flap

A deterministic parser
with fused lexing

s
tlfact eva\“a

The flap authors
11th April 2023

Introduction

This document is a guide to using the artifact that accompanies the PLDI 2023 paper flap: a
deterministic parser with fused lexing. It has three sections besides this introduction:

Tutorial example (pages 3-5) gives a small example of a fused grammar implemented in flap,
which the reader can execute at the MetaOCaml top-level.

It assumes that the reader has already worked through the Getting Started Guide.

Claims supported by the artifact (pages 6—22) presents claims supported by the artifact accom-
panying this document.

We have identified eighteen claims related to the artifact in the submitted paper. The section shows
how to locate and examine the evidence that supports each claim.

For each claim the section includes the excerpt from the paper where the claim is made, together
with line numbers that make the excerpt easy to locate.

Each claim also comes with an indication of the length of time we estimate it will take to verify it.
We estimate that verifying all the claims will take approximately three hours

The section assumes that the reader has already worked through the Tutorial example section.

Claims not supported by the artifact (page 23) lists claims in the paper that are not supported
by the artifact, but are instead supported by proofs in supplementary material.

Tutorial example

This section guides the reader through an interactive exploration of the library via an example,
constructing a simple fused lexer and parser for the Dyck language of balanced brackets.

1. Start the MetaOCaml toplevel
metaocaml

flap is implemented a MetaOCaml library, and all its functionality is available from the top-
level read-eval-print loop.

2. Within MetaOCaml load the topfind command, then load flap:

#use "topfind";;
#require "flap";;

The topfind command is used to locate and load libraries into the top-level.

The final line of the output should indicate that f1lap has been loaded:
/home/opam/.opam/4.11.1+BER/1ib/flap/flap.cma: loaded

3. Load the ppx_deriving extension that automatically creates pretty-printers and comparison
functions:

#require "ppx_deriving.std";;
MetaOCaml's response should end as follows:
ppx_deriving: package:ppx_deriving.std: option added

4. Create a type of tokens and instantiate the flap parser with the type:

module Tok = struct type t = LPAREN | RPAREN [@@deriving ord, show] end;;
module P = Flap.Parse(Tok);;

(From this point on, MetaOCaml should respond by printing out the types and values of the
variables defined.)

As in many parsing systems, these tokens will serve as an interface between the lexer and the
parser. The distinctive feature of flap is that the tokens are only used during compilation,
and are not present in the final parser.

5. Define a lexer as an ordered mapping from regexes to actions (see lines 168-170 of our paper):

let lexer = [

Reex.chr ' (' , P.Return LPAREN;
Reex.chr ')' , P.Return RPAREN;
Reex.regex "[\t\n 1" , P.Skip;

135

The semantics of lexers are similar to standard lexers, such as lex: the lexer finds the longest
match, with earlier patterns taking priority. Here there are two types of action: Return (pass
a token to the parser) and Skip (discard the matched portion of the text and restart lexing
at the text that follows).

6. Add code that builds payloads for each token.

Flap.Cd.injv .<()>.
.tok LPAREN @@ ignore
.tok RPAREN Q@Q@ ignore

let ignore
let lparen
let rparen

0

This simple example always returns empty payloads (i.e. ()). Larger and more realistic lexers
written with flap might instead return values (such as integers or strings) constructed from
the matched text.

7. Define the star combinator:

let star_ e =
let open Flap.Cd in
let open P in fix @@ fun x -> (eps (injv .<[1>.)
<|> (e >>> x § fun p -> let_ p @@ fun p —>
injv .< ."(dyn (fst p)) :: .7 (dyn (snd p)) >.))

This is a temporary measure: flap currently provides a set of basic parsing combinators,
which can be used to construct more complex combinators such as Kleene star and plus.
Before releasing £1ap we plan to incorporate a selection of these definitions into the library to
make things more convenient for users.

Here star e is built as a fixpoint pz.€ | e - ; however, it is not necessary to understand the
details in order to evaluate the artifact.

8. Define the parser using £lap's combinators

let parser =
let open P in
let open Flap.Cd in
fix @@ fun vd >
((lparen >>> star_ vd >>> rparen)
$ fun p -> injv .< 1 + List.fold_left max O
(Stdlib.snd (Stdlib.fst .~ (dyn p))) >.)

)

10.

11.

The parser is again built using a fixpoint: pvd.(- vd * -).

The semantic action of the parser measures the “depth” of the Dyck sentence, defined as the
successor of the maximum depth of its children.

. Compile the parser and lexer and extract the code from the result:

let result = P.compile lexer parser;;
let Ok code = result;;

MetaOCaml should print the full code for the generated parser.

(There will also be a warning, " pattern-matching is not exhaustive”, because the second line
of the code only matches the Ok constructor, not the Error constructor that can be returned
if P.compile fails. The warning can be safely ignored.)

let rec x_1 start_4 “index:i_5 “prev:prev_6 “len:len_7 s_8 =
match Stdlib.String.unsafe_get s_8 i_5 with
['u'..'\265' ['o' . tst] o tmt kL LN NO00 ! L L ' \O3L >

The P.compile function type-checks the parser (§2.1 of the paper), normalizes the result
(§2.6), and fuses the lexer and parser together, before finally generating code using MetaOCaml
and letrec insertion.

