
Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

Project ZNIX

Software Requirements Specification

Version 1.0

Confidential ©Sameera Perera, 2005 Page 1

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

Revision History
Date Version Description Author

2005/02/10 1.0 Initial Draft. Sameera Perera

Confidential ©Sameera Perera, 2005 Page 2

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

Table of Contents

1. Introduction 5

1.1 Purpose 5
1.2 Scope 5
1.3 Definitions, Acronyms and Abbreviations 5

1.3.1 ZNIX 5
1.3.2 ZNIX Framework 5
1.3.3 Client Process 6
1.3.4 ZNIX Proxy Mechanism 6
1.3.5 Entity 6
1.3.6 Associate 6

1.4 References 7
1.5 Overview 8

2. Overall Description 9

2.1 Project Perspective 9
2.1.1 Benefits over alternatives 10

2.2 Product Functions 11
2.3 User Characteristics 11
2.4 Constraints 11
2.5 Assumptions and Dependencies 11

3. Specific Requirements 13

3.1 Functionality 13
3.1.1 Centralized store for user information 13
3.1.2 Hierarchical view of the information 15
3.1.3 Archiving of information 15
3.1.4 The public API 15

3.2 Usability 16
3.2.1 Typical training time required 16

3.3 Reliability 16

Confidential ©Sameera Perera, 2005 Page 3

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

3.3.1 Mean Time between Failure (MTBF) 16
3.4 Performance 16

3.4.1 Capacity 16
3.4.2 Resource Utilization 16

3.5 Supportability 17
3.5.1 Coding Conventions 17
3.5.2 Compliance to Opens Source Standard Practices 17

3.6 Security 17
3.7 Design Constraints 17
3.8 Online User Documentation and Help System Requirements 17
3.9 Purchased Components 18
3.10 Interfaces 18

3.10.1 User Interfaces 18
3.10.2 Hardware Interfaces 18
3.10.3 Software Interfaces 18
3.10.4 Communications Interfaces 19

3.11 Licensing Requirements 19
3.12 Legal, Copyright and Other Notices 19
3.13 Applicable Standards 19

4. Supporting Information 20

Index of Tables and Figures

Figure 1.3.6-A ... 9
Table 3.10.3-A ... 18

Confidential ©Sameera Perera, 2005 Page 4

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

Software Requirements Specification

1. Introduction

This section introduces the System Requirements Specification (SRS) for Project

ZNIX to its readers.

1.1 Purpose

The purpose of this software requirements specification (SRS) is to establish the

major requirements of the Project ZNIX research and development effort.

Project ZNIX is an attempt to refine traditional information management

systems to provide an object-based, application-independent retrieval and

manipulation framework.

1.2 Scope

The SRS applies to the higher level design of the ZNIX Framework.

1.3 Definitions, Acronyms and Abbreviations

This section provides the definitions of all terms, acronyms, and abbreviations

required to properly interpret the SRS. Note that capitalization styles are used

throughout the document to distinguish ZNIX-specific terms.

1.3.1 ZNIX

ZNIX is not an acronym. The term was decided upon to suggest the aspirant

notion that a fully ZNIX integrated operating system could be the last (thus the

letter “Z”) major evolution for POSIX system.

1.3.2 ZNIX Framework

The ZNIX Framework is a collection of system services (daemons) that:

• Facilitate user interactions with information and,

• Expose lower level functionality through a public API

Confidential ©Sameera Perera, 2005 Page 5

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

Often, the terms Project ZNIX and the ZNIX Framework and Framework Shell

would be used interchangeably at this stage.

1.3.3 Client Process

A client process is a software application that interacts with the ZNIX

Framework by either utilizing the public API or by directly accessing the

information presented by the Framework. Note that all client application need

not be “ZNIX-aware” (i.e. knows that the information it accesses are managed

by the Framework). As long as its operation involves an intervention by the

Framework at some point, an application may be considered a ZNIX Client.

1.3.4 ZNIX Proxy Mechanism

The Proxy Mechanism is the collection of Framework components that enable

“ZNIX-unaware” applications to utilize the Framework capabilities.

1.3.5 Entity

An Entity is the basic block that builds up ZNIX’s information hierarchy.

Entities are first class citizens of the ZNIX Framework; which simply means

that the Identity of an Entity is unique and non-dependant on any other Entity.

1.3.6 Associate

An Associate is similar to an Entity, differing in the fact that its Identity is

dependant on at least one Entity. The Framework’s interest in an Associate

depends solely on its relationship(s) to first class citizens. As such, when the

last related Entity breaks the relationship to an Associated (i.e. loses interest in

it), it will be removed from the ZNIX data1 store as it no longer has any

significance in the context.

1 Note the use of the word “data” when it has been stated that the word “information” is preferred in this context. The thinking behind

this is that, what the framework manages is raw data; it will associate a meaning to this data effectively transforming them into

information.

