LicenseRec: Knowledge based Open Source License
Recommendation for OSS Projects

Weiwei Xu, Xin Wu, Runzhi He, Minghui Zhou'
School of Computer Science, Peking University, Beijing, China
Key Laboratory of High Confidence Software Technologies, Ministry of Education, China
xuww @stu.pku.edu.cn, {blesswoo, rzhe, zhmh}@pku.edu.cn,

Abstract—Open Source license is a prerequisite for open source
software, which regulates the use, modification, redistribution,
and attribution of the software. Open source license is crucial to
the community development and commercial interests of an OSS
project, yet choosing a proper license from hundreds of licenses
remains challenging. Tools assisting developers to understand
the terms and pick the right license have been emerging,
while inferring license compatibility on the dependency tree
and satisfying the complex needs of developers are beyond the
capability of most of them. Thus we propose LicenseRec, an open
source license recommendation tool that helps to bridge the gap.
LicenseRec performs fine-grained license compatibility checks on
OSS projects’ code and dependencies, and assists developers to
choose the optimal license through an interactive wizard with
guidelines of three aspects: personal open source style, business
pattern, and community development. The usefulness of Li-
censeRec is confirmed by the consistent positive feedback from 10
software developers with academic and industrial backgrounds.
Our tool is accessible at https://licenserec.com and a video
showcasing the tool is available at https://video.licenserec.com.

Index Terms—Open source software, open source license, open
source license recommendation

I. INTRODUCTION

Open source software (OSS) is released under an open
source license in which the copyright holders grant users
the rights to use, modify, and redistribute the software and
its source code, and specify the obligations of the users [1].
Open source license provides an effective way to protect the
intellectual property rights of OSS and serves as a legal basis
for cooperation in open source communities, thus promoting
the long-term development of open source software. As Linus
Torvalds said, the GPL is one of the defining factors in the
success of Linux, because it requires giving back and avoids
the risk of fragmentation [2]. As a comparison, the wrong
choice of open source license may not only lead to legal
problems of using open source software but also cause high
financial losses to developers [3].

However, developers find it hard to choose an open source
license that is compatible with the licenses of third-party
dependencies integrated in their projects and suits their own
preferences [4]. One of the reasons accounting for this prob-
lem is that the existence of numerous similar open source
licenses and the complex legal terms (formal descriptions
of the conditions of software use) involved often confuse
developers [3], [S]-[7]. Specifically, there are more than 100

T Corresponding Author

licenses certified by OSI!, of which some terms are extremely
difficult to understand without background knowledge, e.g.,
some parts of GPL-3.0? are almost unreadable [8]. Thus it
is rather challenging to unravel the compatibility between
licenses and use them properly. Another contributing factor to
the license-choosing dilemma is the diversity and complexity
of developers’ needs, e.g. the development of the community
and the potential of commercialization [9], [10]. Therefore,
developers have a hard time figuring out what type of licenses
to choose in accordance with their open source preferences
and needs.

To help developers choose licenses, several tools have been
proposed, such as ChooseALicense® and findOSSLicense [11].
However, these tools lack a comprehensive consideration of
the practical difficulties and actual needs of developers as
discussed above, e.g., they both ignore the compatibility with
licenses used by third-party dependencies when selecting a
license, which may induce financial and legal risks [12], [13].

In this paper, we present LicenseRec, a knowledge-based
open source license recommender, to bridge the gap in existing
tools for recommending licenses to developers. We construct a
knowledge base consisting of term features and compatibility
information for 63 popular licenses, along with guidelines
essential for developers that are derived from real-world OSS
licensing patterns. LicenseRec takes a software project’s all
files as input. It first detects component licenses (CLs), i.e.,
licenses declared in the project files and licenses of third-
party dependencies. Then it performs compatibility checks
to identify candidate licenses that are compatible with all
CLs involved in the project. Further, LicenseRec allows users
to specify their preferences through an interactive wizard
and recommend corresponding candidate licenses. Eventually,
LicenseRec presents users with a detailed comparison of
terms among recommended licenses and their compatibility
with CLs in the project to help users further understand and
properly choose licenses in need.