If you inspect the generated code, you will not find any trace of the token type, because it
is eliminated by fusion. The claims enumerated in the next section gives more detail; for
example, Claim 4 investigates token elimination.

Save the generated code to a file and load it into the top level:
let fd = open_out "/tmp/dyck.ml";;

let fmt = Format.formatter_of_out_channel fd;;
Format.fprintf fmt "let dyck = %a@."

Codelib.format_code (Codelib.close_code code);;
#mod_use "/tmp/dyck.ml";;

Try out the generated parser:

Dyck.dyck "(O(O))";;

The response should be 3, the maximum depth of the Dyck sentence.

Claims supported by the artifact

81 Introduction

Claim 1: Architecture of flap (10 minutes)

The paper claims that flap has the architecture depicted in a figure:
50 Krishnaswami and Yallop [2019]

parser ——— first-order » typed » normalized (§3) flap
) /lk fused (§4) ——f staged (§5.4)
54 lexer ———————— specialized (§2.7)

55 Owens et al. [2009]
56 Fig. 1. Architecture of flap

You can verify this claim by examining the code. The components of £1ap are found in the following
locations, all below the /home/opam/flap/1lib directory:

The parser interface is found in flap.mli, which includes combinators eps, star, etc., which are
described in detail in the paper.

The first-order parser representation is found in flap.ml:
From /home/opam/flap/lib/flap.ml

type ('ctx, 'a, 'd) t' =
Eps : 'a V.t -> ('ctx, 'a, 'd) t'
| Seq : ('ctx, 'a, 'd) t * ('ctx, 'b, 'd) t -> ('ctx, 'a * 'b, 'd) t'
| Tok : 'a tag -> ('ctx, 'a, 'd) t'
| Bot : ('ctx, 'a, 'd) t'
| Alt : ('ctx, 'a, 'd) t * ('ctx, 'a, 'd) t -> ('ctx, 'a, 'd) t'
| Map : ('a V.t => 'b V.t) * ('ctx, 'a, 'd) t -> ('ctx, 'b, 'd) t'
| Fix : ('a * 'ctx, 'a, 'd) t > ('ctx, 'a, 'd) t'
| Var : ('ctx,'a) var -> ('ctx, 'a, 'd) t'
| Star : ('ctx, 'a, 'd) t -> ('ctx, 'a list, 'd) t'
and ('ctx, 'a, 'd) t = 'd * ('ctx, 'a, 'd) t'

The typed parser representation is also found in flap.ml: it is a variant of the first-order repres-
entation constructed by the typeof function:

From /home/opam/flap/lib/flap.ml

let rec typeof : type ctx a d. ctx TpEnv.t -> (ctx, a, d) t -> (ctx, a, Tp.t) t =

The normalized parser representation is found in normal .m1i:

From /home/opam/flap/lib/normal.mli

This corresponds to the normal form defined in Figure 4 of

flap: A Deterministic Parser with Fused Lezing

PLDI 2023
*)
module Make (Term : sig type t [0@deriving ord, show] end)
sig
type 'a ntseq = Empty : unit ntseq

| Cons : 'a Env.Var.t * 'b ntseq -> ('a * 'b) ntseq
(** A possibly-empty sequence of typed variables *)

type 'l prod = Prod : { nonterms : 'n ntseq;

The lexer interface is found in flap.mli. A lexer is a list of pairs of regular expressions and actions,
discussed in more detail later in this document:
From /home/opam/flap/lib/flap.mli
type rhs = Skip | Error of string | Return of Term.t

val compile : (Reex.t * rhs) list -> 'a t -> ((string -> 'a) code, string) result
(** [compile 1 p] builds code [0k c] for a lezer [l] and type-checked parser [p],

The fuse function in fused.mli carries out lexer specialization and fusion:
From /home/opam/flap/lib/fused.mli

(** A lexer right-hand side is an action: either [Skip] (restart lexzing),

The staged representation is generated by compiler.ml. Its implementation in terms of staging
features and letrec insertion is covered in a little more detail later in this document.

82 Overview

Claim 2: The parser interface (1-2 minutes)

The paper claims that the parser interface is the same as the one described in Krishnaswami
& Yallop's 2019 article A Typed, Algebraic Approach to Parsing:
156 Since every well-typed

157 context free expression normalizes to DGNF, we can provide the same parser combinator interface
158 as Krishnaswami and Yallop, but with a significantly more efficient implementation (§6).

§2.1 of A Typed, Algebraic Approach to Parsing presents the seven fundamental combinators of the
parsing interface: eps, chr, seq, bot, alt, fix, map.

