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ABSTRACT

Business analysts and data scientists today increasingly need to
clean, standardize and transform diverse data sets, such as name,
address, date time, phone number, etc., before they can perform
analysis. These ad-hoc transformation problems are typically solved
by one-off scripts, which is both difficult and time-consuming.

Our observation is that these domain-specific transformation
problems have long been solved by developers with code libraries,
which are often shared in places like GitHub. We thus develop an
extensible data transformation system called Transform-Data-by-
Example (TDE) that can leverage rich transformation logic in source
code, DLLs, web services and mapping tables, so that end-users
only need to provide a few (typically 3) input/output examples, and
TDE can synthesize desired programs using relevant transformation
logic from these sources. The beta version of TDE was released in
Office Store for Excel.
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1 INTRODUCTION

Users such as business analysts and data scientists today regularly
perform ad-hoc analysis using diverse data sets, which however of-
ten need to be prepared (a multi-step process that typically involves
clean, transform, and join, among other things), before analysis
can be performed. This is difficult and time-consuming for end-
users — studies suggest that users spend up to 80% of time on data
preparation [8].

There is increasing momentum in the industry towards self-
service data preparation [9], where the key objective is to build
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A B € D
1 Transaction Date Customer Name Phone Numbers Address
2 Wed, 12 Jan 2011 John K. Doe Jr. (609)-993-3001 2196 184th Ave. NE, Redmond, 98052
3 Thu, 15 Sep 2011 Mr. Doe, John 609.993.3001 ext 2001 {4297 148th Avenue NE, Bellevue, 98007
4 Mon, 17 Sep 2012 Jane A. Smith +1-4250013981 2720 N Mesa St, El Paso, 79902, USA
5 2010-Nov-30 11:10:41|MS. Jane Smith 425001 3981 3524 W Shore Rd APT 1002, Warwick
6 2011-Jan-1102:27:21 |Smith, Jane tel: 4250013981 4740 N 132nd St Apt 417, Omaha, 68164
7 2011-Jan-12 Anthony R Von Fange I1(650-384-9911 10508 Prairie Ln, Oklahoma City
8 2010-Dec-24 Mr. Peter Tyson (405)123-3981 525 1st St, Marysville, WA 95901
9 9/22/2011 Dan E. Williams 1-650-1234183 211 W Ridge Dr, Waukon,52172
10 7/11/2012 James Davis Sr. +1-425-736-9999 13120 Five Mile Rd, Brainerd
11 2/12/2012 Mr. James J. Davis 425.736.9999 x 9 602 Highland Ave, Shinnston, 26431
12 3/31/2013 Donald Edward Miller |(206) 309-8381 840 W Star St, Greenville, 27834
13 6/1/2009 12:01 Miller, Donald 206 309 8381 25571 Elba, Redford, 48239
14 2/26/2007 18:37 Rajesh Krishnan 206 456 8500 extension 1 {539 Co Hwy 48, Sikeston, USA
15 1/4/201114:33 Daniel Chen 425 960 3566 1008 Whitlock Ave NW, Marietta, 30064

Figure 1: A sales data set with heterogeneous data values.

intelligent systems that enable business analysts and data scientists
to prepare ad-hoc data sets themselves without needing help from
IT staff. This, if realized, holds the potential to democratize data
analytics for a wide spectrum of users who often lack technical
skills like scripting. Gartner reckons this fast growing market to
be worth over $1 billion by 2019 [9]. In this work we focus on self-
service data transformation, which is a major component in data
preparation [9].

Figure 1 gives a concrete example for data transformation. This
sales data set has information such as transaction dates, customer
names, their phone numbers and addresses, etc. However, values in
same columns are highly heterogeneous, which can often happen
when data is collected from different sources, or when values are
manually entered. In this example, date values in the first column
have many different formats. In the second column, some customer
names are first-name followed by last-name, while others are last-
name followed by comma and first-name, with various optional
salutations (Mr., Dr., etc.) and suffixes (II1, Jr., etc.). Similarly, phone
number and address columns are also highly inconsistent.

This data set is obviously not ready for analysis yet — an analyst
wanting to figure out which day-of-the-week (Mon, Tue, etc.) has
the most sales, for instance, cannot find that out by executing a
SQL query or a pivot table using this data, as day-of-the-week is
missing from the input. However, deriving day-of-the-week from
date strings is non-trivial even for programmers, and the hetero-
geneity of date values only adds to the complexity. Similarly, the
analyst may want to analyze sales with a group-by on area code
from phone-numbers, or zip-code from addresses, both of which
again require difficult data transformations.