We evaluate the usefulness of LicenseRec by inviting 10
experienced developers (7 Ph.D. students and 3 industry
employees) to use it and give feedback. The average “overall
rating” of 10 developers is 8.2 out of 10, indicating that

Thttps://opensource.org/
Zhttps://www.gnu.org/licenses/gpl-3.0.html
3https://choosealicense.com/

(a) Uploading project files (b) Viewing compatibility result

[——1]
g [—=1 ’ =:
(c) Answering questions in wizard (d) Viewing recommendation result

Fig. 1. LicenseRec interfaces for developers to choose a license.

LicenseRec provides useful support for developers in choosing
the right open source license.

The main contributions of this paper are as follows.

o We detect CLs involved in the project from both code files
and third-party dependencies via a dependency parser
covering three popular languages.

+ We make a fine-grained characterization of compatibility,
i.e., secondary compatibility and combinative compat-
ibility, to help users better understand how to properly
relicense derivative works with compatible licenses.

e« We propose license-choosing guidelines derived from
real-world OSS licensing patterns, focusing on three
aspects: personal open source style, business pattern, and
community development.

LicenseRec is available at https://licenserec.com. Its source
code is available on GitHub* and the demonstration video is
on YouTube’.

II. MOTIVATING EXAMPLE BASED ON RELATED WORK

In this section, we explain the idea behind LicenseRec, and
demonstrate how LicenseRec could help developers to choose
the right license for their projects compared with related work.

Suppose a developer Alice wants to publish an IoT (Internet
of Things) library on GitHub. Choosing the right license for
her project is non-trivial. There are hundreds of OSI-approved
open-source licenses around, and reading through all of them
is not a feasible option. Plus, she doesn’t know much about
what the licenses used by library dependencies of her project
are, and how many options are left for her to comply with
these licenses. Although it is possible to locate the licenses
of dependencies by inspecting the source code and check the
compatibility of the licenses with online license comparators,
it is a tedious and error-prone task.

Alice tried several license recommendation tools, but none
of them could help her. Tldrlegal® summarizes the privileges

“https://github.com/osslab-pku/RecLicense
Shttps://video.licenserec.com
Shttps://tldrlegal.com/

9

and restrictions of each license into easy-to-read “can”, “can-
not”, and “must” statements. But it doesn’t answer the question
of which license is the best for the project, as it doesn’t
elaborate on the advantages and disadvantages of each license.
ChooseALicense’ focuses on a few basic recommendation
scenarios, where MIT, Apache-2.0, and GPL-3.0 are the main
options provided. OSSWATCH License Diffentiator® compares
license terms and helps developers narrow down the options
through a series of questions. However, their mechanism is not
flexible enough to satisfy Alice’s needs with more complex
requirements, e.g. earning financial benefits and obtaining
technical support from the community [14]. Furthermore, all
of the above tools are context-free, i.e., they don’t consider the
characteristics of the project and licenses of the dependencies.
FindOSSLicense [11] utilizes rule-based and collaborative
filtering techniques to recommend the right license based on
the choices of existing repositories and other users. Alice is
frustrated to find that none of these tools addresses the license
compatibility issue on the dependency tree, which matters
because modern OSS projects often depend on hundreds of
libraries. Also, none of them mentions whether to relicense or
keep the original license of the dependencies.

Here LicenseRec comes to the rescue. After Alice simply
uploads the source code of her project to LicenseRec (Fig-
ure 1(a)), LicenseRec automatically scans for license files and
analyzes the licenses of dependencies. Once the analysis is
completed, LicenseRec provides Alice with a list of compat-
ible licenses, as illustrated in Figure 1(b). She is surprised to
find some licensing requirements that other tools did not tell
her. For example, one of the dependencies uses MIT and an-
other one uses Apache-2.0. Her initial idea was GPL because
it’s the choice of many well-known projects, but LicenseRec
shows that only GPL-3.0 is secondarily compatible with both
of them, which means 100% of her codebase must be licensed
under GPL-3.0.

