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Abstract:  

This document updates the progress made in the different research areas related to 6G Access 
Architecture performed in the 6G BRAINS project. The updated research areas in this 
document include: 

• Artificial Intelligence (AI) based scheduler for a 5G Cell-Free (CF) networks with 
Integrated Access and Back-haul (IAB)  

• Grant-free NOMA for massive Machine-Type Communication 
• Hybrid user terminal modelling for the D2D enabled cooperative network 
• Intelligent IAB with Beam Steering based on User Location 
• Advanced Test and Simulation Tools supporting 6G BRAINS research   
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Executive summary  

6G-BRAINS explores different architectures and essential modules for B5G and 6G ultra dense 
and dynamic cellular networks. In the document we describe the design of an Artificial 
Intelligence (AI) based scheduler for a 5G Cell-Free (CF) Networks with Integrated Access and 
Backhaul (IAB) and intelligent beam steering. The ultra-dense dynamic CF Network includes a 
cluster of Device to Device (D2D) User terminals (UE) and human-centric control interfaces.    

The Cell free Integrated Access and Backhaul scheduler is subdivided into two parts, namely: 
(1) IAB Bandwidth Allocation, (2) Routing solution. 

The IAB Resource Allocation finds the optimal way to divide the spectrum between the 
Backhaul and Access requirements of the different Donors and the Nodes in the Network using 
supervised learning AI method with CQI, DL and UL profile and connected base-station for 
input parameters and the rate each link must support and its efficiency for cost function. AI 
based Scheduler considers two approaches, namely: Cloud-based (Centralized) and 
distributed based. The research seeks to determine and quantify the trade-off between the 
benefits of the two approaches. The Supervised Learning model architecture uses 2 sub-
models, namely: Big model: is implemented in the IAB-donor (cloud based) and divides the 
total bandwidth resources between all IAB (including itself) components (IAB Donor and 
Nodes); Small model: is implemented all the IAB components and allocated the bandwidth 
resources between the access (UL and DL links of the UEs) and the backhaul (UL and DL links 
to the served Nodes). This Supervised Learning AI Model then requires training. 

The Routing solution is based on Multi-Agent Deep Reinforcement Learning (MA-DRL) for a 
fully synchronized time-slotted wireless network with the objective to find the optimal route 
from each BS (Donor or Nodes) to each user in terms of: Packet Error Probability (PER) for the 
whole packet trajectory; Maintenance of Quality of Service (QoS) requirements; Network 
Congestion Management including Queue management and Fairness. Two approaches have 
been examined in our previous report (D4.1), namely: a centralized model using the Dijkstra’s 
algorithm; a decentralized solution using Q-Routing algorithm; to determine their benefits. 
Here we designed a decentralized routing algorithm called MA-RAC that learns from 
experience while interacting with a simulated 5G environment that outperforms the Q Routing 
scheduler previously introduced. 

Efficient users clustering and power assignment is presented for a dynamic cell-free network 
that can cluster NOMA users over the limited spectrum resources and allocate optimal 
transmit power to each user in the cluster. The clustering finds a group of NOMA-based D2D 
users that can be scheduled on the same resource blocks forming a cluster. Parent points are 
distributed following a homogeneous Poisson Point Process, which every parent point (RmUE) 
is uniformly distributed in the certain area and then offspring points (mUEs) around one 
parent point to form a cluster.  

Deep Reinforcement Learning (DRL) is used to predict the power, mobile users’ frequency, 
users’ location or beam trajectories, where the environment provides a reward to the agent 
for every interaction and the agent aims to select the right action for the next interaction to 
maximize the discounted reward over a time horizon. The goal is to design a DRL system that 
jointly optimizes the clustering of UEs and the beamforming vectors to obtain the optimal 
beamforming vector that maximizes the throughput and minimizes loss. 
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Artificial Intelligence (AI) is incorporated with beamforming and millimetre Wave (mmWave) 
enabling intelligent beam steering based on user locations.  

Deep Learning Integrated Reinforcement Learning (DLIRL) algorithm is proposed for the 
beamforming solution to overcome the problems associated with mmWave like blockage 
impacting the coverage, reliability of highly mobile links, latency overheads associated with 
the highly mobile users in dense mmWave deployments requiring frequent hand-offs. 

The DLIRL beamforming or beam steering track the user locations who is moving at a speed of 
25 km/hour and based on that its location is changing in terms of latitude and longitude to 
perform beam steering towards the moving user. The beam steering experiment is 
implemented using MATLAB 2021a and data for DNN training is obtained via ray tracing with 
MATLAB’s Site Viewer. The training for DLIRL is based on the impulse response of the received 
signal at the coordinated Base Stations from isotropic transmissions from user equipment, 
which is jointly received at the coordinating IABs, and used for performing training of the 
useful information about the surrounding environment because of transmitted signal’s 
interaction with the surrounding environment. The beamforming, the power control and 
interference coordination is jointly carried out at the IABs to enhance the performance of the 
5G network.  

We acknowledge that telecommunications service providers have an urgent need to reduce 
operational costs while supporting the rapid introduction of new services and products and 
identifying and leveraging monetization opportunities. AI/ML has emerged as a powerful 
technology that can support these needs. 

6G BRAINS recognizes that in order to transition to an industrialization phase and enable mass 
adoption of AI/ML, dedicated AI/ML research in specific Cellular Network modules is required. 
The research results provided in this document show the potential benefits of using this 
technology in 6G areas like Schedulers, Integrated Access and Backhaul, Device to Device 
Networks, Beam Forming and Human/Machine Interfaces. Furthermore, it is our opinion that 
AI/ML should be adopted at additional levels of the network architecture.    
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1 Introduction   

1.1 Introduction and Objective of this document 

Communications service providers (CSPs) strive for relentless efficiency, business agility to 
address new revenue opportunities, and to meet or exceed customer expectations through a 
superior experience. This continues with the introduction of 5G programmable networks [1] 
which enable new revenue-creating opportunities through both enhanced user experience as 
well as the tailoring of telecommunications networks to provide differential services for both 
existing and new types of enterprise customers (e.g., Industry 4.0, Automotives, Fixed 
Wireless etc). The introduction of new technologies as well as additional services for 
customers, the densification of networks to support macro and micro coverage, and the need 
to ensure services with differing requirements significantly increases the complexity. 

Artificial intelligence (AI) technologies have already matured to the point where CSPs have 
been applying them to their networks, often starting with non-time-critical processes, and are 
now applying them to the sensitive parts of their networks that directly impact user 
experience. The increased complexity of networks due to more services, new network 
technologies, and massive network densification further necessitates the application of AI in 
telecommunications networks as operations become more complex. 

AI technologies can make many CSPs’ system functions more capable as well as enable new 
system functions and approaches. Some example applications include: 

• improving network performance though better radio scheduling optimized to the 
operator business model and users’ requirements 

• improving assurance of offered services and resources, moving from reactive to 
proactive — even in the face of increasing network complexity and heterogeneity 

• improving optimization and use of existing resources, such as spectrum, transport, 
cloud infrastructure and network functionality 

• improving experience management through both increased customers understanding 
as well as increased tailoring of the offered experience 

• improving product and service definition, design, planning and offerings 
• improving network and performance planning (such as radio, data centre location and 

transport) 

The maturing capabilities of AI have resulted in increased attention within standardization and 
open-source communities, both from a purely technology evolution perspective as well as 
from an architecture definition perspective. While open source and standardization are 
enablers for increased AI adoption, the fragmentation which occurs in the early phases of 
industry specification can hinder adoption due to the uncertainty it creates, which occurs 
between different industry bodies as well as in different groups within industry bodies. 

Consequently, CSPs are facing a number of challenges today regarding which standards to 
follow, which aspects of open source should be utilized directly or via vendors, how to increase 
industry alignment for scale while simultaneously allowing for differentiation, how to leverage 
the scale of public cloud providers, how to collect and manage data, and how to support the 
Life Cycle Management (LCM) of AI models. 

The objective of this document is to update the progress performed in the work package 4 
Research during the second year of the 6G BRAINS project in the area of innovative Access 
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Network research and concepts that are investigated by the beneficiaries that are part of the 
WP-4 team including: 

•  Artificial Intelligence (AI) based scheduler for a 5G Cell-Free (CF) Networks with 
Integrated Access and Backhaul (IAB) by RunEL  

• Grant-free NOMA for massive Machine-Type Communication by the University of 
Leicester (ULEC) 

• Hybrid user terminal modelling for the D2D enabled cooperative network by ULEC 
• Intelligent IAB with Beam Steering based on User Location by Brunel University 
• Advanced Test and Simulation Tools supporting 6G BRAINS research by Viavi. 
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2 AI Based Cell Free Scheduler with IAB   

2.1 Definition 

The research process of an AI based scheduler for Cell Free Cellular Networks with Integrated 
Access and Backhaul (IAB) capability was initially reported in Deliverable D4.1 [17] Chapter 2 
of the 6G BRAINS project, this Chapter updates the initial report with the advancement 
performed in the last 12 months of the project. 

The Cell Free Scheduler is comprised of two serial AI based components: 

• The Spectrum allocation module based on a distributed Supervised Learning method 
• The Routing module based on a distributed Multiple Agent Deep Reinforcement 

Learning method 

In this report the second component (Routing module) of the serial scheduler is described in 
detail and the significant improvement over the results reported in D4.1 are highlighted. The 
research is performed by RunEL with collaboration of the School of Electrical and Computer 
Engineering, Ben-Gurion University of the Negev, Be’er-Sheva, Israel. 

The following Figure 1 describes the Scheduler main mission in modern cellular networks, the 
large number of different parameters that influence its performance that makes it impossible 
to find a deterministic model that can deliver an optimal scheduling result; and therefore, we 
need to search for an AI based solution 

 

Figure 1: Cell Free Scheduler with IAB 
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2.2 General 

The growing use of wireless communications and the limitations of the electromagnetic 
spectrum have sparked the development of more efficient methods to improve network 
management techniques. To support those requirements, The 3rd Generation Partnership 
Project (3GPP) defines a standard, New Radio (NR), which proposes novel designs and 
technologies to comply with the requirements for fifth-generation (5G) networks [2]. As part 
of this new protocol, the 3GPP defines new bands at the millimetre Wave (mmWave) 
frequencies. By utilizing the severe path losses in mmWave frequencies, operators can exploit 
the spatial diversity and increase data rates over traditional congested bands. Due to the 
nature of those frequencies, operating at them introduces new physical challenges, such as 
severe path and penetration losses. To overcome these physical challenges, we can increase 
the density of the network and use beam-forming methods [3]. In spite of the potential 
benefits of increasing network density, the deployment and operation of fibre between the 
Next-Generation Node Base Station (gNB) and the core network would lead to high costs. 
Integrated Access and Backhaul (IAB) is a promising solution for successful 5G adoption 
because, as part of this solution, only a fraction of the gNBs are connected to the traditional 
fibre-like infrastructures [4]. Thus, we can reduce redundant deployment and operational 
costs by using the advantage of spatial diversity. The fiber-connected gNBs are called IAB 
donors, while the rest of the gNBs are called IAB nodes, and they use a multi-hop wireless 
connection for the backhaul traffic. Although IAB networks reduce deployment and operation 
costs, ensuring reliable network performance is an open research problem due to the highly 
nonstationary characteristic of this kind of network. Dynamic topology, shared wireless 
channels, and limited node capabilities are factors that need to be considered to support those 
requirements. The main paradigm in this context is network’s congestion control via routing, 
in which each destination might have multiple paths and base stations monitor the network 
conditions to choose their next hop. There are two main approaches for implementing routing 
algorithms in a wireless network: A centralized approach and a distributed approach. In the 
centralized approach, there is a central network processor, which is a single point of contact 
for path selection, whereas in the distributed approach every node makes next-hop decisions 
based only on its own observations without knowing other nodes’ decisions. In practical 
implementations, due to bandwidth limitations and multi-hop structure, the information 
sharing operation is limited only to the base station’s neighbourhood, thus, the base-station 
(BS) can only observe a part of the current network state, which implies that when operating 
in a distributed manner, next hop transmission decisions are based only on partial 
observations. In this deliverable, we focus on the design of a distributed routing algorithm for 
an IAB based networks. 

2.2.1 Organisation and Notations 

The rest of this Chapter is organized as follows: Section 2.3 details the problem formulation 
and assumptions; Section III motivates and discusses the rationale for the chosen Multi-Agent 
Reinforcement Learning (MARL) approach and details the proposed algorithm. Section 2.4 
reports simulation results, including a comparison with approaches proposed in previous 
works and with the optimal scheme (when possible). These results clearly demonstrate the 
advantages of the proposed approach over other approaches. Lastly, Section 2.5 concludes 
this work. 
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Throughout this work, we use N to denote natural numbers, bold letters, e.g., X to denote 
vectors, and Xi denotes the i’th element in the vector X, i ≥ 0. Calligraphic letters used to 
denote sets, e.g., X, and the cardinality of a set denoted by | · |, e.g., |X | is the cardinality of 
the set X. 