Confidential ©Sameera Perera, 2005 Page 6

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

1.4 References

• [Zachary, 1994]: Inspired by “Information at your finger tips”- Bill Gates, the

vision behind Microsoft’s (abandoned) project Cairo. Quoted from Zachary,

G. Pascal 1994. Show-Stopper! The Breakneck Race to Create Windows NT

and the Next Generation at Microsoft. Little, Brown and Company (UK). (Note:

Longhorn, the upcoming successor to Windows XP is said to be a

continuation of Project Cairo).

• WWW01: Project Haystack website. http://haystack.lcs.mit.edu/

• WWW02: ZDNet Software Review website.

http://reviews-zdnet.com.com/4514-3513_16-21008729.html?tag=subnav

• WWW03: Open Source Initiative Website.

http://opensource.org/licenses/lgpl-license.php

• WWW04: Open Source Initiative Website.

http://opensource.org/licenses/gpl-license.php

• WWW05: MSDN Website

http://msdn.microsoft.com/winlogo/

• WWW06: Websites for Unicode Standards

www.unicode.org

ftp.informatik.uni-erlangen.de/pub/doc/ISO/charsets/ISO-10646-UTF-

8.html

ftp.informatik.uni-erlangen.de/pub/doc/ISO/charsets/ISO-10646-UTF-

16.html

• Special Notes

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in

this document are to be interpreted as described in RFC 2119.

Confidential ©Sameera Perera, 2005 Page 7

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

The words “He” or “he”, whenever not referring to a nominal individual, MAY

be read as “he or she” throughout this documentation.

1.5 Overview

This specification is organized into the following sections:

• Introduction, which introduces the specification for Project ZNIX to its readers.

• Overall Description, which provides a brief, high level description of Project ZNIX

including its definition, benefits over alternatives, capabilities etc.

• Specific Requirements, which describes the software requirements to a level of

detail sufficient to facilitate design and testing processes.

Confidential ©Sameera Perera, 2005 Page 8

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

2. Overall Description

Project ZNIX envisions a world which leaves behind a one that users manage

information by mastering software applications [Zachary, 1994]. Emphasis in

this approach is on information2 and its semantics. It seeks to make meaningful

information accessible to users in ways they themselves declare to be logical.

2.1 Project Perspective

Project ZNIX SHOULD distinguish itself form other information management

systems by its superior integration with the operating system. The Framework,

in its operation, SHOULD resemble the schematic diagram displayed in Figure

1.3.6-A.

Figure 1.3.6-A

2 In ZNIX terminology the word “Information” is always preferred over the word “data”, as the former implies that there is an

associated “meaning”.

Confidential ©Sameera Perera, 2005 Page 9

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

2.1.1 Benefits over alternatives

2.1.1.1 Project Haystack

“Haystack is a tool designed to let every individual manage all of their

information in the way that makes the most sense to them” [WWW01].

Sharing the idea of a centralized store for all types of information with ZNIX,

Project Haystack provides a tool (an extendable browser) for accessing the

managed information. This tool is however, a standalone application with little

support for 3rd party applications. Although, it does provide means for

developers build additional, unless the project is adopted as a global standard

there would be little incentive for the development of (especially commercial)

extensions.

ZNIX includes both an API and a proxy mechanism. The API would enable

developers to build applications that utilize the full potential of the Framework.

The proxy mechanism would enable many established 3rd party applications to

interact with the Framework.

Requirements to run Haystack on an Intel PC include 512 megabytes of RAM

(with 768 megabytes strongly being recommended). ZNIX Framework SHOULD

run comfortably on systems with only 256 megabytes of RAM.

2.1.1.2 Windows Longhorn

Project ZNIX was largely inspired by an ancestor of Microsoft’s Windows

Longhorn. However, since at the time of this specification, features inherent in

this operating system have not been finalized, little conscious effort will be

taken to incorporate them into ZNIX.

It has been reported that “by the time Longhorn ships, according to Microsoft

chairman Bill Gates, PCs will have 4GHz to 6GHz processors, more than 2GB of

memory, at least a terabyte of storage, and graphics accelerators three times

more powerful than those offered by ATI and NVIDIA today” [WWW02]. ZNIX on

the other hand is designed from the ground up to run on system with far less

resources.

Confidential ©Sameera Perera, 2005 Page 10

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

2.2 Product Functions

• Provide a centralized archive for user’s information.

• Provide hierarchical model for managing the archived information.

Hierarchies maybe inheritance based, association based or based on any

other type of relationship conceived by the user.

• Allow the user to add, remove, modify or back up (to removable storage

devices) arbitrary pieces of information without disrupting the hierarchy.

• Assist the user in building up his information hierarchy by automating

such tasks as data capturing and categorizing.

