaces to a SceMiMessageInPort to gain access to messages arriving from the software
side. Each Destination transactor interfaces to a SceMiMessageOutPort to send messages to the
software side. There is also an OrigDest module that has both an Origin and Destination transactor
contained within it.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
The “world” consists of these Origins,

Anchorage, Cupertino, Noida, SealBeach, UK, Waltham,

and these Destinations,

Anchorage, Cupertino, Maui, SealBeach, UK.

Travel from any Origin to any Destination is possible by traversing the RouteMap (DUT) containing
the following Pipe interconnected Hubs,

Chicago, Dallas, Newark, SanFran, Seattle.

Each controlled clock cycle represents one hour of travel or layover time.

Figure 6 shows how the Routed world is interconnected.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 19 of 94

User’s Guide and Tutorial

20
FIGURE 6. The Routed World

The numbers shown by the directed arcs are the travel time (in hours) to travel the indicated Pipe.
Layover time in each Hub is two hours.

The RouteMap is initialized by injecting TeachRoute messages for the entire system through the
Waltham Origin transactor. Each TeachRoute message contains a piece of routing information

3

Legend

Hub

Pipe (with
 travel time)

Origin

Destination

OrigDest

Noida

14

Anchorage

5

Seattle

4

Maui
2

1
Cupertino

SanFran

SealBeach

1

3
Dallas

2

Chicago
3

5
Newark

3

1

Waltham

7 UK

Anchorage
Cupertino
Noida
SealBeach
UK
Waltham

Anchorage
Cupertino
Maui
SealBeach
UK

Chicago
Dallas
Newark
SanFran
Seattle

“Polar Route”

Origins Destinations Hubs
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
addressed to a particular Hub to load the route into its RouteTable module (see Figure 9 on page 25).
Using this simple mechanism, the software side RouteConfig model progressively teaches each Hub its
routes (via Waltham) so that it can, in turn, pass additional TeachRoute tokens to Hubs more distant from
Waltham. In other words, by first teaching closer hubs, the RouteMap learns to pass routes bound for
more distant hubs. This process continues until the entire mesh is initialized, at which point it is ready to
serve as a backbone for all air travel activity.

After initiating the route configuration, the testbench then executes the itineraries of 4 passengers over a
period of 22 days. Each itinerary consists of several legs, each with scheduled departure from a
specified Origin and each with a specified Destination. The scheduled leg is sent as a message token
to its designated Origin transactor. It is the job of the transactor to count the number of clocks until the
specified departure time before sending the token into the RouteMap mesh.

3.2.2 System Hierarchy
The hierarchy of the whole system is textually shown in the following subsections.

3.2.2.1 Software Side Hierarchy
System
Testbench
Calendar <--> ClockAdvancer
Scheduler <--> OrigDest, Origin, Destination
RouteConfig
SceMiDispatcher

Note that the interactions shown between the Calendar and Scheduler software side models and the
OrigDest, Origin, and Destination hardware side models. These interactions occur over SCE-MI
message channels.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 21 of 94

User’s Guide and Tutorial

22
3.2.2.2 Hardware Side Hierarchy
Following is the hierarchy of the hardware side components instantiated under the Bridge netlist:

Bridge
SceMiClockPort

OrigDest anchorage, cupertino, sealBeach, UK
Origin

SceMiMessageInPort
SceMiClockControl

Destination
SceMiMessageOutPort
SceMiClockControl

Origin noida, waltham

Destination maui

RouteMap
Hub chicagoHub, dallasHub, newarkHub, sanFranHub, seattleHub

Funnel
Nozzle

RouteTable

Pipe

ClockAdvancer
SceMiMessageInPort
SceMiMessageOutPort
SceMiClockControl

Notice that at the Bridge level only the SceMiClockPort macro, transactor components, and the DUT
appear. Encapsulated within the Origin and Destination transactors are the SceMiMessageInPort,
SceMiMessageOutPort, and SceMiClockControl macros. The ClockAdvancer transactor has both
message input and output ports in addition to the required SceMiClockControl macro.

3.2.3 Hardware Side

3.2.3.1 Bridge
The bridge between the hardware and software side of the design is depicted in Figure 7. Notice that this
diagram more or less follows the structure of the generalized abstraction bridge shown in Figure 3 on
page 11. The design uses 13 message channels in all. Two (message input and output) for the Calendar
<-> ClockAdvancer connection, six message input channels for the Scheduler <-> Origin
connections, and five output channels for the Scheduler <-> Destination connections.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
FIGURE 7. The Bridge

The two software models that interact with the hardware side are the Calendar model and the
Scheduler model. These models encapsulate message port proxies which give them direct access to the
message channels leading to the Origin and Destination transactors on the hardware side. These two
software models are the only ones that are aware of the SCE-MI link. They converse with the other
models through SystemC abstract ports.

On the hardware side, there is a set of Origin and Destination transactors that service the message
channels that interface with the Scheduler and route tokens to or from the DUT. Some locations, such
as Anchorage and the UK, are both Origin and Destination (called OrigDest).

UK
Message

In/Out Port
Proxy

Calendar
AdvanceCalendar

NewDay

AdvanceClock

TodaysDate

Message
In/Out
Port

Clock
Advancer

Message
Channels

Transactors

Software Models

Anchorage
Message

In/Out Port
Proxy

Noida

In Port
Proxy

ClockAdv
Message

In/Out Port
Proxy

RouteMap
Proxy

TodaysDate

Announce
Arrival

ScheduleLeg

LoadRoute

Scheduler

Message
In/Out
Port

Message
In/Out
Port

Message
In Port

Noida

Destination

Anchorage
OrigDest

UK
OrigDest

RouteMap

DUT

Message
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 23 of 94

User’s Guide and Tutorial

24
In addition, there is a ClockAdvancer transactor that interfaces directly with the Calendar model. The
ClockAdvancer is a stand-alone transactor that does not converse with the DUT. Its only job is to allow
time to advance a day at a time (see section 3.2.3.5 on page 28 for more details).

3.2.3.2 DUT and Transactor Interconnect
Figure 8 shows a representative portion of the RouteMap to show how it interconnects DUT components
to form the RouteMap mesh.

FIGURE 8. DUT and Transactor Interconnect

Origin
TokenOut

Destination
TokenIn

Destination
TokenIn

P
i
p
e

Pipe 5

P
i
p
e

Pipe 5

P
i
p
e

Pipe 4

Funnel

In0
In1
In2
In3

Out

Nozzle

In
Out0
Out1
Out2
Out3

Hub

Seattle
OrigDest

Anchorage

5Anchorage

Seattle

Maui

4

 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
Pipes are inserted between two Hubs or between an Origin or Destination transactor and a Hub.
Longer Pipes can be created by cascading primitive one hour Pipes to form the proper length. Each
Pipe primitive represents one hour of travel (one clock). In this diagram, a Pipe4 model is inserted
between the Seattle Hub and Maui Destination for a four hour flight leg. Since travel can occur in
either direction between Anchorage and Seattle, a Pipe5 is inserted between them for each direction.

3.2.3.3 DUT and Transactor Components
Figure 9 shows the structure of the DUT and transactor components.

FIGURE 9. DUT and Transactor Components

MessageIn Port

ClockControl

MessageOut Port

ClockControl

MessageIn Port

MessageOut Port

Origin

TokenOut

TokenIn

Destination

Clock
Control

ClockAdvancer

RouteMap
 (DUT)
Interface

32

32

Transactor Components DUT Components

Funnel
TokenIn0
TokenIn1
TokenIn2
TokenIn3

TokenOut0
TokenOut1
TokenOut2
TokenOut3

Nozzle

TokenOut TokenIn

RouteTable

Hub

32
32
32
32 32

32
32
32
32

Pipe

TokenIn TokenOut
32 32

‘TeachRoute’ Token

0
3071113

Destination ID of Hub

Learn Route ID

Associated Port ID

‘Passenger Arrival’ Token ‘Passenger Departure’ Token

> 0
30711152331

Passenger ID
Destination ID

Layover Count

Layover 0 ID (Origin)

Layover 1 ID

Layover 4 ID

Passenger ID

> 0

Destination ID

Time of Departure

1531

Token Formats
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 25 of 94

User’s Guide and Tutorial

26
Each Origin transactor contains a clock control macro and a message input port macro to receive
departure tokens from the Scheduler on the software side. Each received token is passed to the
TokenOut port when the scheduled departure time has matured. Although the Origin transactor has a
clock control macro, it does not actively control the clock. Its only use of the clock control macro is to
monitor the ReadyForCclock signal to know on which uclocks the cclock is active so that it can
properly count cclocks until the scheduled departure time of a pending departure token.

Each Destination transactor contains a clock control macro and a message output port macro to send
arrival tokens back to the Scheduler on the software side. The arrival tokens represent a passenger
emerging from the RouteMap mesh and arriving at a Destination through its TokenIn port. See section
3.2.3.4 on page 26 for a detailed description of the Destination transactor. This transactor was chosen
to be described in detail because it provides a simple example of clock control and message port
interfacing.

Each token is a 32-bit vector signal. There are no handshakes in the system. Rather, the tokens are “self
announcing.” Normally, 0s are clocked through the mesh so if, on any given cycle, a Hub or
Destination senses a non-0 value on its input port, it knows it has received a token that needs to be
processed.

Token formats are also shown in Figure 9. A departure token contains the passenger ID, destination ID,
and scheduled time of departure. As the departure token travels through the mesh, it collects layover
information consisting of the IDs of all the Hubs encountered before reaching its Destination, having
been transformed into an arrival token. The arrival token then has a complete record of layover
information that is passed back to the software side and displayed to the console.

A Hub consists of a Funnel that accepts tokens from up to four different sources, and a Nozzle that
routes a token up to four different destinations. The Nozzle contains a small RouteTable that is
initialized at the beginning of the simulation with routing information by receiving TeachRoute tokens.

3.2.3.4 The Destination Transactor: Interfacing with the DUT and Controlling the Clock
The Destination transactor accepts tokens arriving from a point-of-exit on the RouteMap and passes
them to the message output port.

The Destination transactor uses clock control to avoid losing potentially successive tokens arriving
from the RouteMap (through the TokenIn input) to this destination portal. It de-asserts the
readyForCclock in the event that a token comes in, but the message output port is not able to take it
because of tokens simultaneously arriving at other destination portals. This way, it guarantees that the
entire RouteMap is disabled until all tokens are off-loaded from the requesting Destination transactors.

The Verilog source code for the Destination transactor is shown in the following listing:
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
module Destination (TokenIn);
 input [31:0] TokenIn;
// {
 wire [3:0] destID;
 reg [31:0] message;
 reg transmitReady, readyForCclock;
 assign destID = TokenIn[7:4];

 SceMiMessageOutPort #32 messageOutPort(
 //Input Output
 //------------------------- ---------------------------
 .TransmitReady(transmitReady), .ReceiveReady(receiveReady),
 .Message(message));

 SceMiClockControl clockControl(
 //Input Output
 //------------------------- ---------------------------
 .Uclock(uclock),
 .Ureset(ureset),
 .ReadyForCclock(readyForCclock), .CclockEnabled(cclockEnabled));

 always@(posedge uclock) begin // {
 if(ureset == 1) begin
 readyForCclock <= 1;
 message <= 0;
 transmitReady <= 0;
 end
 else begin // {
 // if(DUT clock has been disabled)
 // It means that this destination transactor is waiting to
 // unload its pending token and does not want to re-enable the
 // DUT until that token has been off-loaded or else it might
 // lose arriving tokens in subsequent DUT clocks.
 if(readyForCclock == 0) begin

 // When the MessageOutPort portal finally signals acceptance
 // of the token, we can re-enable the DUT clock.
 if(receiveReady) begin
 readyForCclock <= 1;
 transmitReady <= 0;
 end
 end
 else if(cclockEnabled && destID != 0) begin
 message <= TokenIn;
 transmitReady <= 1;

 // if(token arrives but portal is not ready)
 // Stop the assembly line ! (a.k.a. disable the DUT)
 if(receiveReady == 0)
 readyForCclock <= 0;
 end
 end // }
 end // }
endmodule // }
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 27 of 94

User’s Guide and Tutorial

28
3.2.3.5 The ClockAdvancer Transactor: Controlling Time Advance
The ClockAdvancer transactor simply counts controlled clocks until the requested number of cycles has
transpired, then sends back a reply transaction.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
The Verilog source code for the ClockAdvancer is listed here:

module ClockAdvancer();
// {
 wire [31:0] advanceDelta, messageIn, messageOut;
 reg [31:0] cycleCount;

 assign receiveReadyIn = 1;
 assign advanceDelta = messageIn[31:0];
 assign messageOut = 0;

 SceMiMessageInPort #32 messageInPort(
 //Input Output
 //------------------------- ---------------------------
 .ReceiveReady(receiveReadyIn), .TransmitReady(transmitReadyIn),
 .Message(messageIn));
 SceMiMessageOutPort #32 messageOutPort(
 //Input Output
 //------------------------- ---------------------------
 .TransmitReady(transmitReadyOut), .ReceiveReady(receiveReady),
 .Message(messageOut));

 SceMiClockControl clockControl(
 //Input Output
 //------------------------- ---------------------------
 .Uclock(uclock), .Ureset(ureset),
 .ReadyForCclock(readyForCclock), .CclockEnabled(cclockEnabled));

 always @(posedge uclock) begin // {
 if(ureset) begin
 transmitReadyOut <= 0;
 cycleCount <= 0;
 readyForCclock <= 0;
 end
 else begin // {
 // Received a clock advance command - Initialize cycle counter.
 if(transmitReadyIn && !transmitReadyOut) begin
 cycleCount <= advanceDelta;
 readyForCclock <= 1;
 end
 // Decrement cycle count. When count gets down to 1,
 // prepare to send a response that the time has expired.
 if(readyForCclock && cclockEnabled) begin
 if (cycleCount == 1) begin
 transmitReadyOut <= 1;
 readyForCclock <= 0;
 end
 cycleCount <= cycleCount - 1;
 end
 if(receiveReadyOut == 1)
 transmitReadyOut <= 0;
 end // }
 end // }
endmodule // }

Notice that the SceMiClockControl macro references the same cclock as that in the Destination
transactor (i.e., uses the default ClockNum=1). This means that the ClockAdvancer and the Destination
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 29 of 94

User’s Guide and Tutorial

30
transactor share in the control of the same cclock. In fact there is only one cclock in the entire system
that is specified at the default 1/1 ratio.

Notice also that, although the ClockAdvancer handshakes with the message output port, the data that it
sends is always 0. This is because the only thing that the software side needs from the ClockAdvancer is
the cycle stamp which is automatically included in each message output response (see 4.3.5.3 on
page 75).

3.2.4 The Software Side
The software side of the Routed design is written completely in SystemC and C++. It is compiled as an
executable program that links with the SCE-MI software side.

3.2.4.1 The System Model: Interconnect of SystemC Modules
The System model is the top level “software netlist” of SystemC modules (SC_MODULE()). It specifies
the construction and interconnect of the component models as well. A block diagram of the System
model is shown in Figure 10.

FIGURE 10. Interconnect of SystemC Models

Test Bench

NewDay

AnnounceArrival

AdvanceCalendar
ScheduleLeg

LoadRouteMap

Done

Calendar

AdvanceCalendar

AdvanceClock

NewDay

TodaysDate

SceMi Dispatcher

Done

Scheduler

TodaysDate

ScheduleLeg

LoadRoute

AnnounceArrival

RouteConfig

LoadRouteMap LoadRoute

AdvanceClock
SceMi

::ServiceLoop()

Message Channels

Testbench Architecture
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
Following is the source code for the System model:

SC_MODULE(System){
 sc_link_mp<unsigned> newDay;
 sc_link_mp<const Routed::ArrivalRecord *> announceArrival;
 sc_link_mp<unsigned> advanceCalendar;
 sc_link_mp<const Routed::Itinerary *> scheduleLeg;
 sc_link_mp<> loadRouteMap;
 sc_link_mp<> done;
 sc_link_mp<> advanceClock;
 sc_link_mp<Routed::Date> todaysDate;
 sc_link_mp<const Routed::Route *> loadRoute;

 //---
 // Module declarations
 Testbench *testbench;
 Calendar *calendar;
 Scheduler *scheduler;
 RouteConfig *routeConfig;
 SceMiDispatcher *dispatcher;

 SC_CTOR(System){
 testbench = new Testbench(“testbench”);
 testbench->NewDay(newDay);
 testbench->AnnounceArrival(announceArrival);
 testbench->AdvanceCalendar(advanceCalendar);
 testbench->ScheduleLeg(scheduleLeg);
 testbench->LoadRouteMap(loadRouteMap);
 testbench->Done(done);

 calendar = new Calendar(“calendar”);
 calendar->AdvanceCalendar(advanceCalendar);
 calendar->AdvanceClock(advanceClock);
 calendar->NewDay(newDay);
 calendar->TodaysDate(todaysDate);

 scheduler = new Scheduler(“scheduler”);
 scheduler->TodaysDate(todaysDate);
 scheduler->ScheduleLeg(scheduleLeg);
 scheduler->LoadRoute(loadRoute);
 scheduler->AnnounceArrival(announceArrival);

 routeConfig = new RouteConfig(“routeConfig”);
 routeConfig->LoadRouteMap(loadRouteMap);
 routeConfig->LoadRoute(loadRoute);
 routeConfig->AdvanceClock(advanceClock);

 dispatcher = new SceMiDispatcher(“dispatcher”);
 dispatcher->Done(done);
 }
};

SystemC interconnect channels are declared as sc_link_mp<> data types. These can be thought of as
abstract signals that interconnect abstract ports. The parametrized data type associated with each
sc_link_mp<> denotes the data type of the message that the channel is capable of transferring from an
output abstract port to an input abstract port. Notice that the todaysDate channel is declared with a “by
value” data type (i.e., Routed::Date) whereas some of the other channels such as the announceArrival
are declared as “by reference” data types (i.e., const Routed::ArrivalRecord *). The former is less
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 31 of 94

User’s Guide and Tutorial

32
efficient but safer because the message is passed by value and therefore there is no danger of the
receiver corrupting the sender’s data or worse, having the sender’s data go out of scope leaving the
receiver with a possibly dangling reference. However, passing messages by reference is more efficient
but care must be taken in their use. Declaring them as const pointers helps alleviate some, but not all of
the safety problems.