Our observation is that these domain-specific transformation
problems like date-time parsing and address standardization have
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2/12/2012 2012-02-12-Sunday

Transform Data by Example  ~ %

Figure 2: TDE transformation for date-time. (Left): input data is in column-C, user provides two desired output examples in
column-D. (Right): After clicking on the “Get Transformation” button, TDE searches over thousands of functions to compose
new programs whose output are consistent with the given examples. Within a few seconds, a ranked list of programs are
returned in the right pane. Hovering over the first program (using System.DateTime.Parse from .Net) gives a preview of all

results (shaded in green).
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2196 184th Ave. NE Apt 417, Redmond, 98052

Redmond, WA, 98052

4297 148th Avenue NE L105, Bellevue, WA 98007

Bellevue, WA, 98007

2720 N Mesa St, El Paso, 79902, USA

El Paso, TX, 79902

C D “| Transform Data by Example
Customer Name Output =
John K. Doe Jr. Doe, John
Mr. Doe, John Doe, John
Jane A. Smith Smith, Jane
MS. Jane Smith Smith, Jane
Smith, Jane Smith, Jane Z 2.

Dr Anthony R Von Fange Ill Von Fange, Anthony

3524 W Shore Rd APT 1002, Warwick,02886
4740 N 132nd St, Omaha, 68164
10508 Prairie Ln, Oklahoma City

Warwick, RI, 02886
Omaha, NE, 68164
Oklahoma City, OK, 73162

Peter Tyson Tyson, Peter

525 1st St, Marysville, WA 95901

Marysville, CA, 95901

Dan E. Williams
James Davis Sr.

Williams, Dan
Davis, James

211 W Ridge Dr,

52172 Waukon, IA, 52172

James J. Davis Davis, James

602 Highland Ave, Shinnston, 26431

Shinnston, WV, 26431

Mr. Donald Edward Miller

Miller, Donald

840 W Star St, Greenville, 27834

Greenville, NC, 27834

Figure 3: (Left): transformation for names. The first three values in column-D are provided as output examples. The desired
first-names and last-names are marked in bold for ease of reading. A composed program using library CSharpNameParser
from GitHub is returned. (Right): transformations for addresses. The first three values are provided as examples to produce
city, state, and zip-code as output. Note that some of these info are missing from the input. A program invoking Bing Maps

APl is returned as the top result.

existed for decades — developers traditionally build custom code li-
braries to solve them, and share their code in places like GitHub and
StackOverflow. In a recent crawl, we extracted over 1.8M functions
from code libraries crawled at GitHub, and over 2M code snippets
extracted from pages on StackOverflow.

We have built a production-quality data-transformation engine
called Transform-Data-by-Example (TDE) that can index rich trans-
formation logic from sources such as code, to allow users to search
and reuse existing transformation logic. The front-end of TDE is an
Excel add-in, currently in beta release at Office Store [4]. We choose
Excel as the front-end to allow end-users stay in their familiar Excel
environment without switching.

Unique Features. The TDE system has the following features
that we believe are important first steps to realize the vision of
self-service data transformation. (More details of the system can be
found in a full research article [11]).

o Search-by-Example. TDE allows end-users to search transforma-
tions by examples, a paradigm known as program-by-example
(PBE) [14], first used in FlashFill [10] for data transformation. Com-
pared to existing PBE systems such as FlashFill that compose results
using a small number of string primitivies, TDE synthesizes pro-
grams from a much larger space of arbitrary program functions
and mapping tables [17]. We develop novel algorithms to make this
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feasible at an interactive speed, with just a few (typically three)
input/output examples.

e Program Synthesis. Since existing functions rarely produce the
exact output specified by users, TDE automatically synthesizes new
programs, sometimes with multiple functions, to exactly match
target output, all within just a few seconds. Expert-users have the
option to inspect the synthesized programs to ensure correctness.
e Head-domain Support. We have built an instance of TDE that
indexes over 50K functions from GitHub that can already han-
dle many head and tail domains, such as date-time, person-name,
phone-number, us-address, url, unit-conversion, etc. Many of these
transformations cannot be handled by any existing system.

e Extensibility. Although TDE can already support many important
domains out of the box, there will be diverse application domains
where TDE has no built-in support as it has not encountered and
crawled relevant functions from such domains. TDE is therefore
designed to be extensible — users can simply point TDE to their
domain-specific source code, DLLs, web services, and mapping
tables, the transformation logic in these resources will be automati-
cally extracted, and made immediately search-able. The way TDE
works is just like a search engine “indexing” a new document.

2 DEMO SCENARIOS

Given the raw data set in Figure 1, a user would like to transform
this data in order to perform analysis. Suppose she wants to find
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out which day-of-the-week (e.g., Mon, Tue, etc.) produces the most
sales. Today she has to write ad-hoc scripts in order to derive such
information. However, using TDE, she only needs to provide a few
examples to specify the desired output.