2.3 Problem Formulation 

We consider a multi-hop IAB wireless network with IAB donors, IAB nodes and multiple User 
Equipment (UE) [4]. IAB donors are wired to the core network, whereas IAB nodes use wireless 
communication to backhaul their traffic to the core network via a multi-hop connection. Both 
IAB donor and node provides an access and backhaul interfaces for UE and IAB nodes, 
respectively. 

We model this network by an undirected weighted graph G = (N, L, d), where N, L denotes the 
set of nodes and wireless links, respectively, and d : L → N assigns delay to each wireless link. 
There are three sets present in N, a set D of IAB donors, a set B of IAB nodes and a set U of 
UEs, e.g., N = D ∪ B ∪ U. Each of the nodes n ∈ D ∪ B is equipped with an independent buffer 
queue Qn, a transceiver with beam-forming capability and routing ability. Each of the links 
(n,m) ∈ L is a bidirectional link between node n and node m, portraying a time-varying wireless 
channel. We assume that time is slotted by t ∈ N, and for simplification, we assume that 
packets are constant in length and that transmission rates are limited to transmit integer 
numbers of packets per slot. As another simplification, we represent the wireless link’s 
spectral efficiency as a delay between the two nodes of the graph using the aforementioned 
mapping.  The reason we assume this is that links with different degrees of spectral efficiency 
will require different numbers of transmissions to transfer the same amount of data, so using 
a low spectral efficiency link instead of one with a high spectral efficiency will produce a larger 
delay. 

Once an IAB node or UE is activated, it is connected to an already active node, i.e., either an 
IAB donor or another IAB node which has a path to an IAB donor. Thus, we build the network 
topology in an iterative greedy fashion similarly to [5] where we set constraints over the 
maximal number of IAB parents (Pmax parent), IAB children (Cmax children), number of users 
each base station has (Umax children) and the number of associated base-station each user 
has (Umax parent). It should be noted that by using the following topology generation scheme, 
we receives a connected graph, i.e., there is a path from any base-station to any other node 
in the network. We assume that all our nodes, operate at mmWave bands for both, backhaul 
and access transmission and reception (in-band backhauling) with beam-forming capabilities. 
Therefore, similarly to [6], we disregard the interference between non-assigned nodes since 
narrow beam mmWave frequencies have a power limit rather than interference limit. 

In our network, F represents the set of information flows - that is, each fij ∈ F, i, j ∈ N denotes 
an information flow between nodes i and j, dictating the amount of traffic between ith and jth 

nodes. In order to model the stochastic nature of packet’s arrival process, we use a random 
Poisson process {Xi}∞i=0 with parameter λ which we term as our network load. At each time-
slot, we sample our arrival process, which resolves with the number of generated packets. 
Each packet is assigned a time limit when it is generated. We refer to this time as Time-To-
Live (TTL). Upon expiration of this TTL, the packet is dropped. The packets are then distributed 
among the network’s base-stations using the following paradigm. Each donor receives a 
certain number of packets, corresponding to 80 percent of his available wireless bandwidth, 
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while the remaining packets are distributed in a uniform random manner among all the 
network’s base stations. 

Afterwards, each base-station i ∈ D ∪ B uniformly sample a destination ˜ d for each of her 
newly injected packets from the available destinations, i.e., ˜ d ∈ {j, ∀fi,j ∈ F|i is constant}. A 
final step is to push the new packets through the queue {Qn}n∈D∪B of each base station, 
where each queue contains packets waiting for transmission. The base-stations queue packets 
in an unlimited-sized prioritized queue based on TTL. Accordingly, the base-station always 
processes packets on top of the prioritized queue first. 

We denote Ni as the set of neighbours of node i ∈ N, i.e., (i, j) ∈ L, ∀j ∈ Ni, and let N,K ∈ N be 
the number of channels and activated base stations, respectively. At each time step, each 
base-station i ∈ D ∪ B extracts a set of packets Pi ∈ Qi, |Pi| ≤ N. This is followed by deciding 
where to send each packet p ∈ Pi, which means that the ith base-station have to choose one 
destination from Ni for each packet p ∈ Pi. In our model, users may move or change their base-
station associations between two consecutive time slots, which would resolve in a change of 
the network topology. In addition, the edges delay are slowly varying around their initial 
values to modulate the changes in the wireless link. 

2.4 Theoretical Background 

This paragraph presents our mathematical formulation of the problem in detail. We begin by 
exploring Markov Decision Processing and Partially Observed Markov Decision Processing and 
their application to the multi-agent scenario, Stochastic Game and Partially Observed 
Stochastic Game, respectively. We then define our problem as a Partially Observed Stochastic 
Game and introduce the tools we used in our algorithm from the field of Multi-agent 
Reinforcement Learning. We conclude by explaining our algorithm in detail. 

2.4.1  Mathematical Formulation 

2.4.1.1 Markov Decision Process (MDP) 

Modelling sequential decision-making problems using Markov Decision Processes is a tool for 
simulating sequential interactions between a single decision maker and the environment. 

The following steps (Figure 2) describe the decision-making process between the agent and 
the environment, according to this model: 

1) At time t environment is in state St and agent chooses action At 
2) At time t+1 environment makes a transition to state St+1 and responds with a reward 

Rt+1 
3) t ← t + 1 
4) Go back to 1. 
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Figure 2: Markov Decision Process Framework 

Under this framework, the agent’s Goal is to select actions that maximize expected 
cumulative discounted reward Gt. Where we define Gt as follows, 

 

The discount factor γ determines how much immediate rewards are favoured over more 
distant rewards. Next, in theoretical terms, we can define a Markov Decision Process as a tuple 
< S,A,R,P, p0, γ > where each component represents:  

1) S is the discrete set of environment states. 
2) A finite set of actions. 
3) R : S × A × S → R is the reward function of the agent. 
4) Initial state probability: p0(s) = Pr(S0 = s) 
5) State transition probability matrix P, p(s′|a, s) = P(St+1 = s′|St = s, At = a) = Pass′ 
6) a discount factor γ ∈ [0, 1] 

2.4.1.2 Partially Observe Markov Decision Process 

A partially observable Markov decision process (POMDP) is a generalization of a Markov 
decision process (MDP). A POMDP models an agent decision process in which it is assumed 
that the system dynamics are determined by an MDP, but the agent cannot directly observe 
the whole underlying state as we can see in Figure 3. Instead, it must maintain a sensor model 
(the probability distribution of different observations given the underlying state) and the 
underlying MDP. Unlike the policy function in MDP which maps the underlying states to the 
actions, POMDP’s policy is a mapping from the observations (or belief states) to the actions. 
Formally, a POMDP is a tuple < S,A,R,P,Ω,O, p0, γ > where each component represents: 

1) S is the discrete set of environment states. 
2) A Finite set of actions. 
3) R: S × A × S → R is the reward function of the agent. Set of rewards R ∈ R 
4) State transition probability matrix P, p(s′|a, s) = Pr(St+1 = s′|St = s,At = a) = Pass′ 
5) Observation conditional probability matrix Ω, p(o|a, s) = Pr(Ot+1 = o|St = s,At = a) 
6) Initial state probability: p0(s) = Pr(S0 = s) 
7) a discount factor γ ∈ [0, 1] 
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Figure 3: Partially Observe Markov Decision Process Framework 

2.4.1.3 Stochastic Game 

The generalization of the Markov decision process to the multi-agent case is the stochastic 
game. Similar to MDP, it is a tool for simulating sequential interactions between multiple 
decision makers and a single environment as we can see in Figure 4. At the beginning of each 
step the game is in some state. The agents select actions, and each agent receives a payoff 
based on the current state, the actions of the other agents, and their own action. Formally, a 
stochastic game (SG) is a tuple < S, A1, . . . ,An , P, R1, . . . ,Rn, p0, γ > where each component 
represents: 

1) n is the number of agents. 
2) S is the discrete set of environment states. 
3) {Ai}n

i =1 are the discrete sets of actions available to the agents, yielding the joint action 
set 
A = A1 × · · · × An. 

4) State transition probability matrix P : S × A × S → [0, 1], p(s′|a, s) = Pr(St+1 = s′|St = s,At 

= a) = Pa
ss′ 

5) Ri : S × A × S → R, i = 1, . . . , n are the reward functions of the agents. 
6) Initial state probability: p0(s) = Pr(S0 = s) 
7) a discount factor γ ∈ [0, 1] 

 

Figure 4: Multi-Agent Markov Decision Process Framework 

In the multi-agent case, the state transitions are the result of the joint action of all the agents, 
a = [a1, . . . , an]T , a ∈ A , ai ∈ Ai. Consequently, the rewards ri and the returns Gi also depend 
on the joint action. The policies πi : S × Ai → [0, 1] form together the joint policy Π. As extending 
stochastic games to a partially observed scenario is exactly the same as extending MDP to 
POMDP, we omit this explanation from this document. Next, we formulate our problem as a 
Partially-Observe Stochastic Game. Prior to detailing our algorithm, we briefly review the tools 
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we used from the field of multi-agent reinforcement learning to motivate our selection of this 
algorithmic approach. 

2.4.1.4 Q-Learning 

Q-learning is a model-free RL algorithm. which means, that it does not assumes any prior 
knowledge over the MDP model. When applied to an MDP < S,A,R,P, p0, γ >, and under certain 
assumptions, this algorithm obtains the optimal policy in the sense of maximizing the 
expected accumulated discounted reward for any given initial state [[7], Ch. 6]. The Q-learning 
algorithm is a value-based RL algorithm, which means that it computes the optimal action-
value function for finding the optimal policy. Let A denote the set of actions, S denote the set 
of states, and let qπ(s, a), vπ(s), s ∈ S, a ∈ A, denote the action-value and value function, 
respectively. Where, action-value function qπ(s, a) represents the expected accumulated 
discounted reward starting from state s, picking action a, and following policy π afterwards, 
and value vπ(s) function represents expected accumulated discounted reward starting from 
state s, and following policy π. The term γ ∈ [0, 1), denotes the discount factor. Because we 
consider the case of infinite time-horizon problem, then [[7], Ch. 3] 

 

The optimal policy π∗, is a policy that satisfies 

 

for any policy π and for every possible state-action pair, (s, a) ∈ S×A. The optimal policy can be 
obtained easily from the optimal action-value function, q∗(s, a), as  

 

The Q Learning algorithm iteratively estimates the optimal action-value function for each valid 
state-action pair in an online manner as follow: At each time step t ∈ N, the agent observes a 
state s ∈ S, selects an action a ∈ A, receives a reward r for executing the selected action a ∈ A, 
and observes the next state s′ ∈ S. Then, the estimation of the corresponding q∗(s, a), referred 
to as the Q-value and denoted as Q(s, a), is updated according to the update rule: 

 

for some α ∈ (0, 1) referred as the learning rate. To explore various state-action pairs, the 
action a is selected according to an ϵ-greedy policy, meaning that most of the time the selected 
action maximizes the estimated optimal action-value function, whereas in the rest of the time 
the action is selected randomly from the set of all valid actions. Mathematically, the agent at 
state s ∈ S, selects an action 

 

with probability 1 − ϵ, and a uniformly random action from all possible actions in state s, with 
probability ϵ. According to [[7], Ch. 6], this algorithm is proven to converge to q∗(s, a) with 
probability 1 if all of the state-action pairs are visited infinitely often, and a variant of the usual 
stochastic approximation conditions is satisfied. Although our agent is guaranteed to converge 
to the optimal policy by following the ϵ-greedy exploration technique, this exploration method 
might increase the minimal number of interactions between the agent and the environment 
due to inefficient exploration of actions (it samples actions uniformly without considering any 
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prior knowledge). For this problem of exploration vs exploitation, there are some alternative 
methods that aim to optimize exploration by considering prior knowledge. For example, in 
policy gradient methods, the policy and therefore the exploration are optimized directly by 
using the agent’s prior knowledge. 