Module pointers are declared inside the SC_MODULE(System) object and constructed in its SystemC
constructor (SC_CTOR(System)). After each child module is constructed, its abstract ports are mapped
to one of the declared interconnect channels.

It is important to stress that SystemC channels, while conceptually the same, are distinctly different
from SCE-MI message channels. Both types of channels pass messages, but SystemC channels are
designed strictly to pass messages of arbitrary C++ data types between SystemC modules. An entire
simulation can be built of just software models communicating with each other. See reference [1] for
more details about SystemC interconnect channels.

SCE-MI message channels have a completely different interface and are optimized for implementing
abstraction bridges between a software subsystem and a hardware subsystem. In the use model
presented in this example, their interfaces are encapsulated by SystemC models.

The thick round arrows in Figure 10 represent the SystemC autonomous threads contained in the
Testbench and SceMiDispatcher modules. These two threads are the only autonomous threads in the
system. All the other code is executed inside slave threads.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
3.2.4.2 The sc_main() Routine and Error Handler
The following listing shows the sc_main() routine which is the top level entrypoint to the program. The
sc_main() is required when linking to a SystemC kernel facility, but it is very much like a conventional
main() C or C++ entrypoint and has the same program argument passing semantics.

static void errorHandler(void */*context*/, SceMiEC *ec) {
 char buf[32];

 sprintf(buf, “%d”, (int)ec->Type);
 string messageText(“SCE-MI Error[“);
 messageText += buf;
 messageText += “]: Function: “;
 messageText += ec->Culprit;
 messageText += “\n”;
 messageText += ec->Message;
 throw messageText;
}

int sc_main(int argc, char *argv[]){
 SceMi::RegisterErrorHandler(errorHandler, NULL);
 SceMi *scemi = NULL;

 try {
 SceMiParameters parameters(“./params.scemi”);
 scemi = SceMi::Init(1, ¶meters);

 System system(“system”); // Instantiate the system.

 //---
 // Establish proper bindings between the SCE-MI and the modules
 // that directly interact with it.
 system.dispatcher->Bind(scemi);
 system.calendar ->Bind(scemi);
 system.scheduler ->Bind(scemi);

 //---
 // Kick off SystemC kernel ...
 cerr << “Let ‘er rip !” << endl;
 sc_start(-1);
 }

 catch(string message) {
 cerr << message << endl;
 cerr << “Fatal Error: Program aborting.” << endl;
 SceMi::ShutDown(scemi);
 return -1;
 }
 catch(...) {
 cerr << “Error: Unclassified exception.” << endl;
 cerr << “Fatal Error: Program aborting.” << endl;
 SceMi::ShutDown(scemi);
 return -1;
 }
 return 0;
}

The first routine defined is the errorHandler(). This is the master error handling function that is
registered with the SCE-MI. Whenever an error occurs, this function is called to format the message
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 33 of 94

User’s Guide and Tutorial

34
before throwing a C++ exception. The exceptions are caught in the catch { ... } blocks at the end of
the sc_main() routine where they are displayed before exiting the program.

Once the error handler is registered, the SCE-MI is initialized by calling SceMi::Init(). This method
returns a pointer to an SceMi object that manages the whole SCE-MI software side infrastructure.

Next the System model described in the previous section is constructed. The constructor
(SC_CTOR(System)) causes all of its child software models to get constructed by calling, in turn, their
SC_CTOR() constructors.

Once the whole system is statically constructed, models that interface with SCE-MI are given the
master SceMi object pointer so that they can access its methods, by calling special ::Bind() accessor
methods on those models.

Finally, the SystemC main kernel loop is initialized by calling the sc_start() function. The -1
parameter tells it to go indefinitely until the program decides to end. How the program ends is explained
in the next section.

3.2.4.3 The SceMiDispatcher Module: Interfacing with the SCE-MI Service Loop
The SceMiDispatcher module contains an autonomous thread that yields to the SCE-MI infrastructure
so that it may service its message port proxies, by making repeated calls to the SceMi::ServiceLoop()
method (see section 4.3.3.6 on page 68). By placing this logic on its own dedicated thread, other models
in the system do not have to worry about yielding to the SCE-MI.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
Following is the source code for the SceMiDispatcher:

SC_MODULE(SceMiDispatcher){
 sc_slave<> Done;

 private:
 //---
 // Context declarations
 SceMi *dSceMi;

 //---
 // Thread declarations
 void dispatchThread(); // Autonomous SceMi dispatcher thread
 void doneThread(){
 SceMi::ShutDown(dSceMi);
 exit(0); // This is a normal exit.
 }
 public:
 //---
 // Accessors
 void Bind(SceMi *scemi){ dSceMi = scemi; };

 SC_CTOR(SceMiDispatcher){
 //--------------------------------------
 // Thread bindings
 SC_THREAD(dispatchThread);
 sensitive << UTick;

 SC_SLAVE(doneThread, Done);
 }
};
void SceMiDispatcher::dispatchThread() {
 // This is all the dispatcher does
 // It just calls the SceMi dispatcher poll function and returns.
 for(;;){
 wait();
 dSceMi->ServiceLoop();
 }
}

Between each call to the service loop, the autonomous thread yields to other threads in the system by
calling the wait() function. Actually, the only other autonomous thread in the Routed system is the one
in the Testbench model. Both of these threads are represented by the thick round arrows in Figure 10 on
page 30.

The other job of the SceMiDispatcher is shut down the system when it detects a notification on its Done
port that the simulation is complete. The Done inslave port is bound to the slave thread,
::doneThread() on construction. The Done port is driven from its associated outmaster port on the
Testbench module, so it is the Testbench that ultimately decides when the simulation is complete (see
next section).
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 35 of 94

User’s Guide and Tutorial

36
3.2.4.4 Application Specific Data Types for the Routed System
The following data types are defined in the Routed.hxx header file. They will be referenced throughout
the subsequent discussion. They are data types that are specific to this application.

class Routed {
 public:
 typedef enum Parameters {
 NumPassengers = 4,
 NumLocations = 12,
 MessageSize = 15
 };
 typedef enum PassengerIDs {
 Nobody,
 BugsBunny,
 DaffyDuck,
 ElmerFudd,
 SylvesterTheCat
 };
 typedef enum LocationIDs {
 // Location Origin Destination Hub
 // -------- ------ ----------- ---
 Unspecified,
 Anchorage, // 1: X X
 Chicago, // 2: X
 Cupertino, // 3: X X
 Dallas, // 4: X
 Maui, // 5: X
 Newark, // 6: X
 Noida, // 7: X
 SanFran, // 8: X
 SealBeach, // 9: X X
 Seattle, // 10: X
 UK, // 11: X X
 Waltham // 12: X
 };
 typedef struct Itinerary {
 unsigned DateOfTravel;
 unsigned TimeOfDeparture;
 PassengerIDs PassengerID;
 LocationIDs OriginID;
 LocationIDs DestinationID;
 };
 typedef struct ArrivalRecord {
 PassengerIDs PassengerID;
 unsigned DateOfArrival;
 unsigned TimeOfArrival;
 unsigned LayoverCount;
 LocationIDs OriginID;
 LocationIDs LayoverIDs[4];
 LocationIDs DestinationID;
 };
 typedef struct Route {
 LocationIDs RouterID;
 LocationIDs DestinationID;
 unsigned PortID;
 };
 typedef struct Date {
 SceMiU64 CycleStamp;
 unsigned Day;
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
 };
};

3.2.4.5 The Testbench Model: Main Control Loop
The Testbench model contains a SystemC autonomous thread that serves as the main driver for the
Routed design. Its job is to look at the four passenger itineraries and schedule the legs in those
itineraries on the appropriate dates and at the appropriate departure times by interacting with the
Scheduler model.

The condensed source code for the passenger itinerary declarations for the Testbench model is as
follows:

const Routed::Itinerary Routed::BugsesTrip[] = {
/*
On day, at, departs from, enroute to, */
{ 2, 8, BugsBunny, Anchorage, Cupertino },
...
{ 20, 10, BugsBunny, SealBeach, Maui },
{ 0, 0, BugsBunny, Unspecified, Unspecified } };

const Routed::Itinerary Routed::DaffysTrip[] = {
/*
On day, at, departs from, enroute to, */
{ 1, 8, DaffyDuck, Waltham, Cupertino },
{ 4, 2, DaffyDuck, Cupertino, SealBeach },
...
{ 22, 7, DaffyDuck, Cupertino, Maui },
{ 0, 0, DaffyDuck, Unspecified, Unspecified } };

const Routed::Itinerary Routed::ElmersTrip[] = {
/*
On day, at, departs from, enroute to, */
{ 3, 5, ElmerFudd, SealBeach, Anchorage },
...
{ 23, 3, ElmerFudd, Cupertino, Maui },
{ 0, 0, ElmerFudd, Unspecified, Unspecified } };

const Routed::Itinerary Routed::SylvestersTrip[] = {
/*
On day, at, departs from, enroute to, */
{ 1, 1, SylvesterTheCat, Noida, SealBeach },
{ 4, 2, SylvesterTheCat, SealBeach, Cupertino },
...
{ 20, 7, SylvesterTheCat, Anchorage, Maui },
{ 0, 0, SylvesterTheCat, Unspecified, Unspecified } };

static const char *passengerNames[] = {
 “Nobody “, “BugsBunny “, “DaffyDuck “,
 “ElmerFudd “, “SylvesterTheCat” };

static const char *locationNames[] = {
 “Unspecified”, “Anchorage”, “Chicago “,
 “Cupertino”, “Dallas “, “Maui “,
 “Newark “, “Noida “, “SanFran “,
 “SealBeach”, “Seattle “, “UK “, “Waltham “ };
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 37 of 94

User’s Guide and Tutorial

38
There are four passengers whose itineraries are given as lists of Routed::Itinerary records. Each
record represents a leg of that passenger’s journey consisting of a date of departure, time of departure,
passenger, origin, and destination. The passengerNames and locationNames are strings use for printing
of messages.

Following is the SystemC module definition (SC_MODULE()) for the Testbench model with its standard
SystemC constructor (SC_CTOR()):

SC_MODULE(Testbench){
 //---
 // Abstract port declarations
 sc_master<> LoadRouteMap;
 sc_master<> Done;
 sc_outmaster<unsigned> AdvanceCalendar;
 sc_inslave<unsigned> NewDay;

 sc_outmaster<const Routed::Itinerary *> ScheduleLeg;
 sc_inslave<const Routed::ArrivalRecord *> AnnounceArrival;

 private:
 //---
 // Context declarations
 unsigned dNumMauiArrivals;
 unsigned dDayNum;
 const Routed::Itinerary *dItineraries[Routed::NumPassengers];

 //---
 // Thread declarations
 void driverThread(); // Autonomous “master” thread.
 void newDayThread() { dDayNum = NewDay; }
 void announceArrivalThread();

 //---
 // Helper declarations
 public:
 SC_CTOR(Testbench) : dNumMauiArrivals(0), dDayNum(0) {
 //--------------------------------------
 // Thread bindings

 // This autonomous thread forms the main body of the Routed driver.
 SC_THREAD(driverThread);
 sensitive << UTick;

 SC_SLAVE(newDayThread, NewDay);
 SC_SLAVE(announceArrivalThread, AnnounceArrival);

 // Initialize itinerary pointers.
 dItineraries[0] = Routed::BugsesTrip;
 dItineraries[1] = Routed::DaffysTrip;
 dItineraries[2] = Routed::ElmersTrip;
 dItineraries[3] = Routed::SylvestersTrip;
 }
};
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
Following is the autonomous thread for the main driver loop:

void Testbench::driverThread(){
 LoadRouteMap(); // Signal RouteConfig model to begin configuration RouteMap.
 unsigned dayNum = dDayNum;
 AdvanceCalendar = 1; // Advance to day 1.

 for(;;){
 wait(); // Wait for day to advance (i.e., ‘NewDay’ arrives.)

 if(dayNum != dDayNum){
 unsigned date, minDate = 1000;

 // Check itineraries to see if any passengers are
 // traveling today. If so, advance calendar to tomorrow
 // in case next leg of itinerary is tomorrow.
 for(int i=0; i<Routed::NumPassengers; i++){
 if((date=dItineraries[i]->DateOfTravel)){
 if(date == dDayNum){
 cout << “On day “ << setw(2) << dDayNum << “ at “
 << setw(2) << dItineraries[i]->TimeOfDeparture
 << “:00 hrs, “
 << passengerNames[dItineraries[i]->PassengerID]
 << “ departs “
 << locationNames[dItineraries[i]->OriginID]
 << “ enroute to “
 << locationNames[dItineraries[i]->DestinationID]
 << endl;

 ScheduleLeg = dItineraries[i]++;
 minDate = dDayNum+1;
 }
 else if(date < minDate)
 minDate = date;
 }
 }
 dayNum = dDayNum;
 AdvanceCalendar = minDate - dDayNum;
 }
 }
}

Before entering its main loop, the autonomous ::driverThread() does two things. First, by signaling
the LoadRouteMap outmaster port, it triggers the RouteConfig model to teach all the routes to the
RouteTables of all the Hubs in the RouteMap. Each taught route that is injected to the hardware is
staggered by one clock. These small one clock advances are achieved when the RouteConfig model
signals the AdvanceClock port on the Calendar model. Passenger travel in the RouteMap is not possible
until all the Hubs have been properly programmed with their routes.

Once all the routes have been taught to the RouteMap, the Calendar is advanced to day one. This will, in
turn, cause the Calendar model to announce the arrival of day one via the NewDay inslave port. Once the
day change has been detected, the ::driverThread() then enters into a loop where it schedules any
travel on the itineraries scheduled for the current day. If no travel is scheduled, it advances the Calendar
to the first day on which travel is scheduled to occur. Legs of each itinerary are scheduled by sending
the Itinerary record over the ScheduleLeg outmaster port to the Scheduler model which encodes it
into a token and sends it to the hardware.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 39 of 94

User’s Guide and Tutorial

40
This operation continues for each leg of each itinerary until all passengers have traveled all legs of their
trip and have finally arrived at the Maui Destination. This serves as the termination condition that is
conveyed to the SceMiDispatcher model by signaling the Done outmaster port (see code for
::announceArrivalThread() below). Upon receiving this notification, the SceMiDispatcher model
gracefully shuts down the SCE-MI and exits the program with a normal exit status.

The Testbench model also announces arrivals of passengers at their destinations as they occur. The
::announceArrivalThread() slave thread detects an arrival by receiving an ArrivalRecord on its
AnnounceArrival inslave port (which was sent from the message output port proxy receive callback in
the Scheduler). It prints out the arrival information to the console. Following is the source code:

void Testbench::announceArrivalThread(){
 const Routed::ArrivalRecord *arrivalRecord = AnnounceArrival;

 cout << “On day “ << setw(2) << arrivalRecord->DateOfArrival
 << “ at “ << setw(2) << arrivalRecord->TimeOfArrival << “:00 hrs,\n”
 << “ “ << passengerNames[arrivalRecord->PassengerID]
 << “ arrives in “ << locationNames[arrivalRecord->DestinationID]
 << “ from “ << locationNames[arrivalRecord->OriginID]
 << “ after layovers in,”;

 for(unsigned i=0; i<arrivalRecord->LayoverCount; i++)
 cout << “\n “
 << locationNames[arrivalRecord->LayoverIDs[i]];
 cout << endl;
 // Check for termination condition.
 if(arrivalRecord->DestinationID == Routed::Maui &&
 ++dNumMauiArrivals == Routed::NumPassengers){
 cout << “Everyone has arrived in Maui. We’re done. Let’s party !”
 << endl;
 Done(); // Signal the dispatcher that the simulation has ended.
 }
}

 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
3.2.4.6 The Scheduler Module: Interfacing with Message Port Proxies
Following is the SystemC module definition and constructor for the Scheduler model:

SC_MODULE(Scheduler){
 //---
 // Abstract port declarations
 sc_inmaster<Routed::Date> TodaysDate;
 sc_inslave<const Routed::Itinerary *> ScheduleLeg;
 sc_inslave<const Routed::Route *> LoadRoute;
 sc_outmaster<const Routed::ArrivalRecord *> AnnounceArrival;

 private:
 //---
 // Context declarations
 SceMiMessageData dSendData;
 SceMiMessageInPortProxy *dOriginAnchorage;
 SceMiMessageInPortProxy *dOriginCupertino;
 SceMiMessageInPortProxy *dOriginNoida;
 SceMiMessageInPortProxy *dOriginSealBeach;
 SceMiMessageInPortProxy *dOriginUK;
 SceMiMessageInPortProxy *dOriginWaltham;

 SceMiMessageOutPortProxy *dDestinationAnchorage;
 SceMiMessageOutPortProxy *dDestinationCupertino;
 SceMiMessageOutPortProxy *dDestinationMaui;
 SceMiMessageOutPortProxy *dDestinationSealBeach;
 SceMiMessageOutPortProxy *dDestinationUK;

 Routed::ArrivalRecord dArrivalRecord;

 //---
 // Thread declarations
 void scheduleLegThread();
 void loadRouteThread();

 //---
 // Helper declarations
 static void replyCallback(void *context, const SceMiMessageData *data);
 void announceArrival(SceMiU64 cycleStamp, SceMiU32 arrivalToken);

 public:
 void Bind(SceMi *scemi);

 SC_CTOR(Scheduler)
 : dSendData(Routed::MessageSize),
 dOriginAnchorage(NULL),
 dOriginCupertino(NULL),
 dOriginNoida(NULL),
 dOriginSealBeach(NULL),
 dOriginUK(NULL),
 dOriginWaltham(NULL),
 dDestinationAnchorage(NULL),
 dDestinationCupertino(NULL),
 dDestinationMaui(NULL),
 dDestinationSealBeach(NULL),
 dDestinationUK(NULL)
 {
 SC_SLAVE(scheduleLegThread, ScheduleLeg);
 SC_SLAVE(loadRouteThread, LoadRoute);
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 41 of 94

User’s Guide and Tutorial

42
 }
};

There are two slave threads defined in this model: the ::scheduleLegThread() and the
::loadRouteThread(). The ::loadRouteThread(), though not described in detail here, is responsible
for sending TeachRoute tokens into the RouteMap mesh via the Waltham Origin transactor when the
RouteMap is first being configured at the beginning of the simulation. This thread is activated each time
the RouteConfig module wants to teach a new route during its LoadRouteMap operation.