You can see the implementation of these combinators in the asp library that accompanies that paper
by executing the following commands in the metaocaml toplevel:

https://www.cl.cam.ac.uk/~nk480/parsing.pdf

#use "topfind";;
#require "asp";;
#show Asp.Staged.Parse;;

The output should include the following:

type 'a t

val eps : 'a code -> 'a t

val (>>>) : 'at -> 'bt -> ('ax*x 'b) t

val tok : 'a Token.tag —> 'a t

val bot : 'a t

val (<[>) : 'at > 'at > 'at

val any : 'a t list -> 'a t

val ($) : 'at -> ('acode -> 'b code) -> 'b t

val fix : ('bt -=> 'bt) => 'b t

There are some differences between their paper and their implementation in the names and in the
types of combinators. In the implementation seq is called >>>, alt is called <|>, chr is called tok,
map is called $.

The flap implementation provides combinators that use the same names as asp and that have
corresponding types, as you can confirm by executing the following commands in the metaocaml
toplevel:

#use "topfind";;
#require "flap";;
#show Flap.Parse;;

The output should include the following

type _ t

val eps : 'a Flap.Cd.t > 'a t

val (>>>) : 'at > 'bt-> ('ax*x 'b)t

val tok : Term.t -> (string Flap.Cd.t -> 'a Flap.Cd.t) -> 'a t
val bot : 'a t

val (<[>) : 'at > 'at->'at

val ($) : 'at -> ('a Flap.Cd.t -> 'b Flap.Cd.t) -> 'b t
val fix : ('bt => 'b t) -> 'b t

You can also examine the combinators and their documentation in /home/opam/flap/lib/flap.mli:
From /home/opam/flap/lib/flap.mli

type _ t
(** The type of parsers *)

val eps : 'a Code.t -> 'a t
(** [eps v] succeeds without consuming input and returns [v] *)

val (>>>) : 'at > 'bt -> ('a* 'b) t
(** [p >>> q] parses successive prefizes of the input using [p] and then [q]
and returns a pair of the result of the two parses *)

Claim 3: The lexer interface (5 minutes)

The paper claims that the regular expressions used in £1lap provide various combinators, and
that the lexer is constructed as a mapping from regexes to actions:

1uu

Lexer. We start with the lexer. Fig. 3a defines the syntax for regexes r and lexers /.. Regexes
168 include . for nothing , ¢ for the empty string, characters ¢, sequencing , alternation .
o Kleene star 7+, intersection , and negation —r. A lexer L is an ordered mapping from regexes
to actions, where an action might return a token (), invoke the lexer recursively to
7, skip over some input , or raise an error otherwise. Our example sexp lexer (Fig. 3b) has
., four actions: three return tokens ATom, LPAR and RPAR, and one skips whitespace.

You can verify the part of the claim about regexes by loading our reex library into the toplevel:

#use "topfind";;
#require "reex";;
#show Reex;;

The output should include the following lines:
val empty : t
val epsilon : t
\.72.1]'.(<&>) tt >t >t
vai(>>>) tt >t >t
\.fz.ai(<|>) tt >t >t

val star : t > t
val not : t > t

val chr : char > t

These combinators correspond to the regex forms described in the paper:

1 empty
€ epsilon

c chr
TS >>>
r|s <|>
T* star
r&s <&>
-r not

The other parts of the claim involve lexer actions. The three types of lexer actions appear in the
rhs type in the interface in flap.mli:

From /home/opam/flap/lib/flap.mli

type rhs = Skip | Error of string | Return of Term.t

The first argument of the compile function in flap.mli is a list of pairs of regular expressions and
actions (type rhs) that corresponds to the mapping described in the paper:

From /home/opam/flap/lib/flap.mli

val compile : (Reex.t * rhs) list -> 'a t -> ((string -> 'a) code, string) result

The Dyck parser developed on page 3 of this document gives a concrete example of a flap lexer.

Claim 4: flap’s fusion produces token-free code (10 minutes)

A central claim of the paper is that fusion produces token-free code:

306 - - . .
' Fusion acts on a lexer and a normalized parser, connected via tokens, and produces a grammar

7" that is entirely token-free, in which the only branches involve inspecting individual characters.

e

You can verify this claim by examining the code generated by the example grammar on pages 3-5
of this document. The code contains three branches (all instances of match), all of which operate
on characters, e.g.:

match Stdlib.String.unsafe_get s_8 i_5 with
| 'u'..'\255"['o' . s [T tmt N P\000 ! L L P \03L Y >

The fact that fusion operates on a separately-defined lexer and normalized parser can be seen from
the type of the fuse function:

From /home/opam/flap/lib/fused.mli

(** A lexer right-hand side is an action: either [Skip] (restart lezing),

The first argument to fuse is a lexer (defined as a list of pairs of regular expressions and actions).
The second argument is a normalized grammar. The result is a fused grammar.

10

Claim 5: The last step: staging (1-2 minutes)

The paper claims that flap uses MetaOCaml'’s staging facilities in the last step:

357 In the last step, flap uses MetaOCaml’s staging facilities to generate code for the fused grammar.

You can verify this claim by examining the files code .m1 and compiler.ml in the directory /home/opam/flap/lib.

The files contain various occurrences of MetaOCaml's quotation (.< ... >.) and splicing (.~)
constructs.

You might also like to check that quotation and splicing are not used in earlier stages (type checking,
normalization, fusion, etc.) by examining the other files in that directory.

