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Complex time series
Multivariate time series are prevalent, including in 
healthcare, biology & climate science
Often irregularly sampled with varying time intervals 
between successive readouts and different sensors 
observed at different time points
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Climate Healthcare Space systems

It is critical to develop time series learning methods that 
are adaptive and flexible
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Irregular vs. regular time series
Regular time series
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Irregular time series

ObservationsTimestamps
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Why are irregular time series 
challenging? 
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Prevailing ML methods:
§ Assume aligned measurements
§ Assume fixed-sized input data
§ Impute or fill-in missing values

Irregular time series:
§ Observations across sensors are not aligned
§ Varying times among adjacent observations
§ Arbitrary length: different samples have 

varying number of observations
§ Different subsets of sensors recorded at 

different time points
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§ Motivation for Raindrop

§ Hierarchical learning of irregular time series
§ Constructing sensor dependency graphs
§ Generating embeddings of observations
§ Generating sensor embeddings
§ Generating sample embeddings

§ New datasets and experiments

Plan for today
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Inputs:
§ Dataset of samples, e.g., sample =
§ Each sample can have many sensors
§ Each sensor can have arbitrary number 

of irregularly sampled observations
Outputs:
§ Sample embeddings
§ Sensor embeddings
§ Observation embeddings
§ Predictors of sample-specific labels

Today: Flexible approach for 
learning on irregular time series

Graph-Guided Network for Irregularly Sampled Multivariate Time Series - ICLR 2022



Problem definition
Input
§ Dataset 𝐷 of irregularly time series samples
§ Every sample 𝑆! can have multiple sensors
§ Every sensor can have arbitrary number of 

irregularly sampled observations/readouts

§ Raindrop learns a function 𝑓: 𝑆! → 𝒛! that maps 𝑆! to a 
fixed-length representation 𝑧! suitable for downstream 
tasks of interest, such as classification

§ Using learned 𝑧!, one can predict label (𝑦! ∈ {1,… , 𝐶} for 𝑆!
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Tackle irregularity by leveraging 
inter-sensor dependencies 

§ Inter-sensor dependencies bring rich information to 
time series modeling  

§ We integrate recent advances in GNNs to fully take 
advantage of relational structure among sensors 
§ We learn latent graph structures from multivariate time 

series and model time-varying inter-sensor dependencies 
through neural message passing

§ First to use GNNs to model sample-varying and time-
varying relational structure in irregular time series

Next: What motivates the use of 
inter-sensor dependencies?
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Motivation
Raindrop is inspired by how raindrops hit a surface at varying 
times & create ripple effects that propagate through the surface

§ Observations (i.e., raindrops) hit the sensor graph (i.e., surface) 
asynchronously and at irregular time intervals

§ Every observation is processed by passing messages to 
neighboring sensors (i.e., creating ripples), taking into account
the learned sensor dependencies

9

Graph-Guided Network for Irregularly Sampled Multivariate Time Series - ICLR 2022



Raindrop: Irregular observations 
as “raindrops” hitting a “surface”
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§ Observations (i.e., raindrops) hit the sensor graph 
(i.e., surface) asynchronously and at irregular times

§ Observations are processed by passing messages to 
neighboring sensors (i.e., creating ripples), taking into 
account the learned sensor dependencies
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Sensor dependency graph

Raindrop: Irregular observations 
as “raindrops” hitting a “surface”

Raindrops
§ Observations

Surface
§ Sensor dependency graph

Ripples: 
§ Neural message exchanged 

between neighboring sensors 
within each sample

Next: How to learn inter-sensor dependencies that 
can vary across samples and time?
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Sensor dependency graphs
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Node

Generate embedding of node u by capturing node 
dependencies through message passing 

Node
features

EdgeMessage
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Sensor dependency graphs
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Sensor dependency graph