The ::scheduleLegThread() is activated when the Scheduler receives Routed::Itinerary messages
on its ScheduleLeg inslave port from the Testbench model. It sends those legs encoded as departure
tokens across the message input channels to their designated Origin transactors. The Scheduler has
pointers to each of the message input port proxies that are connected to Origin transactors. Each
departure token is encoded with the passenger ID and destination ID from the Routed::Itinerary
record. Following is the source code for the ::scheduleLegThread():

void Scheduler::scheduleLegThread(){
 const Routed::Itinerary *leg = ScheduleLeg;

 // Form a ‘Passenger Departure’ token based on the contents of the given
 // ‘Itinerary’ record.
 SceMiU32 passengerDepartureToken =
 leg->PassengerID |
 (leg->DestinationID << 4) |
 (leg->OriginID << 12) |
 (leg->TimeOfDeparture << 16);

 dSendData.Set(0, passengerDepartureToken);

 switch(leg->OriginID){
 case Routed::Anchorage: dOriginAnchorage->Send(dSendData); break;
 case Routed::Cupertino: dOriginCupertino->Send(dSendData); break;
 case Routed::Noida: dOriginNoida ->Send(dSendData); break;
 case Routed::SealBeach: dOriginSealBeach->Send(dSendData); break;
 case Routed::UK: dOriginUK ->Send(dSendData); break;
 case Routed::Waltham: dOriginWaltham ->Send(dSendData); break;
 default:
 assert(0);
 }
}

The Scheduler::Bind() method is called prior to simulation from the sc_main() routine (see section
Figure 3.2.4.2 on page 33). Here is where the SCE-MI message input and output port proxies leading to
each of the Origin and Destination transactors are bound. Notice that for each of the output port
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
proxies, the output receive callback, replyCallback(), is specified in the binding structure. See section
4.3.3.5 on page 67 for more information about message output port binding.

void Scheduler::Bind(SceMi *scemi){

 // Establish message input portals.
 dOriginAnchorage = scemi->BindMessageInPort(“anchorage”, “TokenIn”);
 dOriginCupertino = scemi->BindMessageInPort(“cupertino”, “TokenIn”);
 dOriginNoida = scemi->BindMessageInPort(“noida”, “TokenIn”);
 dOriginSealBeach = scemi->BindMessageInPort(“sealBeach”, “TokenIn”);
 dOriginUK = scemi->BindMessageInPort(“uk”, “TokenIn”);
 dOriginWaltham = scemi->BindMessageInPort(“waltham”, “TokenIn”);

 // Establish message output portals.
 SceMiMessageOutPortBinding binding = { this, replyCallback, NULL };
 dDestinationAnchorage = scemi->BindMessageOutPort(
 “anchorage”, “TokenOut”, &binding);
 dDestinationCupertino = scemi->BindMessageOutPort(
 “cupertino”, “TokenOut”, &binding);
 dDestinationMaui = scemi->BindMessageOutPort(
 “maui”, “TokenOut”, &binding);
 dDestinationSealBeach = scemi->BindMessageOutPort(
 “sealBeach”, “TokenOut”, &binding);
 dDestinationUK = scemi->BindMessageOutPort(
 “uk”, “TokenOut”, &binding);
}

The Scheduler is also responsible for processing of arrivals. Once the Calendar is advanced, arrivals
can occur at any time over the course of 24 hours (i.e., 24 clocks). Each arrival token is sent by a
Destination transactor, over a message output port to the Scheduler. The SCE-MI infrastructure
dispatches the arriving messages to the replyCallback() function that was registered in the ::Bind()
method described above. The replyCallback() function, in turn, passes the message to the private
::announceArrival() method described below. Following is the code for the replyCallback()
function:

void Scheduler::replyCallback(void *context, const SceMiMessageData *data){
 ((Scheduler *)context)->announceArrival(data->CycleStamp(), data->Get(0)); }

The ::announceArrival() method processes the arrival token. It converts the encoded arrival token to
the Routed::ArrivalRecord data type, stamps it with TodaysDate (an output from the Calendar), and
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 43 of 94

User’s Guide and Tutorial

44
sends it out through the AnnounceArrival outmaster port to the Testbench model which displays the
arrival information to the console as follows:

void Scheduler::announceArrival(SceMiU64 cycleStamp, SceMiU32 arrivalToken){
 Routed::Date todaysDate = TodaysDate; // Read today’s date from Calendar

 dArrivalRecord.DateOfArrival = todaysDate.Day;
 dArrivalRecord.TimeOfArrival = cycleStamp - todaysDate.CycleStamp;
 dArrivalRecord.PassengerID = (Routed::PassengerIDs)
 (arrivalToken & 0xf);
 dArrivalRecord.DestinationID = (Routed::LocationIDs)
 ((arrivalToken >> 4) & 0xf);
 dArrivalRecord.OriginID = (Routed::LocationIDs)
 ((arrivalToken >> 12) & 0xf);
 dArrivalRecord.LayoverCount = (arrivalToken >> 8) & 0xf ;
 assert(dArrivalRecord.LayoverCount < 5);
 arrivalToken >>= 16;
 for(unsigned i=0; i<dArrivalRecord.LayoverCount; i++){
 dArrivalRecord.LayoverIDs[i] = (Routed::LocationIDs)
 (arrivalToken & 0xf);
 arrivalToken >>= 4;
 }
 AnnounceArrival = &dArrivalRecord; // Arrival record is passed by reference.
}

3.2.4.7 The Calendar Module: Interfacing with the Clock Advancer
The Calendar model is responsible for advancing time on the RouteMap one or more days at a time.
Once a set of scheduled departures has been programmed in each Origin transactor that has departures
scheduled for a particular day, the Calendar allows the DUT to advance by 24 clocks (24 hours) or
some multiple of 24 clocks if the next scheduled departure occurs more than one day from now. The
Calendar advances time by sending a message to the ClockAdvancer transactor in the hardware which
has direct control of the DUT clock via the ClockControl macro. The source code for the Calendar
module is very similar in structure to that for the Scheduler; therefore, most of it is not shown here.

The Calendar model has two slave threads that respond to requests to advance time. The
::advanceCalendarThread() responds to requests on the AdvanceCalendar port to advance a given
number of days.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

User’s Guide and Tutorial
The ::advanceClockThread() responds to requests to advance one clock at a time which occurs during
RouteMap configuration to stagger the injection of each TeachRoute token by one clock. This method is
as follows:

void Calendar::advanceClockThread(){
 dSendData.Set(0, 1); // Tell ClockAdvancer to advance by 1 clock.
 dInputPort->Send(dSendData); // Send message out on port proxy.

 // Pend until the cycle stamp gets updated by the output port proxy reply callback.
 SceMiU64 currentCycleStamp = dCycleStamp;
 while(dCycleStamp == currentCycleStamp)
 wait();
}

Notice that this method enters a loop that calls wait() to yield to the SystemC kernel. The reason for
this is that it wants to guarantee that the clock has completed its advance before returning. By yielding
to the SystemC kernel while it is waiting for this condition, the autonomous SceMiDispatcher thread
(see section 3.2.4.3 on page 34) is naturally given a chance to service the message output ports. This is
necessary to reach the condition that the ::advanceClockThread() is waiting for, namely, for the
Calendar::dCycleStamp data member to change value.

The ::dCycleStamp changes value when the ClockAdvancer (on the hardware side) responds on its
output port that it has completed its one clock time advance which, in turn, causes the
Calendar::replyCallback() function to get called from the SceMi::ServiceLoop(). The
replyCallback() function is as follows:

void Calendar::replyCallback(void *context, const SceMiMessageData *data){
 ((Calendar *)context)->dCycleStamp = data->CycleStamp(); }

The cycle stamp is updated directly from the ::CycleStamp() method on the SceMiMessageData object.
This reflects a count of elapsed controlled clock counts that had occurred from the beginning of the
simulation to the time this message was sent from the hardware side. This is a convenient way for
software to keep track of elapsed clock time in the hardware. Once the ::dCycleStamp is updated, the
wait() loop in the ::advanceClockThread() described above, is released and the function can return.

Keep in mind the ::advanceClockThread() and replyCallback() functions are being called under two
different autonomous threads that each frequently yield to each other. The former is called from the
autonomous Testbench::driverThread() and the latter is called ultimately from the
SceMi::ServiceLoop() function that is called from underneath the autonomous
SceMiDispatcher::dispatchThread(). This illustrates the clean interaction between a general multi-
threaded application software environment and the SCE-MI service loop.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 45 of 94

Formal Functional Specification

46

7

4.0 Formal Functional Specification

4.1 Hardware Side Interface Macros

4.1.1 Dual Ready Protocol
The message port macros on the hardware side use a general PCI-like dual ready protocol. Before going
into detail about how these macros work, the dual ready handshake protocol that they use is explained in
this section. The waveforms in Figure 11 depict several dual ready handshake scenarios.

FIGURE 11. Dual Ready Handshake Protocol

Briefly, the dual ready handshake works as follows. The transmitter asserts TransmitReady on any
clock cycle when it has data, and de-asserts when it does not. The receiver asserts ReceiveReady on any
cycle when it is ready for data, and de-asserts when it is not. In any clock cycle in which TransmitReady
and ReceiveReady are both asserted, data “moves” meaning that it is taken by the receiver.

The dual ready protocol has the following two advantages:

• Signals are level-based; therefore, they are easily sampled by posedge clocked logic
• However, if both TransmitReady and ReceiveReady stay asserted, sequences of data can still move

every clock cycle and therefore, the same performance can be realized as, for example, a toggle
based protocol.

uclock

TransmitReady

ReceiveReady

ureset

d6 arrives and moves

receiver ready and d5 moves
d5 arrives

 receiver ready for d1 1st
clock after reset

d1 arrives and moves

receiver ready for d2

receiver ready and d3 arrives and moves
 d4 arrives

d2 arrives and moves

receiver ready for d6

receiver ready for d

d1 d2 d3 d5 d6Message

receiver ready and d4 moves

d4
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
4.1.2 SceMiMessageInPort Macro
The SceMiMessageInPort macro presents messages arriving from the software side of a channel to the
transactor. The macro consists of two handshake signals that play a dual-ready protocol and a data bus
that presents the message itself. Figure 12 shows the symbol for the SceMiMessageInPort macro as well
as Verilog and VHDL source code for the empty macro wrappers.

FIGURE 12. SceMiMessageInPort Macro

4.1.2.1 Parameters and Signals
PortWidth

The message width in bits is derived from the setting of this parameter.

PortName

The port’s name is derived from its instance label.

ReceiveReady

A value of one on this signal indicates that the transactor is ready to accept data from the software. By
asserting this signal, the hardware indicates to the software that it has a location into which it can put
any data that might arrive on the message input port. When a new message arrives, as indicated by the
TransmitReady and ReceiveReady both being true, that location is consumed (see Figure 11 on
page 46). When this happens, a notification is sent to the software side that a new empty location is
available and this triggers an input ready callback to occur on the software side (see section 4.1.2.2 on
page 48). The next section explains in detail when input ready propagation notifications are done with
respect to the timing of the TransmitReady and ReceiveReady handshakes.

Note that it is possible for transactors not to utilize ReceiveReady and the input ready callback. If this is
the case, the ReceiveReady input must be permanently asserted (i.e., “tied high”) and, on the software
side, no input ready callback is registered. In this case, TransmitReady merely acts as a strobe for each

TransmitReady
ReceiveReady

Message []

SceMiMessageInPort
#<PortWidth> <PortName>

Verilog Macro Wrapper:

module SceMiMessageInPort(
 //inputs outputs
 ReceiveReady, TransmitReady,
 Message);
 //------------------------ ------------------------------
 parameter PortWidth = 1;
 input ReceiveReady; output TransmitReady;
 output [PortWidth-1:0] Message;
endmodule

VHDL Macro Wrapper:

entity SceMiMessageInPort is
 generic(PortWidth: natural);
 port(
 ReceiveReady: in std_logic; TransmitReady: out std_logic;
 Message: out std_logic_vector(PortWidth-1 downto 0));
end;

architecture EmptyMacro of SceMiMessageInPort is begin end;
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 47 of 94

Formal Functional Specification

48
arriving message. The transactor must be designed to take any arriving data immediately as it is not
guaranteed to be held for subsequent uclock cycles.

TransmitReady

A value of one on this signal sampled on any posedge of the uclock indicates that the channel has
message data ready for the transactor to take. If ReceiveReady is not asserted, the TransmitReady
remains asserted until and during the first clock in which ReceiveReady finally becomes asserted.
During this clock data moves and, if no more messages have arrived from the software side, the
TransmitReady is de-asserted.

Message

This vector signal constitutes the payload data of the message.

4.1.2.2 Input Ready Propagation
If the software client code registers an input ready callback when it first binds to a message input port
proxy (see section 4.3.3.4 on page 66), the hardware side of the infrastructure must notify the software
side each time it is ready for more input. Each time it is so notified, the port proxy on the software side
makes a call to the user registered input ready callback. This mechanism is called input ready
propagation. The prototype for the input ready callback is as follows:

void (*IsReady)(void *context);

When this function is called, a software model can assume that a message can be sent to the message
input port proxy for transmission to the message input port on the hardware side. The context argument
can be a pointer to any user-defined object, presumably the software model that has bound the proxy.

An important point to note is that it is totally up to the application to follow the protocol that if, the
transactor is not ready to receive input, the software model should not do a send. A well behaved
software model should know not to do a send if it has not received an input ready callback (assuming
the input ready propagation mechanism is being deployed).

The SCE-MI infrastructure will not enforce this. So, the idea is that, when the transactor wants to say,
"I'm ready for input", it will assert the ReceiveReady input to the SceMiMessageInPort which will
cause an input ready callback to be called on the software side, the next time ::ServiceLoop() is
entered. The software model should then typically either set a flag that can be consulted later on outside
::ServiceLoop(), indicating that the transactor is ready for input, or, in some cases, it may choose to
do a send right then and there (i.e. inside the callback). The point is that a send should not be done by
the software model until some time (either immediately or deferred) after the input ready callback has
been received.

A second point to be made is that it should be fine for an application to service as many output callbacks
as is desired while pending an input callback. In other words, the software model may have an outer
loop that checks the status of an application defined OKToSend flag on each iteration and skips the send
if the flag is false.

So suppose an application has an outer loop that repeatedly calls ::ServiceLoop() and checks for
arriving output messages and input ready notifications. Each callback function sets a flag in the context
that the outer loop uses to know if an output message has arrived and needs processing, or an input port
needs more input.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
It is possible that, before an input ready callback gets called, that outer loop may have called
::ServiceLoop() say 50 times each time resulting in an output message callback and the subsequent
processing of that output message.

Finally, on the 51'st time ::ServiceLoop() is called, the input ready callback is called which sets the
OKToSend flag in its context, after which the outer loop would detect the new flag status and initiate a
send on that input channel.

The handshake waveforms in Figure 11 on page 46 are intended purely to illustrate the semantics of the
dual ready protocol. There can be a couple of reasons why these waveforms might not be realistic in an
actual implementation of a SceMiMessageInPort macro. First, if input ready propagation is enabled
(because an optional callback was registered on the software side), the sender on the software side
might expect input ready notifications before transmitting messages so that two back-to-back messages,
and hence TransmitReady assertions on consecutive clocks might be impossible. Second, even if input
ready callbacks were not registered on a given port, the timing of the physical layer of the SCE-MI
bridge might be such that two successive transmissions are not possible unless the software end
somehow batched consecutive message transmissions to the hardware.

All of this said however, the hardware in the transactor should be designed so as to anticipate any of the
above scenarios whether or not they are likely to happen.

The waveforms shown in Figure 13 are typical of what one might see with input ready callbacks
enabled. It shows four possible scenarios in which an input ready notification occurs.

FIGURE 13. SceMiMessageInPort Handshake Waveforms With Input Ready Propagation

“input ready” for
d3 propagates

uclock

TransmitReady

ReceiveReady

ureset

“input ready” for d4 propagates

d3 arrives and moves

 1st “input ready” for d1
propagates after reset

d1 arrives and moves

“input ready” for d2 propagates
d2 arrives and moves

d1 d2 d3Message
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 49 of 94

Formal Functional Specification

50
In the depicted scenarios, an input ready notification is propagated to the software if,

• ReceiveReady from transactor is asserted in the first clock following a reset or,
• ReceiveReady from transactor transitions from a 0 to a 1 or,
• ReceiveReady from transactor remains asserted in a clock following one in which a transfer

occurred due to a assertions on both TransmitReady and ReceiveReady.

4.1.3 SceMiMessageOutPort Macro
The SceMiMessageOutPort macro allows transactors to send messages to the software side. Like the
SceMiMessageInPort macro, it also uses a dual ready handshake except that in this case, the transmitter
is the transactor and the receiver is the SCE-MI interface. A transactor can have any number of
SceMiMessageOutPort macro instances. Figure 14 shows the symbol for the SceMiMessageOutPort
macro as well as Verilog and VHDL source code for the empty macro wrappers.