85 Implementation of Parsing

Claim 6: flap uses letrec (2 minutes)

The paper claims that flap uses a letrec insertion library for generating mutually-recursive
functions:
774 flap generates code for fused grammars using MetaOCaml’s staging facilities together with Yallop

775 and Kiselyov's [2019] letrec insertion library for creating the indexed mutually-recursive functions
776 produced by the staged parsing algorithm (§5.4).

You can verify this claim by examining the file /home/opam/flap/lib/compiler.ml, which con-
tains calls to build a module Rec using the Letrec module from the letrec insertion library

From /home/opam/flap/lib/compiler.ml

module Rec = Letrec.Make(Idx)

and calls to the various components of Rec, e.g.:
From /home/opam/flap/lib/compiler.ml

Rec.letrec {rhs=rhs}
(fun {resolve} ->

The next three claims involve examining the output of code generated by flap.

Claim 7: flap operates on flat arrays (5 minutes)

The paper claims that the generated code operates on OCaml'’s flat array representation of
strings rather than on linked lists:

11

781 Second, while the input to the pseudocode is a character linked list, f1ap operates on OCaml’s flat
782 array representation of strings, using indexes to keep track of string positions as parsing proceeds.

You can verify this claim by examining the code generated by the example grammar on pages 3-5 of
this document. The code contains calls to the functions String.unsafe_get and String.length,
which operate on OCaml'’s standard flat array representation of strings:

match Stdlib.String.unsafe_get s_8 i_5 with

and len_3 = Stdlib.String.length s_1 in

Claim 8: flap optimises the end-of-input test (5 minutes)

The paper claims that flap optimises the end-of-input check by checking for a null-
terminator rather than checking the length of the input:

733 Relatedly, flap also optimizes the end of input test by using the fact that OCaml’s strings are
785 null-terminated, like C’s. This representation allows the end of input check to be incorporated into
786 the per-character branch in the generated code: a null character '\009' indicates a possible end of
787 input, which can subsequently be confirmed by checking the string length.

You can verify this claim by examining the code generated by the example grammar on pages 3-5
of this document. The generated code matches the input against the null character '\000"' rather
than checking the length:

match Stdlib.String.unsafe_get s_45 i_42 with
['u'..'\265" ['o'..'s' '] o tm L N T NO00 ! L L TN03L ! >

The example grammar specifies the behaviour on end-of-input to be the same as the behaviour
for the null character, so it is unnecessary to confirm the length after encountering null, and the
generated code does not do so. In other cases, confirming the length is necessary, and our library
reex, used in £lap, will generate code to do so. For example, the following code creates a matcher
for the language that accepts only the null character:

#use "topfind";;
#require "reex_match";;

Reex_match.match_ ~“options:{Reex_match.default_options with match_type = ‘ranges}
.<0>. < ">,
[Reex.chr '\000', fun _ “index “len _ -> .< 1 >.]

AR

In the case where the input matches '\000', the generated code subsequently checks the string
length to decide whether to reject (if end-of-input has been encountered) or to accept:

12

| '\000' —>
if i_3 = len_5
then Stdlib.failwith "no match"
else

Claim 9: flap groups character patterns into classes (5 minutes)

The paper claims that flap generates code that branches on character classes rather than
on characters:

788 Third, while the pseudocode generates a case in each branch for each possible character in the
750 input, flap generates a smaller number of cases by grouping characters with equivalent behaviour
790 into classes, as described in detail by Owens et al. [2009]. Branching on these character classes
791 rather than treating characters individually leads to a substantial reduction in code size.
792 Here is an excerpt of the code generated by flap for the s-expression parser:
and parses r i len s = match s.[i] with
"I "\n' — parseg r (i + 1) len s

+

|
|
96 |
|
|

(! — parseg r (1 1) len s
! 'a'..'z' — parse; r (i + 1) len s
7 '\geo' — if i = len then [] else failwith "unexpected"
—

- (]

You can verify this claim by examining the code generated by the example grammar on pages 3—
5 of this document. The generated functions that examine characters contain patterns such as
'u'..'\255"' that match character ranges:

match Stdlib.String.unsafe_get s_8 i_5 with
['u'..'\265' oLt] mt N INO00 ! L L P\03L ! >

Claim 10: OCaml compiles certain tail calls to jumps (5 minutes)

The paper claims that OCaml compiles tail calls to known functions to efficient code:

812 OCaml compiles tail calls to known functions such as parses to unconditional jumps. As §6

You can verify this claim by compiling some code with tail calls and examining the generated assembly
code. For example, running the following at the bash prompt will generate a file /tmp/test.s with
code for £ and g:

echo 'let rec f y = if y then g (not y) else gy and gy =y && f y' > /tmp/test.ml
ocamlopt -c¢ -8 /tmp/test.ml

The generated code /tmp/test.s should contain no call instructions, but should contain jmp
instructions, such as the following code that corresponds to a call to g from the function £:

jmp camlTest__g_81QPLT

You might also like to confirm that OCaml generates similarly efficient code for the tail-recursive
functions generated by flap.

13

§6 Evaluation

86 of our paper describes our quantitative evaluation of flap. This section shows how to verify our
claims about the implementation and results of our evaluation.