2.4.1.5 Policy Gradient and Actor Critic 

Policy Gradient based methods are also a model-free RL algorithms but unlike the 
aforementioned Q-Learning, these methods instead learn a parameterized policy that can 
select actions without consulting a value function. [[7], Ch. 13]. Let < S,A,R,P, p0, γ >, denote 
our MDP. In policy gradient methods, the policy can be parameterized in any way, as long as 
π(a|s; θ), θ ∈ RL is differentiable with respect to its parameters θ for every state-action pair (s, 
a) ∈ S × A, that is, as long as ∇θπ(a|s, θ) exists and is always finite. Because we consider the 
case of infinite time-horizon problem, then our goal is to find a policy πθ⋆ such that it 
maximizes our expected discounted rewards [[7], Ch. 13], 

 

where μ is the steady-state distribution under policy 

 

which is assumed to exist and to be independent of the initial state (an ergodicity assumption). 
The basic idea behind policy gradient-based methods is to improve the policy π performance 
by using the gradient of the objective function J(θ) with respect to θ. These methods aim to 
maximize performance by updating their parameters iteratively using a 1st order 
approximation method known as gradient ascent. i.e., 

 

For some η ∈ (0, 1) which is referred as the learning-rate. Policy gradient theorem [[7], Ch. 13] 
given below is the fundamental result which underlies those popular algorithms: 

 

Following both [[7], Ch. 13] and [8] we have, 

 

A policy parameter update algorithm that uses the following unbiased gradient estimator is 
known as the REINFORCE algorithm [8], 

 

REINFORCE algorithm is not applicable in infinite horizon scenario since we have to wait until 
we get to terminate state to estimate the full step return Gt. Because we are dealing with a 
scenario of infinite horizon, we will also need to estimate Gt. Fortunately, we can do so by 
integrating additional unbiased estimator, i.e., 
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Additionally, due to the estimation process, this method tends to suffer from high variance; 
however, we can reduce a baseline function that will not affect the gradient estimation in any 
way, assuming the baseline is independent of the current action [[7], Ch. 13]. Thus, to reduce 
the variance of the estimated stochastic gradient, we introduce a baseline b(s) = vπθ (s). This 
type of method is called ’Actor-Critic’. In a simple term, Actor-Critic is a Temporal Difference 
(TD) version of policy gradient. In the general case any function parameterization has two 
networks: Actor and Critic. The actor decided which action should be taken and critic inform 
the actor how good was the action and how it should adjust. The learning of the actor is based 
on policy gradient approach. In comparison, critics evaluate the action produced by the actor 
by computing the value function.  

 

Figure 5: Actor Critic Framework 

The Actor-Critic-learning algorithm (Figure 5) iteratively optimize the policy parameters while 
simultaneously estimate the corresponding value function for each valid state in an online 
manner as follow: At each time step t ∈ N, the agent observes a state s ∈ S, selects an action 
a ∈ A, receives a reward r for executing the selected action a ∈ A, and observes the next state 
s′ ∈ S. First, we use the critic’s evaluation to update the policy parameters, and we update 
them according to the following rule: 

 

Then, the estimation of the corresponding vπ(s), referred to as the State-value and denoted 
as V (s), is updated according to the update rule: 

 

for some α, η ∈ (0, 1) referred as the learning rates. Action-value methods have no natural 
way of finding stochastic optimal policies, whereas policy approximating methods can, which 
we will empirically show later that is our desirable policy behaviour. Following this, we define 
our mathematical formulation of the problem. 

2.4.2 Routing Model 

2.4.2.1 State 

Let S be the global state space of our network and Oi be the ith base-station observation space, 
where 

 

Next, we define our agent’s observation, which is handcrafted from three kinds of features: 
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1) fpacket - features that are related to the packet’s information. 
2) fbase−station - features that are related to the current base-station. 
3) fneighborhood - features that are related to the current base-station neighbourhood. 

By using those features, we aim to increase the agent’s knowledge regarding the global 
network state. Throughout the following definitions we disregard the time index in favour of 
simplicity, moreover, let p, b represent the packet and the base-station, respectively. 

1) Packet’s Features: These are features that are derived from the current packet, to reduce 
the observation space complexity we introduce the mapping l : N → {0, 1}K, 

 

Where i ∈ D ∪ B, by using this mapping, we can approximate the representation of each 
destination based on his base-station association. We also use the packet’s time sensitivity, 
which is expressed as its time to live value. In conclusion: 

 

2) Local Base-Station Features: These are features that are derived from the current base 
station, over here we use the base-station queue length. i.e., 

 

3) Neighbourhood Features: This feature set is derived from the current base-station’s 
neighbourhood. We first collect the local features from all base-stations that are in the local 
neighbourhood, then aggregate those features using a size-invariant mapping such as Min(·), 
Max(·) and Mean(·). In this manner, it is like the phase of features aggregation in a graph neural 
network layer. 

 

Let 

 

be an observation of the ith base-station, where the j’th element in Oi, Oi,j , represents our 
hand-crafted observation which is related to jth channel. Accordingly, let 

 

be our handcrafted feature mapping, thus, we can define Oi,j    F(pj , i)     fpacket(pj) ∪ 
fbase−station(i) ∪ fneighborhood(i) where pj ∈ Pi is the packet that the ith base-station attempts to 
send over his jth channel. 

2.4.2.2 Action 

Naturally, as our problem is to find the optimal path for each packet, we define 

 

as the action set for the ith base-station. Accordingly, the action set of the entire network 
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When the action  

 

represents that the ith base-station is trying to transmit at the jth channel to lth node at time 
step t ∈ N. 

2.4.2.3  Reward 

Let Ri : S × Ai → R− be the reward function of the ith base-station. Also, let 

 

be the reward of the ith base-station for the transmission of packet pj ∈ Pi to node l over the 
jth channel at time step t ∈ N. Similarly, to [9], we define our reward as the following equation: 

 

Specifically, qi(pj) represents the duration of packet pj waiting at node i queue before 
transmission and d((i, l)) represents the transmission delay between node i and node l. 

2.4.2.4 Modelling as a stochastic game  

A reactive routing scheme is used in a multi-hop network to dynamically minimize packet 
delay while ensuring that packets reach their destination on time. There might be multiple 
hops, links with inefficient spectral efficiency, and nodes with overloaded queues in a packet’s 
path, all of which may cause delay. Following our natural intuition, we begin by formulating 
the problem as a Partially Observed Stochastic Game, which we describe using the following 
tuple: 

 

Thus, this problem can be seen as a multi-agent problem, with K different agents/algorithms, 
each representing another base-station in our network. There are various metrics to measure 
or estimate the congestion within the network. In our scenario we define our congestion 
estimation using the following metrics: 

• Packet latency - The time it takes for a packet to travel from its source to its 
destination. 

• Arrival Ratio - The percentage of packets that made it to their destination successfully. 

This multi-objective problem aims to minimize the packet latency while simultaneously 
maximizing the arrival ratio. Therefore, it may suffer from a Pareto-front, which means that 
optimizing with respect to one objective, leads to sub-optimal solution in another objective 
[10]. Despite the fact that the network performance measurements are well defined, an 
individual agent does not necessarily have access to their signals. For example, arrival ratio 
represents a metric which is dependent at the entire network, due to the multi-hop structure 
of the network, at each time slot an individual can’t even obtain a good estimation of this 
value. We define K policies, each represents another agent and denoted by: 

 

The policies 
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form together the joint policy Π : S × A → [0, 1]. 

Finally, our objective is to derive an RL-based algorithm that identifies the joint policy Π that 
maximize the expected accumulated discounted reward over an infinite time horizon, i.e. 

 

for a discount factor γ ∈ [0, 1). 

2.4.3 The Proposed Multi-Agent Relational Actor-Critic Routing Algorithm 

Thriving for simplicity, we initially attempted to solve this task using standard routing-based 
reinforcement learning techniques such as Q-routing and Full-Echo Q-Routing [11]. Due to the 
challenges this task exhibits, namely partial observable, multi-agent optimization and highly 
dynamic topology, these methods did not manage to generalize well. The reason is that each 
agent suffers from performance degradation due to very partial observations which do not 
provide sufficient information about the entire network state and other agent policies. We 
proposed an algorithm to deal with those problems by using partial information exchange 
through the neighbourhood of each base-station (“Relational”), thus leading to cooperation 
between different agents where agents only share information with their neighbours. Our 
model leverages the agent’s prior knowledge into the policy optimization process, reducing 
the need to explore multiple options, and allowing the agent to be more aware of his 
neighbourhood status through a sophisticated state representation. Through enhancing the 
agent’s knowledge of his neighbourhood, we are aiming to improve the agent’s estimation of 
the global network state. 

 

Figure 6: Relational Actor and Critic Neural Architecture of the ith Agent. 

In this algorithm, each base-station is using an iterative online on policy method, Actor- Critic. 
In this scheme, the actor decided which action should be taken and critic inform the actor how 
good was the action and how it should adjust. Critic is used to learn an estimated 
representation of the network state based on the current observation, and then the actor uses 
this information to update its policy. Every node i ∈ D∪B in the network represents its own 
strategy through its actor. For every agent we approximate both actor and critic using a neural 
network which we denote as 
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respectively, as depicted in Figure 6 above. Considering this representation, the node strategy 
determines the action a at node i by sampling the actor distribution πi(·; θi). As soon as node i 
sends a packet p, destined for node u, to one of its neighbouring nodes y ∈ Ni, he receives a 
feedback through the ACK signal that contains the neighbour y critic’s estimation and the 
aforementioned reward R(i), ˆ Vπy (F(p, y);wy) and −(qi(p)+d((i, y)), respectively. The Critic’s 
value essentially estimates the remaining time in the journey of the packet p starting from 
node y and destined to node u while following policy πy. 

Critic is updated through minimizing the following objective L w.r.t. wi, 

 

Where each critic updates its parameters using gradient descent method, 

 

Next, the following approximation is proposed to approximate the objective gradient with 
respect to θi, 

 

Where we neglect the time indexing for notional simplicity. Afterwards, each actor updates 
his policy using gradient ascent method, 

 

It should be mentioned that in a general partially observe stochastic game setting solved using 
multi-agent reinforcement learning techniques, as considered here, the transition 
probabilities P are unknown and only partial observations are available for each agent. A 
moving target poses one of the challenges in such a scenario. In contrast to a single-agent 
system, in which the state transition of the underlying environment is influenced only by the 
actions of a single agent, a multi-agent system is affected by the coordinated actions of all 
agents [12]. Consequently, under the setting of multi-agent, the assumptions of the single-
agent algorithms are violated, whereby the MDP property becomes inoperative since the 
underlying environment is no longer stationary for the individual agents. As a result, the 
distribution of outcomes s′ differs for unique policies Π and Π′ over N updates for a given set 
of state-action pairs, i.e., 

 

Additionally, in multi-agent-based systems, a common problem is multiple Nash equilibrium 
points [13] within the joint policy space, which may resolve with convergence to a less 
desirable, local optima strategy solution [13]. As a result, convergence to the optimal policy is 
not guaranteed theoretically. In practice, however, it achieves very good performance even in 
various POMDP models with infinitely large state space. For example, the work of [14], 
developed an Actor-Critic algorithm for teaching multiple agents how to play Starcraft games 
directly from screen images, and achieved very good performance in various stages. In 
conclusion, at each time step t ∈ N, each agent simultaneously selects N actions (each for a 
different channel), where each action is chosen according to the following rule, 
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The steps of the proposed Multi-Agent-Actor-Critic-Router algorithm are summarized below. 

 

2.5 Experimentation Results 

During this section, we report the results of experiments carried out in order to demonstrate 
the importance of network routing in an IAB network as well as to test and evaluate the 
performance of the proposed MA-RAC algorithm. MA-RAC was implemented as described in 
above in MA-RAC Section 2.4. In the following, all the metrics we mentioned in Section 2.2 are 
used as the figure-of-merit for evaluating the performance of the different algorithms. We 
study here the performance of 2 different versions of MA-RAC, the first version (’Relational 
A2C’) uses mutual weights between the different agents for both Actor and Critic, i.e., w i = w 
∩ θi = θ.∀i ∈ {0, . . .K − 1}. As for the second version (’Dec-Rec-Relational A2C’), it functions in 
a decentralized manner, i.e., each base-station uses its own set of weights for both Actor and 
Critic. In order to suppress the non-stationary issue, a time dependence component was 
incorporated into this model. 

In this study, MA-RAC’s performance is evaluated against the performance of 5 other 
algorithms: 
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1) Centralized-Routing: In this policy, each agent may observe the full system state, and at 
each time step selects the shortest path (also considering the delay induced by queue of other 
agents) to the packet’s destination. 

2) Minimum-Hop-Routing: According to this policy, each agent observes the topology state, 
but not the internal queue states of the base-station, and at each time step selects the 
shortest path to the packet’s destination. 

3) Back-Pressure: In this policy, each node observes its own queues and the queues in its 
current neighbours (Node stores queues for each possible destination). Then, for a given 
destination the node calculates the differentiation between his queue and his neighbours’ 
queues. Using this information, the node chooses which node to send the next packet. For the 
sake of fair comparison, we have developed a version of this algorithm that takes the 
message’s direction into account as well. 