FIGURE 14. SceMiMessageOutPort Macro

4.1.3.1 Parameters and Signals
PortWidth

The message width in bits is derived from the setting of this parameter.

PortPriority

The priority for determining which output messages are sent to the output channel first, should more
than one arrive on the same uclock. See section 4.2.1 on page 59 for details on the meaning of this
parameter.

PortName

The port’s name is derived from its instance label.

TransmitReady
ReceiveReady

Message []

SceMiMessageOutPort
#(<PortWidth>,<PortPriority>) <PortName>

Verilog Macro Wrapper:

module SceMiMessageOutPort(
 //inputs outputs
 TransmitReady, ReceiveReady,
 Message);
 //------------------------ ------------------------------
 parameter PortWidth = 1;
 parameter PortPriority = 10;
 input TransmitReady; output ReceiveReady;
 input [PortWidth-1:0] Message;
endmodule

VHDL Macro Wrapper:

entity SceMiMessageOutPort is
 generic(PortWidth: natural; PortPriority: natural := 10);
 port(
 TransmitReady: in std_logic; ReceiveReady: out std_logic;
 Message: in std_logic_vector(PortWidth-1 downto 0));
end;

architecture EmptyMacro of SceMiMessageOutPort is begin end;
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
TransmitReady

A value of one on this signal indicates that the transactor has message data ready for the output channel
to take. If ReceiveReady is not asserted, the TransmitReady must remain asserted until and during the
first clock in which ReceiveReady finally becomes asserted. During this clock data moves and, if the
transactor has no more messages for transmission, it de-asserts the TransmitReady.

ReceiveReady

A value of one on this signal sampled on any uclock posedge indicates that the output channel is ready
to accept data from the transactor. By asserting this signal, the SCE-MI hardware side indicates to the
transactor that the output channel has a location into which it can put any data that is destined for the
software side of the channel. In any cycle during which both the TransmitReady and ReceiveReady are
asserted, the transactor can assume that the data moved. If, in the subsequent cycle, the ReceiveReady
remains asserted, that means that a new empty location is available which the transactor can load any
time by asserting TransmitReady again. Meanwhile, the last message data, upon arrival to the software
side, triggers a receive callback on its message output port proxy (see section 4.3.7.1 on page 77).

Message

This vector signal constitutes the payload data of the message originating from the transactor, to be sent
to the software side of the channel.

4.1.4 SceMiClockPort Macro
The SceMiClockPort macro supplies a controlled clock to the DUT. The SceMiClockPort macro is
parametrized such that each instance of a SceMiClockPort fully specifies a controlled clock of a given
frequency, phase shift, and duty cycle.

The SceMiClockPort macro also supplies a controlled reset whose duration is the specified number of
cycles of the cclock.

Figure 15 shows the symbol for the SceMiClockPort macro as well as Verilog and VHDL source code
for the empty macro wrappers.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 51 of 94

Formal Functional Specification

52
FIGURE 15. SceMiClockPort Macro

Note that all of the clock parameters have default values. In simpler systems where only one controlled
clock is needed, exactly one instance of a SceMiClockPort can be instantiated at the top level with no
parameters specified. This results in a single controlled clock with a ratio of 1/1, a don’t care duty cycle
(see discussion of duty cycle in section 4.1.4.3 on page 54), and a phase shift of 0. Ideally, this clock’s
frequency matches that of the uclock during cycles in which it is enabled.

The SCE-MI infrastructure always implicitly creates a controlled clock with a 1/1 ratio which is the
highest frequency controlled clock in the system. Whether or not it is visible to the user’s design
depends on whether a SceMiClockPort with a 1/1 ratio is explicitly declared (instantiated).

In more complex systems that require multiple clocks, a SceMiClockPort instance must be created for
each required clock. The clock ratio that is specified in the instantiation parameters always specifies the
frequency of the clock as a ratio relative to the highest frequency controlled clock in the system (whose
ratio is 1/1 whether explicitly or implicitly defined).

For example if a cclock is defined with a ratio of 4/1 this is interpreted as, “for every 4 edges of the 1/1
cclock there is only 1 edge of this cclock”. This would be a “divide-by-four” clock.

4.1.4.1 Parameters and Signals
ClockNum=1

This parameter is used to assign a unique number to a clock that is used to differentiate it from other
SceMiClockPort instances. It shall be considered an error (by the infrastructure linker) if more than one
SceMiClockPort instances share the same ClockNum. The default ClockNum is 1.

Cclock
Creset

SceMiClockPort

#(<ClockNum>,
 <RatioNumerator>,
 <RatioDenominator>,
 <DutyHi>, <DutyLo>, <Phase>,
 <ResetCycles>) <ClockName>

Verilog Macro Wrapper:

module SceMiClockPort(
 //inputs outputs
 Cclock, Creset);
 //------------------------ ------------------------------
 parameter ClockNum=1;
 parameter RatioNumerator=1, RatioDenominator=1;
 parameter DutyHi=0, DutyLo=100, Phase=0;
 parameter ResetCycles=8;
endmodule

VHDL Macro Wrapper:

entity SceMiClockPort is
 generic(ClockNum: natural := 1;
 RatioNumerator: natural := 1; RatioDenominator: natural := 1;
 DutyHi: natural := 0; DutyLo: natural := 100;
 Phase: natural := 0; ResetCycles: natural := 8);
 port(Cclock: out std_logic; Creset: out std_logic);
end;

architecture EmptyMacro of SceMiClockPort is begin end;
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
RatioNumerator=1, RatioDenominator=1

These parameters constitute the numerator and denominator respectively of this clock’s ratio. The
numerator always designates the number of cycles of the fastest 1/1 controlled clock that occur during
the number of cycles of “this” clock specified in the denominator. For example, with
RatioNumerator=5 and RatioDenominator=2 a 5/2 clock is specified which means that for every 5
cycles of the 1/1 clock that occur, only 2 cycles of this clock occur. The default clock ratio is 1/1.

DutyHi=0, DutyLo=100, Phase=0

The duty cycle is expressed with arbitrary integers that are normalized to their sum such that the sum of
DutyHi and DutyLo represent the number of units for a whole cycle of the clock. For example, with
DutyHi=75 and DutyLo=25 the high time of the clock is 75 out of 100 units or 75% of the period.
Similarly, the low time would be 25% of the period. The phase shift is expressed in the same units so
that if Phase=30, that would mean that the clock should be shifted by 30% of its period before the first
low to high transition occurs.

The default duty cycle shown in the macro wrappers in figure 15 above is a don’t care duty cycle of 0/
100 (see section 4.1.4.3 on page 54).

ResetCycles=8

This parameter specifies how many cycles of this controlled clock shall occur before the controlled reset
transitions from its initial value of 1 back to 0.

ClockName

The clock port’s name is derived from its instance label.

Cclock

This is the controlled clock signal that is supplied to the DUT by the SCE-MI infrastructure via this
macro. This clock’s characteristics is derived from the parameters specified on instantiation of this
macro.

Creset

This is the controlled reset signal that is supplied to the DUT by the SCE-MI infrastructure via this
macro.

4.1.4.2 Deriving Clock Ratios from Frequencies
Another way of to specify clock ratios is enter them directly as frequencies all normalized to the clock
with the highest frequency. To specify ratios this way requires the following:

• make each ratio numerator equal to the highest frequency
• use consistent units for all ratios
• omit those units and simply state them as integers

For example, suppose a system has 100Mhz, 25Mhz, and 10Mhz, 7.5 Mhz, and 32kHz clocks. To
specify the ratios, the frequencies can be directly entered as integers using kHz as the unit (but omitting
it !):

100000 / 100000 - the fastest clock
100000 / 25000
100000 / 10000
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 53 of 94

Formal Functional Specification

54
100000 / 7500
100000 / 32

Users who like to think in frequencies rather than ratios can use this simple technique. It is also possible
that an implementor of the SCE-MI API may wish to provide a tool to assist in deriving clock ratios
from frequencies. Such a tool could allow a user to enter clock specifications in terms of frequencies
and then generate a set of equivalent ratios.

In addition, the tool could post process waveforms (such as .vcd files) generated by the simulation in
such a way that the defined clocks appear in the waveform display to be the exact same frequencies
given by the user.

4.1.4.3 Don’t Care Duty Cycle
The default duty cycle shown in the macro wrappers in figure 15 above is a don’t care duty cycle. Users
can specify that they only care about posedges of the cclock and do not care where the negedge falls.
This is known as a posedge active don’t care duty cycle. In such a case, the DutyHi is given as a 0. The
DutyLo can be given as an arbitrary number of units such that the Phase offset can still be expressed as a
percentage of the whole period (i.e DutyHi+DutyLo).

For example if a user specifies this combination:
DutyHi=0, DutyLo=100, Phase=30

The user is saying the following:

• I don’t care about the duty cycle. Specifically I don’t care where the negedge of the clock falls.
• If the total period is expressed as 100 units (0+100), the phase should be shifted by 30 of those

units. This represents a phase shift of 30%.

Another example:
DutyHi=3, DutyLo=1, Phase=2

This says,

• I care about both intervals of the duty cycle. Duty cycle is 75%/25%.
• Phase shift is 50% of period (expressed as 3+1 units).

It is also possible to have a negedge active don’t care duty cycle. In this case, the DutyLo parameter is
given as a 0 and the DutyHi is given as a positive number > 0.

For example:
DutyHi=1, DutyLo=0, Phase=0

It means,

• I don’t care about duty cycle. Specifically I don’t care where the posedge of a clock falls.
• Phase shift is 0.

In any clock specification, it is considered an error if Phase >= DutyHi + DutyLo.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
4.1.4.4 Controlled Reset Semantics
The Creset output of the SceMiClockPort macro shall obey the following semantics:

• Creset will start low (deasserted) and transition to high one or more uclocks later. It will then
remain high (asserted) for a at least a minimum duration specified by the ResetCycles parameter
adorning the SceMiClockPort macro. This duration is expressed as a number of edges of associated
Cclock. Following the reset duration, the Creset will then go low (deasserted) and remain low for
the remaining duration of the simulation. Some applications require 2 edged resets at the beginning
of a simulation.

• For multiple cclocks, the reset duration must have a minimum length such that it is guaranteed to
span the ResetCycles parameter of any clock. In other words, the controlled reset duration for all
clocks must be, as a mininum,
max(ResetCycles for cclock1, ResetCycles for cclock2, ...)

• Some implementations may chose to use a reset duration that is larger than the quantify shown
above if it is required to achieve proper alignment of multiple cclocks on the edges of the controlled
reset as described in section 4.1.4.5 on page 55.

• During the assertion of Creset, Cclock edges shall be forced regardless of the state of the
ReadyForCclock inputs to the SceMiClockControl macros. Once the reset duration completes, the
Cclock will be controlled normally by the ReadyForCclock inputs.

Note: The operation of controlled reset just described provides the default controlled reset behavior
generated by the SceMiClockPort macro. If more sophisticated reset handling is required it will have
implemented with a specially written reset transactor that is used in lieu of the simpler controlled resets
that come from the SceMiClockPort instances. For example, if a software controlled reset is required,
an application would need to create a reset transactor that responds to a special software originated reset
command that arrives on its message input port.

4.1.4.5 Multiple Cclock Alignment
In general, all cclocks should align on the first rising uclock edge following the trailing edge of the
creset. This uclock edge shall be referred to as the point of alignment. For cclocks with phases of 0 this
means that rising edges of these clocks should coincide with the point of alignment. For cclocks with
phases > 0 edges will occur some time after the point of alignment. Figure 16 shows an assortment of
cclocks with the uclock and creset. It also shows how those cclocks behave at the point of alignment.

In the diagram, cclock1, cclock2, and cclock3 have phases of 0 and therefore have rising edges at the
point of alignment.

cclock4 has the same duty cycle as cclock2 but a phase shift of 50%. Therefore its rising edge occurs
2 uclocks (1/2 cycle) after the point of alignment. Its starting value at the point of alignment is still 0.

cclock5 has the same duty cycle as cclock3 but a phase of 50%. Again, its rising edge occurs 1/2 cycle
after the point of alignment. But notice that its starting value at the point of alignment is 1. This can be
alternatively thought of as an inverted phase. Anytime the phase is greater than the initial duty cycle
interval, the starting value at the point of alignment will be a 1.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 55 of 94

Formal Functional Specification

56
FIGURE 16. Multi-Clock Alignment

4.1.5 SceMiClockControl Macro
For every SceMiClockPort macro instance there must be at least one counterpart SceMiClockControl
macro instance presumably encapsulated in a transactor. The SceMiClockControl macro is the means
by which a transactor can control a DUT’s clock and by which the SCE-MI infrastructure can indicate
to a transactor on which uclock cycles that controlled clock have edges.

Figure 17 shows the symbol for the SceMiClockControl macro as well as Verilog and VHDL source
code for the empty macro wrappers.

uclock

cclock1

creset

point of alignment

cclock2

cclock3

cclock4

cclock5

ratio: 2/1 duty cycle: 50/50 phase: 0

ratio: 2/1 duty cycle: 25/75 phase: 0

ratio: 2/1 duty cycle: 75/25 phase: 0

ratio: 2/1 duty cycle: 25/75 phase: 50

ratio: 2/1 duty cycle: 75/25 phase: 50
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
FIGURE 17. SceMiClockControl Macro

For each SceMiClockPort defined in the system, at least one corresponding SceMiClockControl macro
must be instantiated in one or more transactors. In addition to providing uncontrolled clocks and resets,
this macro also provides handshakes that provide explicit control of both edges of the generated cclock.

4.1.5.1 Parameters and Signals
ClockNum=1

This is the only parameter given to the SceMiClockControl macro. This parameter is used to associate a
SceMiClockControl instance with its counterpart SceMiClockPort instance that is defined at the top
level. The default ClockNum is 1.

Note that associated with each instance of SceMiClockControl there must be exactly one instance in the
system of SceMiClockPort. But for each instance of SceMiClockPort, there can be one or more
instances of SceMiClockControl. A SceMiClockControl instance identifies the SceMiClockPort it is
associated with by properly specifying a ClockNum parameter matching that of its associated
SceMiClockPort.

Uclock

This is the uncontrolled clock signal generated by the SCE-MI infrastructure.

Ureset

This is the uncontrolled reset generated by the SCE-MI infrastructure. This signal is high at the

Uclock
Ureset

SceMiClockControl
#<ClockNum> c1

Verilog Macro Wrapper:

module SceMiClockControl(
 //inputs outputs
 Uclock, Ureset;
 ReadyForCclock, CclockEnabled,
 ReadyForCclockNegEdge, CclockNegEdgeEnabled);
 //------------------------ ------------------------------
 parameter ClockNum = 1;
 output Uclock, Ureset;
 input ReadyForCclock; output CclockEnabled;
 input ReadyForCclockNegEdge, output CclockNegEdgeEnabled;
endmodule

VHDL Macro Wrapper:

entity SceMiClockControl is
 generic(ClockNum: natural := 1);
 port(
 Uclock, Ureset: out std_logic;
 ReadyForCclock: in std_logic;
 CclockEnabled: out std_logic;
 ReadyForCclockNegEdge: in std_logic;
 CclockNegEdgeEnabled: out std_logic;
);
end;

architecture EmptyMacro of SceMiClockControl is begin end;

ReadyForCclock
CclockEnabled

CclockNegEdgeEnabled
ReadyForCclockNegEdge
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 57 of 94

Formal Functional Specification

58
beginning of simulated time and transitions to a low an arbitrary (implementation dependent) number of
uclocks later. It can be used to reset the transactor.

Note: The uncontrolled reset must have a duration spanning that of the longest controlled reset (Creset
output from each SceMiClockPort - see section 4.1.4.4 on page 55) as measured in uclocks. This
guarantees that all DUTs and transactors properly wake up in an initialized state the first uclock
following expiration of the last controlled reset.

ReadyForCclock

This input to the macro indicates to the SCE-MI infrastructure that a transactor is willing to allow its
associated DUT clock to advance. The transactor de-asserts this signal when it needs to perform
operations during which the DUT must be frozen. One of the most useful applications of this feature is
to perform complex algorithmic operations on the data content of a transaction before presenting it to
the DUT.

If this input to one of the SceMiClockControl instances that are associated with a given controlled clock
is deasserted, the next posedge of that cclock will be disabled. In reacting to a ReadyForCclock of a
slower clock, the infrastructure must not prematurely disable posedges of other faster clocks that occur
prior to the last possible uclock preceding the edge to be disabled. In other words, that edge is disabled
“just in time” so as to allow faster clock activity to proceed until the last moment possible. Once the
edge is finally disabled, all posedges of all controlled clocks are also disabled.

ReadyForCclockNegEdge

Similarly, for negedge control, if this input to one of the SceMiClockControl instances that are
associated with a given controlled clock is deasserted, the next negedge of that clock will be disabled. In
reacting to a ReadyForCclockNegEdge of a slower clock, the infrastructure must not prematurely
disable negedges of other faster clocks that occur prior to the last possible uclock preceding the edge to
be disabled. In other words, that edge is disabled “just in time” so as to allow faster clock activity to
proceed until the last moment possible. Once the edge is finally disabled, all negedges of all controlled
clocks are also disabled.

Support for explicit negedge control is needed because without it, transactor logic that only cares about
controlling posedge clocks could not inadvertently disable the next negedge of a clock when it only
intended to disable the next posedge of a clock. Transactors that do not care about controlling negedges
(such as the one shown in Figure 5 on page 17) should tie this signal high.

CclockEnabled

This macro output signals the transactor that on the next posedge of uclock there is a posedge of the
controlled clock. The transactor can thus sample this signal to know if a DUT clock edge occurs. The
SCE-MI infrastructure looks at the ReadyForCclock from all the transactors and asserts CclockEnabled
only if they are all asserted. This means that any transactor can stop all the clocks in the system by
simply de-asserting ReadyForCclock.

