Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Published January 31, 2023 | Version v1
Conference paper Open

Investigation of very low mass binaries using VLT/NaCo

  • 1. Monterey Institute for Research in Astronomy (MIRA), 200 Eighth Street, Marina, California 93933, USA; Astronomy & Astrophysics Division, Physical Research Laboratory, Navrangapura, Ahmedabad 380009, India
  • 2. Astronomy & Astrophysics Division, Physical Research Laboratory, Navrangapura, Ahmedabad 380009, India
  • 3. Aperio Software Ltd., Insight House, Riverside Business Park, Stoney Common Road, Stansted, Essex, CM24 8PL, UK; Förderkreis Planetarium Göttingen, 37085 Göttingen, Germany

Description

Context: Most stars in the galactic stellar population are low-mass stars. Very low mass (VLM) stars are a subset of the low-mass stars typically defined in terms of the stellar masses ranging from 0.6 M to the hydrogen-burning limit of about 0.075 M.
Aim: The observational studies of VLM binaries can provide effective diagnostics for testing the VLM formation scenarios. The small size of VLMs makes them suitable candidates to detect planets around them in the habitable zone.
Methods: In this work, using the high-resolution near-infrared adaptive optics imaging from the NaCo instrument installed on the Very Large Telescope, we report the discovery of a new binary companion to the M-dwarf LP 1033-31 and also confirm the binarity of LP 877-72. We have characterized both stellar systems and estimated the properties of their individual components.
Results and Conclusions: We have found that LP 1033-31 AB with the spectral type of M4.5+M4.5 has a projected separation of 6.7±1.3 AU. On the other hand, with the spectral type of M1+M4, the projected separation of LP 877-72 AB is estimated to be 45.8±0.3 AU. We further investigated the masses, surface gravity, radii, and effective temperature of the detected components. The orbital period of LP 1033-31 and LP 877-72 systems are estimated to be ∼28 and ∼349 yr, respectively. Our analysis suggests that there is a possibility of finding up to ‘two’ exoplanets around LP 877-72 B. In contrast, the maximum probability of hosting exoplanets around LP 877-72 A, LP 1033-31 A, and LP 1033-31 B are estimated to be only ∼50%.

Files

Subhajeet_Karmakar_cool-stars21.pdf

Files (508.8 kB)

Name Size Download all
md5:bceebf407f2249afd34774c50158519b
508.8 kB Preview Download