4) Q-Routing: In this policy, each node is using an off policy iterative method, Q-learning [11]. 
In this case, Q-learning is used to first learn a representation of the network state in terms of 
Q-values and then use these values to make routing decisions. Each node n in the network 
represents its own view of the network state through its Q-table. Given this representation of 
the state, the action a at node n is to find the best neighbour node to deliver a packet which 
results to lower latency for the packet to reach its destination. As soon as node n sends a 
packet, destined for node d, to one of its neighbouring nodes y, node y sends its best estimate 

 

for the destination d back to node n over the ACK signal. This value essentially estimates the 
remaining time in the journey of the packet. Upon receiving Q(y)(z, d) node n computes the 
new estimate for Q(n)(y, d) as follows: 

 

Q(n)(y, d) is node n’s best estimated delay that a packet would take to reach its destination 
node d from node n when sent via its neighbouring node y excluding any time that this packet 
would spend in node n’s queue, and including the total waiting time and transmission delay 
over the entire path that it would take starting from node y. Q-value is modified by the 
following formula: 

 

5) Hybrid-Routing: A Q-Routing agent is trained simultaneously with an on policy iterative 
method in this routing algorithm [15]. In this case, Q-learning is used to learn a representation 
of the network state in terms of Q-values and then Hybrid routing uses these values to update 
the agent’s policy parameters by using actor-critic method. As soon as node i extract a packet 
destined to node d from its queue, the node selects its next action based on sampling his policy 
distribution, πi(d, ·; θi). Then, the node sends the packet to one of its neighbouring nodes y. 
The corresponding Q-value is updated based on Q-Routing update rule, and then its policy 
parameters θi are updated according to the following formula: 

 

To evaluate our algorithm performance, we have developed a gym-based simulated IAB 
environment [16]. The simulation takes place over a 2-dimensional grid. Table 1 and Table 2 
describe network and algorithms hyper parameters, respectively. 
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Table 1: Simulation Network Hyper-parameters 

 

Table 2: Algorithm’s Hyper-parameters 

 

The performance of the different algorithms was obtained by averaging the outcomes of 5 
independent experiments for each algorithm at each scenario. 

Figure 7 illustrates a network composed of 1 channel with 1 IAB Donor, 9 IAB Nodes, 100 users, 
and a TTL duration of 50 time-slots. 

 

Figure 7: Network Topology Illustration 

2.5.1 Connectivity Influence 

In this experiment, we have measured the influence of network’s connectivity over the 
performance in terms of the metrics we’ve mentioned in Section II. In order to change the 
network’s connectivity, we have modified the constraints which dictates the number of 
parents each IAB node / User may have and the number of devices (IAB children / Users) that 
each IAB can support. Based on the results illustrated at Figure 8, we can infer that higher 
network connectivity is necessary to support the expected 5G’s high load and low latency, but 
we must still consider that there is a trade-off between increased connectivity and 
interference between nearby base stations. Due to this conclusion, this study will examine 
how load-balancing techniques can improve the aforementioned metrics while taking partial 
connectivity into account. 
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Figure 8: Visualization of Different Connectivity Scenarios. 

  

Figure 9: Performance illustration of different network’s connectivity cases. 

2.5.2 Experiment Results for Changing Load 

In this experiment, we have measured the influence of network’s load over the performance 
in terms of the metrics we’ve mentioned in Section 2.2. The parameter λ of the Poisson 
distribution has been modified in order to change the network’s load. The parameter indicates 
the average number of packets generated in each time-slot by the IABs. To modify λ, we 
scanned various loads successively from bottom-to-top, and then from top-to-bottom. The 
results presented are an average of 10 different measurements for each load across five 
different network topologies. Based on the results illustrated at Figure 10, we can determine 
that although acting in a decentralized manner, both versions of MA-RAC’s algorithm has 
managed to achieve superior performance than the other benchmarks. Furthermore, the 
mutual weight version achieved similar performance to the Centralized-Routing algorithm. 
Moreover, due to the significant gap between both versions of MA-RAC and the traditional 
hybrid algorithm we also conclude that an increased neighbourhood information is essential 
for performance in such a dynamic scenario. 
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Figure 10: Performance illustration of different routing algorithms under different loads 

2.5.3 Ablation Study 

We investigated how different components affected the performance of the algorithm in this 
experiment. We benchmark our baseline to be the Hybrid-Routing algorithm [15]. As a first 
extension we offer to use function approximation to approximate methods instead of the 
previous tabular representation of both Actor and Critic function. We term this method 
as ’Dec-Vanilla A2C’. As we can see from both Figure 11 and Figure 12, using this extension 
does not yield any performance improvements and even caused performance degradation. 
This result is reasonable and occurred due to the tabular nature of this problem state-space. 
Thus, we offer to extend our state-space to achieve better representation of the current 
network scenario as we proposed in Section 2.4. We term this method as ’Dec-Relational 
Actor-Critic’. As we can see from both train and test phases, Figure 11 and Figure 12, this 
extension improved the agent’s performance. As another extension, we offer to combat the 
non-stationary issue with integration of time-dependency component into our model Figure 
6, which we have located right after the first embedding layer for both Actor and Critic. We 
term this extension as ’Dec-Rec-Relational Actor-Critic’. Figure 11 and Figure 12 show that 
although this extension increased the model’s complexity, it improved the convergence time 
and slightly improved performance during the test phase. Furthermore, we propose to 
improve the algorithm performance further by allowing agents to share information by means 
of network weights, which we identify as ’Relational A2C’. We are able to show in Figure 11 
and Figure 12 that this method works better than all the previous extensions while remaining 
decentralized. 
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Figure 11: Performance of the different algorithmic components during the training phase. 

 

Figure 12: Performance of the different algorithmic components during the test phase. 

2.6 Conclusions and future work 

An advanced decentralized routing algorithm for 5G-NR IAB is proposed in this document to 
reduce congestion in the network. Our study showed that network routing is critical to reduce 
congestion in such an IAB network. Further, we designed a decentralized routing algorithm 
called MA-RAC that learns from experience while interacting with a simulated 5G 
environment. We benchmark our algorithm against the traditional reinforcement learning 
approach (Q-Routing) and a lower bound that we derive from a centralized solution. We 
conclude that our routing algorithm outperforms the traditional Q-Routing algorithm in 
different network scenarios, and it achieves results that are similar to those of a centralized 
solution. 

The future work planed is to combine the simulations of the “Resource Allocation” scheduler 
reported in D4.1 and the Routing scheduler reported herein. In addition, the WP-4 team will 
try to combine the outcome of the UE dynamic simulation tool described in chapter 5 below 
with the “Resource Allocation scheduler” to obtain more realistic training data for the 
scheduler simulations. 



6G BRAINS H2020-ICT 101017226 Deliverable D4.2 

Page 32 of (63)  © 6G BRAINS consortium 2022 

3 Hybrid User Terminal Modelling for the High Dynamic Ultra-
Dense D2D CF Network  

3.1 Grant-free NOMA for massive Machine-Type Communication 

3.1.1 Algorithm Definition 

An adaptive matching pursuit (AMP) algorithm is proposed for the joint user activity detection 
and signal recovery for the grant-free (GF) non-orthogonal multiple access (NOMA) in terms 
of the massive machine-type communication (mMTC) scenario. The AMP algorithm takes the 
frame-wise block-sparsity into consideration and applies the matching pursuit method into 
the block-sparsity-based framework. It also employs a dynamic user sparsity decision method 
without needing the prior information of the noise level. The detailed algorithm 
implementation steps are summarized in the following. 

3.1.2 General Model 

For the mMTC scenarios, typical communication characteristics include small-data size 
transmission per device, high energy efficiency requirement, and sporadic transmission. 

Considering these characteristics, many researchers have recently tried the grant-free 
schemes, by utilizing its virtue of avoiding complicated grant scheduling and signalling 
between the users and BS, thus enabling reduced signalling overhead and latency in 
comparison with the grant-based schemes. 

The receiver design of the power domain-NOMA (PD-NOMA) depends on the received power 
difference among users for the effective data decoding based on the successive interference 
cancellation (SIC) technique. Two key factors would prevent the effective application of the 
PD-NOMA in grant-free scenarios. Firstly, without a loop-locked power control, guaranteeing 
sufficient power difference among received signals of multiple users is a challenge. To this 
end, an open-loop power control is developed, by using a multiple-agent double deep Q-
network aided GF NOMA algorithm to determine the optimal transmit power levels. This 
multi-agent DRL algorithm relies on the predetermined distances between the users and the 
BS, which is somewhat unpractical due to the random location distributions of massive users. 
Secondly, a deterministic near-far situation is usually needed for the receiver to complete 
successful decoding. But in grant-free access, the random near-far phenomenon caused by 
the random user activity at one time slot would prevent the implementation of SIC. Thus, the 
code domain-based GF NOMA has been widely exploited by researchers, such as the 
spreading-based GF NOMA. 

The general system model of spreading-based GF NOMA can be described as follows. Each 
user activates with a certain probability and selects the available channel resources. For each 
active user, the source bits are firstly modulated according to a certain modulation type. Then 
a symbol sequence is obtained by mapping the modulated symbol according to user-specific 
spreading signature. Finally, the joint user activity detection and signal reconstruction are 
realized by using advanced detection methods at the receiver. 

The spreading-based NOMA utilizes specific spreading codes, which can be divided into sparse 
codes and non-sparse ones. Generally, to well decode the transmitted signals of the active 
users, the rank of the spreading matrix needs to be greater than 2s with s denoting the sparsity 
level of the active users. A more accurate condition for compressed sensing-based detection 
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can be referred to the restricted isometric property.  An example of sparse spreading-based 
NOMA scheme, (sparse code multiple access) SCMA encoder is defined as a map from log2(M) 
bits to a K-dimensional complex codebook of size M. The K-dimensional complex codewords 
of a codebook are sparse vectors with N non-zero entries. K represents the spreading factor 
of the system and N denotes the dimension of the multi-dimensional constellation used in 
SCMA. The source bits are mapped into a K-dimensional codeword selected from the 
codebook and sparsely transmitted on K radio resources (e.g., OFDMA subcarriers). Note that 
the main difference between the SCMA and (low-density signature) LDS-based NOMA is that 
SCAM considers multi-dimensional constellation in spreading operation while the classic LDS 
scheme uses single dimensional constellation modulation only.  

The compressive sensing (CS)-based multiple user detection (MUD) can be used for the grant-
free NOMA. Far fewer samples than that required by the Nyquist criteria can be used to 
estimate the sparse signal by using the compressive sensing technique, thus reducing the 
computational complexity and calculation resources. The CS-based MUD algorithms at the 
receiver identify active users by detecting the positions of non-zero elements of the estimated 
transmitted symbol vector in noise-less scenario or the given number of largest entries in noisy 
scenario. A compressive sampling matching pursuit (CoSaMP) algorithm and a subspace 
pursuit (SP) algorithm are proposed with low complexity and excellent robustness to noise. 
Note that the main difference between CoSaMP and SP is the number of user indexes added 
into the candidate user set at each iteration. Low complexity MPA-based receiver can be 
employed for further data recovery by making full use of the sparsity of low-density MA 
signature structure (e.g., SCMA, LDS).  

In addition, some block-sparsity-based methods are studied for GF NOMA. Firstly, considering 
that the users usually transmit signal in consecutive slots, the temporal correlation should be 
considered. Based on this, a frame-wise (block) sparsity model is applied, where the user 
activity remains constant over an entire data frame. A threshold-aided block sparsity adaptive 
subspace pursuit (TA-BSASP) and a cross-validation-based block sparsity adaptive subspace 
pursuit (CVA-BSASP) are respectively proposed by applying the block sparsity structure into 
the CoSaMP algorithm. The threshold-aided method can approach the oracle performance 
with the prior knowledge of the noise floor. The cross-validation based method is more 
practical with no prior knowledge of both the sparsity level and the noise floor. A complexity-
reduced enhanced block-coordinate-descent based method is developed for MUD by using 
the block sparsity, which could reduce inter-user interference by pruning a majority of inactive 
users in advance and reduce complexity by removing the duplicate matrix multiplications. 

3.1.3 NOMA method for Massive Machine Type Communications (mMTC) 

3.1.3.1 NOMA method description 

The code domain NOMA is considered in a single-antenna BS-based system to support massive 
connectivity in mMTC with limited channel resources. All users are also with a single antenna. 
As shown in Figure 13, massive users are distributed over the BS, while only a small part of 
user are active and transmit data at a slot. To support the massive connectivity for mMTC, we 
consider the overloading system with the number of subcarriers K less than the number of 
users Q. For an uplink transmission, one user first modulates its source bits to data symbols 
using a certain modulation scheme, e.g., M-QAM. Then, the modulated symbols spread onto 
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different channels based on the given spreading signatures. Finally, the spreading sequences 
of all users are superimposed at the BS.  

Assuming the activities of the users are constant in one frame, the block sparsity can be 
utilized for modelling the received signal. The received signal over one frame can be denoted 
as: 

𝒀 = 𝑮𝑿 + 𝑽 

where 𝑮 is the equivalent channel matrix with each column 𝒈𝑞 being the equivalent channel 

vector of the corresponding user 𝑞,  𝑿 is the transmitted signal matrix with its column 𝒙𝑡 as 
the transmitted signal of all users at the slot t, and 𝑽 is the additive noise with the matching 
dimension. The target is to recover the transmitted signal 𝑿 from the noisy measurements 𝒀. 
To apply the frame-wise block sparsity into the compressed sensing-based signal recovery, we 
vectorize the received signal as, 

y= 𝑮̃𝒙 + 𝒗 

where 𝑮̃ = 𝑮⦻𝑰𝑇 with ⦻ denoting the kronecker product operation, 𝒙 is the vectorization of 
the transpose of 𝑿, with its qth block vector 𝒙𝑞 denoting the transmitted signal of user q, and 

𝑇 is the number of slots in one frame. The optimization problem is formulated as 

argmin 𝜀(𝒙) = ‖𝒚 − 𝑮̃𝒙‖
2

2
 

‖𝒙𝒕‖0 ≤ 𝑠̅ 

where 𝑠̅ is the maximum sparsity level. Therefore, the problem is to recover the transmitted 
signals 𝒙 from the received signal 𝒚 with the constraint of sparsity level. 