Note: for a negedge active don’t care duty cycle (see 4.1.4.3 on page 54), since the user does not care
about the posedge, the CclockEnabled will always be 0.

CclockNegEdgeEnabled

This signal works like CclockEnabled except that it indicates if the negedge of a controlled clock
occurs on the next posedge of the uclock. This can be useful for transactors that control double pumped
DUTs. Transactors that do not care about negedge control can ignore this signal.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
Note: for a posedge active don’t care duty cycle (see 4.1.4.3 on page 54), since the user does not care
about the negedge, the CclockNegEdgeEnabled will always be 0.

4.2 Infrastructure Linkage
The contents of this section is strictly the concern of the infrastructure implementor class of user, as
defined in section 2.2.3 on page 8. End users and transactor implementors can assume that the
operations described herein are automatically handled by the infrastructure linker.

As described in section 2.4.2 on page 14, infrastructure linkage is the process that analyzes the user’s
bridge netlist on the hardware side and compiles it into a form suitable to run on the emulator. This may
involve expanding the interface macros into infrastructure components that are added to the existing
structure as well as to generate parameter information that is used to bind the hardware side to the
software side. In order to determine this information, the infrastructure linker analyzes the netlist and
searches for instances of the SCE-MI hardware side macros, read the parameter values from those
instances, and generate a parameters file that can be read during software side initialization to properly
bind message port proxies to the hardware side.

It can also be typical for the infrastructure linker to provide options either in the form of switches and/or
an input configuration file that allow a user to pass along or override implementation specific options. A
well crafted infrastructure linker however, should maximize ease-of-use by transparently providing the
end user with a suitable set of default values for implementation specific parameters, so that most, if not
all of these parameters need not be overridden.

4.2.1 Parameters
The following set of parameters define the minimum set that is needed for all implementations of the
SCE-MI standard. Specific implementations might require additional parameters.

Number of Transactors
The number of transactors shall be derived by counting the number of modules in the user’s design that
contain SceMiClockControl macros. It shall be assumed that any module that is to be officially
considered a transactor must have at least one SceMiClockControl instance immediately inside it.

Transactor Name
The transactor name shall be derived from the hierarchical path name to an instance of a module that
qualifies as a transactor as per the above definition. Naturally, if there are multiple instances of a given
type of transactor, they shall be uniquely distinguished by their instance path names. The syntax used to
express the path name must be that of the HDL language that the bridge netlist is expressed in.

Number of Message Input or Output Channels
The infrastructure linker derives the number of message input and output ports by counting instances of
the SceMiMessageInPort and SceMiMessageOutPort macros.

Port Name
The name of each port shall be derived from the relative instance path name to that port relative to its
containing transactor module. For example, if the full path name to a message input port macro instance
is, using Verilog notation, Bridge.u1.tx1.ip1 and the transactor name is Bridge.u1.tx1, then the port
name is ip1. If an output port is instantiated one level down from the input port and its full path is
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 59 of 94

Formal Functional Specification

60
Bridge.u1.tx1.m1.op1, then its port name is m1.op1 since it is instantiated a level down relative to the
transactor root level.

The full pathname to a port can be derived by concatenating the transactor name to the port name (with
a hierarchical separator inserted between).

Message Input or Output Port Width
The width of a port in bits shall be derived from the PortWidth parameter defined in the message port
macro. This width defaults to 1 but is almost always overridden to a significantly larger value at the
point of instantiation.

Message Output Port Priority
The priority of a message output port shall be derived from the PortPrority parameter defined in the
SceMiMessageOutPort macro. For certain implementations, it might be useful as a “hint” to the
infrastructure linker to decide which output ports should be serviced first, should they happen to present
message data on the same uclock, and are implemented over a number of “physical message channels”
that is less than the limitless number of virtual message channels. To some users this might be
important. For those who do not care, the default value of 10 does not need to be overridden and need
not be specified in the instantiation statement.

With some exceptions, the output port priority generally follows the semantics of the UNIX nice
command as follows:

• 0 < allowed priority values < 20
• Default priority value is 10
• The lower the number the higher the priority
• Output port priority 0 is reserved for internal use by the infrastructure
• For message output ports with the same priority number, their relative priority is undetermined and

strictly an artifact of infrastructure linker implementation

Number of Controlled Clocks
This number shall be derived by counting all instances of the SceMiClockPort macro.

Controlled Clock Name
The name of a controlled clock is derived from the instance label (not path name) of its
SceMiClockPort instance, necessarily instantiated at the top level of the user’s bridge netlist and unique
among all instances of SceMiClockPort.

Controlled Clock Ratio
The clock ratio is determined from the RatioNumerator and RatioDenominator parameters of the
SceMiClockPort macro. The RatioNumerator designates the number of cycles of the fastest 1/1
controlled clock that occur during the number of cycles of “this” clock specified in RatioDenominator.
See 4.1.4 on page 51 for more details about the clock ratio.

Controlled Clock Duty Cycle and Phase
The duty cycle is determined from the DutyHi, DutyLo, and Phase parameters of the SceMiClockPort
macro. The duty cycle is expressed as a pair of arbitrary integers, DutyHi and DutyLo interpreted as
follows: if the sum of DutyHi and DutyLo represents the number of units in a period of the clock, then
DutyHi represents the number of units of high time and DutyLo, the number of units of low time.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
Similarly, Phase represents the number of units the clock is phase shifted relative to the reference 1/1
cclock. It is also possible for a user to specify a don’t care duty cycle. See 4.1.4 on page 51 for more
details about the duty cycle and phase.

Controlled Reset Cycles
The duration of a controlled reset expressed in terms of cclock cycles is determined from the
ResetCycles parameter of the ClockPort macro.

4.2.1.1 Parameter File
A parameter file should be automatically generated by the infrastructure linker after analyzing the user
supplied netlist and determining all the parameters identified in the previous section. The parameter file
can be read by the software side of the SCE-MI infrastructure to facilitate binding operations that occur
after software model construction.

Because it is automatically generated, content and syntax of the parameter file is left to specific
implementors of the SCE-MI. The content itself is not intended to be portable. However, on the
software side, a parameter access API must be provided by the infrastructure implementor that
conforms to the specification in 4.3.4 on page 70. This access block must support access to a
specifically named set of parameters required by the SCE-MI as well as an optional, implementation
specified set of named parameters.

All SCE-MI required parameters are read-only because their values are automatically determined by the
infrastructure linker by analyzing the user supplied netlist. Implementation specific parameters can be
read-only or read-write as required by the implementation.

4.3 Software Side Interface - C++ API
To gain access to the hardware side of the SCE-MI, the software side must first initialize the SCE-MI
software side infrastructure and then bind to port proxies representing each message port defined on the
hardware side. Part of initializing the SCE-MI involves instructing the SCE-MI to load the parameter
file that was generated by the infrastructure linker. The information in the parameter file gives the SCE-
MI software side the means to establish rendezvous with the hardware side in response to port binding
calls from the user’s software models. Rendezvous during port binding is achieved primarily by name
association involving transactor names and port names.

Note that clock names and properties identified in the parameter file are of little significance during the
binding process although this information is procedurally available to applications that might need it
through the parameter file API (see section 4.3.4 on page 70).
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 61 of 94

Formal Functional Specification

62
Access to the software side of the interface is facilitated by a number of C++ classes that are as follows:

class SceMiEC
class SceMi
class SceMiParameters
class SceMiMessageData
class SceMiMessageInPortProxy
class SceMiMessageOutPortProxy

4.3.1 Primitive Data Types
In addition to C data types such as integer, unsigned, and const char *, many of the arguments to the
methods in the API require unsigned data types of specific width. To support these, the following data
types are placed in the header files for the API:

typedef unsigned int SceMiU32;
typedef unsigned long long SceMiU64;

4.3.2 Miscellaneous Interface Issues

4.3.2.1 class SceMiEC - Error Handling
Note that most of the calls in the interface take an SceMiEC * ec as the last argument. Because the usage
of this argument is consistent for all methods, error handling semantics are explained in detail in this
section rather than documenting error handling for each method in the API.

Error handling in SCE-MI was designed to be flexible enough to either use a traditional style of error
handling where an error status is returned and checked with each call, or a callback based scheme where
a registered error handler is called when an error occurs.

enum SceMiErrorType {
SceMiOK,
SceMiError

};

struct SceMiEC {
const char *Culprit;
const char *Message;
SceMiErrorType Type;
int Id;

};

typedef void (*SceMiErrorHandler)(void *context, SceMiEC *ec);

static void
SceMi::RegisterErrorHandler(

SceMiErrorHandler errorHandler,
void *context);

This method registers an optional error handler with the SCE-MI that is to be called in the event that an
error occurs.

When any SCE-MI operation encounters an error, the following procedure is followed:

• If the SceMiEC * pointer passed into the function was non-NULL, the values of the SceMiEC
structure are filled out by the errant call with appropriate information describing the error, and
control is returned to the caller. This can be thought of as a traditional approach to error handling
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
such as one might find in C applications. It is up to the application code to check the error status
after each call to the API and take appropriate abortive action if an error is detected.

• Else if the SceMiEC * pointer passed to the function is NULL (or nothing is passed since the
default is NULL in each API function), and an error handler was registered, that error handler is
called from within the errant API call. The error handler is passed an internally allocated SceMiEC
structure filled out with the error information. In this error handler callback approach, the
user-defined code within the handler can initiate abort operations. If it is a C++ application, a catch
and throw mechanism might be deployed. A C application can simply call the abort() or exit()
function after printing out or logging the error information.

• Else if the SceMiEC * pointer passed to the function is NULL, and no error handler is registered, an
SceMiEC structure is constructed and passed to a default error handler. The default error handler
attempts to print a message to the console and to a log file and then calls abort().

It is important to note that this error handling facility only supports irrecoverable errors. This means that
if an error is returned through the SceMiEC object, either via a handler or a return object, that there is no
point in continuing with the co-modeling session. Any calls that support returning a recoverable error
status should return that status using a separate, dedicated return argument.

A second point to note is that the Message text filled out in the error structure is meant to fully describe
the nature of the error and can be logged or displayed to the console verbatim by the application error
handling code. The Culprit text is the name of the errant API function and can optionally be added to
the message that is displayed or logged.

Because every API call returns either a success or fatal error status, and because the detailed nature of
errors is fully described within the returned error message, the SceMiErrorType enum has only two
values pertaining to success (SceMiOK) or failure (SceMiError). The SceMiEC::Type returned from API
functions to the caller can be either of these two values depending on whether the call was a success or
a failure. However the SceMiEC::Type passed into an error handler will, by definition, always have the
value SceMiError, since otherwise the error handler would not have been called in the first place.

The optional Id field can be used further classify different major error types, or even to tag each distinct
error message with a unique integer identifier.

4.3.2.2 class SceMiIC - Informational Status and Warning Handling (Info Handling)
The SCE-MI also provides a means of conveying warnings and informational status messages to the
application.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 63 of 94

Formal Functional Specification

64
Like error handling, info handling is done with callback functions and a special structure that is used to
convey the warning information.

enum SceMiInfoType {
SceMiInfo,
SceMiWarning,
SceMiNonFatalError

};

struct SceMiIC {
const char *Originator;
const char *Message;
SceMiInfoType Type;
int Id;

};

typedef void (*SceMiInfoHandler)(void *context, SceMiIC *ic);

static void
SceMi::RegisterInfoHandler(

SceMiInfoHandler infoHandler,
void *context);

This method registers an optional info handler with the SCE-MI that is to be called in the event that a
warning or informational status message occurs.

When any SCE-MI operation encounters a warning or wishes to issue an informational message, the
following procedure is followed:

• If an info handler was registered, that info handler is called from within the API call that wants to
issue the warning. The info handler is passed an internally allocated SceMiIC structure filled out
with the warning information. In this info handler callback approach, the user-defined code within
the handler can convey the warning to the user in a manner that is appropriate for that application.
For example, it can be displayed to the console, or logged to a file, or both.

• Else if no info handler is registered, a SceMiIC structure is constructed and passed to a default,
implementation defined error handler. The default error handler can attempt to print a message to
the console and/or to a log file in an implementation specific format.

It is important to note that the Message text filled out in the error structure is meant to fully describe the
nature of the info message and can be logged or displayed to the console verbatim by the application’s
warning and info handling code. The Originator text is the name of the API function that detected the
message and can optionally be added to the message that is displayed or logged.

The SceMiInfoType is an extra piece of information that indicates if the message is a warning or just
some informational status. An additional category called SceMiNonFatalError can be used to log all
error conditions leading up to a fatal error. The final fatal error message should always be logged using
a SceMiEC structure and SceMiErrorHandler function so that an abort sequence is properly handled (see
section 4.3.2.1 on page 62). In addition, the info message can optionally be tagged with a unique
identifying integer specified in the Id field.

4.3.2.3 Memory Allocation Semantics
Regarding memory allocation semantics of the SCE-MI API. the following rules apply:

• Anything constructed by the user is the user’s responsibility to delete.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
• Anything constructed by the API is the API’s responsibility to delete.

So this means that any object, such as SceMiMessageData, that is created by the application using that
object’s constructor, must be deleted by the application when it is no longer in use. Some objects, such
as SceMiMessage[In/Out]PortProxy objects, are constructed by the API then handed over to the
application as pointers. Those objects must not be deleted by the application. Rather, they are deleted
when the entire interface is shut down during the call to SceMi::ShutDown().

Similarly, non-null SceMiEC structures that are passed to functions are assumed to be allocated and
deleted by the application. If a NULL SceMiEC pointer is passed to a function and an error occurs, the
API allocates the structure to pass to the error handler and therefore is responsible for freeing it.

4.3.3 class SceMi - SCE-MI Software Side Interface
This is the singleton object that represents the software side of the SCE-MI infrastructure itself.
Operations global to the interface are performed using methods of this class.

4.3.3.1 Version Discovery
static int
SceMi::Version(

const char *versionString);

This method allows an application to make queries about the version prior to initializing the SCE-MI
that gives it its best chance of specifying a version that it is compatible with. A series of calls can be
made to this function until a compatible version is found. With each call, the application can pass
version numbers corresponding to those it is familiar with and the SCE-MI can respond with a version
handle that is compatible with the queried version. This handle can then be passed onto the initialization
call described in the next section.

If the given version string is not compatible with version of the SCE-MI that the application is
interfacing to, a -1 is returned. At this point, the application has the option of aborting with a fatal error
or attempting other versions that it might also know how to use.

This process is sometimes referred to as mutual discovery.

versionString

This argument is of the form “<majorNum>.<majorNum>.<minorNum>” and can be obtained by the
application code from the header file of a particular SCE-MI installation.

4.3.3.2 Initialization
static SceMi *
SceMi::Init(

int version,
SceMiParameters *parameters,
SceMiEC *ec=NULL);

This call is the constructor of the SCE-MI interface. It gives access to all the other global methods of the
interface.

The return argument is a pointer to an object of class SceMi on which all other methods can be called.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 65 of 94

Formal Functional Specification

66
version

This input argument is the version number returned by the ::Version() method described in the
previous section. An error results if the version number is not compatible with the SCE-MI
infrastructure being accessed.

parameters

This input argument is a pointer to the parameter block object (class SceMiParameters) that is
initialized from the parameter file generated by the infrastructure linker. See section 4.3.4 on page 70
for a description of how this object is obtained.

4.3.3.3 Shutdown
static void
SceMi::Shutdown(

SceMi *sceMi,
SceMiEC *ec=NULL);

This is the destructor of the SCE-MI infrastructure object that must be called when connection to the
interface is to be terminated. This call is the means by which graceful decoupling of the hardware side
and the software side is achieved. It is also during this call that termination (Close()) callbacks
registered by the application are called.

4.3.3.4 Message Input Port Proxy Binding
SceMiMessageInPortProxy *
SceMi::BindMessageInPort(

const char *transactorName,
const char *portName,
const SceMiMessageInPortBinding *binding,
SceMiEC *ec=NULL);

This call searches the list of input ports learned from the parameter file that is generated during
infrastructure linkage for one whose names match the transactorName and portName arguments. If one
is found, an object of class SceMiMessageInPortProxy is constructed to serve as the proxy interface to
that port and the pointer to the constructed object is returned to the caller to serve all future accesses to
that port. It is considered an error if no match is found.

transactorName, portName

These arguments uniquely identify a specific message input port in a specific transactor on the hardware
side to which the caller wishes to bind. These names must be the path names (described in 4.2.1 on
page 59) expressed in the syntax of the HDL language that the hardware side bridge netlist is expressed
in.

binding

The binding argument is a pointer to an object defined as follows:

struct SceMiMessageInPortBinding {
void *Context;
void (*IsReady)(void *context);
void (*Close)(void *context);

};

whose data members are used for the following:
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
Context

The application is free to use this pointer for any purposes it wishes. Neither class SceMi nor class
SceMiMessageInPortProxy interpret this pointer other than to store it and pass it when calling either the
IsReady() or Close() callbacks.

IsReady()

This is the function pointer for the callback that is to be called whenever an input ready notification has
been received from the hardware side. This call signals that it is okay to send a new message to the input
port. If this pointer is given as a NULL, the SCE-MI assumes that this port does not need to deploy
input ready notification on this particular channel. See 4.1.2.2 on page 48 for a detailed description of
the input ready callback.

Close()

This is a termination callback function pointer. It is called during destruction of the SCE-MI. This
pointer can also be optionally specified as NULL.