• Provide a simple API for developing ZNIX-aware client applications.

2.3 User Characteristics

The browser GUI SHOULD be designed such that even casual users could easily

manipulate their information with little or no training. It is expected that the

bulk of the ZNIX user-base would be home users, managerial staff, executives,

and researchers who are likely to possess only basic IT skills.

2.4 Constraints

The system design MUST be subjected to the following constraints:

• Hardware: Intel Pentium III or compatible 1-GHz PC with 256 megabytes of

RAM

2.5 Assumptions and Dependencies

The system design MAY assume that all interfaces designed for the 3rd party

software listed in Table 3.9.3-A will be compatible with their subsequent

releases. Thus, for instance, when the system is found to be compatible to

Windows 2000 Professional Service Pack 4, it MAY be assumed to be Windows

2000 Professional Compliant, regardless whether other service releases would

break the system.

Confidential ©Sameera Perera, 2005 Page 11

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

The applications listed in this table are assumed to be safe from vulnerabilities.

The security offered by these products will form the basis of the security of the

Framework.

It is assumed that supporting the software listed would be sufficient to serve

the intended user-base, considering their popularity on Microsoft Windows

based systems.

Confidential ©Sameera Perera, 2005 Page 12

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

3. Specific Requirements

3.1 Functionality

This section describes the functional requirements of the system.

3.1.1 Centralized store for user information

The Framework MUST be capable of capturing information form the software

tools specified in Table 3.9.3-A. The data captured SHOULD be stored in a

centralized data store. The Framework MAY decide whether the information

should be stored as Entities or Associates.

The data capturing and archiving mechanisms MAY resemble the following.

3.1.1.1 Type of Information: Personnel

Mechanism:

i. The Address Book is used to create Entities under the category “People”

(Category names are user definable. However, a certain set of categories

like People, Email etc. MAY need to always be present).

ii. User SHOULD be able to modify, add, delete or group these Entities by

navigating to a virtual folder (e.g. /People/).

3.1.1.2 Type of Information: Email (Outbound)

Mechanism:

i. The email is intercepted before it is dispatched to the SMTP server.

ii. An Associate is created to contain the message body.

iii. The recipient name(s) are used to create (if required) Entities under the

“People” category. The Associate is then linked to each Entity.

3.1.1.3 Type of Information: Email (Inbound)

Mechanism:

Confidential ©Sameera Perera, 2005 Page 13

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

i. The email is fetched from the POP3 server.

ii. An Associate is created to contain the message body.

iii. The sender’s name is used to create Entities, under the category

“People”. The Associate is then linked to this Entity.

3.1.1.4 Type of Information: WWW Documents

Mechanism:

i. User SHOULD be able to specify when he is to start a research project; i.e.

when the web sites he visits subsequently are to be permanently stored.

ii. The project name specified by the user spawns a new Entity in the

Framework.

iii. An associate is created as an archive and is linked to this Entity.

3.1.1.5 Type of Information: Textual Documents

Mechanism

i. The user after editing a document in a word-processor invokes a special

GUI supplied by the Framework.

ii. The GUI allows him to draw arrows to and from (a symbol representing)

the current document to any Entity creating relationships between the

document and the relevant Entities.

iii. The user may optionally specify a descriptive name for the document.

iv. The document is automatically saved to disk in a manner that reflects

the relationships it has to other Entities. The user may in the future

fetch this document by following the relationship paths that he had

created.

The GUI described in section 3.1.1.5 MAY also be made available when dealing

with other types of information as well.

Confidential ©Sameera Perera, 2005 Page 14

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

3.1.2 Hierarchical view of the information

The user MUST be able to view the information in the central store in a

hierarchical manner that makes sense to him. Section 3.1.1 describes how this

hierarchy is built up. The Framework SHOULD include a browser that is

capable of displaying this hierarchy in a UI similar to that of the Windows

Explorer. The browser MAY OPTIONALLY be integrated directly in to Windows

Explorer, rather than being a standalone application.

This browser MAY integrate the GUI described in section 3.1.1.5 as well.

3.1.3 Archiving of information

Often, the user may want to archive portions of the information-store to

removable storage media (the term storage media covers only CD-ROMs and

USB Pen Drives at this point). However, this SHOULD not mean that such

portions would be “forgotten” by the Framework.

Therefore, some residue MUST be left on the data store to indicate that a

portion of data has been archived. For example, assume all information relating

to a “Person” Entity named John is archived to a CD-ROM. When the user

subsequently looks for John, the Framework SHOULD NOT declare that such

an Entity was not found. Rather, it SHOULD inform the user that the Entity

has been archived (and OPTIONALLY, if he wishes to proceed, to remount the

relevant storage device).

3.1.4 The public API

The Framework API should expose at least the following functionality to client

processes.