The existing methods usually assume the known user sparsity level or determine the user 
sparsity level based on the prior noise floor, which are unpractical in most circumstances. 
Thus, it is necessary to design a flexible user sparsity decision method for the grant-free access 
in the mMTC scenario. The cross-validation aided method has recently been used to 
determine the user sparsity. However, the performance by using this method is unstable and 
can be affected by the number of the samples for the cross validation. 

 

Figure 13: The massive machine type communication 

3.1.3.2 Algorithm development 

The compressed sensing-based method can be used to detect the user activity and recover 
the signal from the noisy measurements y. The iterations of the proposed adaptive matching 
pursuit (AMP) algorithm for the joint user activity detection and signal recovery are 
summarized in Algorithm 1 below. We define the vector 𝒙[𝑞, 𝑇] as the qth 𝑇 × 1 vector block 

of 𝒙 and define the matrix 𝑮̃[𝑞, 𝑇] as the matrix block of 𝑮̃ constituted by consecutive columns 

from index (q-1)T+1 to index q𝑇. Further, 𝒙[𝛬, 𝑇] and 𝑮̃[𝛬, 𝑇] denote the sub-vector and sub-
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matrix by selecting their respective blocks according to the indexes from the set 𝛬, 
respectively. The finding function F (V,a) selects the indexes of the first a largest elements of 
an ordered set/vector V. The function 𝑣𝑒𝑐−1(𝒙, 𝑇) is used to unvectorize a vector into the 
corresponding transmitted signal matrix 𝑿. The notation ‖𝒓‖2 denotes the 𝑙2 norm of a matrix 
or a vector 𝒓. 

With known modulation constellation of the transmitted signals, the range of the l2 norms of 
the transmitted signals of the active users in a given sampling duration (usually a frame) is 
generally smaller than a determined threshold, while the range would be relatively large if the 
inactive users are falsely detected (or deemed as active mistakenly). In fact, with the sampling 
duration 𝑇 long enough, the range would converge to 1 if all symbols are transmitted with 
equal probability. We can speculate the falsely detected users exist when the range 𝛾𝑠 of the 
l2 norms of the estimated signals is higher the threshold 𝛾́ , denoting the upper bound for the 
range under a limited sampling duration. Herein, the step 14 is mainly used for determining 
the sparsity levels higher than the real one under which the falsely detected inactive users 
must exist. The sparsity set in Algorithm 1 is 𝑆 = {1,2, … , 𝑠̅} and the user set is  𝑄 =
{1,2, … , 𝑄}. The step 15 is due to the fact that the energy of the residual would gradually 
decrease with the sparsity level s increasing up to the real one. 

 

3.1.3.3 Simulation Implementation and Testing 

In this section, simulations are carried out to evaluate the normalized mean squared error 
(NMSE), the user detection error rate (DER), and the total symbol error rate (SER) of grant-
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free AMP-based mMTC. The NMSE is defined as 𝑁𝑀𝑆𝐸 =
‖𝑿̂−𝑿‖

‖𝑿‖
 where 𝑿 is the transmitted 

signal matrix. The DER is defined as 𝐷𝐸𝑅 =
𝑁𝑚+𝑁𝑓

𝑵
 where 𝑁𝑚 is the number of active users 

missed to be detected and 𝑁𝑓 is the number of inactive users falsely detected to be active. 

The SER is defined as 𝑆𝐸𝑅 =
(𝑁𝑚+𝑁𝑓)𝑇+𝑁𝑑

(𝑁𝑎+𝑁𝑓)𝑇
 where 𝑁𝑎 is the number of the active users and 𝑁𝑑 

is the number of the symbol errors of the detected users. 

 

Figure 14: The detection error rate with respect to the input SNR 

The benchmark considered is the cross-validation aided block-sparsity adaptive subspace 
pursuit algorithm (CVA-BSASP) which does not require any prior information either. Without 
loss of generality, we consider 40 users in total, with 5 active users in one frame. The number 
of the subcarriers used for the spreading-based NOMA is 20.  

The detection error rate is shown in Figure 14. We could find that the proposed AMP algorithm 
presents significantly improved detection accuracy as compared to the CVA-BSASP. Moreover, 
the DER sharply decreases with the increase of the input SNR when using the proposed AMP 
and the detection error can even be eliminated when the SNR is higher than 4dB. However, 
the DER for the CVA-BSASP decreases slowly and even converge with the increase of the input 
SNR.  

 

Figure 15: The normalized mean squared error with respect to the input SNR 
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Figure 16: The symbol error rate with respect to the input SNR 

Figure 15 and Figure 16 illustrate the NMSE and the SER with respect to the input SNRs, 
respectively. The results show that there is an approximate 2dB difference of NMSEs between 
the proposed AMP and the CVA-BSASP algorithm. However, the AMP outperforms the CVA-
BSASP in terms of the SER, especially when the SNR is high. When the SNR is larger than 9dB, 
the symbol error can be eliminated too.  

3.1.4 Conclusions and recommendation for future research 

A block-sparsity-based adaptive matching pursuit algorithm is proposed for the joint user 
activity detection and signal recovery for the grant-free access in mMTC scenarios. The 
proposed method utilizes a novel user sparsity decision method with only the modulation 
constellation of the transmitted signal as the prior information, enabling the applicability of 
the proposed adaptive matching pursuit method.  

The proposed method is designed based on the single-antenna base station and single-
antenna users. In the future work, the multiple-antenna base station can be considered and 
the spatial division multiple access can be integrated with the spreading-based non-
orthogonal multiple access for the system overloading in the massive users’ communication 
scenarios. 

3.2 Hybrid user terminal modelling for the D2D enabled cooperative network  

3.2.1 Model definitions 

A device-to-device (D2D) enabled cooperative network is considered for cell-free uplink 
communication. As shown in Figure 17, N D2D clusters are predetermined by existing 
clustering methods, such as K-means methods. The external users’ equipment (EUEs) in one 
D2D cluster transmit their signals by NOMA principle to the cellular user equipment (CUE), 
which then combines the received signal and its own signal and transmit it to the BS. 
Beamforming and SIC decoding will be applied at the BS by exploiting the differences of the 
effective channel gains between clustered users (including EUEs and CUE) and the BS. Assume 
the base station is equipped with M antenna elements while both CUE and EUE are with single 
antenna, i.e., MISO system.  



6G BRAINS H2020-ICT 101017226 Deliverable D4.2 

Page 38 of (63)  © 6G BRAINS consortium 2022 

A two-phase transmission is applied in this cooperative cell-free uplink system. First, the EUEs 
transmit their massage signals to the CUE by NOMA in each cluster. The CUEs combine the 
received signal and its own signal by reallocating transmission power for them. Secondly, the 
CUEs transmit the superimposed signal to the BS which implements beamforming and SIC to 
decode the signals of respective users.  

The closed-form signal-to-interference-plus-noise ratio (SINR) can be derived for both CUE and 
EUEs in each cluster with given beamforming weights and power allocation ratios. For the 
beamforming, the conjugate beamforming and zero-forcing beamforming methods can be 
utilized. The power allocation optimisation can be regarded as a Markov decision process, and 
a novel multi-agent deep reinforcement learning (DRL) scheme is designed to solve it. To meet 
the user fairness, the reward of the DRL environment is set to be the minimum SINR over all 
UEs.  

 

Figure 17: D2D enabled cell-free network 

3.2.2 Technology background 

mMTC widely exists in fifth-generation (5G) networks. The emerging NOMA scheme is 
attracting considerable attention due to its capacity to support massive connectivity in 
numerous applications including multimedia applications and the IoT [18]. However, with the 
number of the UE and tall infrastructures increasing, UEs, due to long distance or blockage by 
some obstacles, may not access the base station (BS) directly in cellular communication.  

Recently, distributed antenna-based cell-free (CF) wireless network is being considered as a 
solution, where a large number of UEs in a geographical area will be served simultaneously in 
NOMA scenarios by a large number of spatially distributed access points (antennas), which 
coordinate with a centralized processing unit. The distributed antenna-based schemes face 
many challenges now. The first is to guarantee the synchronisation at distributed antennas for 
transmitting and receiving signals. The second is to dynamically determine the set of 
distributed antennas that serve the UEs near them and manage the interference between 
adjacent antenna sets in downlink mode or between adjacent users in uplink mode.  

On the other hand, emerging cooperative NOMA device-to-device (D2D) communication is 
gradually applied for the downlink performance enhancement for far users within the cell 
coverage where the near cellular user functions as a relay. Two kinds of scenarios are classified 
according to if there is a direct communication link between the BS and far users. For the 
direct link scenario, the near user or central user plays a role of assistant, where in the first 
phase, the BS broadcasts signals using the NOMA protocol to a central user and a cell-edge 
user, and in the second phase, the central user helps the BS cooperatively relay signals 
intended for the cell-edge user. For the scenario without a direct link, the central user 



Deliverable D4.2 6G BRAINS H2020-ICT 101017226 

© 6G BRAINS consortium 2022 Page 39 of (63)  

functions as an enabler, where the BS broadcasts the superimposed signals to the central user 
in the first phase and the central user decodes and forwards the message signal for the far 
user in the second phase. Besides, this cooperative mode is also used in the cognitive network, 
where the secondary user shares the same frequency spectrum with the primary user by 
assisting the primary user communication as a combine-and-forward relay. 

3.2.3 Problems and methods 

3.2.3.1 Problem description 

Inspired by the cooperative NOMA D2D communication, an uplink cell-free multiple-input-
single-output (MIMO) network is developed by using the cellular UE (CUE) as a relay between 
the external UEs (EUEs) and the cell BS, shown in Figure 18. For this cell-free uplink 
communication system, three parts need to be considered, i.e., the clustering configuration 
of UEs (including one CUE and a couple of EUEs), transmit power allocation for UEs in each 
cluster based on NOMA and the beamforming at the BS. Many existing clustering methods for 
an NOMA network can be used for the considered uplink system, including match theory and 
k-means. After clustering, the closed-form expression of the signal-to-interference-plus-noise 
ratio (SINR) of each NOMA UE can be derived, based on the given beamforming weights, 
power allocation (PA) factors and the successive interference cancellation (SIC) decoding 
order. Let 𝛾𝑛,𝑘 denote the SINR of user k of cluster n. 

Considering the SINR proportional to the user rate, rate maximisation is equivalent with 
optimising the beamforming and the PA. Many good beamforming methods are used in 
cellular or cell-free networks, including zero-forcing beamforming/precoding, conjugate 
beamforming/precoding and deep reinforcement learning scheme (DRL) based beamforming. 
Besides, a deep learning-based uplink power controlling method is proposed for rate 
maximization based on different criteria, i.e., max-sum, max-min and max-product. The max-
min optimization aims to provide uniform service to all UEs for user fairness. 

The conjugate and zero-forcing beamforming methods can be directly utilized. Therefore, the 
main problem in this scenario is to design an intelligent DRL system for the transmitting power 
allocation for the users in each cluster. Good power allocation schemes serve for the 
successive interference cancellation by sufficiently utilizing the channel differences, e.g., the 
random channel fading, the path loss and the shadowing loss caused by the spatial 
distributions.  
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Figure 18: Multi-agent DRL interaction model 

3.2.3.2 Algorithm development 

Two DRL schemes are proposed, i.e., the single agent DRL and the multi-agent DRL scheme. 
When using the single agent, the power allocation coefficients for the users from all clusters 
are the output of the single agent network, while the power allocation for each cluster is 
learned by one agent by the multi-agent DRL scheme. Taking two agents as an example, the 
multi-agent DRL power allocation scheme is illustrated in Figure 19, where all agents 
collaboratively update their parameters by interacting with the environment.  

 

Deep deterministic policy gradient (DDPG), as a DRL method, provides a solution to manage 
the problem with continuous state space and continuous action space. The DDPG agent 
consists of critic network 𝑄(𝑠, 𝑎|𝜃𝑄), actor network 𝜇(𝑠|𝜃𝜇) and their respective target 

networks 𝑄′(𝑠, 𝑎|𝜃𝑄′) and 𝜇′(𝑠|𝜃𝜇′). The state for the agent n for cluster n, 𝒔𝑛 =

[𝑠𝑛,1, 𝑠𝑛,2, … , 𝑠𝑛,𝐾]
𝑇

 where state 𝑠𝑛,𝑘 denotes the SINR of user k of cluster n and similarly the 

action set 𝒂𝑛 = [𝑝𝑛,1, 𝑝𝑛,2, … , 𝑝𝑛,𝐾, 𝜂𝑛]
𝑇

 where action 𝑝𝑛,𝑘 denotes the power allocation ratio 

of user k for data transmission of cluster n and action 𝜂𝑛 denotes the power allocation ratio 
for data forwarding of the cluster head of cluster n. 𝐾 is the number of the users in each cluster 
𝑛.  