4.3.3.5 Message Output Port Proxy Binding
SceMiMessageOutPortProxy *
SceMi::BindMessageOutPort(

const char *transactorName,
const char *portName,
const SceMiMessageOutPortBinding *binding,
SceMiEC *ec=NULL);

This call searches the list of output ports learned from the parameter file that was generated during
infrastructure linkage for one whose names match the transactorName and portName argument. If one
is found, an object of class SceMiMessageOutPortProxy is constructed to serve as the proxy interface
to that port and the handle to the constructed object is returned to the caller to serve all future accesses
to that port. It is considered an error if no match is found.

transactorName, portName

These arguments uniquely identify a specific message output port in a specific transactor on the
hardware side to which the caller wishes to bind. These names must be the path names (described in
4.2.1 on page 59) expressed in the syntax of the HDL language that the hardware side bridge netlist is
expressed in.

binding

The binding argument is a pointer to an object defined as follows:

struct SceMiMessageOutPortBinding {
void *Context;
void (*Receive)(

void *context,
const SceMiMessageData *data);

void (*Close)(void *context);
};

whose data members are used for the following:

Context

The application is free to use this pointer for any purposes it wishes. Neither class SceMi nor class
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 67 of 94

Formal Functional Specification

68
SceMiMessageOutPortProxy interpret this pointer other than to store it and pass it when calling either
the IsReady() or Close() callbacks.

Receive()

This is the function pointer for the receive callback that is to be called whenever an output message
arrives on the port. This callback is required on every output port proxy so it is considered an error if
this function pointer is given as a NULL. See 4.3.7.1 on page 77 for more information about how
receive callbacks process output messages.

Close()

This is a termination callback function pointer. It is called during destruction of the SCE-MI. This
pointer can also be optionally specified as NULL.

4.3.3.6 Service Loop
typedef int (*SceMiServiceLoopHandler)(void *context, bool pending);

int
SceMi::ServiceLoop(

SceMiServiceLoopHandler g=NULL,
void *context=NULL,
SceMiEC *ec=NULL);

This is the main workhorse method that yields CPU processing time to the SCE-MI. In both single-
threaded and multi-threaded environments, calls to this method gives the SCE-MI an opportunity to
service all its port proxies and check for arriving messages or messages that are pending to be sent. It is
also inside this call that the SCE-MI dispatches any input ready or receive callbacks that might be
needed. The underlying transport mechanism that supports the port proxies must respond in a relatively
timely manner to messages enqueued on the input or output port proxies. Since these messages cannot
be handled until a call to ::ServiceLoop() is made, it is advisable that applications call this function
frequently.

The return argument is the number of output messages that arrived and were processed since the last call
to ::ServiceLoop().

g()

If g is NULL, check for transfers to be performed and dispatch them, returning immediately afterwards.
If g is non-NULL, enter a loop of performing transfers and calling g(). When g() returns 0, return from
the loop. When g() is called, an indication of whether there is at least one message pending is made
with the pending flag. The context argument to g() is the pointer which is passed as the context
argument to ::ServiceLoop().

context

Context argument to be passed to the g() function.

4.3.3.6.1Example of Using the g() Function to Return on Each Call to ::ServiceLoop()
There are several different ways to use the g() function.

Some applications might like to force a return from the ::ServiceLoop() call after processing each
message. The ::ServiceLoop() call will always guarantee that a separate call is made to the g()
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
function for each message processed. In fact, it is possible to force ::ServiceLoop() to return back to
the application once per message by having the g() function return a 0.

So even if all g() does is return 0 as follows,

int g(void */*context*/, bool /*pending*/){ return 0; }

the application will forces a return from ::ServiceLoop() for each processed message.

Note, in this case, the ::ServiceLoop() will not block because it also returns even if no message was
found (i.e. pending == 0). So basically, ::ServiceLoop() will return no matter what in this case. No
messages or 1 message.

4.3.3.6.2Example of Using the g() Function to Block ::ServiceLoop() Until Exactly 1 Message
An application can use the g() function to put ::ServiceLoop() into a blocking mode rather than its
default polling mode. The g() function can be written to cause ::ServiceLoop() to block until it gets
1 message then return on the message it got:

This is done by making use of the pending argument to the g() function. This argument simply
indicates if there is a message to be processed or not. Here is how it would be written in this case:

int g(void */*context*/, bool pending){
return pending == true ? 0 : 1 }

What this does it to block until a message occurs then return on processing the first message.

4.3.3.6.3Example of Using the g() function to Block ::ServiceLoop() Until At Least 1 Message
Alternatively, suppose the application would like ::ServiceLoop() to block until at least 1 message
occurs, then return only after all the currently pending messages have been processed.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 69 of 94

Formal Functional Specification

70
To do this the application can define a haveProcessedAtLeast1Message flag as follows:

int haveProcessedAtLeast1Message = 0;

Call ::ServiceLoop() giving the g() function and this flag's address as the context:

...
haveProcessedAtLeast1Message = 0;
sceMi->ServiceLoop(g, &haveProcessedAtLeast1Message);
...

Now define the g() function as follows:

int g(void *context, bool pending){
int *haveProcessedAtLeast1Message = (int *)context;
if(pending == 0)

// If no more messages, kick out of loop if at least
// one previous message has been processed, otherwise
// block until the first message arrives.
return *haveProcessedAtLeast1Message ? 0 : 1;

else {
*haveProcessedAtLeast1Message = 1;
return 1;

}
}

In conclusion, depending on precisely what type of operation of ::ServiceLoop() is desired, the g()
function can be tailored accordingly.

4.3.4 class SceMiParameters - Parameter Access
This class provides a generic API that can be used by application code to access the interface parameter
set described in section 4.2.1 on page 59. It is basically initialized with the contents of the parameter file
that is generated during infrastructure linkage. It provides accessors that facilitate the reading and
possibly overriding of parameters and their values. All SCE-MI required parameters are read-only
because their values are automatically determined by the infrastructure linker by analyzing the user
supplied netlist. Implementation specific parameters can be read-only or read-write as required by the
implementation. All parameters in a SceMiParameters object must be overridden before that object is
passed to the SceMi::Init() call to construct the interface (see 4.3.3.2 on page 65). Overriding
parameters afterwards has no effect.

4.3.4.1 Parameter Set
While the format of the parameter file is implementation specific, the set of parameters required by the
SCE-API and the methods used to access them must conform to the specifications described in this
section. For purposes of access, the parameter set shall be organized as a database of attributed objects,
where each object instance is decorated with a set of attributes expressed as name/value pairs. There can
be zero or more instances of each object kind. The API shall provide a simple accessor to return the
number of objects of a given kind, and read and write accessors (described below) to allow reading or
overriding attribute values of specific objects.

The objects in the database are composed of the set of necessary interfacing components that interface
the SCE-MI infrastructure to the application. For example, there is a distinct object instance for each
message port and a distinct object instance representing each defined clock in the system. Attributes of
each of the objects then represent, collectively, the parameters that uniquely characterize the dimensions
and constitution of the interface components needed for a particular application.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
So, for example, a system that requires 1 input port, 2 output ports and 2 distinct clocks is represented
with 5 objects parametrized such that each port object has name and width attributes, each clock object
has ratio, duty cycle attributes, etc. These objects and their attributes precisely and fully describe the
interfacing requirements between that application and the SCE-MI infrastructure.

The following table gives the minimal, predefined set of objects and attributes required by the SCE-MI.
Additional objects and attributes can be added by implementations. For example, there may be a single,
implementation specific object representing the entire SCE-MI infrastructure facility itself. The
attributes of this singleton object might be the set of implementation specific parameters that an
implementor of the SCE-MI needs to allow the user to specify. For more details of attribute meanings,
see section 4.2.1 on page 59.

For simplicity, values can be either signed integer or string values. More complex data types can be
derived by the application code from string values. Each attribute definition of each object kind implies
a specific value type.

4.3.4.2 Parameter Set Semantics
Although the accessors provided by the SceMiParameters class directly provide the information given
in the above table, other implied parameters can be easily derived by the application. Following are
some of the implied parameters and how they are determined:

Object Kind Attribute Name

Attribute
Value
Type Meaning

MessageInPort TransactorName String Name of the transactor enclosing the message
input port.

PortName String Name of the message input port.
PortWidth Integer Width of the message input port in bits.

MessageOutPort TransactorName String Name of the transactor enclosing the message
output port.

PortName String Name of the message output port.
PortWidth Integer Width of the message output port in bits.
PortPriority Integer Priority of the message output port.

Clock ClockName String Name of the clock.
RatioNumerator Integer Numerator (“fast” clock cycles) of clock ratio.
RatioDenominator Integer Denominator (“this” clock cycles) of clock

ratio.
DutyHi Integer High cycle percentage of duty cycle.
DutyLo Integer Low cycle percentage of duty cycle.
Phase Integer Phase shift as percentage of duty cycle.
ResetCycles Integer Number of controlled clock cycles of reset.

ClockBinding TransactorName String Name of the transactor that contributes to the
control of this clock.

ClockName String Name of the clock that this transactor helps con-
trol.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 71 of 94

Formal Functional Specification

72
• ClockBinding objects indicate the total number of transactor - clock control macro combinations.
From the ClockBinding objects, one can ascertain the number of distinct contributors to the control
of a given clock, as well as the number of distinct transactors in the system.

• The number of transactors in the system is determined by counting the number of distinct
TransactorName’s encountered in the ClockBinding objects.

• The number of controlled clocks is determined by reading the number of Clock objects (using the
::NumberOfObjects() accessor described below).

• The number of input and output ports are determined by reading the number of MessageInPort and
MessageOutPort objects, respectively.

In addition, the following semantics characterize the parameter set:

• Transactor names are absolute hierarchical path names, and must conform to the syntax of the HDL
language that the bridge netlist is expressed in.

• Port names are relative hierarchical path names (relative to the enclosing transactor), and must
conform to the syntax of the HDL language that the bridge netlist is expressed in.

• Clock names are identifiers, not path names, and must conform to identifier naming syntax of the
HDL language that the bridge netlist is expressed in.

4.3.4.3 Constructor
SceMiParameters::SceMiParameters(

const char *paramsFile,
SceMiEC *ec=NULL);

The constructor constructs an object containing all the default values of parameters and then overrides
them with any settings it finds in the specified parameter file. All parameters, whether specified by the
user or not must have default values. Once constructed, parameters can be further overridden
procedurally.

paramsFile

This is the name of the file generated by the infrastructure linker that contains all the parameters derived
from the user’s hardware side netlist. This name can be either a full pathname to a file or pathname
relative to the local directory.

4.3.4.4 Destructor
SceMiParameters::~SceMiParameters()

This is the destructor for the parameters object.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
4.3.4.5 Accessors
unsigned int
SceMiParameters::NumberOfObjects(

const char *objectKind,
SceMiEC *ec=NULL) const;

This accessor returns the number of instances of objects of the specified objectKind name.

int
SceMiParameters::AttributeIntegerValue(

const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiEC *ec=NULL) const;

const char *
SceMiParameters::AttributeStringValue(

const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiEC *ec=NULL) const;

These two accessors read return an integer or string attribute value.

void
SceMiParameters::OverrideAttributeIntegerValue(

const char *objectKind,
unsigned int index,
const char *attributeName,
int value,
SceMiEC *ec=NULL);

void
SceMiParameters::OverrideAttributeStringValue(

const char *objectKind,
unsigned int index,
const char *attributeName,
const char *value,
SceMiEC *ec=NULL);

These two accessors override an integer or string attribute value. It is considered an error to attempt to
override any of the object attributes shown in the table in section 4.3.4.1 on page 70 or any
implementation specific attributes designated as read-only.

The following argument descriptions generally apply to all the accessors shown above:

objectKind

Name of the kind of object for which an attribute value is being accessed. It is considered an error to
pass an unrecognized objectKind name to any of the accessors.

index

Index of the instance of the object for which an attribute value is being accessed. It is considered an
error if the index >= the number returned by the ::NumberOfObjects() accessor.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 73 of 94

Formal Functional Specification

74
attributeName

Name of the attribute whose value is being read or overwritten. It is considered an error if the
attributeName does not identify one of the attributes allowed for the given objectKind.

value

Returned or passed in value of the attribute being read or overridden respectively. Two overloaded
variants of each accessor are provided. One for string values and one for integer values.

4.3.5 class SceMiMessageData - Message Data Object
The class SceMiMessageData represents the vector of message data that can be transferred from a
SceMiMessageInPortProxy on the software side to its associated SceMiMessageOutPort on the
hardware side, or from a SceMiMessageOutPort on the hardware side to its associated
SceMiMessageOutPortProxy on the software side. The message data payload is represented as a fixed
length array of SceMiU32 data words large enough to contain the bit vector being transferred to or from
the hardware side message port. For example if the message port had a width of 72 bits, the following
diagram shows how the those bits would be organized in the data array contained inside the
SceMiMessageData object:

4.3.5.1 Constructor
SceMiMessageData::SceMiMessageData(

const SceMiMessageInPortProxy &messageInPortProxy,
SceMiEC *ec=NULL);

Construct a message data object whose size matches the width of the specified input port. The
constructed message data object can only be used for sends on that port (or another of identical size) or
an error will result.

4.3.5.2 Destructor
SceMiMessageData::~SceMiMessageData()

Destruct the object, free data array.

31 ... 1, 0

63 ... 33,32

71...65,64

SceMiMessageData word 0

SceMiMessageData word 1

SceMiMessageData word 2

SceMiMessage[In/Out]Port.Message[] bits:
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
4.3.5.3 Accessors
unsigned int
SceMiMessageData::WidthInBits() const;

Return the width of the message in terms of number of bits.

unsigned int
SceMiMessageData::WidthInWords() const;

Return the size of the data array in terms of number of SceMiU32 words.

void
SceMiMessageData::Set(unsigned int i, SceMiU32 word, SceMiEC *ec = NULL);

Set word element i of array to word.

void
SceMiMessageData::SetBit(unsigned int i, int bit, SceMiEC *ec = NULL);

Set bit element i of the message vector to 0 if bit == 0, 1 otherwise. It is an error if i >=
::WidthInBits().

void
SceMiMessageData::SetBitRange(
 unsigned int i, unsigned int range, SceMiU32 bits, SceMiEC *ec = NULL);

Set range bit elements whose LSB’s start at bit element i of the message vector to the value of bits. It
is an error if i+range >= ::WidthInBits().

SceMiU32
SceMiMessageData::Get(unsigned int i, SceMiEC *ec = NULL) const;

Return the word at slot i in the array. It is an error if i >= ::WidthInWords().

int
SceMiMessageData::GetBit(unsigned int i, SceMiEC *ec = NULL) const;

Return the value of bit element i in the message vector. It is an error if i >= ::WidthInBits().

SceMiU32
SceMiMessageData::GetBitRange(unsigned int i, unsigned int range, SceMiEC *ec = NULL)
const;

Return the value of range bit elements whose LSB’s start at i of the message vector. It is an error if
i+range >= ::WidthInBits().

SceMiU64
SceMiMessageData::CycleStamp() const;

The SCE-MI supports a feature called cycle stamping. Each output message sent to the software side is
stamped with the number of cycles of the 1/1 controlled clock elapsed since the beginning of emulation
time. This provides a convenient way for applications to keep track of elapsed cycles in their respective
transactors as the simulation proceeds. The returned value is an absolute, 64-bit unsigned quantity.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 75 of 94

Formal Functional Specification

76
4.3.6 class SceMiMessageInPortProxy
The class SceMiMessageInPortProxy presents to the application a proxy interface to a transactor
message input port.

4.3.6.1 Sending Input Messages
void
SceMiMessageInPortProxy::Send(

const SceMiMessageData &data,
SceMiEC *ec=NULL);

This method sends a message to the message input channel. This message appears on the hardware side
as a bit vector presented to the transactor via the SceMiMessageInPort macro (see 4.1.2 on page 47)
instance bound to this proxy.

data
Message data object containing the message to be sent.

4.3.6.2 Replacing Port Binding
void ReplaceBinding(

const SceMiMessageInPortBinding* binding,
SceMiEC* ec=NULL);

This method replaces the SceMiMessageInPortBinding object originally furnished to the
SceMi::BindMessageInPortProxy() call that created this port proxy object (see 4.3.3.4 on page 66).
This can be useful for replacing contexts or input ready callback functions some time after the input
message port proxy has been established.

binding
New callback and context information to be associated with this message input port proxy.

4.3.6.3 Accessors
const char *
SceMiMessageInPortProxy::TransactorName() const;

This method returns the name of the transactor that is connected to the port. This is the absolute
hierarchical path name to the transactor instance expressed in the syntax of HDL language that the
netlist is expressed in.

const char *
SceMiMessageInPortProxy::PortName() const;

This method returns the port name. This is the path name to the SceMiMessageInPort macro instance
relative to the containing transactor expressed in the syntax of HDL language that the netlist is
expressed in.

unsigned
SceMiMessageInPortProxy::PortWidth() const;

This method returns the port width. This is the value of the PortWidth parameter that was passed to the
associated SceMiMessageInPort instance on the hardware side.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
4.3.6.4 Destructor
There is no public destructor for this class. Destruction of all message input ports shall automatically
occur when the SceMi::ShutDown() function is called.

4.3.7 class SceMiMessageOutPortProxy
The class MessageOutPortProxy presents to the application a proxy interface to the transactor
message output port.

4.3.7.1 Receiving Output Messages
There are no methods on this object specifically for reading messages that arrive on the output port
proxy. Rather, that operation is handled by the receive callbacks. Receive callbacks are registered with
an output port proxy when it is first bound to the channel (see 4.3.3.5 on page 67). The prototype for the
receive callback is as follows:

void (*Receive)(void *context, const SceMiMessageData *data);

When called, the receive callback is passed a pointer to a class SceMiMessageData object (see section
4.2.1.1 on page 61) that contains the content of the received message. It is also passed the context
pointer. The context pointer is typically a pointer to the object representing the software model that is
interfacing to the port proxy. Proper usage of this callback is to process the data quickly and return as
soon as possible. The reference to the SceMiMessageData is of limited lifetime and ceases to exist once
the callback returns and goes out of scope.