From the licensing guidelines, Alice learns that user au-
tonomy is critical for a prosperous community, and GPL-3.0
is considered IoT-unfriendly because its “installation informa-
tion” terms are unfeasible on headless IoT devices. But Alice
wants to ensure that her library is used for good purposes,
a permissive license is not the answer either. After filling
the questions in the license wizard (Figure 1(c)), LicenseRec
recommends Mozilla Public License 2.0 (MPL-2.0), a copyleft
license that satisfies combinative compatibility with both
MIT and Apache-2.0 (Figure 1(d)). Alice releases her library
under MPL-2.0 and keeps the Apache dependency as it is.

III. LICENSEREC IMPLEMENTATION

Figure 2 presents the overview of LicenseRec which mainly
contains four parts: License Knowledge Base, License Scan-
ner, Compatibility Checker, and License Wizard.

7https:/choosealicense.com/
8http://oss-watch.ac.uk/apps/licdiff/

License Scanner

package.json ‘
.py files — ¢ |
pom.xml [Third-party |
dependencies)

1

Libraries.io

1

1

o

¢/> Scancode .
oA, '

1

|

1

Project files

All files Licenses

Fmmmmm

c==» .
m N Llcense leard

\
Knowledge Base N l
\
\

|
|
|
1
v €

D | B

Terms Comparison Recommendation

Result

Fig. 2. Overview of LicenseRec.

A. License Knowledge Base

Considering the difficulties of understanding license terms,
compatibility between licenses, and impacts of licenses on
projects, we design a knowledge base’ consisting of term
features, compatibility, and guidelines.

1) Term Features: License terms refer to the use conditions
specified in the license text [11]. Different licenses may
conflict on specific terms, e.g. Apache-2.0 explicitly grants the
user patent rights but CCO0-1.0 explicitly does not. Therefore,
we check the compatibility between licenses based on their
terms.

We first select representative free/open source licenses that
(1) are certified by FSF or OSI, (2) are not outdated versions
(e.g., Apache-1.1), and (3) are not restricted to specific areas,
software, and authors (e.g., WXwindows). Eventually, we
collect 63 licenses. Then, we thoroughly read the 63 licenses
and relevant literature [11], [13], [15], and summarize 19
terms that are likely to incur conflicts among licenses such as
copyright grants, trademark limitations, patent grants, and so
on.!0 Finally, we encode all 63 licenses based on the 19 terms,
which we refer to as term features for subsequent compatibility
checks and term comparison.

__________ -~

—)

Apache-2.0

‘r
1
1

\
1

0\ A\ A\ 0\ A\ 1
= = |

1

Apache-2.0 Apache-2.0 \ Apache-2.0 !

GPL30° = ————. MPL-2.0 *
Fig. 3. Secondary compatibility (left) and combinative compatibility (right).

2) License Compatibility Matrix: Open source license com-
patibility refers to the feasibility of distributing derivative

%https://github.com/osslab-pku/RecLicense/tree/master/backend/app/know
ledgebase

10See appendix for more details: https://github.com/osslab-pku/RecLicens
e/tree/master/appendix

(i.e., modify or combine) works under a different license
from the one used by modified or combined works. License
compatibility is directed, i.e., the conclusion that License A is
compatible with License B cannot be deduced from the fact
that License B is compatible with License A.

Figure 3 illustrates two typical scenarios where compatible
licenses are used for relicensing. Based on these two sce-
narios, we summarize two types of compatibility: secondary
compatibility and combinative compatibility. If A satisfies
secondary compatibility with B, all parts of the derivative
works obtained from works licensed under A can be sub-
ject to the constraints of license B. For example, modified
software under Apache-2.0 can be relicensed and distributed
using GPL-3.0. Unlike secondary compatibility, combinative
compatibility means that the part originally subject to license
A still needs to be subject to A. For example, software that
contains a third-party component licensed under Apache-2.0
can be relicensed and distributed using MPL-2.0 as a whole, as
long as the third-party component is still under the constraint
of Apache-2.0. Any two licenses need only satisfy either of the
above compatibility relationships to be considered compatible.