Two tricks are employed to stabilize the training of the DDPG actor-critic architecture. 

1) the experience replay buffer to train the critic.  
2) target networks for both the actor and the critic which are updated using the periodic 

Polyak averaging, i.e., 

𝜃𝑄′(𝑡 + 𝑡0) = (1 − 𝛿)𝜃𝑄′(𝑡) + 𝛿𝜃𝑄(𝑡) 

𝜃𝜇′(𝑡 + 𝑡0) = (1 − 𝛿)𝜃𝜇′(𝑡) + 𝛿𝜃𝜇(𝑡) 
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with t denoting time step, t0 denoting update period and 𝛿 in [0, 1] denoting the averaging 
factor. 

We also consider the exploration-exploitation policy by adding a stochastic noise onto the 

action output of DDPG agent at each time step, i.e., 𝒂𝑛(𝑡) = 𝜇 (𝒔𝑛(𝑡)|𝜃𝜇(𝑡)) + 𝒗(𝑡). Note 

that each element of 𝒂𝑛(𝑡) still needs to be limited within [0,1]. At each sample time step t, 
the noise value 𝒗(𝑡) is updated using the following formula, where the initial value 𝒗(0) is 
defined as a zero vector 0, 

𝒗(𝑡 + 1) = 𝒗(𝑡) + 𝜒(𝒗̅ − 𝑣(𝑡)) + 𝜀(𝑡)𝝎 

where 𝒗̅ denotes the mean of 𝒗(𝑡), the constant 𝜒 specifies how quickly the noise model 
output is attracted to the mean, 𝜀(𝑡) is the standard deviation of 𝑣(𝑡) and 𝝎 is a random 
vector satisfying the standard Gaussian distribution. 

At each sample time step, the standard deviation decays as shown in the following code. 

𝜀(𝑡 + 1) = 𝜀(𝑡)(1 − 𝜖) 

with 0 < 𝜖 ≤ 1 denoting the standard deviation decaying rate. 

The critic network has two inputs, i.e., state input (SINRs) and action input (power allocation 
ratios) which have different orders of magnitudes. The power allocation ratios themselves are 
within [0,1]. Thus, we add a softmax layer after the state input to normalise them into the 
range of [0,1]. Similarly, we also add a softmax layer after the state input of the actor network. 
The output layer of the actor network is a sigmoid layer to ensure the power allocation vector 
𝒂 in the range [0,1]. 

3.2.3.3 Environment design 

For the reward calculation of DRL environment, firstly determine the SIC decoding order in the 
order of decreasing arrived power of NOMA users. Secondly, calculate the SINRs (states) of 
NOMA users for each cluster by using SIC. Finally, we select the minimum SINR over users in 
each cluster n as the reward of the current iteration, i.e.,  

𝑟𝑛 = min (𝒔𝑛) 

The DDPG based PA training process is given in Algorithm 2 with the discount factor 𝛽  in [0,1]. 
Note that we have deleted the subscript n for corresponding notations where no ambiguities, 
such as writing 𝒔𝑛 as 𝒔. 
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3.2.4 Simulation implementation and testing 

Without losing generality, we consider two D2D clusters in a cellular network that occupy the 
same frequency spectrum resource, as shown in Figure 17. There are three users in each D2D 
cluster, including one CUE and two EUEs. The DDPG agent consists of one critic and one actor 
network. The critic network has two inputs, i.e., state input and action input. As stated earlier, 
the SoftMax layer is used in both critic and actor network following their respective state input 
layers for normalisation. Similarly, the sigmoid layer is used as the output layer of the actor 
network to normalise the estimated power allocation parameters. Besides, the critic network 
has three fully-connected hidden layers i.e., 258 × 128 × 64, with each followed by a leaky 
Elu activation layer. The actor network also has three hidden layers (128 × 64 × 32) followed 
by leaky Elu activation layers.  

We consider the sub-6GHz communication herein. The available transmission powers of all 
users are assumed to be same, say 20dBm for example. The path loss (in dB) is characterized 
by the alpha-beta-gamma (ABG) model. Let 𝑑1 and 𝑑4 respectively denote the distance 
between the corresponding CUE and the BS, and 𝑑2, 𝑑3, 𝑑5 and 𝑑6 respectively denote the 
distance between the EUE with corresponding CUE. Assume the small-scale random channel 
fading follows independent but not identically distributed (i.n.d) Nakagami distribution with 
spreading and shape parameters M=1 and 𝛺 = 1, respectively. With the receiver noise PSD 
and the noise figure 𝑛𝑓, the noise power is 𝑝𝑛 = PSD × 𝐵 + 𝑛𝑓(𝑑𝐵𝑚). Without loss of 

generality, the other simulation parameters are given in Table 3. 
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Table 3: The simulation parameters 

 

 

(a)                                                                               (b) 

Figure 19: Learning curves of user rates using the DRL power allocation method: (a) single-agent; 
(b) multi-agent 

 

(a)                                                                             (b) 

Figure 20: Power allocation using the DRL method: (a) single-agent DRL; (b) multi-agent DRL 

As shown in Figure 19, both single-agent DRL and multi-agent DRL method converge within 
limited episodes. We also observe that the user rates in each cluster converge to a very similar 
value. This is because for the SIC decoding method, the performance improvement of one user 
usually implies the performance degradation of the other users until achieving the goal 
maximizing the worst-case user rate for each cluster. But, for the single agent DRL method, 
the worst-case user rate is computed over all user clusters and thus the minimizing the worst-
case user rate works well for the cluster where the worst-case belongs. So, the user rates of 
that cluster converge to a similar value while the user rates in other clusters need only to be 
higher than the worst-case user rate of that cluster.  
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The higher 𝜂𝑛 can lead to higher SINRs for all users in cluster n. So, the optimal values  𝜂𝑛,𝑜, 

n=1,2 should be 1. Figure 20 shows the power allocation ratios 𝑝𝑛,𝑘 for data transmission of 
each user and the total power allocation 𝜂𝑛 for data forwarding of each cluster. The values of 
each subfigure represent 𝑝1,1,𝑝1,2, 𝑝1,3, 𝑝2,1, 𝑝2,2, 𝑝2,3, 𝜂1, 𝜂2, respectively, from index 1 to 8. As 
shown in Figure 20 (a), we have 𝜂1 = 0.956 which is slightly less than the optimal value 1 
because the worst-case user is in cluster 2. But, for the multi-agent DRL in Figure 20 (b), every 
cluster minimizes its own worst-case user rate, so the values for  𝜂𝑛, n=1,2 reach the optimal 
value 1. We also observe from Figure 20 that the PA ratios of all CUEs (𝑝1,1 and 𝑝2,1) are larger 
than 0.5, so the received power of the CUE at BS is larger than the received total power of the 
EUEs in any cluster. Besides, the channel gain between EUE 3 and CUE 1 is larger than that 
between EUE 2 and CUE 1 and the channel gain between EUE 5 and CUE 4 is larger than that 
between EUE 6 and CUE 4. We find from Figure 20 that when using zero-forcing beamforming, 
the PA ratios of EUEs follow 𝑝1,3> 𝑝1,2 and 𝑝2,22> 𝑝2,3, i.e., more power allocated to users with 
higher channel gains for better SIC. 

3.2.5 Conclusions and recommendation for future research 

In this section, we considered the D2D relay enabled uplink cell-free communication system 
where the external user equipment accessed the cell BS through the cellular user relay. For 
effective decoding at the base station, we considered beamforming and a DDPG based power 
allocation method for worst-case user rate maximisation. Finally, a SIC decoding method was 
used at the base station based on the different arrived power strengths with given 
beamforming and power allocation parameters. The simulation results verified the 
effectiveness of the proposed DRL method for guaranteeing the user fairness through the 
worst-case rate maximisation. 

For the future work, the energy harvesting device can be set up at the relay user to increase 
the energy efficiency and prolong its service life. In addition, the sum rate maximisation under 
given individual QoS constraints is effective for improving spectral efficiency. Finally, the aim 
of maximizing the ergodic rate is also considerable for reducing computational consumption 
and latency, where the power allocation and beamforming need to be calculated only once 
within a large-scale coherence time, especially in scenarios with high mobility or high 
frequency communication usually with a tiny small-scale coherence time. 
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4 Intelligent Beam Steering algorithm based on User Location   

4.1 Autonomous Beam Steering 

4.1.1 DRIDL algorithm definition 

The Deep Learning Integrated Reinforcement Learning (DLIRL) algorithm is proposed for 
comprehending intelligent beam steering in Beyond Fifth Generation (B5G) networks as 
shown in the Figure 21 below [19]. The smart base stations in B5G networks aim to steer the 
beam towards appropriate user equipment based on the acquaintance of isotropic 
transmissions. The foremost methodology is to optimize beam direction through 
reinforcement learning that delivers significant improvement in Signal to Noise Ratio (SNR). 
This includes alternate path finding during path obstruction and steering the beam 
appropriately between smart base station and user equipment. The DLIRL is realized through 
supervised learning with deep neural networks and deep Q learning schemes. The proposed 
algorithm comprises of an online learning phase for training the weights and a working phase 
for carrying out the prediction. Results confirm that the performance of the B5G system is 
improved considerably as compared to its counterparts with a spectral efficiency of 11 bps/Hz 
at SNR=10 dB for a bit error rate performance of 10-5. As compared to reinforced learning and 
deep neural network with a deviation of ±3o and ±5°, respectively, the DLIRL beamforming 
display a deviation of ±2o. Moreover, the DLIRL can track the user equipment and steer the 
beam in its direction with an accuracy of 92%. 

 

Figure 21: DLIRL for Intelligent Beam Steering 
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4.1.2 Simulation Implementation and Testing 

The beamforming is implemented for the downlink scenario of the data transmission from IAB 
to UE. The simulation environment is first configured and then the proposed DLIRL 
beamforming is executed. The simulation parameters employed in this work are as shown in 
Table 4. The data set of the channel model and the channel parameters for the simulation is 
generated via MATAB 2021 site viewer-based ray tracing. The Shooting and Bouncing Ray 
(SBR) based ray-tracing model is employed for the LoS and NLoS communication. The 
Orthogonal Frequency Division Multiplexing (OFDM) system is employed for symbols 
transmission. The considered OFDM size is 1024. The DNN architecture has a total of 6 
interconnected layers including 4 hidden layers and 1 input and an output layer. The DNN has 
a total I*k number of inputs and Train number of outputs. The considered data has a set size 
of two hundred thousand samples and a batch size of two hundred. To have comparative 
analysis of the proposed algorithm with the existing conventional beamforming techniques, 
we have used SE and the BER as the metrics. Figure 22 and Figure 23 show the SE for different 
SNR values received at UE. The simulations were carried out for 30 runs comprising 1000 
iterations each. The depicted graph values are averaged values obtained in the simulation 
environment. For the simulation environment, the IABs are installed on the buildings played 
in the x-y plane of the 3D environment. The IAB’s antennae are facing the street on the y-z 
plane. The antenna transmit power is considered at 30 dBm. The UEs are mobile and are 
installed with a single antenna. For each beam coherence time, the UE locations are updated 
in the x-y plane. During the training period, the UE uplink transmit power is set at 30 dBm. 

Table 4: Simulation Parameters 

S.No Parameter Specification 

1 IABs/IAB count (N) 4 

2 IAB Antenna array Uniform Planar Array 

3 IAB Antenna Specification 32x8 

4 User Equipment (UE) setup Deployed in a rectangular grid of dimension 
40mx60m, resolution 0.1m. 

5 DNN Activation Unit ReLU (Rectified Linear Unit) 

6 DNN dropout rate 0.5% 

7 DNN batch size 100 

8 Python Libraries Keras with Tensorflow backend 

9 System Bandwidth 0.5 GHz 

10 OFDM Subcarriers 1024 

11 Sampling Factor 1 

12 Multipaths 7 

 

Figure 22 visualizes that the DLIRL beamforming has achieved better spectral efficiency as 
compared to the existing conventional beamformers in [19]. As seen from the curves, the 
spectral efficiency with analogue beamforming is found to be around 2 bps/Hz, and close 
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convergence is observed between ZF hybrid precoding, MMSE hybrid precoding, and Kalman 
hybrid precoding techniques. However, the MSE based fully digital precoding displays 
improved spectral efficiency as compared to the above-mentioned precoding techniques.  For 
an SNR of 5 dB, the DLIRL based beamforming technique displays an improvement of 77.5%, 
60%, 50%, 50%, and 33.3% as compared to the analogue beamforming, ZF hybrid precoding, 
MMSE hybrid precoding, Kalman hybrid precoding, and MSE based fully digital precoding 
techniques, respectively. The spectral efficiency is achieved for the multipath scenario 
considering both LoS and NLoS, total multipath considered for evaluation of Figure 22 is 10 
and total IAB antenna elements are 256. 