Typically in a SystemC context, the callback might do some minor manipulation to the context object
then immediately return and let a suspended thread resume and do the main processing of the received
transaction.

Notice that no SceMiEC * error status object is passed to the call. This is because if an error occurs
within the SceMi::ServiceLoop() function (from which the receive callback is normally called), the
callback is never called in the first place and standard error handling procedures (see 4.3.2.1 on page 62)
are followed by the service loop function itself. If an error occurs inside the receive callback, by
implication it is an application error not an SCE-MI error and thus it is the responsibility of the
application to handle the error by perhaps setting a flag in the context object before returning from the
callback.

4.3.7.2 Replacing Port Binding
void ReplaceBinding(

const SceMiMessageOutPortBinding* binding,
SceMiEC* ec=NULL);

This method replaces the SceMiMessageOutPortBinding object originally furnished to the
SceMi::BindMessageOutPortProxy() call that created this port proxy object (see 4.3.3.5 on page 67).
This can be useful for replacing contexts or receive callback functions some time after the output
message port proxy has been established.

binding
New callback and context information to be associated with this message output port proxy.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 77 of 94

Formal Functional Specification

78
4.3.7.3 Accessors
const char *
SceMiMessageOutPortProxy::TransactorName() const;

This method returns the name of the transactor that is connected to the port. This is the absolute
hierarchical path name to the transactor instance expressed in the syntax of HDL language that the
netlist is expressed in.

const char *
SceMiMessageOutPortProxy::PortName() const;

This method returns the port name. This is the path name to the SceMiMessageOutPort macro instance
relative to the containing transactor expressed in the syntax of HDL language that the netlist is
expressed in.

unsigned
SceMiMessageOutPortProxy::PortWidth() const;

This method returns the port width. This is the value of the PortWidth parameter that was passed to the
associated SceMiMessageOutPort instance on the hardware side.

4.3.7.4 Destructor
There is no public destructor for this class. Destruction of all message output ports shall automatically
occur when the SceMi::ShutDown() function is called.

4.4 Software Side Interface - C API
The SCI-MI software side also provides an ANSI standard C API. All of the subsections to follow will
parallel those in the C++ API described starting in section 4.3 on page 61. It is possible to implement
the C API as functions that wrap calls to methods described in the C++ API. The prototypes of those
functions shall follow with a minimum of explanatory text. For full documentation about a function, see
its corresponding subsection of section 4.3 on page 61.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
4.4.1 Primitive Data Types
The C API has its own header file with the following minimum content:

typedef unsigned SceMiU32;
typedef unsigned long long SceMiU64;

typedef void SceMi;
typedef void SceMiParameters;
typedef void SceMiMessageData;
typedef void SceMiMessageInPortProxy;
typedef void SceMiMessageOutPortProxy;

typedef int (*ServiceLoopHandler)(void *context, int pending);

typedef enum {
SceMiOK,
SceMiError,

} SceMiErrorType;
typedef struct {

const char *Culprit;
const char *Message;
SceMiErrorType Type;
int Id;

} SceMiEC;
typedef void (*SceMiErrorHandler)(void *context, SceMiEC *ec);

typedef enum {
SceMiInfo,
SceMiWarning

} SceMiInfoType;
typedef struct {

const char *Culprit;
const char *Message;
SceMiInfoType Type;
int Id;

} SceMiIC;
typedef void (*SceMiInfoHandler)(void *context, SceMiIC *ic);

typedef struct {
void *Context;
void (*IsReady)(void *context);
void (*Close)(void *context);

} SceMiMessageInPortBinding;
typedef struct {

void *Context;
void (*Receive)(

void *context,
const SceMiMessageData *data);

void (*Close)(void *context);
} SceMiMessageOutPortBinding;

An application must include either the C API header or the C++ API header, but not both.

Note that because ANSI C does not support default argument values, the last SceMiEC *ec argument to
each function must be explicitly passed when called, even if only to pass a NULL.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 79 of 94

Formal Functional Specification

80
4.4.2 Miscellaneous Interface Support Issues

4.4.2.1 SceMiEC - Error Handling
void
SceMiRegisterErrorHandler(

SceMiErrorHandler errorHandler,
void *context);

4.4.2.2 SceMiIC - Informational Status and Warning Handling (Info Handling)
void
SceMiRegisterInfoHandler(

SceMiInfoHandler infoHandler,
void *context);

4.4.3 SceMi - SCE-MI Software Side Interface

4.4.3.1 Version Discovery
int
SceMiVersion(const char *versionString);

4.4.3.2 Initialization
SceMi *
SceMiInit(

int version,
const SceMiParameters *parameterObjectHandle,
SceMiEC *ec);

4.4.3.3 Shutdown
void
SceMiShutdown(

SceMi *sceMiHandle,
SceMiEC *ec);

4.4.3.4 Message Input Port Proxy Binding
SceMiMessageInPortProxy *
SceMiBindMessageInPort(

SceMi *sceMiHandle,
const char *transactorName,
const char *portName,
const SceMiMessageInPortBinding *binding,
SceMiEC *ec);

4.4.3.5 Message Output Port Proxy Binding
SceMiMessageOutPortProxy *
SceMiBindMessageOutPort(

SceMi *sceMiHandle,
const char *transactorName,
const char *portName,
const SceMiMessageOutPortBinding *binding,
SceMiEC *ec);

4.4.3.6 Service Loop
int
SceMiServiceLoop(
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
SceMi *sceMiHandle,
SceMiServiceLoopHandler g,
void *context,
SceMiEC *ec);

4.4.4 SceMiParameters - Parameter Access

4.4.4.1 Constructor
SceMiParameters *
SceMiParametersNew(

const char *paramsFile,
SceMiEC *ec);

This function returns the handle to a parameters object.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 81 of 94

Formal Functional Specification

82
4.4.4.2 Destructor
void
SceMiParametersDelete(

SceMiParameters *parametersHandle);

4.4.4.3 Accessors
unsigned int
SceMiParametersNumberOfObjects(

const SceMiParameters *parametersHandle,
const char *objectKind,
SceMiEC *ec);

int
SceMiParametersAttributeIntegerValue(

const SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiEC *ec);

const char *
SceMiParametersAttributeStringValue(

const SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeName,
SceMiEC *ec);

void
SceMiParametersOverrideAttributeIntegerValue(

SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeName,
int value,
SceMiEC *ec);

void
SceMiParametersOverrideAttributeStringValue(

SceMiParameters *parametersHandle,
const char *objectKind,
unsigned int index,
const char *attributeName,
const char *value,
SceMiEC *ec);

4.4.5 SceMiMessageData - Message Data Object

4.4.5.1 Constructor
SceMiMessageData *
SceMiMessageDataNew(

const SceMiMessageInPortProxy *messageInPortProxyHandle,
SceMiEC *ec);

This function returns the handle to a message data object suitable for sending messages on the specified
input port proxy.
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
4.4.5.2 Destructor
void
SceMiMessageDataDelete(

SceMiMessageData *messageDataHandle);

4.4.5.3 Accessors
unsigned int
SceMiMessageDataWidthInBits(

const SceMiMessageData *messageDataHandle);

unsigned int
SceMiMessageDataWidthInWords(

const SceMiMessageData *messageDataHandle);

void
SceMiMessageDataSet(

SceMiMessageData *messageDataHandle,
unsigned int i,
SceMiU32 word,
SceMiEC *ec);

void
SceMiMessageDataSetBit(

SceMiMessageData *messageDataHandle,
 unsigned int i,
 int bit,
 SceMiEC *ec);

void
SceMiMessageDataSetBitRange(

SceMiMessageData *messageDataHandle,
 unsigned int i,
 unsigned int range,
 SceMiU32 bits,
 SceMiEC *ec);

SceMiU32
SceMiMessageDataGet(

const SceMiMessageData *messageDataHandle,
unsigned int i
SceMiEC *ec);

int
SceMiMessageDataGetBit(

const SceMiMessageData *messageDataHandle,
 unsigned int i,
 SceMiEC *ec);
SceMiU32
SceMiMessageDataGetBitRange(
 const SceMiMessageData *messageDataHandle,
 unsigned int i,
 unsigned int range,
 SceMiEC *ec);

SceMiU64
SceMiMessageDataCycleStamp(

const SceMiMessageData *messageDataHandle);
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 83 of 94

Formal Functional Specification

84
4.4.6 SceMiMessageInPortProxy - Message Input Port Proxy

4.4.6.1 Sending Input Messages
void
SceMiMessageInPortProxySend(

SceMiMessageInPortProxy *messageInPortProxyHandle,
const SceMiMessageData *messageDataHandle,
SceMiEC *ec);

4.4.6.2 Replacing Port Binding
void SceMiMessageInPortProxyReplaceBinding(

SceMiMessageInPortProxy *messageInPortProxyHandle,
const SceMiMessageInPortBinding* binding,
SceMiEC* ec);

4.4.6.3 Accessors
const char *
SceMiMessageInPortProxyTransactorName(

const SceMiMessageInPortProxy *messageInPortProxyHandle);

const char *
SceMiMessageInPortProxyPortName(

const SceMiMessageInPortProxy *messageInPortProxyHandle);

unsigned
SceMiMessageInPortProxyPortWidth(

const SceMiMessageInPortProxy *messageInPortProxyHandle);

4.4.7 SceMiMessageOutPortProxy - Message Output Port Proxy

4.4.7.1 Replacing Port Binding
void SceMiMessageOutPortProxyReplaceBinding(

SceMiMessageOutPortProxy *messageOutPortProxyHandle,
const SceMiMessageOutPortBinding* binding,
SceMiEC* ec);

4.4.7.2 Accessors
const char *
SceMiMessageOutPortProxyTransactorName(

const SceMiMessageOutPortProxy *messageOutPortProxyHandle);

const char *
SceMiMessageOutPortProxyPortName(

const SceMiMessageOutPortProxy *messageOutPortProxyHandle);

unsigned
SceMiMessageOutPortProxyPortWidth(

const SceMiMessageInPortProxy *messageOutPortProxyHandle);
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
Appendix A: Glossary

Abstraction Bridge
A collection of abstraction gasket components that disguise a bus cycle accurate (BCA) RTL
DUT model as a purely untimed model. The idea is that to the untimed testbench models, the
DUT itself appears untimed (see Figure 2 on page 9) when, in fact, it is a disguised BCA
model (see Figure 3 on page 11).

Abstraction Gasket
A special model that can change the level of abstraction of data flowing from its input to output
and vice versa. For example, an abstraction gasket might convert an untimed transaction to a
series of cycle accurate events. Or it might assemble a series of events into a single message.
Examples of abstraction gaskets are CoWare or SystemC BCASH models, and Ikos
transactors.

Behavioral Model
See definition for untimed model.

Bridge Netlist
The bridge netlist is the top level of the user supplied netlist of components making up the
hardware side of a co-modeling process. The components typically found instantiated
immediately under the bridge netlist are transactors, DUT, and SceMiClockPort macros. By
convention, the top level netlist module supplied by the user to the infrastructure linker is often
called Bridge and, for Verilog, is placed in a file called Bridge.v.

Co-Emulation
A shorthand notation for co-emulation modeling also known as co-modeling. See definition for
co-modeling.

Co-Modeling
Although it has broader meanings outside this document, within this document co-modeling
specifically refers to transaction oriented co-modeling in contrast to a broader definition of co-
modeling that might include event oriented co-modeling. Also known as co-emulation
modeling, transaction oriented co-modeling describes the process of modeling and simulating
a mixture of software models represented with an untimed level of abstraction, simultaneously
executing and inter-communicating through an abstraction bridge, with hardware models
represented with the RTL level of abstraction, running on an emulator. The following diagram
depicts such a configuration where the SCE-MI is being used as the abstraction bridge. See
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 85 of 94

Formal Functional Specification

86
section 1.4 on page 3 for meanings of acronyms. Another illustration can be seen in Figure 1
on page 6.

Controlled Clock (cclock)
The clock that drives the DUT and can be disabled by any transactor during operations that
would result in erroneous operation of the DUT if it is clocked. When performing such
operations, any transactor can “freeze” controlled time long enough to complete the operation
before allowing clocking of the DUT to resume. The term cclock is often used throughout this
document as a synonym for controlled clock.

Controlled Time
Time which is advanced by the controlled clock and frozen when the controlled clock is
suspended by one or more transactors. Operations occurring in uncontrolled time while
controlled time is frozen appear between controlled clock cycles.

Co-Simulation
Execution of software models modeled with different levels of abstraction that interact with
each other through abstraction gaskets similar to CoWare’s BCASH models. The following
diagram illustrates such a configuration. See section 1.4 on page 3 for meanings of acronyms.
The key difference between co-simulation and co-emulation is that the former typically
couples software models to a traditional HDL simulator interface through a proprietary API
whereas the latter couples software models to an emulator through an optimized transaction
oriented message passing interface such as SCE-MI.

ISS
B

F
M

BCASH

RTC

SCE-MI gate
netlist

Hardware

Emulator

Software
Models

Abstraction
Bridge Models

ISS

B

F
M

BCASH UTC BCASH RTC

HDL

C-algorithm
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
Cycle Stamping
A process by which messages are tagged with the number of elapsed counts of the fastest
controlled clock in the hardware side of a co-modeled design.

Don’t Care Duty Cycle
A posedge active don’t care duty cycle is a way of specifying a duty cycle where the user only
cares about the posedge of the clock and does not care about where in the period the negedge
falls, particularly in relation to other cclocks in a functional simulation. In such a case, the
DutyHi parameter is given as a 0. The DutyLo can be given as an arbitrary number of units that
represent the whole period such that the Phase offset can still be expressed as a percentage of
the period (i.e. DutyHi+DutyLo). See 4.1.4.1 on page 52 for more details.

A negedge active don’t care duty cycle is a way of specifying a duty cycle where the user only
cares about the negedge of the clock and does not care about where in the period the posedge
falls, particularly in relation to other cclocks in a functional simulation. In such a case, the
DutyLo parameter is given as a 0. The DutyHi can be given as an arbitrary number of units that
represent the whole period such that the Phase offset can still be expressed as a percentage of
the period (i.e. DutyHi+DutyLo). See 4.1.4.1 on page 52 for more details.

DUT
Device or Design Under Test that might be modeled in hardware and stimulated and responded
to by a software testbench through an abstraction bridge such as the SCE-MI.

DUT Proxy
Software model which acts as a “socket” that disguises an abstraction bridge to look to the rest
of a software testbench like an untimed DUT model. If the abstraction bridge is the SCE-MI,
the job of the DUT proxy is to encapsulate the message port proxy interfaces to the message
channels in the interface. See Figure 3 on page 11 for an illustration of DUT proxies.

Hardware Model
Model of a block that has a structural representation (i.e., as a result of synthesis or a gate
netlist generated by an appropriate tool) that is mapped onto the hardware side of a co-
modeling process (i.e., an emulator or other hardware simulation platform). It could also be
real silicon (i.e., a CPU core or memory chip) plugged into an emulator or simulation
accelerator.

Hardware Side
See definition for software side.

SW model
(testbench)

SCE-MI

Hardware Emulator
DUT

CPU IP

MEM
core

In
file

Out
file
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 87 of 94

Formal Functional Specification

88
Infrastructure Linkage Process
The process that reads a user description of the hardware, namely the source or bridge netlist
that describes the interconnect between the transactors, the DUT, and the SCE-MI interface
components, and compiles that netlist into a form suitable for executing in a co-modeling
session. Part of this compile process can involve adding additional structure to the bridge
netlist that properly interfaces the user supplied netlist to the SCE-MI infrastructure
implementation components.

Macros
Implementation components provided by the hardware emulator vendor to implement the
hardware side of the SCE-MI infrastructure. The required macros as defined in this
specification are the SceMiMessageInPort, SceMiMessageOutPort,
SceMiClockControl, and SceMiClockPort macros.

Message
A unit of data of arbitrary size and abstraction to be transported over a channel. Messages are
generally not associated with specific clocked events but may trigger or result from, many
clocks of event activity. Note that, for the most part, the term message can be used
interchangeably with transaction. However, in some contexts, transaction could be thought of
as including infrastructure overhead content in addition to user payload data (and handled at a
lower layer of the interface) whereas the term message denotes only user payload data.

Message Channel
A two ended conduit of messages between the software and hardware sides of an abstraction
bridge.

Message Port
The hardware side end of a message channel. A message port is the means by which
transactors gain access to messages being sent across the channel to or from the software side.

Message Port Proxy
The software side end of a message channel. A message port proxy is the means by which
DUT proxies or other software models gain access to messages being sent across the channel to
or from the hardware side.

Negedge
See definition for posedge.

Posedge
Although this is a Verilog specific term that refers to the rising edge of a clock, it is used
generically throughout this document to refer to the same thing. The same applies to negedge
referring to the falling edge of a clock.

Service Loop
This is the method that provides a means for a set of software models running on a host
workstation to yield access to the SCE-MI software side so that any pending input or output
messages on the channels can be serviced. This method should be called frequently by the
software, throughout the co-modeling session in order to avoid backup of messages and
minimize the possibility of system deadlock. In multi-threaded environments, it makes sense to
place the service loop call in its own continually running thread.

Software Model
Model of a block (hardware or software) that is simulated on the software side of a co-
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
modeling session (i.e., the host workstation). Such a model can be an algorithm (C or C++)
running on an ISS or a hardware model that is modeled using an appropriate language
environment such as CoWare, SystemC, or an HDL simulator.

Software Side
This term refers to the portion of a user’s design which, during a co-modeling session, runs on
the host workstation as opposed to the portion running on the emulator which is referred to as
the hardware side. The SCE-MI infrastructure itself is also considered to have software side
and hardware side components.

Structural Model
A netlist of hardware models or other structural models. Because this definition is recursive, it
is implied that structural models have hierarchy.

Transaction
See definition for message.