We develop an algorithm!! to determine whether any two
of the 63 licenses satisfy two types of compatibility based on
19 identified terms and construct a compatibility matrix.

3) Guidelines for License Selection: One of the most com-
mon challenges developers encounter when choosing a license
stem from the complexity of their needs and the uncertainty
of the impact of the license on their project.

Users often have complex needs when they open source
their projects, such as taking financial benefits, gaining a
wide user base, improving their reputation in the open source
community, and so on [14]. We summarize three factors from
these needs, i.e., business pattern, community development,
and user’s personal open source style that influence users’
choice of license.

In order to assist with the license selection, we obtain
the advantages of various open source licenses on above
three factors via extensively reviewing literature and case
studies of licenses adopted by OSS maintained by commercial
companies. We construct guidelines from the three factors and
help users understand what type of license they should choose.

B. License Scanner

Previous work [11] ignores the compatibility between CLs,
especially the licenses of dependencies, which makes the
recommendation result potentially incompatible. To fill this
gap, we design the module to detect CLs in the project for the
subsequent compatibility check. CLs include internal licenses,
i.e., licenses declared in project files, and external licenses, i.e.,
the licenses used by its dependencies, so we use two different
methods to detect CLs.

In order to obtain internal licenses, we use Scancode!?
to scan all files in the project to detect licenses within

!See the appendix: https:/github.com/osslab-pku/RecLicense/tree/master/
appendix
2https://github.com/nexB/scancode- toolkit

files. ScanCode is a Python app using a data-driven ap-
proach with good scalability. To obtain external licenses,
LicenseRec parses dependency for three languages including
Python, Java, and Javascript which are the top three popular
languages on GitHub'3. For Python, since the requirement.txt
file is not mandatory in Python projects and the dependencies
in requirement.txt may be out of date [16], LicenseRec
parse dependencies by analyzing the import statements in
all python files. For Java and Javascript, LicenseRec parses
the packages.json and pom.xml to obtain the dependencies,
respectively. Afterward, LicenseRec retrieves license informa-
tion of parsed third-party dependencies from libraries.io'*.

C. Compatibility Checker

Compatibility Checker performs compatibility checks on the
CLs identified by the License Scanner based on the License
Knowledge Base. For files declaring licenses, Compatibility
Checker will check whether licenses between interdependent
files are compatible. For all CLs in projects, Compatibility
Checker detects all incompatibilities between licenses. Finally,
it identifies the licenses that meet the compatibility require-
ments based on the compatibility results.

D. License Wizard and Recommendation

According to the License Knowledge Base, the License
Wizard asks the user seven questions to characterize her
preferences, including the granting of patent rights, trademark
rights, and so on. Then, LicenseRec determines the final
recommended licenses that match her preferences. Finally,
LicenseRec presents 19 terms of each license to help users
understand their differences and make a final decision.

IV. EVALUATION

We invite 10 respondents with rich open source experiences
(including 7 Ph.D. students and 3 industrial developers) to
use LicenseRec and provide feedback. As shown in Table I,
the overall rating of LicenseRec by the 10 respondents is 8.2
out of 10. The results show that LicenseRec is a useful tool
for developers to understand the license terms, evaluate the
compatibility, and choose the license type, which provides
strong support for developers to choose suitable open source
licenses. It is worth noting that 10 respondents find LicenseRec
particularly useful for understanding license compatibility, in-
dicating that the fine-grained characterization of compatibility
that we propose is sensible.

TABLE I
USER SATISFACTION RATINGS.