 

Figure 22: Comparative analysis of SE with reference to IAB SNR 

Moreover, as the antenna size increases the performance of DLIRL gets better as compared to 
the DNN and RL beamformer. Figure 23 shows the comparison between DNN, RL, and DLIRL-
based beamformers for different transmitting antenna elements. For instance, for the number 
of IAB antenna elements equal to 104, the increase in spectral efficiency employing DLIRL-
based beamforming is found to be 53.33% and 51.66% more efficient as compared to DNN 
and RL based beamforming techniques, respectively. The effect of BER for IAB with 4 transmit 
antenna elements has been displayed in Figure 24. Here, the performance of the system for 
different MIMO schemes is compared with DLIRL based beamforming scheme. For a BER of 
10-4, the proposed DLIRL based beamforming techniques require an Eb/N0 of 7 dB. 
Alternatively, the system without diversity, Alamouti, and OSTBC schemes require an Eb/N0 of 
10 dB, 13.3 dB, and beyond 20 dB, respectively. 
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Figure 23: Comparative analysis of SE with reference to increase in number of antennas  

 

 

Figure 24: Comparative Analysis using BER 
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Table 5: SE Performance Evaluation 

Beamforming Technique SE (bps/Hz) at SNR=10 dB 

DLIRL Beamforming 11 

Analog Beamforming 5 

MSE Digital Beamforming 8 

Kalman-hybrid precoding 5.7 

Minimum Mean Squared Error (MMSE) 
Hybrid Beamforming 

5.1 

Zero Forcing Hybrid Beamforming 4.2 

 

The quantitative analysis of the proposed scheme concerning SE and BER is presented in Table 
5 and Table 6 respectively. There is a drastic improvement in the SE and BER using DLIRL 
Beamforming studied at SNR=10 dB shown in both tables. 

Table 6: BER Performance Evaluation 

Diversity Scheme BER at SNR=10 dB 

No Diversity, Single Input Single Output 
(SISO) 

10-1.8 

Orthogonal Space Time Block Coding 
(OSTBC), 1x4 MIMO Transmit Diversity 

10-3 

Alamouti, 2x2 MIMO Diversity 10-4 

DLIRL Beamforming, 1x4 Transmit Diversity 10-5 

 

 

Figure 25: Beamform towards UE using DNN and RL separately 
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To answer the question of whether the proposed scheme can learn the beamforming, we have 
simulated Figure 25 and Figure 26. The simulation graphs in Figure 25 and Figure 26 are also 
the report of the average value for the 30 runs with 1000 iterations each. The proposed 
scheme can project the beam towards the UE positioned at 100 degrees in the northwest 
direction of the antenna placement. From Figure 25 and Figure 26, it is estimated that the 
DLIRL based beamformer is better than its counterparts DNN and RL in steering the beam 
towards the UE placed at 101.5° normal to the antenna placement of IAB. The proposed DLIRL 
beamforming has Angle of Departure (AoD) towards UE location with a deviation of ±2°, 
whereas RL has a deviation of ±3° and DNN’s deviation is ±5°. 

The DLIRL is capable of performing efficient beamforming due to the effective training. It is 
vital to have comparative analysis of the DLIRL with existing DNN and RL algorithm in terms of 
training validation accuracy, training loss, number of iterations and epochs. Figure 25 sheds 
light on the validation accuracy of the proposed (DLIRL) and existing (DNN and RL) training 
algorithms. For the training we employed 20 epochs, 160 iterations, and 100 runs. Each run 
comprised 20 epochs and each epoch had 8 iterations. From the validation accuracy as shown 
in Figure 26 it can be inferred that the proposed DLIRL due to its optimized amalgamation of 
DNN and RL has better training accuracy as compared to the DNN and RL. These training 
accuracy results are clearly reflected in the beamforming effectiveness as shown in Figure 25 
and Figure 26.  

The proposed DLIRL is effective in getting trained in a smaller number of samples as shown in 
Figure 26. The SE of DLIRL is comparable to DNN and RL for very few samples (100). Above the 
100 training samples the performance of the DLIRL is better than its counterparts.  

 

Figure 26: Beamform towards UE using DLIRL 
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4.2 Orthogonal Time Frequency Space (OTFS) Sensing of Distance  

4.2.1 Definition 

The idea of OTFS is reduce the disadvantage associated with the OFDM and enhance its pros. 
OTFS (Orthogonal Time Frequency Space) modulates each information (e.g., QAM) symbol 
onto one of a set of two dimensional (2D) orthogonal basis functions that span the bandwidth 
and time duration of the transmission burst or packet [20]. The modulation basis function set 
is specifically derived to directly represent the dynamics of the time- varying multipath 
channel. OTFS can be implemented as a pre- and post-processing block to filtered OFDM 
systems, thus enabling architectural compatibility with LTE. OTFS transforms the time-varying 
multipath channel into a time-independent two-dimensional channel in the Delay-Doppler 
domain that directly represents the geometry of the various reflectors composing the wireless 
link. In this way, OTFS eliminates the difficulties in tracking time-varying fading, particularly in 
high-speed vehicle communications. Due to its ability to extract the full diversity of channel 
across time and frequency, OTFS enables linear scaling of throughput with the number of 
antennas in moving vehicle applications. In addition, since the Delay-Doppler channel 
representation is very compact, OTFS enables dense and flexible packing of reference signals, 
a key requirement to support the large antenna arrays used in massive MIMO applications. 

4.2.2 Simulation Implementation and Testing 

OTFS works in delay Doppler domain rather than time-frequency domain. The delay Doppler 
domain representation of channel converts time-variant channel to time-invariant channel as 
shown in Figure 27 below. 
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Figure 27: a. OTFS channel images plot, b. OTFS channel impulse response 

BER analysis for the OTFS and OFDM modulated signals: We can visualize from the 
comparative analysis of the OTFS and OFDM modulated signal for fast moving user equipment. 
The BER for OTFS modulated signals is high because its performance is not degraded even with 
the fast motion of the user equipment and the bit error and bits loss is less as compared to 
the conventional OFDM (see Figure 28). 
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Figure 28: BER analysis of OTFS and OFDM modulated signal at high Speed (Doppler Frequencies)  

4.3 Conclusions and recommendation for future research 

OTFS is suitable for serving radio channels from fast moving user equipment units with high 
Doppler Frequencies and may also be suitable for measuring location from Angle of Arrival 
using its impulse response and distance by using its delay. 

Future research involves exploring how OTFS can be used for measuring location from Angle 
of Arrival using its impulse response and distance using its delay. 
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5 Advanced Test and Simulation Tools supporting 6G BRAINS 
research  

Following the development of cell free IAB scheduler and radio resource allocation algorithms 
by partners, our main focus in this section is to develop advanced test and simulation tools for 
multi-UE mobility behaviour modelling and the corresponding dynamic channel state 
information (CSI) evaluation and analysis. The tools allow to configure up to thousand UEs’ 
mobile behaviour and capture their CSI logs. The captured CSI logs, including UE location, 
signal to noise radio (SNR), channel quality indicator (CQI), precoding matrix indicator (PMI), 
rank indicator (RI), etc, have potential to be used as the input of the above developed IAB 
scheduler and radio resource allocation algorithms for AI model training.  

5.1 Definition 

The developed test and simulation tools are mainly for cellular downlink communications. The 
development for uplink communications support is planned for the next step research. Figure 
29 provides the brief description of the considered system model.  

Figure 29: System model 

As shown in Figure 29, the base station (BS) is equipped with 𝑁 transmit antenna elements, 
which are arranged in a 𝑁1 × 𝑁2 size panel of cross-polarised antenna pairs. Hence, 𝑁 =
2𝑁1𝑁2, where 𝑁1 is the number of columns, 𝑁2 is the number of rows and 2 is the number of 
polarisations. The set of precoding matrices, also known as codebook, are set up and each 
precoding matrix is formed from basic beamforming vectors. Each beamforming vector is a 
discrete Fourier transform (DFT) vector of length 𝑁1𝑁2 with oversampling factors  𝑂1 and 𝑂2, 
where 𝑂1 = 4 and  

𝑂2 = {
1  𝑖𝑓 𝑁2 = 1;
4  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Thus, for the above system, there are 𝐾 = 𝑂1𝑂2𝑁1𝑁2 beamforming vectors in total. 
𝑂1𝑂2𝑁1𝑁2 beams point to 𝑂1𝑂2𝑁1𝑁2 distinct directions. Depend on antenna structure at BS 
antenna panel, the angle width in azimuth and zenith dimensions, such as in the bounded area 
of directions, are not lower than the gain of the boresight direction subtract 3dB, which is also 
called 3dB azimuth and zenith beamwidths. The 3dB azimuth bandwidth, denoted by ∅3dB, 
and 3dB zenith beamwidth denoted by  𝜃3dB are the model parameters specified by end users. 
Furthermore, the gain to a direction is a composition of two factors, the gain due to directional 
antenna elements and the gain from a beamforming technique. This composite gain is 
represented by a single input by end users, 𝐺, which takes the value of 10log10(𝑁1𝑁2)dB by 
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default. Meanwhile, the model also takes the spherical coordinate of the UE, (𝑟, ∅, 𝜃), as the 
model input, where 𝑟 is the distance between the BS and the UE, ∅ is the UE azimuth angle, 
and 𝜃 is the UE zenith angle. Provided that the Cartesian coordinate of the UE relative to the 
BS is (𝑥, 𝑦, 𝑧), we have  

𝑟 = √𝑥2 + 𝑦2 + 𝑧2; 

∅ = arg (𝑥 + 𝑗𝑦); 

𝜃 = arccos (
𝑧

√𝑥2+𝑦2+𝑧2
), 

where arg (∙) denotes the argument (phase) of a complex number and arccos (∙) is the inverse 
cosine function. 

The developed model models the large scale (i.e., slow fading pathloss) and small scale (i.e., 
multipath fast fading) radio propagation effects. Slow fading pathloss model of each link 
follows the simple free-space pathloss (FSPL) model, where the pathloss exponent is set to 2 
and no shadowing effect is considered. The reason we only support pathloss exponent of 2 is 
because there is little benefit/effect for the modelling feature. Meanwhile, we do not 
introduce shadowing, aiming to avoid difficulty in a case that one wants to test a behaviour 
requiring a deterministic outcome.  Fast fading, which is based on a stochastic model, should 
bring in sufficient degree of uncertainty for a scattering environment, and it will be used to 
reflect through the CSI and hybrid automatic repeat request (HARQ) acknowledgement 
(ACK)/negative-acknowledgement (NACK) feedback reporting sent to the BS. In combination 
with the channel SNR, channel gain coefficients are used to generate instantaneous SNR, 
which is then used directly to map to RI, CQI and used to populate HARQ ACK/NACK. 

We assume that mobility model always has sufficient line-of-sight (LoS) and believe that non-
LoS (NLoS) is more benefited to the signal processing designs at the receiver. On the other 
hand, in carrying out a system test in order to see the performance of the whole network 
assisted by a beamforming technique, NLoS might cause cumbersome. Without LoS path, the 
desirable beams could be any beams making our mobility model unnecessarily complicated in 
implementation. In addition, we limit our model to support only the cases for which the LoS 
power is not lower than NLoS power. In representing the LoS-to-NLoS power ratio by a 
parameter K, provided by user, the model requires that K must not be less than 0dB. With this 
assumption, instead of scanning over all possible beams, a search in the neighbours of LoS 
beam is sufficient to find the best beams, and hence the most suitable precoding matrices. 