Transactor
A form of abstraction gasket. The job of a transactor is to decompose an untimed transaction
to a series of cycle accurate clocked events, or, conversely, to compose a series of clocked
events into a single message. When receiving messages, transactors have the ability to “freeze”
controlled time long enough to allow message decomposition operations to complete before
presenting clocked data to a DUT. And when sending messages, they can freeze controlled
time and allow message composition operations to complete before new clocked data is
flooded in from a DUT.

Uncontrolled Clock (uclock)
Free running system clock internally generated by the SCE-MI infrastructure used only within
transactor modules to advance states in uncontrolled time. The term uclock is often used
throughout this document as a synonym for uncontrolled clock.

Uncontrolled Reset
This is the system reset internally generated by the SCE-MI infrastructure and used only with
transactor modules. This signal is high at the beginning of simulated time and transitions to a
low an arbitrary (implementation dependent) number of uclocks later. It can be used to reset a
transactor. The controlled reset is generated exactly once by the SCE-MI hardware side
infrastructure at the very beginning of a co-modeling session.

Uncontrolled Time
Time that is advanced by the uncontrolled clock even when the controlled clock is suspended
(and controlled time is frozen).

Untimed Model
A block that is modeled algorithmically at the functional level and exchanges data with other
models in the form of messages. An untimed model has no notion of a clock. Rather, its
operation is triggered by arriving messages and can, in turn, trigger operations in other untimed
models by sending messages.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 89 of 94

Formal Functional Specification

90
Appendix B: Multiclock Hardware Side Interface Example

The following diagram shows the top level structure of a simple multiclock, multitransactor example:

FIGURE 18. Multiclock, Multitransactor Example

This design demonstrates the following points:

• Three ClockPort instances define clocks named cclock, cclock2_1, and cclock4_1.
• Because no parameters are given with the SceMiClockPort instance cclock, all default parameters

are used. This means that cclock has a ClockNum=1, a clock ratio of 1/1, a don’t care duty cycle, a

#128 p1

SceMiMessageInPort
TransmitReady
ReceiveReady

Message []

#64 p1

TxRdyIn
RxRdyIn
MessageIn [63:0]

TxTransactorCore
t1

TxRdyOut
RxRdyOut
MessageOut [127:0]

Rst

ClkDiv2

TxDUT
d1

Uclk
Rst

CclockEnabled
ReadyForCclock

SceMiMessageOutPort
TransmitReady
ReceiveReady

Message []

RxTransactorCore

clkDivideBy4

Uclk
Rst
ReadyForCclockDiv4

t1

Rst
Clk

RxDUT
d2

CclockEnabledDiv4

Clk

ReadyForCclockDiv2
CclockEnabledDiv2

clkDivideBy2

SceMiClockControl
Uclock
Ureset

ReadyForCclock
CclockEnabled

#1 c1

ReadyForCclockNegEdge
CclockNegEdgeEnabled

SceMiClockControl
Uclock
Ureset

ReadyForCclock
CclockEnabled

#2 c2

ReadyForCclockNegEdge
CclockNegEdgeEnabled

‘1’

‘1’

SceMiClockControl
Uclock
Ureset

ReadyForCclock
CclockEnabled

#3 c1

ReadyForCclockNegEdge
CclockNegEdgeEnabled

‘1’

DutInData []DutInData []
DutInCtrl DutInCtrl

DutOutCtrl
DutOutData [] DutOutData []

DutOutCtrl

DutInData []DutInData []
DutInCtrl DutInCtrl

DutOutCtrl
DutOutData [] DutOutData []

DutOutCtrl

SceMiClockPort
Cclock
Creset

cclock

SceMiClockPort
Cclock
Creset

#(2, 2, 1) cclock2_1

TxTransactor
u1

SceMiClockPort
Cclock
Creset

#(3, 4, 1, 75, 25, 30, 8) cclock4_1

RxTransactor
u2
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
phase shift of 0, and the controlled reset it supplies has an active duration of 8 controlled clock
cycles.

• The cclock2_1 instance of SceMiClockPort overrides the first three parameters and leaves the rest
at their default values. This means the cclock2_1 has a ClockNum=2, a clock ratio of 2/1 (i.e., a
“divide-by-2” clock), a duty cycle of 50%, a phase shift of 0, and an 8 clock cycle reset duration.

• The cclock4_1 instance of SceMiClockPort has a ClockNum=3, a clock ratio of 4/1 (i.e., a “divide-
by-4” clock), a duty cycle of 75%, a phase shift of 30% of the clock period, and an 8 clock cycle
reset duration.

• The TxTransactor transactor model, named Bridge.u1, controls clocks cclock and cclock2_1
since its SceMiClockControl macro instances have ClockNum=1 and ClockNum=2, respectively.

• This TxTransactor model interfaces to a message input port called p1 that is parametrized to a
bit-width of 64.

• The RxTransactor transactor model, named Bridge.u2, controls clock cclock4_1 since its
SceMiClockControl macro instance has ClockNum=3.

• This RxTransactor model interfaces to a message input port called p1 that is parametrized to a
bit-width of 128.
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 91 of 94

Formal Functional Specification

92
The following listing shows some of the VHDL source code for the above schematic:

library ieee;
use ieee.std_logic_1164.all;
library SceMi;
use SceMi.SceMiMacros.all;

entity Bridge is end;
architecture Structural of Bridge is
 component TxTransactor is
 port(
 DutInCtrl: out std_logic;
 DutInData: out std_logic_vector(31 downto 0);
 DutOutCtrl: in std_logic;
 DutOutData: in std_logic_vector(31 downto 0));
 end component TxTransactor;
 component TxDUT is
 port(
 DutInCtrl: in std_logic;
 DutInData: in std_logic_vector(31 downto 0);
 DutOutCtrl: out std_logic;
 DutOutData: out std_logic_vector(31 downto 0);
 Clk, Rst, ClkDiv2: in std_logic);
 end component TxDUT;
 component RxTransactor is
 port(
 DutInCtrl: out std_logic;
 DutInData: out std_logic_vector(31 downto 0);
 DutOutCtrl: in std_logic;
 DutOutData: in std_logic_vector(31 downto 0));
 end component RxTransactor;
 component RxDUT is
 port(
 DutInCtrl: in std_logic;
 DutInData: in std_logic_vector(31 downto 0);
 DutOutCtrl: out std_logic;
 DutOutData: out std_logic_vector(31 downto 0);
 Clk, Rst: in std_logic);
 end component RxDUT;
 signal txDutInCtrl, txDutOutCtrl: std_logic;
 signal txDutInData, txDutOutData: std_logic_vector(31 downto 0);
 signal rxDutInCtrl, rxDutOutCtrl: std_logic;
 signal rxDutInData, rxDutOutData: std_logic_vector(31 downto 0);

 signal cclock, creset, clkDivideBy2, clkDivideBy4 cresetDivideBy4: std_logic;
begin
 u1: TxTransactor port map(txDutInCtrl, txDutInData, txDutOutCtrl, txDutOutData);
 d1: TxDUT port map(txDutInCtrl, txDutInData, txDutOutCtrl, txDutOutData,
 cclock, creset, clkDivideBy2);
 cclock: SceMiClockPort port map(cclock, creset);
 cclock2_1: SceMiClockPort
 generic map(2, 2, 1, 50, 50, 0, 8)
 port map(clkDivideBy2, open);
 u2: RxTransactor port map(txDutInCtrl, txDutInData, txDutOutCtrl, txDutOutData);
 d2: RxDUT port map(txDutInCtrl, txDutInData, txDutOutCtrl, txDutOutData,
 clkDivideBy4, cresetDivideBy4);
 cclock4_1: SceMiClockPort
 generic map(3, 4, 1, 75, 25, 30, 8)
 port map(clkDivideBy2, open);
end;
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

Formal Functional Specification
library ieee;
use ieee.std_logic_1164.all;
library SceMi;
use SceMi.SceMiMacros.all;

entity TxTransactor is
 port(
 DutInCtrl: out std_logic;
 DutInData: out std_logic_vector(31 downto 0);
 DutOutCtrl: in std_logic;
 DutOutData: in std_logic_vector(31 downto 0));
 end;
architecture Structural of TxTransactor is
 component TxTransactorCore is
 port(
 TxRdyIn: in std_logic; RxRdyIn: out std_logic;
 Message: in std_logic(63 downto 0);
 DutInCtrl: out std_logic;
 DutInData: out std_logic_vector(31 downto 0);
 DutOutCtrl: in std_logic;
 DutOutData: in std_logic_vector(31 downto 0));
 Uclk, Rst: in std_logic;
 ReadyForCclock: in std_logic; CclockEnabled: out std_logic;
 ReadyForCclockDiv2: in std_logic; CclockEnabledDiv2: out std_logic;
 end component TxTransactor;
 signal transmitReady, receiveReady: std_logic;
 signal message: std_logic_vector(63 downto 0);
 signal uclock, ureset: std_logic;
 signal readyForCclock, cclockEnabled: std_logic;
 signal readyForCclockDiv2, cclockEnabledDiv2;
begin
 t1: TxTransactorCore port map(
 transmitReady, receiveReady, message,
 DutInCtrl, DutInData, DutOutCtrl, DutOutData,
 uclock, ureset,
 readyForCclock, cclockEnabled, readyForCclockDiv2, cclockEnabledDiv2);
 p1: SceMiMessageInputPort
 generic map(64)
 port map(transmitReady, receiveReady, message);
 c1: SceMiClockControl
 port map(uclock, ureset, readyForCclock, cclockEnabled, ‘1’, open);
 c2: SceMiClockControl
 generic map(2)
 port map(open, open, readyForCclockDiv2, cclockEnabledDiv2, ‘1’, open);
end;
Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI) 93 of 94

Formal Functional Specification

94
Appendix C: VHDL SceMiMacros Package

The following package can be used to supply SCE-MI macro component declarations to an application.
It is suggested that this package be compiled into a library ‘SceMi’ and that it be included in the
application code as,

library SceMi;
use SceMi.SceMiMacros.all;

Here is the source code for the package:

library ieee;
use ieee.std_logic_1164.all;

package SceMiMacros is

 component SceMiMessageInPort
 generic(PortWidth: natural);
 port(
 ReceiveReady : in std_logic;
 TransmitReady : out std_logic;
 Message : out std_logic_vector(PortWidth-1 downto 0));
 end component;

 component SceMiMessageOutPort
 generic(PortWidth: natural; PortPriority: natural := 10);
 port(
 TransmitReady : in std_logic;
 ReceiveReady : out std_logic;
 Message : in std_logic_vector(PortWidth-1 downto 0));
 end component;

 component SceMiClockPort
 generic(
 ClockNum : natural := 1;
 RatioNumerator : natural := 1;
 RatioDenominator : natural := 1;
 DutyHi : natural := 0;
 DutyLo : natural := 100;
 Phase : natural := 0;
 ResetCycles : natural := 8);
 port(
 Cclock : out std_logic;
 Creset : out std_logic);
 end component;

 component SceMiClockControl
 generic(ClockNum: natural := 1);
 port(
 Uclock,
 Ureset : out std_logic;
 ReadyForCclock : in std_logic;
 CclockEnabled : out std_logic;
 ReadyForCclockNegEdge : in std_logic;
 CclockNegEdgeEnabled : out std_logic);
 end component;
end SceMiMacros;
 of 94 Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)

	Functional Requirements Specification: Standard Co-Emulation Modeling Interface (SCE-MI)
	1.0 Introduction
	1.1 Purpose
	1.1.1 Emulation Customer Problems to be Solved by SCE-API
	1.1.2 Emulation Suppliers Problems to be Solved

	1.2 Scope
	1.3 Revision History
	1.4 Definitions, Acronyms, and Abbreviations
	1.5 References
	1.6 Overview
	1.6.1 Performance Goals
	1.6.2 Document Layout
	1.6.3 Document Conventions

	2.0 Overall Description and Use Model
	2.1 High Level Description
	2.1.1 Support for Multi-Threaded Environments

	2.2 Users of the Interface
	2.2.1 End User
	2.2.2 Transactor Implementor
	2.2.3 SCE-MI Infrastructure Implementor

	2.3 Bridging Levels of Modeling Abstraction
	2.3.1 Untimed Software Level Modeling Abstraction
	2.3.2 Cycle Accurate Hardware Level Modeling Abstraction
	2.3.3 Messages and Transactions
	2.3.4 Controlled and Uncontrolled Time

	2.4 Work Flow
	2.4.1 Software Model Compilation
	2.4.2 Infrastructure Linkage
	2.4.3 Hardware Model Elaboration
	2.4.4 Software Model Construction and Binding

	2.5 SCE-MI Interface Components
	2.5.1 Hardware Side Interface Components
	2.5.2 Software Side Interface Components

	3.0 User’s Guide and Tutorial
	3.1 Hardware Side Interfacing
	3.2 The Routed Tutorial
	3.2.1 What the Design Does
	3.2.2 System Hierarchy
	3.2.2.1 Software Side Hierarchy
	3.2.2.2 Hardware Side Hierarchy

	3.2.3 Hardware Side
	3.2.3.1 Bridge
	3.2.3.2 DUT and Transactor Interconnect
	3.2.3.3 DUT and Transactor Components
	3.2.3.4 The Destination Transactor: Interfacing with the DUT and Controlling the Clock
	3.2.3.5 The ClockAdvancer Transactor: Controlling Time Advance

	3.2.4 The Software Side
	3.2.4.1 The System Model: Interconnect of SystemC Modules
	3.2.4.2 The sc_main() Routine and Error Handler
	3.2.4.3 The SceMiDispatcher Module: Interfacing with the SCE-MI Service Loop
	3.2.4.4 Application Specific Data Types for the Routed System
	3.2.4.5 The Testbench Model: Main Control Loop
	3.2.4.6 The Scheduler Module: Interfacing with Message Port Proxies
	3.2.4.7 The Calendar Module: Interfacing with the Clock Advancer

	4.0 Formal Functional Specification
	4.1 Hardware Side Interface Macros
	4.1.1 Dual Ready Protocol
	4.1.2 SceMiMessageInPort Macro
	4.1.2.1 Parameters and Signals
	4.1.2.2 Input Ready Propagation

	4.1.3 SceMiMessageOutPort Macro
	4.1.3.1 Parameters and Signals

	4.1.4 SceMiClockPort Macro
	4.1.4.1 Parameters and Signals
	4.1.4.2 Deriving Clock Ratios from Frequencies
	4.1.4.3 Don’t Care Duty Cycle
	4.1.4.4 Controlled Reset Semantics
	4.1.4.5 Multiple Cclock Alignment

	4.1.5 SceMiClockControl Macro
	4.1.5.1 Parameters and Signals

	4.2 Infrastructure Linkage
	4.2.1 Parameters
	4.2.1.1 Parameter File

	4.3 Software Side Interface - C++ API
	4.3.1 Primitive Data Types
	4.3.2 Miscellaneous Interface Issues
	4.3.2.1 class SceMiEC - Error Handling
	4.3.2.2 class SceMiIC - Informational Status and Warning Handling (Info Handling)
	4.3.2.3 Memory Allocation Semantics

	4.3.3 class SceMi - SCE-MI Software Side Interface
	4.3.3.1 Version Discovery
	4.3.3.2 Initialization
	4.3.3.3 Shutdown
	4.3.3.4 Message Input Port Proxy Binding
	4.3.3.5 Message Output Port Proxy Binding
	4.3.3.6 Service Loop
	4.3.3.6.1 Example of Using the g() Function to Return on Each Call to ::ServiceLoop()
	4.3.3.6.2 Example of Using the g() Function to Block ::ServiceLoop() Until Exactly 1 Message
	4.3.3.6.3 Example of Using the g() function to Block ::ServiceLoop() Until At Least 1 Message

	4.3.4 class SceMiParameters - Parameter Access
	4.3.4.1 Parameter Set
	4.3.4.2 Parameter Set Semantics
	4.3.4.3 Constructor
	4.3.4.4 Destructor
	4.3.4.5 Accessors

	4.3.5 class SceMiMessageData - Message Data Object
	4.3.5.1 Constructor
	4.3.5.2 Destructor
	4.3.5.3 Accessors

	4.3.6 class SceMiMessageInPortProxy
	4.3.6.1 Sending Input Messages
	4.3.6.2 Replacing Port Binding
	4.3.6.3 Accessors
	4.3.6.4 Destructor

	4.3.7 class SceMiMessageOutPortProxy
	4.3.7.1 Receiving Output Messages
	4.3.7.2 Replacing Port Binding
	4.3.7.3 Accessors
	4.3.7.4 Destructor

	4.4 Software Side Interface - C API
	4.4.1 Primitive Data Types
	4.4.2 Miscellaneous Interface Support Issues
	4.4.2.1 SceMiEC - Error Handling
	4.4.2.2 SceMiIC - Informational Status and Warning Handling (Info Handling)

	4.4.3 SceMi - SCE-MI Software Side Interface
	4.4.3.1 Version Discovery
	4.4.3.2 Initialization
	4.4.3.3 Shutdown
	4.4.3.4 Message Input Port Proxy Binding
	4.4.3.5 Message Output Port Proxy Binding
	4.4.3.6 Service Loop

	4.4.4 SceMiParameters - Parameter Access
	4.4.4.1 Constructor
	4.4.4.2 Destructor
	4.4.4.3 Accessors

	4.4.5 SceMiMessageData - Message Data Object
	4.4.5.1 Constructor
	4.4.5.2 Destructor
	4.4.5.3 Accessors

	4.4.6 SceMiMessageInPortProxy - Message Input Port Proxy
	4.4.6.1 Sending Input Messages
	4.4.6.2 Replacing Port Binding
	4.4.6.3 Accessors

	4.4.7 SceMiMessageOutPortProxy - Message Output Port Proxy
	4.4.7.1 Replacing Port Binding
	4.4.7.2 Accessors

	Appendix A: Glossary
	Appendix B: Multiclock Hardware Side Interface Example
	Appendix C: VHDL SceMiMacros Package