Synthesis of functions. In Figure 2(left), she types in two ex-
ample output for the first two input rows, and then clicks on the
“Get Suggestions” button. The Excel add-in will talk to the back-end
TDE service running on Microsoft Azure cloud, which searches
over thousands of indexed functions, to on-the-fly compose new
programs consistent with all given examples. In Figure 2(right), a
ranked list of programs synthesized from existing code are returned.
The top-ranked program uses the System.DateTime.Parse() func-
tion from the .Net system library, which is a function specifically
written to handle heterogeneous date-time string values. If we hover
over the suggested program, a preview for remaining output will
be shown (shaded values), which all look correct. An advanced user
can further click on the suggestion to review the code automatically
generated, or she can simply click on the “Apply” button to accept
the suggested output.

Note that although we only show one possible transformation for
this example due to the space constraint, in practice the output can
be in numerous other formats such as “2011-01-12 (Wed)”, “Jan
12, 2011, Wednesday”, or simply “Wed”, etc. We will demonstrate
all these scenarios and show that TDE can dynamically generate
suitable programs to precisely match these different output.

Happy with her analysis on date values, the analyst now moves
on to the customer column. Here she would like to identify return-
ing customers and big spenders. A common challenge in names
collected from different sales channels (e.g. online vs. in-store) is
that they often differ with minor variations. For example, customers
may or may not use middle-initials, suffixes (Jr., St., III, etc.), and
salutations (Mr., Dr., etc.). Furthermore, their names may be in dif-
ferent formats, e.g., last-name followed by comma, then first name;
or first name followed by last name. In Figure 3(left) for instance,
the first two rows can both be standardized to “Doe, John”; and
for next three rows to “Smith, Jane”. Suppose our analyst would
like to perform this standardization to ignore optional salutations,
middle-initials and suffixes, in order to identify candidate records
that may belong to the same persons. This is again a complex trans-
formation that would have required non-trivial scripting. Using
TDE, the analyst can again search for desired transformations by
just providing three output examples. TDE is able to synthesize
a program using the CSharpNameParser.Parse() function from
GitHub that is consistent with all input/output examples. She can
accept the resulting transformation with just a click of the button.

Synthesis of web services. Names alone are often insufficient
to uniquely identify customers — suppose the analyst also wants to
derive city, state and zip-code information from the heterogeneous
“address” column in Figure 1 to help the de-duplication. The target
output is shown Figure 3. Note that this is a challenging task even for
experienced programmers, as the target output (zip-code, city, etc.)
may be missing from the input altogether, such that domain-specific
transformation logic and reference data sets (e.g., USPS reference
addresses, zip-code to city mapping) are needed to perform this
transformation. TDE can again help this transformation with a
few output examples shown in Figure 3(right). In this case TDE
synthesizes a program that invokes Bing Maps API, which is a web
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service in the TDE index that specifically handles address data. TDE
treats web service calls the same as local function calls - it invokes
the service for each input string, and then parses the resulting JSON
data to automatically synthesizes the target output.

In our planned demo, we will show additional transformation
examples using TDE, such as standardizing phone numbers, extract-
ing domain names from URLs, performing unit-conversions, etc.,
as well as lookup-based transformations that require synthesized
programs to holistically combine both existing functions as well as
mapping tables. We omit these cases here in the interest of space.

Extensibility. While TDE can already support many important
domains using functions we currently index, there are many tail ap-
plication domains for which TDE would not handle out-of-box since
the relevant functions are not indexed yet. We will demonstrate
a transformation on user-agent-string data, which is currently
not supported by TDE. We will illustrate how the extensibility fea-
ture allows users to add new functions and web-services (wrapped
in Azure functions) into TDE. The new transformation logic will
be automatically extracted and made immediately search-able to
solve the aforementioned problem for user-agent-string.

In addition to these demo scenarios, attendees will be able to
interact with TDE themselves by trying their favorite data transfor-
mation tasks and see results right away.

3 SYSTEM ARCHITECTURE

We give a high-level overview of the TDE back-end service, cur-
rently deployed on Microsoft Azure. More details of the underlying
technologies will be described in a research paper [11].

Figure 4 shows the overall architecture of TDE. There are two
main phases. First, there is an offline phase where TDE collects,
analyzes and index transformation logic from useful resources in-
cluding (1) code libraries, (2) web service APIs, and (3) mapping
tables, all of which require different indexing strategies. Next, in
the online phase, when users submit transformation tasks in Excel,
the indexes built offline are used to quickly find relevant transfor-
mation logic, from which new programs are synthesized that match
given input/output examples.

The offline phase. In a current instantiation of the system, we
collect over 11K C# projects from GitHub with over 1.8M functions,
and additionally over 2M code snippets from the StackOverflow
online forum. We further index all functions in the .Net system
library, and 16K mapping relationships using a variant of [17]. Note
that although we focus on one language (C# in this case) for ease
of program analysis, the techniques here can be easily generalized
to other languages like Java and Python.