In our model, fast fading component adopts the tapped delay line (TDL) models following the 
3GPP specification. Each TDL model is associated with a channel delay profile, namely TDL-A, 
TDL-B, TDL-C, TDL-D or TDL-E. When a channel delay profile is specified to a link between the 
BS antenna and a UE’s antennas, the channel is time dispersive and its impulse response has 
several random components, each is a Jakes process, at different delays. The variances of 
those random components are allocated according to the delay profile and the sum of 
variances is KdB lower than the deterministic component cause by LoS path. Since each 
channel delay profile specified in the 3GPP standard only defines the powers at normalised 
delays, a parameter called delay scale needs to be set to derive the actual delays for all the 
taps. 
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5.2 Simulation Implementation and Testing 

The set of input parameters of the developed mobility model is given in Table 7. In this table, 
the system parameters are considered as parameters applied for all the UEs and expected not 
to change during a test. The link parameters, which can be changed during a test, are UE 
specific. For example, when UE follows a moving path defined before a test run, the mobility 
model will produce the outcomes for discrete values of distance 𝑟 and direction ∅, 𝜃 along the 
path. Considering the configuration of a UE’s speed and direction, and corresponding Doppler 
frequency can be derived from the geometric model. Specifically, suppose that a UE is in a 
path from the position (𝑥, 𝑦, 𝑧) to the position (𝑥̃, 𝑦̃, 𝑧̃) with a constant speed 𝑣, the Doppler 
frequency is given as  

𝑓𝐷 =
𝑥(𝑥̃ − 𝑥) + 𝑦(𝑦̃ − 𝑦) + 𝑧(𝑧̃ − 𝑧)

√(𝑥2 + 𝑦2 + 𝑧2)[(𝑥̃ − 𝑥)2 + (𝑦̃ − 𝑦)2 + (𝑧̃ − 𝑧)2]

𝑣𝑓𝑐

𝑐
, 

Where 𝑐 = 3 × 108m/s is the speed of radio propagation. Note that 𝑓𝐷 ≤
𝑣𝑓𝑐

𝑐
 because 

𝑥(𝑥̃ − 𝑥) + 𝑦(𝑦̃ − 𝑦) + 𝑧(𝑧̃ − 𝑧)

√(𝑥2 + 𝑦2 + 𝑧2)[(𝑥̃ − 𝑥)2 + (𝑦̃ − 𝑦)2 + (𝑧̃ − 𝑧)2]
≤ 1, 

in which the equality holds only if 
𝑥̃−𝑥

𝑥
=

𝑦̃−𝑦

𝑦
=

𝑧−𝑧

𝑧
, i.e., the moving path is on the LoS.  

Table 7: Input parameters for the developed mobility model 
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From the input parameters as given in Table 7, the mobility model will run online and produce 
a series of instantaneous CSI reports based on the user’s configuration, which include UE’s 
location, UE specified RI, wideband PMI, wideband and sub-band CQI, and HARQ ACK/NACK 
status when requested.  

As mentioned above, CSI reports are triggered by the calculation of SNR of each UE at specific 
time instance. The way to calculate SNR is the combination of the SNRs for both slow fading 
model and the fast fading model. For the slow fading model, given the direction (∅, 𝜃) of a 
UE, the LoS beam will be taken into account for the SNR calculation and is defined as the beam 
that maximizes 

𝐴𝑖1,1𝑖1,2
(∅, 𝜃) = − min {− (𝐴𝐻,∅0

(∅) + 𝐴𝑉,𝜃0
(𝜃)) , 30}, 

were   

𝐴𝐻,∅0
(∅) = − min {12 (

∅ − ∅0

∅3dB
)

2

, 30} ; 

𝐴𝐻,𝜃0
(𝜃) = − min {12 (

𝜃 − 𝜃0

𝜃3dB
)

2

, 30} ; 

and 𝑖1,1 with the size of [0, 𝑂1𝑁1 − 1] and 𝑖1,2 with the size of [0, 𝑂2𝑁2 − 1] are the pair of 
beam indices. It is worth noting that the directions of all the beams with the same 𝑖1,2 will 
have an identical zenith angle. Following the standard FSPL model, the pathloss of slow fading 
is given by  

𝐿(𝑟)[dB] = 35.25 + 20log 10(𝑓𝑐) + 20log 10(𝑟). 

In addition, the isotropic SNR is defined as 

SNR̅̅ ̅̅ ̅̅ [𝑑𝐵𝑐] = 𝑃𝑇𝑋 − 𝐿(𝑟) − 𝐼𝑜𝑐, 

where 𝑃𝑇𝑋 is the transmit power and 𝐼𝑜𝑐 is the noise power at UEs. Thus, the slow fading SNR 
conditioned on a specific beam with the indices (𝑖1,1, 𝑖1,2) is  

SNR̅̅ ̅̅ ̅̅
𝑖1,1,𝑖1,2

[𝑑𝐵𝑐] = SNR̅̅ ̅̅ ̅̅ + 𝐺 + 𝐴𝑖1,1𝑖1,2
(∅, 𝜃). 

Note that the SNR conditioned on LoS beam must be the highest one between all the 
conditional SNR as we mentioned before. 

For the fast fading, the channel condition varies across both the time and frequency, and 
Doppler frequency will affect the frequency of channel varying with time. The actual values of 
CSI reports and the generated HARQ ACK/NACK outcomes are the results of mappings from 
the instantaneous SNR of the transmission layers as we mentioned above. Assume that the 
signals of two polarisations go through two independent paths. The following form of row-
vector channel can be used to model each path in an resource block (RB) is given by  

𝐡 = √
𝐾

𝐾 + 1
𝐡LoS + √

1

𝐾 + 1
𝐡NLoS, 

in which, the first component at the right-hand-side is deterministic LoS and the second 
component at the right-hand-side is random NLoS. The model in the above equation allows to 

model the channel quality for the (𝑖, 𝑗)𝑡ℎ beam at time 𝑡 for the 𝑘th RB as  
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SNR𝑖,𝑗,𝑘(𝑡) = SNR̅̅ ̅̅ ̅̅
𝑖1,1,𝑖1,2

|√
𝐾

𝐾 + 1
+ √

1

𝐾 + 1
𝑥𝑖,𝑗,𝑘(𝑡)|

2

, 

where  SNR̅̅ ̅̅ ̅̅
𝑖1,1,𝑖1,2

 is the slow fading SNR defined above; 𝑥𝑖,𝑗,𝑘(𝑡) is a standard Gaussian 

random variable for 𝑖 ∈ {1,2} polarisation index and 𝑗 ∈ {1,2, ⋯ ,7} beam index. Note that, as 
strong LoS is assumed, for generating quantities for CSI reporting, the developed mobility 
model only considers instantaneous the LoS beam and its 6 neighbouring beams. 

The model generates the above instantaneous SNR for 2 polarisations and 7 beams in every 
time slot and reports CSI, consisting of RI, PMI, CQI etc. To decide RI and wideband PMI, given 
the last slot with time index 𝑡, we use the average SNR across the whole RBs, which is given 
by 

SNR̂𝑖,𝑗(𝑡) = ∑ SNR𝑖,𝑗,𝑘(𝑡)

𝑁𝑅𝐵

𝑘=1

, 

where 𝑁RB denotes the number of RBs for transmission. Depending on the configured 
modulation and coding scheme (MCS) table, CQI can be linked to the calculated SNR value 
based on some pre-defined lookup table. Denote that 𝛾(∙) as the function mapping from a 
SNR to CQI and 𝜑(∙) as the function mapping from a CQI to a spectrum efficiency. For rank-1 
hypothesis, the spectrum efficiency is given by 

𝜑𝑟𝑎𝑛𝑘−1 = max
𝑗

𝜑 [𝛾(SNR̂1,𝑗 + SNR̂2,𝑗)], 

and for rank-2 hypothesis, the spectrum efficiency is given by 

𝜑𝑟𝑎𝑛𝑘−2 = max{2𝜑[𝛾 min(SNR̂1,1, 𝛼2)], 2𝜑[𝛾 min(SNR̂2,1, 𝛼1)]}, 

where  

𝛼1 = max
𝑗

SNR̂1,𝑗, 

𝛼2 = max
𝑗

SNR̂2,𝑗. 

Same strategy is applied to calculate higher rank efficiency if UE is equipped with higher 
number of antennas. The highest efficiency between different rank hypotheses will decide RI. 
Following that, the derivation of PMI, i.e., 𝑖1,1, 𝑖1,2 and CQI value can also be determined. 
Figure 30 shows an example of the simulated CSI report with a randomly configured system. 
For the next step research, we will collaborate with project partners to design and train AI/ML 
model for radio resource allocation, leveraging the developed CSI reporting tools.  
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Figure 30: An example of CSI reporting results 
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6 Summary Conclusions and Recommendations  

6.1 Deliverable Summary 

These deliverable details the modelling and analysis of the intelligent IAB and intelligent UE. 
It is now composed of four parts, that is: 

1. the intelligent cell-free IAB scheduler for spectrum allocation and traffic routing,  
2. the intelligent UE modelling and decoding methods for D2D enabled cooperative 

network and the grant-free access network,  
3. the location sensing-based intelligent beam scheduler and 
4. the advanced test and simulation tools for multi-UE mobility behaviours modelling and 

channel evaluation.  

The main content of the deliverable is described below.  

1. The cell free integrated access and backhaul scheduler is subdivided into two parts, 
namely: (1) IAB bandwidth allocation, (2) Routing solution. The IAB resource allocation 
finds the optimal way to divide the spectrum between the backhaul and access 
requirements of the different donors and the nodes in the network using supervised 
learning AI method with CQI, DL and UL profile and connected base-station for input 
parameters and the rate each link must support and its efficiency for cost function. The 
routing solution, that is described in this deliverable in details. is based on multi-agent 
deep reinforcement learning (MA-DRL) for a fully synchronized time-slotted wireless 
network with the objective to find the optimal route from each BS (donor or nodes) to 
each user in terms of: packet error probability (PER) for the whole packet trajectory; 
maintenance of quality of service (QoS) requirements; network congestion 
management including queue management and fairness. The Relational Actor and 
Critic neural architecture is proposed as the best routing solution. 

2. The D2D enabled cooperative network consists of the D2D clusters and the IAB node. 
Each D2D clusters may contain a couple of far users and a near user where the far users 
directly transmit data to the near user. The near user acts a D2D relay and forwards 
the received signal and transmit its own signal to the IAB node, respectively. For 
effective decoding at the base station, beamforming and a DDPG based power 
allocation method for worst-case user rate maximization are employed. Finally, a SIC 
decoding method is used at the base station based on the different arrived power 
strengths resulted from the optimized beamforming and power allocation parameters. 

For the grant-free access network for mMTC, a block-sparsity-based adaptive matching 
pursuit algorithm is proposed for the joint user activity detection and signal recovery. 
The proposed method utilizes a novel user sparsity decision method with only the 
modulation constellation of the transmitted signal as the prior information, enabling 
its practicability.  

3. OTFS transforms the time-varying multipath channel into a time-independent two-
dimensional channel in the delay-Doppler domain that directly represents the 
geometry of the various reflectors composing the wireless link.  

For the location sensing-based intelligent beam scheduler, OTFS is suitable for radio 
channels from fast moving user equipment with high Doppler frequencies and may 
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also be suitable for measuring location from angle of arrival using its impulse response 
and distance using its delay. 

4. The advanced test and simulation tools are developed for multi-UE mobility behaviour 
modelling and the corresponding dynamic channel state information (CSI) evaluation 
and analysis. The tools allow to configure up to thousand UEs’ mobile behaviour and 
capture their CSI logs. The captured CSI logs, including UE location, SNR, CQI, PMI, RI, 
etc, have potential to be used as the input of the above developed IAB scheduler and 
radio resource allocation algorithms for AI model training. 

6.2 Future work plans 

Following the implementation of the IAB scheduler, the next task will be the replacement of a 
traditional deterministic scheduler of a 5G network with this AI based scheduler and test how 
the main network KPIs such as end-to-end latency, reliability, throughput, spectral efficiency, 
power consumption, QoS, QoE, etc. are affected by the AI based scheduler. 

Furthermore, conduct investigation on how the AI based scheduler and the D2D cluster 
scheduler can be integrated with each other to obtain better overall Network performance. 

The cell-free MIMO with D2D UE clusters is planned as the future work, including the user 
clustering, the access point clustering, the spectrum allocation, the intelligent beamforming 
and power allocation. The deep reinforcement learning method will be used for solving the 
highly nonlinear optimization problem and well adapting to the varying channels due to the 
dynamic clustering and the mobility of the users.  

Towards human-centric control interfaces for cellular networks, future work includes the 
implementation of all the knowledge applied to the presented state machine, validating all 
defined phases with the presented use case, and completing the intents implementation 
system and move on to the integration of this system with the voice recognition system.  

In the context of intelligent IABs with beam steering based on user location, OTFS transforms 
the time-varying multipath channel into a time-independent two-dimensional channel in the 
Delay-Doppler domain that directly represents the geometry of the various reflectors 
composing the wireless link. The future scope of this work aims at measuring location from 
Angle of Arrival using its impulse response and distance using its delay by using OTFS. 

The advanced test and simulation tools provide the UE behaviors modelling and channel 
evaluation. The results of the user and channel analysis are promising to be integrated with 
the cell-free IAB scheduler, the beamforming scheduler and the resource allocation, since 
these techniques are usually dependent on the user mobility, location, and channel 
information. In addition, the channel measurements and modelling in multiple frequency 
bands from partners in work package 3 can also be used for the cell-free scheduler, resource 
allocation for D2D communication and intelligent beam steering. 

Autonomous beam steering in a factory digital twin using Winprop will be performed (as 
opposed to urban environment using Matlab’s Siteview) to obtain beam direction accuracy 
results. Autonomous beam steering in a factory digital twin using Winprop will be performed 
(as opposed to urban environment using Matlab’s Siteview) to obtain beam direction accuracy 
results. 
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