Claim 11: Our evaluation is based on six implementations (5 minutes)

The paper claims that the evaluation compares six parser implementations:

Benchmarks. We compare six implementations. All six guarantee deterministic, linear-time
parsing, and use staging, generating code specialized to a given grammar. Our aim is to evaluate
whether flap is faster than other asymptotically-efficient systems, so it is not possible to make
meaningful comparisons with systems with different complexity (e.g. GLR or backtracking recursive-

descent):
829
si0 (a) ocamlyacc (b) menhir in table-generation mode
(c) menhir in code-generation mode (d) flap

831

(e) asp [Krishnaswami and Yallop 2019] (f) ParTS [Casinghino and Roux 2020]

R32

You can verify this claim by examining the files in the subdirectories of /home/opam/flap/benchmarks.
For example, the /home/opam/flap/benchmarks/json contains the following files:

json_lexer.mll
json_parser.mly
json_lexer_menhir_code.mll
json_parser_menhir_code.mly
json_lexer_menhir_table.mll
json_parser_menhir_table.mly

OCamlyacc lexer
OCamlyacc parser
Menhir lexer (code)
Menhir parser (code)
Menhir lexer (table)
Menhir parser (table)
ParTS lexer+parser
Asp lexer+parser

json_parts.ml
json_staged_combinator_parser.ml

H OH OH B HF H H H

The implementation of the f1ap json parser is in a different directory: /home/opam/flap/grammars/json_gramma

The file /home/opam/flap/benchmarks/json contains code to benchmark the various implement-
ations:

14

From /home/opam/flap/benchmarks/json/json_benchmark.ml

[x :: (x' :: _ as xs) -> x = x' & alleq xs in

let run n (_name, p) = Core.Staged.unstage (p n) () in

let parsers = ["yacc" , ocamlyacc_json;
"normalized_yacc" , ocamlyacc_normalized_json;
"parts" , parts_json;
"menhir_code" , menhir_code_json;
"menhir_table", menhir_table_json;
"menhir_normalized_code" , menhir_normalized_code_json;
"menhir_normalized_table", menhir_normalized_table_json;
"staged" , staged_json;
"unstaged" , unstaged_json;
"fused" , fused_json;
"normalized" , normalized_json] in

List.iter (fun n -> assert (alleq (List.map (run n) parsers))) args;
Gc.compact ()

open Core

open Core_bench

let () =
Command.run (Bench.make_command [

The code for the other benchmarks is structured similarly.

Claim 12: flap has the best throughput (20-30 minutes)

The paper claims that £lap has the best throughput of the implementations evaluated:

834 2
«~
835) iy
[I ocamlyacc 00 menhir+table -
836 ,

B Bimenhir+code 1E flap 1,000 &
o 0o asp 0o ParTs =
838 =

o
839 g .- 2] 500 g
840 mﬁmq 8 NE&},& hg'\: RS © & g
el ogii—y ESogorT R N | EEEEEEE £
841 =mll- ol -mil- - Cam =
842 pgn ppm sexp csv json arith
843 Fig. 11. Parser throughput: ocamlyacc, menhir, flap, asp and ParTS
472 As Fig. 11 shows, our experiments confirm the results reported by Krishnaswami and Yallop:

the staged implementation of typed CFEs in asp generally outperforms ocamlyacc. The addition
of lexer-parser fusion makes flap considerably faster than both asp and ocamlyacc, reaching
around 1.3GB/s (a little under 2.5 cycles per byte) on the json benchmark. The throughput ratios
of flap to asp % =3.3x%, % =3.6X, % =1.3x, % =7.1x, % = 2.1x) indicate the additional
performance benefit provided by the combination of fusion and staging over staging alone.

873
874
875
876
877

You can verify this claim by running the benchmarks. Type

make bench

in the /home/opam/flap directory. It is safe to ignore the unused variable warnings.

Each benchmark will take a few minutes to run, for around 20 minutes in all. The output of the

command will include a number of tables:

15

Name Time R"2 Time/Run 95ci

parts_sexp:262144 1.00 10.18ms -0.03ms +0.04ms
parts_sexp:524288 1.00 20.39ms -0.14ms +0.22ms
parts_sexp:786432 1.00 30.32ms -0.20ms +0.16ms
fused_sexp:262144 1.00 2.0lms -0.01lms +0.01ms
fused_sexp:524288 1.00 3.99ms -0.01ms +0.01ms
fused_sexp:786432 1.00 6.01ms -0.02ms +0.02ms

and the results will also be collected into csv files in the directory /home/opam/flap/paper/csv/.

If you encounter the error message

Error: index sets are not consistent. Try increasing QUOTA (e.g. QUOTA=20 make bench)

then the benchmarks have not completed successfully and you should re-run them with a sufficiently
large QUOTA number, e.g.:

QUOTA=20 make bench

to ensure that the benchmarks run for long enough to produce enough samples for the statistical
analysis that they use.

You can verify the paper’s claim by examining the numbers in the tables. For each benchmark, for
each input size, the fused implementation should have the lowest running time. For example, in
the table above, the time for the fused implementation on input size 786432 is 6.01ms, while the
time for the parts implementation is 30.32.