Given the large repository of code, a key technical challenge is to
“understand” these functions so that at run time we can quickly find
ones relevant to a given transformation task. We perform extensive
offline analysis of all candidate functions, using code-analysis as
well as distributional-analysis of execution output, so that we can
profile typical input/output of these functions.

Mapping relationships (e.g., “Washington” to “WA”; or “SFO” to
“San Francisco International Airport”) work like dictionary lookup
and are important ingredients to complement program logic. We
start with a large crawl of HTML tables from Bing’s index [7] to
derive mapping-relationships [17]. TDE can combine the resulting
mappings with code to synthesize complex programs.
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Figure 4: Architecture of TDE back-end.

For web services, we use REST APIs identified from Bing’s in-
dex, as well as important web service APIs manually curated that
may require API keys (e.g., Bing Maps API [1]). These services are
important for certain complex transformations requiring extensive
external resources, for which standalone code libraries are often
insufficient (e.g., the address example in Figure 3 (right)). Web ser-
vice APIs are profiled and indexed by TDE just like functions but
are invoked slightly differently (remotely over HTTP vs. locally).

The online phase. In this phase, given a user transformation
task, we need to (1) leverage index structures built offline for func-
tions, web-services and mapping-relationships, to quickly identify
a small subset of relevant transformation logic for actual execution;
(2) execute such relevant logic such as functions, and synthesize
new programs with a combination of resources consistent with all
input/output examples; and (3) if multiple candidate programs can
be synthesized, then rank them based on their program “complexity”
following the MDL principle. This end-to-end process needs to be
highly efficient to ensure interactivity. We design novel ranking and
synthesis algorithms to efficiently compose transformation logic
into complex programs.

4 RELATED WORK

There are significant activities in the industry in the space of data
preparation [15], producing an interesting array of solutions from
both startups (e.g., Trifacta [5]), as well as established companies
(e.g., Informatica Rev [2]). For data transformation, the approaches
taken by existing solutions fall into five broad categories to be
reviewed below. To the best of knowledge, TDE is the first system
with all desirable features discussed in Section 1 (e.g., extensibility,
by-example, composability, etc.).

Menu-based transformation. Most existing systems provide
a menu of common built-in transformations, from which users are
expected to browse manually. Menus typically present only a small
number of simple transformations (e.g., upper/lower case, split,
etc.), for otherwise menus can quickly become overwhelming and
hard to navigate. As a result, they tend to be limited in functionality,
and in fact no menu-based transformations in existing systems we
surveyed can solve the complex tasks described in Section 2.

Language-based transformation. In addition to menus, exist-
ing systems also define their own transformation languages that
users can learn to write. For example, Trifacta [5] uses a Trifacta
Wrangle language, while OpenRefine [3] has its own Google Refine
Expression Language (GREL). Like other domain specific languages
(DSL), these tend to have steep learning curves and not easily acces-
sible to users [13, 14]. Furthermore, like the menu-based systems,
predefined languages often have a limited number of built-in oper-
ators and thus limited expressiveness.

Suggest transformation by input. Trifacta additionally uses
an interesting paradigm where it suggests possible transformations

1788

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

based on the portion of input strings selected by users (termed
predictive interaction [12]). However, unlike input/output examples,
input alone often cannot fully specify the desired transformation.
For instance, for a given selection it is not clear if user would like
to delete, insert, or update (let alone more fine-grained options like
upper vs. lower vs. camel casing, etc.). As a result users would often
have to deal with a large number of irrelevant suggestions.
Example-driven search using string operators. Although
program-by-example (PBE) is well-known problem in the litera-
ture [14], FlashFill [10] pioneered its use for data transformation.
In FlashFill and related systems [13, 16], users provide input/output
examples, and the system will use simple string operators (e.g. split
and substring) to find consistent programs. While the PBE paradigm
is a big step forward in terms of ease-of-use (which TDE also builds
upon), the expressiveness of existing systems is limited to simple
string operations, and cannot handle complex transformations that
require domain-specific knowledge described above.
Example-driven search with search engines. DataXFormer [6]
takes an interesting approach of using search engines to find rele-
vant web tables and web forms for transformations. Appropriate
input/output column headers, however, are required to construct
keyword queries in this approach (e.g., if an input column has a
header “inch” and an output column has a header “cm”, then a query

“convert inch to cm” will be automatically constructed for search

engines to find relevant web forms). Note that in practice the col-
umn headers are often missing or ill-suited as search queries (e.g.,
the header may be “measurement” instead of “cm”), thus causing
difficulties (in comparison, TDE does not require headers). Further-
more, while web forms and tables are useful, they often cannot
handle common tasks (including all cases described above) when
the desired transformations need to be be synthesized (as opposed
to simple wrapper induction).
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