• Create, delete and modify Entities and Entity groups

• Create, delete and modify relationships between Entities

• List and access Entities with an API similar to that of a standard file

system API.

• Execute queries for the retrieval of Entities using different criteria.

Confidential ©Sameera Perera, 2005 Page 15

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

The API that exposes Entity listings MAY be designed to be similar to the

System.IO APIs of the .NET Platform which provide directory and file listings.

3.2 Usability

3.2.1 Typical training time required

GUIs associated with the Framework SHOULD be designed such that an user

with basic understanding of the Windows 2000/XP operating systems would

instinctively be able to interact with them. Therefore, most GUIs MAY need to

closely mimic popular Windows applications.

3.3 Reliability

This subsection specifies the following requirements associated with the

reliability of the system.

3.3.1 Mean Time between Failure (MTBF)

The mean time between failures (MTBF) SHALL exceed 3 months.

3.4 Performance

3.4.1 Capacity

At this stage of the development, the Framework MAY only operate in single

user mode, with no networking capabilities.

3.4.2 Resource Utilization

The Framework Shell SHOULD NOT utilize more than 40 megabytes of RAM.

Confidential ©Sameera Perera, 2005 Page 16

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

3.5 Supportability

3.5.1 Coding Conventions

Any coding conventions to be used during implementation MUST be

documented before the beginning of the phase, and strictly adhered to during

the phase.

3.5.2 Compliance to Opens Source Standard Practices

Project ZNIX SHOULD be available to its potential users in source and binary

from, and free of charge. The project MAY be hosted on a popular Open Source

distribution website such that the Open Source community is aware of (and

contribute to) its existence.

The website for distributing the project SHALL include provisions for the users

to make comments on the product as well as to compile a wish-list of features.

3.6 Security

The Framework MUST guard against malicious scripts on remote websites from

accessing its information.

The Framework MUST guard against unintended corruption of information by

the user himself.

3.7 Design Constraints

No design constraint has been imposed at this stage.

3.8 Online User Documentation and Help System Requirements

The online help system should be compiled utilizing as much of non-technical

terms as possible. Care SHOULD be taken not to produce an exhaustive user

documentation as that would defeat the main purpose of the system as

expressed in the introduction to section 2.

A comprehensive Developer’s Guide MAY be compiled to facilitate 3rd party

ZNIX-aware applications.

Confidential ©Sameera Perera, 2005 Page 17

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

3.9 Purchased Components

N/A

3.10 Interfaces

3.10.1 User Interfaces

A GUI capable of browsing the information managed by the Framework, similar

to that of the Windows Explorer SHOULD be available to the user. The GUI

MUST also be capable of allowing the user to specify relationships between

disparate Entities as he see fit.

3.10.2 Hardware Interfaces

The system does not require special hardware interfacing.

3.10.3 Software Interfaces

Provisions SHOULD be made so that at least the following 3rd party applications

can take advantage of the Framework for the specified types of information.

Product Name Source Version Type of Information

Outlook Express Microsoft Corporation 6.0 Email

Outlook 2003 Microsoft Corporation 11.5 Email

Address Book Microsoft Corporation 6.0 Personnel Information

Internet Explorer Microsoft Corporation 6.0 WWW Documents

Opera Opera Software ASA 7.5 WWW Documents

Firefox Mozilla Corporation 1.0 WWW Documents

Word 2003 Microsoft Corporation 11.5 Textual Documents

Table 3.10.3-A

Targeted operating systems are Windows 2000 Professional and Windows XP.

Confidential ©Sameera Perera, 2005 Page 18

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

3.10.4 Communications Interfaces

At this stage of development Project ZNIX requires no communication

interfaces.

3.11 Licensing Requirements

ZNIX Framework will be licensed under GNU Library General Public License

(LGPL) [WWW03].

The browser and any other tool released alongside the Framework will be

licensed under GNU Public License (GPL) [WWW04].

3.12 Legal, Copyright and Other Notices

• All proprietary trademarks, product names and/or logos used on this

document are trademarks of their respective owners.

3.13 Applicable Standards

All components associated with Project ZNIX should conform to the following

standards:

• Windows 2000 Logo Requirements [WWW05]

The system SHALL conform to ISO 10646 (Unicode UTF-8) and OPTIONALLY

ISO 10646-1 (Unicode UTF-16) standards for character set encoding. [WWW06]

Additionally, design of the system MAY yield a new set of standards that ZNIX-

aware client processes MAY need to conform to.

Confidential ©Sameera Perera, 2005 Page 19

Project ZNIX Version: 1.0

Software Requirements Specification Document ID: ZNIX-SRS 1.0 Date: April 30, 2005

4. Supporting Information

None specified.

Confidential ©Sameera Perera, 2005 Page 20