We also provide a script throughput .py that calculates throughputs (as shown in Figure 11) from
the timings recorded by make bench. Running throughput.py in the /home/opam/flap directory
will compute a CSV table with the throughput times for each benchmark and implementation:

benchmark, fused, staged,ocamlyacc, ...
json,1359.485981308411,168.69092947293146,236.19560510933104, . ..
sexp,212.6929006085193,92.14200351493848,76.37115804806992, . ..
arith,56.54328478964402,29.315226510067113,29.63008762012436, . ..
pgn,285.69604189639125,81.13024588657353,67.271636669281, . . .
ppm,103.6371188192452,26.605863127563445,15.679888979107007, . . .
csv,322.7958054219004,0,69.96887094060239,76.48532552766736, . . .

Both the relative and absolute results depend heavily on the system on which the benchmarks are
run, so it is very unlikely that the numbers you see will correspond directly to the numbers in the
paper. (There is even a small possibility that in some cases the fused implementation will not
perform as well as the other implementations, but we have not observed that on the various systems
on which we have run our evaluation.)

16

Claim 13: Lexer implementation in the evaluation (5 minutes)

The paper claims that the benchmark implementations use either ocamllex or combinators:

845 For lexing we use ocamllex for (a)-(c), and the com-

346 binators supplied by each library for (d)-(f). Imple-

You can verify this claim by examining the benchmark code. For example, for the json benchmark,
the first three benchmarks use ocamllex for lexing (indicated by the m11 file extension):

json_lexer.mll # OCamlyacc lexer
json_lexer_menhir_code.mll # Menhir lexer (code)
json_lexer_menhir_table.mll # Menhir lexer (table)

while the ParTS and asp implementations use the combinators supplied with those systems:

json_parts.ml # ParTS lexer+parser
json_staged_combinator_parser.ml # Asp lexer+parser

The ParTS code in our repository is the generated code distributed by the ParTS implementers. The
asp code is the source for the asp benchmarks, and includes the lexer specification:

From /home/opam/flap/benchmarks/json/json_staged combinator_parser.ml

let lex =
let open Json_tokens_base in
fix 00 fun lex ->

(chr '['" $ (fun _ -> .< Some (T (LBRACKET, ())) >.))
<|> (chr ']" $ (fun _ -> .< Some (T (RBRACKET, ())) >.))
<|> (chr '{' $ (fun _ -> .< Some (T (LBRACE, ())) >.))
<|> (chr '}' $ (fun _ -> .< Some (T (RBRACE, ())) >.))
<|> (chr ',' $ (fun _ -> .< Some (T (COMMA, ())) >.))
<|> (chr ':'" $ (fun _ -> .< Some (T (COLON, O))) >.))

<|> (chr 'n' >>>

chr 'u' >>>

chr '1' >>>

chr '1'" $ fun _ -> .< Some (T (NULL, ()))>.)
<|> (chr 't' >>>

chr 'r' >>>

chr 'u' >>>

chr 'e' $ fun _ -> .<Some (T (TRUE, ()))>.)
<[> (chr 'f' >>>

chr 'a' >>>

chr '1' >>>

chr 's' >>>

chr 'e' $ fun _ -> .<Some (T (FALSE, ()))>.)
<|> (string $ (fun s -> .<Some (T (STRING, ."s))>.))
<|> (decimal $ (fun s -> .<Some (T (DECIMAL, .7s))>.))
<|> (charset " \t\r\n" >>>

lex $ fun p -> .< snd .7p >.)
<|> eps .<None>.

17

The lexer implementation for the f1ap json benchmark is in /home/opam/flap/grammars/json_grammar .ml:

From /home/opam/flap/grammars/json_grammar.ml

let lexer =
L.[

chr '[' , P.Return LBRACKET;
chr ']’ , P.Return RBRACKET;
chr '{' , P.Return LBRACE;
chr '}' , P.Return RBRACE;
chr ',' , P.Return COMMA;
chr ':' , P.Return COLON;
str "null" , P.Return NULL;
str "true" , P.Return TRUE;
str "false" , P.Return FALSE;
string , P.Return STRING;
decimal , P.Return DECIMAL;
charset "\r\n \t" , P.Skip;

Claim 14: Parser structure in the evaluation (10 minutes)

The paper claims that the evaluation uses identically-structured parsers for ocamlyacc and
menhir and identically-structured parsers for ParTS, asp and flap:

346 binators supplied by each library for (d)-(f). Imple-
847 mentations (a)—(c) use identically structured grammars
848 (since menhir [Pottier and Régis-Gianas [n.d.]] accepts
849 ocamlyacc files as input) and lexers based on ocamllex.
850 Implementations (d)—(f) also use identically structured
851 grammars, since they all use the standard parser combi-
852 nator interface (§2.1). However, (d)-(f) use differently-

You can verify this claim by examining the benchmark code. For example, for the json benchmark
you can run

1ls -1 benchmarks/json/*parser*mly

to confirm that the parsers for the first three benchmarks are identical, since two of the files are
symbolic links to the other:

-rw-r--r-- 1 root root 1.4K Mar 7 17:16 benchmarks/json/json_parser.mly
lrwxrwxrwx 1 root root 156 Mar 7 17:16 benchmarks/json/json_parser_menhir_code.mly -> json_parser.mly
lrwxrwxrwx 1 root root 15 Mar 7 17:16 benchmarks/json/json_parser_menhir_table.mly -> json_parser.mly

The implementation of the asp json parser is given in benchmarks/json/json_staged_combinator_parser.ml.
Here is an excerpt:

18

From /home/opam/flap/benchmarks/json/json_staged_combinator_parser.ml

let value = fix @@ fun value ->
let member = tok STRING >>>
maybe (tok COLON >>> value) $
fun p -> .< match ."p with (_,None) -> 1
| (_,Some(_,v)) -> 1 + v >. in
let obj = delim LBRACE (commasep member) RBRACE
and arr = delim LBRACKET (commasep value) RBRACKET

The implementation of the flap json parser is given in grammars/json_grammar.ml. Here is the
corresponding excerpt:

From /home/opam/flap/grammars/json_grammar.ml

let value = P.(fix @@ fun value ->
let member = string_ >>>
option (colon >>> value) $
fun p -> let_ p @@ fun p -> inj .< match .7 (dyn p) with (_,None) -> 1
| (_,Some(_,v)) -> 1 + v >. in
let obj = delim lbrace (commasep member) rbrace
and arr = delim lbracket (commasep value) rbracket

Our artifact includes only the source (not the generated code) for the ParTS implementation. The
source is available at https://github. com/draperlaboratory/parts/blob/master/theories/
Json.v. The report that describes ParTS says that the benchmarks are re-implementations of the
implementations in asp:

Second, we evaluated the library's performance by re-implementing two of the key bench-
marks from the TAAP paper (s-expressions and JSON).

ParTS: Final Report (Chris Casinghino & Cody Roux)

Claim 15: flap has linear-time parsing (15-30 minutes)
The paper claims that £1ap and the other implementations have linear-time parsing:

845 - json

846 ‘_E,, 1

847 E ="

aus 2 0.5 "fii:iik_*

g s .

849 = 0 "‘_':—J:ﬁ‘—‘*‘_ T - _‘I

850 50 100 150

851 input size (messages)

852 Fig. 12. Linear-time parsing (colors as Fig. 11)

You can verify this claim by examining the ratios between input sizes and running times in the figures
reported by make bench. For example, in the following numbers for the sexp benchmark

fused_sexp:262144 1.00 2.01ms -0.01ms +0.01ms
fused_sexp:524288 1.00 3.99ms -0.01ms +0.01ms
fused_sexp:786432 1.00 6.0lms -0.02ms +0.02ms

19

https://github.com/draperlaboratory/parts/blob/master/theories/Json.v
https://github.com/draperlaboratory/parts/blob/master/theories/Json.v

as the input size doubles from 262144 to 524288 and triples to 786432, the running time also
doubles from 2ms to 4ms and triples to 6ms.

The ratios will not always be perfectly exact, but they should show an approximately linear relation-
ship.

Claim 16: Our evaluation is based on six benchmarks (10 minutes)

The paper claims that the evaluation is based on six benchmarks:

855 The benchmarks are largely taken from Krishnaswami and Yallop [2019] (using the same test
856 corpora), except for the CSV benchmark (which uses a set of files of various sizes and dimensions,
357 using a random variety of textual and numeric data). They are:

88 (1) (pgn) Parse 6759 Portable Game Notation chess game descriptions, and extract game results.
89 (2) (ppm) Parse and check semantic properties (e.g. pixel count, color range) of Netpbm files.

(3) (sexp) Parse S-expressions with alphanumeric atoms, returning the atom count.

81 (4) (csv) Parse CSV files (Shafranovich [2005], with mandatory terminating CRLF), checking row

260

s62 lengths. This benchmark has no asp implementation, because distinguishing escaped double-
853 quotes "" from unescaped quotes " in the lexer needs multiple characters of lookahead.
864

(5) (json) Parse JSON using the grammar by Jonnalagedda et al. [2014], returning the object count.
85 (6) (arith) Parse and evaluate terms in a mini language (arithmetic/comparison/binding/branching).

You can verify this claim by examining the six subdirectories of the /home/opam/flap/benchmarks
directory (excluding common), which correspond to the six benchmarks described in the paper.