Additional details

References

  • Allen P. R., Burgasser A. J., Faherty J. K., Kirkpatrick J. D., 2012, AJ, 144, 62
  • Apps K., et al., 2010, PASP, 122, 156
  • Astropy Collaboration et al., 2022, ApJ, 935, 167
  • Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Mantelet G., Andrae R., 2018, AJ, 156, 58
  • Baraffe I., Homeier D., Allard F., Chabrier G., 2015, A&A, 577, A42
  • Baron F., et al., 2015, ApJ, 802, 37
  • Bate M. R., 2009, MNRAS, 397, 232
  • Benedict G. F., et al., 2016, AJ, 152, 141
  • Boyajian T. S., et al., 2012, ApJ, 757, 112
  • Bradley L., et al., 2022, astropy/photutils: 1.6.0, Zenodo, doi:10.5281/zenodo.7419741
  • Czesla S., Schröter S., Schneider C. P., Huber K. F., Pfeifer F., Andreasen D. T., Zechmeister M., 2019, PyA: Python astronomy-related packages, Astrophysics Source Code Library, record ascl:1906.010 (ascl:1906.010)
  • Delfosse X., Forveille T., Ségransan D., Beuzit J.-L., Udry S., Perrier C., Mayor M., 2000, A&A, 364, 217
  • Dittmann J. A., Irwin J. M., Charbonneau D., Newton E. R., 2016, ApJ, 818, 153
  • Dupuy T. J., Liu M. C., 2017, ApJS, 231, 15
  • Finch C. T., Zacharias N., Subasavage J. P., Henry T. J., Riedel A. R., 2014, AJ, 148, 119
  • Frith J., et al., 2013, MNRAS, 435, 2161
  • Gaia Collaboration et al., 2018, A&A, 616, A1
  • Gálvez-Ortiz M. C., Solano E., Lodieu N., Aberasturi M., 2017, MNRAS, 466, 2983
  • Giclas H. L., Burnham R. J., Thomas N. G., 1978, Lowell Observatory Bulletin, 8, 89
  • Hardegree-Ullman K. K., Cushing M. C., Muirhead P. S., Christiansen J. L., 2019, AJ, 158, 75
  • Hartung M., Bizenberger P., Boehm A., Laun W., Lenzen R., Wagner K., 2000, in Iye M., Moorwood A. F., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4008, Optical and IR Telescope Instrumentation and Detectors. pp 830–841, doi:10.1117/12.395543
  • Hartung M., Blanc A., Fusco T., Lacombe F., Mugnier L. M., Rousset G., Lenzen R., 2003, A&A, 399, 385
  • Karmakar S., 2019, PhD thesis, ARIES, Nainital, India; PRSU, Raipur, India, doi:10.5281/zenodo.5762548
  • Karmakar S., 2021, MIRA Newsletter, 44, 3
  • Karmakar S., Pandey J. C., 2018, Bulletin de la Societe Royale des Sciences de Liege, 87, 163
  • Karmakar S., et al., 2016, MNRAS, 459, 3112
  • Karmakar S., Pandey J. C., Airapetian V. S., Misra K., 2017, ApJ, 840, 102
  • Karmakar S., Pandey J. C., Naik S., Savanov I. S., Raj A., 2019, Bulletin de la Societe Royale des Sciences de Liege, 88, 182
  • Karmakar S., Rajpurohit A. S., Allard F., Homeier D., 2020, MNRAS, 498, 737
  • Karmakar S., Naik S., Pandey J. C., Savanov I. S., 2022, MN- RAS, 509, 3247
  • Karmakar S., Naik S., Pandey J. C., Savanov I. S., 2023, MN- RAS, 518, 900
  • Kesseli A. Y., West A. A., Veyette M., Harrison B., Feldman D., Bochanski J. J., 2017, ApJS, 230, 16
  • Kirkpatrick J. D., et al., 2016, ApJS, 224, 36
  • Kraus A. L., Ireland M. J., Huber D., Mann A. W., Dupuy T. J., 2016, AJ, 152, 8
  • Lenzen R., Hofmann R., Bizenberger P., Tusche A., 1998, in Fowler A. M., ed., Society of Photo-Optical In- strumentation Engineers (SPIE) Conference Series Vol. 3354, Infrared Astronomical Instrumentation. pp 606–614, doi:10.1117/12.317287
  • Lépine S., Gaidos E., 2011, AJ, 142, 138
  • Luyten W. J., 1995, VizieR Online Data Catalog, p. I/98A
  • Muirhead P. S., Dressing C. D., Mann A. W., Rojas-Ayala B., Lépine S., Paegert M., De Lee N., Oelkers R., 2018, AJ, 155, 180
  • Pandey J. C., Karmakar S., 2015, AJ, 149, 47
  • Patel M. K., Pandey J. C., Karmakar S., Srivastava D. C., Sa- vanov I. S., 2016, MNRAS, 457, 3178
  • Phan-Bao N., Martín E. L., Reylé C., Forveille T., Lim J., 2005, A&A, 439, L19
  • Pokorny R. S., Jones H. R. A., Hambly N. C., 2003, A&A, 397, 575
  • Rajpurohit A. S., Reylé C., Allard F., Homeier D., Schultheis M., Bessell M. S., Robin A. C., 2013, A&A, 556, A15
  • Reiners A., et al., 2018, A&A, 612, A49
  • Reylé C., Robin A. C., 2004, A&A, 421, 643
  • Reylé C., Scholz R.-D., Schultheis M., Robin A. C., Irwin M., 2006, MNRAS, 373, 705
  • Rousset G., et al., 1998, in Bonaccini D., Tyson R. K., eds, So- ciety of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 3353, Adaptive Optical System Technologies. pp 508–516, doi:10.1117/12.321686
  • Rousset G., et al., 2000, in Wizinowich P. L., ed., Society of Photo-Optical Instrumentation Engineers (SPIE) Con- ference Series Vol. 4007, Adaptive Optical Systems Tech- nology. pp 72–81, doi:10.1117/12.390304
  • Salim S., Gould A., 2003, ApJ, 582, 1011
  • Savanov I. S., et al., 2016, AcA, 66, 381
  • Savanov I. S., Dmitrienko E. S., Karmakar S., Pandey J. C., 2018, Astronomy Reports, 62, 532
  • Savanov I. S., Naroenkov S. A., Nalivkin M. A., Pandey J. C., Karmakar S., 2019, Astronomy Letters, 45, 602
  • Schneider A. C., Greco J., Cushing M. C., Kirkpatrick J. D., Mainzer A., Gelino C. R., Fajardo-Acosta S. B., Bauer J., 2016, ApJ, 817, 112
  • Scholz R.-D., Meusinger H., Jahreiß H., 2005, A&A, 442, 211
  • Skrutskie M. F., et al., 2006, AJ, 131, 1163
  • Spanoudakis P., Zago L., Chetelat O., Gentsch R., Mato Mira F., 2000, in Wizinowich P. L., ed., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4007, Adaptive Optical Systems Technology. pp 408–415, doi:10.1117/12.390352
  • Stassun K. G., et al., 2019, AJ, 158, 138
  • Tody D., 1986, The IRAF Data Reduction and Analysis Sys- tem. p. 733, doi:10.1117/12.968154
  • Tody D., 1993, IRAF in the Nineties. p. 173
  • Tuomi M., et al., 2019, arXiv e-prints, p. arXiv:1906.04644
  • Wang J., Fischer D. A., Xie J.-W., Ciardi D. R., 2014, ApJ, 791, 111
  • West A. A., Hawley S. L., Bochanski J. J., Covey K. R., Reid I. N., Dhital S., Hilton E. J., Masuda M., 2008, AJ, 135, 785
  • Winters J. G., et al., 2015, AJ, 149, 5
  • Winters J. G., et al., 2019, AJ, 157, 216
  • Wright E. L., et al., 2010, AJ, 140, 1868
  • Wroblewski H., Torres C., 1995, A&AS, 110, 27
  • York D. G., et al., 2000, AJ, 120, 1579