Items Mean SD
Overall 8.2 0.87178
helpful in choosing the right open source license 8 1
helpful in understanding open source license terms 7.9 1.04403
helpful in understanding and judging compatibility 8.4 0.8
helpful in distinguishing different licenses 8.3 0.78102
helpful in choosing a proper type of license 8 1

Bhttps://octoverse.github.com/2022/top-programming-languages
https://libraries.io/

V. CONCLUSION AND FUTURE WORK

We design a tool, LicenseRec, to assist users to select an
open source license for their projects, based on the project’s
CLs, and users’ preferences on personal open source style,
business pattern, and community development. The tool is
found useful in helping developers choose a license, especially
the fine-grained compatibility check that allows developers
to understand how to properly relicense derivative works in
practice. In the future, we will explore how to use automated
methods for term feature extraction, which will greatly in-
crease the scope of the knowledge base. Generating custom
licenses to support users’ complex needs is also a topic worth
exploring.

ACKNOWLEDGEMENT

This work is sponsored by the National Natural Science
Foundation of China 61825201 & 62142201. We thank
Haigiao Gu for his help in dependency parsing.

REFERENCES

[11 A. M. S. Laurent, Understanding open source and free software licens-
ing: guide to navigating licensing issues in existing & new software.
O’Reilly Media, Inc.”, 2004.

[2] Linus Torvalds credits GPL with preventing Linux fragmentation.
[Online]. Available: https://www.infoworld.com/article/3112778/linus-t
orvalds-credits- gpl- with-preventing- linux- fragmentation.html

[3] R. Duan, A. Bijlani, M. Xu, T. Kim, and W. Lee, “Identifying open-
source license violation and 1-day security risk at large scale,” in
Proceedings of the 2017 ACM SIGSAC Conference on computer and
communications security, 2017, pp. 2169-2185.

[4] D. M. German and A. E. Hassan, “License integration patterns: Address-
ing license mismatches in component-based development,” in 2009 IEEE
31st international conference on software engineering. 1EEE, 2009, pp.
188-198.

[5] Y-H. Lin, T-M. Ko, T.-R. Chuang, and K.-J. Lin, “Open source
licenses and the creative commons framework: License selection and
comparison,” Journal of information science and engineering, vol. 22,
no. 1, pp. 1-17, 2006.

[6] R. W. Gomulkiewicz, “Open source license proliferation: Helpful diver-
sity or hopeless confusion,” Wash. UJL & Pol’y, vol. 30, p. 261, 2009.

[71 D. A. Almeida, G. C. Murphy, G. Wilson, and M. Hoye, “Do software
developers understand open source licenses?” in 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC). 1EEE,
2017, pp. 1-11.

[8] A. Guadamuz, “Free and open source software,” LAW AND THE
INTERNET, 3rd Ed., L. Edwards, C. Waelde, eds., Oxford: Hart, 2009.

[9]1 A. Engelfriet, “Choosing an open source license,” IEEE software,
vol. 27, no. 1, pp. 48—49, 2009.

[10] J. Lindman, A. Paajanen, and M. Rossi, “Choosing an open source

software license in commercial context: A managerial perspective,’

in 2010 36th EUROMICRO Conference on Software Engineering and

Advanced Applications. 1EEE, 2010, pp. 237-244.

G. M. Kapitsaki and G. Charalambous, “Modeling and recommending

open source licenses with findosslicense,” IEEE Transactions on Soft-

ware Engineering, vol. 47, no. 5, pp. 919-935, 2019.

L. Rosen, “Open source licensing,” Software Freedom and Intellectual

Property Law, 2005.

S. Xu, Y. Gao, L. Fan, Z. Liu, Y. Liu, and H. Ji, “Lidetector: License

incompatibility detection for open source software,” ACM Transactions

on Software Engineering and Methodology, 2021.

[14] J. Lerner and J. Tirole, “The scope of open source licensing,” Journal

of Law, Economics, and Organization, vol. 21, no. 1, pp. 20-56, 2005.

T. Gordon, “Report on prototype decision support system for oss license

compatibility issues,” Qualipso, vol. 79, p. 80, 2010.

[16] X. Tan, K. Gao, M. Zhou, and L. Zhang, “An exploratory study of
deep learning supply chain,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 86-98.

[11]

[12]

[13]

[15]