Claim 17: flap outputs have the reported sizes (10 minutes)

The paper claims that normalized grammars have certain sizes:

283 Input Normalized | Fused | Output

384 Grammar | Lexrules CFEs | NTs Prods | Prods | Functions

. pen 13 9 | 38 53 o1 206

56 pPpm 6 10 5 6 16 35

457 sexp 4 11 3 6 9 11

ass csv 3 14 5 7 7 20
json 12 42 9 33 42 97

859 arith 14 143 | 28 55 83 209

850 Table 1. Sizes of inputs, intermediate forms, and generated code

897 However, measurements largely dispel these concerns. Table 1 lists parser representation sizes at
various stages in f1ap’s pipeline. The leftmost columns show the size of the input parsers, measured
899 as the number of lexer rules (both Return and Skip) and the number of CFE nodes, as described in
%00 Fig. 3a. The central columns show the number of nonterminals and productions after conversion to
%01 DGNF using the procedure in §3; they show that normalization for typed CFEs does not produce the

%02 drastic increases in size that occur in the more general conversion to GNF. The next column to the
203

898

right shows the grammar size after fusion (§4). Fusion does not alter the number of nonterminals,
%04 but can add productions; for example, the Skip rules in the sexp lexer add additional productions
%05 to each nonterminal. Finally, the rightmost column shows the number of function bindings in the
906 code generated by flap. Comparing this generated function count with the number of CFEs in the
907 input reveals an unalarming relationship: with one exception (ppm), their ratio barely exceeds 2.

You can verify this claim by loading the example grammars into the MetaOCaml top level. For
example, for the sexp grammar, the following sequence of commands will load the dependencies
and then compile the grammar:

20

#use "topfind";;

#require "flap";;

#require "ppx_deriving.std";;

#mod_use "grammars/grammars_common.ml";;
#mod_use "grammars/sexp_grammar.ml";;
flush stderr;;

The output should include the following lines:

4 lexing rules

11 context-free expressions
3 normalized nonterminals

6 normalized productions

9 fused productions

The number of generated functions is not reported, but you can verify the figures in Table 1 by
examining the generated code. For example, to print out the generated code for the sexp grammar,
type the following at the MetaOCaml top level after executing the commands above:

Sexp_grammar.code; ;

(Note that the figures in the table refer to the top-level mutually-recursive function group (i.e. the
functions bound with let rec ... and ...), not to locally bound variables. Note also that
Table 1 is slightly out of date, and several grammars now produce a smaller number of functions:
Pgn_grammar.code contains 203 functions (not 206); Csv_grammar.code contains 17 functions
(not 20); Json_grammar.code contains 93 functions (not 97).)

Claim 18: flap compilation time is acceptable (5 minutes)

383 Compilation time

884 (ms)

885 212

. 3.60

o 0.331

857 0.499

888 28.5

889 460

890 Table 2. Compilation time
891 (type-checking, normaliza-
892 tion, fusion, code generation)

23 Table 2 shows the compilation time for the benchmark grammars. For each, the total time taken
924 to type-check and normalize the grammar, fuse the grammar and lexer and generate code is below
25 half a second.

You can verify this claim by compiling and running the flap tests, since the tests report the
compilation time for each benchmark grammar:

21

cd /home/opam/flap/
dune runtest -f

The output should include a report of the following form®:

[sexp]: compilation time : 0.331lms
[pgn]l: compilation time : 212ms
[ppm] : compilation time : 3.60ms
[json]: compilation time : 28.5ms
[csv]: compilation time : 0.499ms
[intexp]: compilation time : 460ms

The exact compilation time will vary by the system used for testing, but none of the parsers should
take more than around two seconds to compile, unless the system is extremely slow.

1The name intexp, which is also used in various parts of the source, corresponds to the benchmark named arith
in the paper.

22

Claims not supported by the artifact

§3 of the paper presents some metatheoretical results related to grammar normalization:

182 THEOREM 3.1 (DETERMINISTIC PARSING). If G is a DGNF grammar, then for any expansion G v
183 n ~» w, there is a unique derivation for this expansion.

LEmMMA 3.2 (PropUCTIONS OF NULL). Given [;A + g : v and N[g returns n = G, we have
T.NULL = true ifand only if (1)n — € € G;or(2)n — « € G where (a : ') € I and t".NULL = true.
In other words, if T.NULL = false, thenn — ¢ ¢ G.

THEOREM 3.3 (WELL-DEFINEDNESS). If[; A+ g: 7, then N[g| returns n = G for some G and n.

LEMMA 3.4 (INTERNAL NORMAL FORM). Given ;A v g: v and N[g| returns n = G,
e if(n— an) € G, then @ € dom (T');
o if(n" — an) € G foranyn’, then « € fv (g), and thus « € dom (I, A).

CoROLLARY 3.5 (NORMALIZING WITHOUT INTERNAL NORMAL FORM). Givene;e+g: 7, if N[g]
returns n’ = G, then any production in G is eithern — € orn — t 1 for somen, t and 1.

LEMMA 3.6 (TERMINALS IN FIRsT). GivenT; A+ g : 7 and N[g] returnsn = G, we havet € T.FIRST
if and only if (1) (n — t 1) € G;or(2)(n — an) € G where(a:1t") € I andt € 7' .FIrST.

THEOREM 3.7 (N[g]] PrODUCES DGNF). Ife;e + g : 1, then N[g returns n = D for somen, D.

569 THEOREM 3.8 (SOUNDNESS). Given ;e + g : 7 and N[g] returnsn = G, we havew € [g], if
s7o and only if G+ n ~» w for any w.

Since these are claims about our formalisation, not about our implementation, the artifact does not
contain evidence for them. Instead, their proofs are given in an appendix to the paper.

23

	Introduction
	Tutorial example
	Claims supported by the artifact
	Claims not supported by the artifact