Node: Sensor

Edge: Sensor interactions
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Passing messages between 
neighboring sensors in every sample
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Passing messages between 
neighboring sensors in every sample
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Passing messages between 
neighboring sensors in every sample
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Overview of Raindrop model
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Hierarchical learning of irregular time series:

§ Step 1: Construct sensor dependency graphs

§ Step 2: Generate embeddings of observations

§ Step 3: Generate sensor embeddings

§ Step 4: Generate sample embeddings
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Step 1: Construct sensor 
dependency graphs

§ Build a directed weighted graph for each sample

§ Initialize as fully-connected graphs:
§ Can integrate additional domain knowledge 

§ During training, update neighbors & edge weights: 
§ Graphs are time-sensitive 
§ Graph are sample-sensitive
§ Similar graph for similar samples
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§ Active sensor: Node 𝑢 has 
been observed at time 𝑡

§ Sensor-specific weight 
vectors    
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Directly learn observation embedding for active sensor

Step 2: Embed observations
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Sensor v is neighbor of active 
sensor u:
§ Edge weight 
§ Inter-sensor attention weight

§ Embedding observation 𝑥!,#$

Step 2: Embed observations
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Generate observation embedding for neighbors of the 
active sensor through message passing 
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Step 2: Update sensor 
dependency graphs

§ Average 𝛼!,#$% across timestamps 𝑡, 
update edge weights as:

§ Prune edges in sensor graphs
§ Remove bottom 𝐾% edges with 

smallest edge weights
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Step 3: Embed sensors
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For sensor 𝑣, aggregate observation embeddings across 
all timestamps into a single sensor embedding

Temporal self-attention
• Generate a single 

fixed-dimensional 
sensor embedding by 
temporal attention

• Apply to every sensor

Sensor embedding
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Step 4: Embed samples
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Gather all sensor embeddings into a sample embedding
using a readout function; Learned sample embedding 
support downstream tasks
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Recap: Raindrop model
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Hierarchical learning of irregular time series:

§ Step 1: Construct sensor dependency graphs

§ Step 2: Generate embeddings of observations

§ Step 3: Generate sensor embeddings

§ Step 4: Generate sample embeddings
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Applications
§ Experiments:

§ Datasets
§ Baseline methods
§ Evaluation metrics

§ Results: 
§ Setting 1: Classic time series classification
§ Setting 2: Leave-random-sensors-out
§ Setting 3: Group-wise time series classification
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Experimental setup (1/2)
§ P19: PhysioNet Sepsis Early Prediction

§ 40,336 patients, 34 sensors
§ Classification: Sepsis occurring or not

§ P12: PhysioNet Mortality Prediction
§ 11,988 patients, 36 sensors
§ Classification: Length of stay in the ICU (>3 days or not)

§ PAM: PAMAP2 Physical Activity Monitoring
§ 5,333 samples, 17 sensors
§ 8-class classification: 8 activities of daily lives
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Experimental setup (2/2)
§ Baselines: 

§ Transformer: replacing missing values with zeros
§ Transformer-mean: Transformer + Imputation
§ GRU-D: RNN-based model
§ SeFT: Set functions-based model
§ mTAND: Multi-time attention

§ Imbalanced datasets:
§ P19, P12
§ P19: 96% negative samples
§ P12: 93% positive samples
§ AUROC, AUPRC

§ Balance datasets:
§ PAM
§ Accuracy, Precision, Recall, F1 score
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Setting 1/3: Time series classification 

§ Predict the label for a given time series sample
§ Randomly split into training set (80%), validation 

set (10%), and testing set (10%)
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Dataset P19: 
§ 38,803 patients, 34 sensors
§ Label: Sepsis or not
§ Missing sensors: 10-50%

Results: Larger missing rate, larger 
margin over existing methods

Setting 2/3: Leave-sensors-out
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Failed sensors

Missing rate    Model
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Setting 3/3: Group-wise time 
series classification

§ Split samples into two groups based on attributes
§ Split by age: Patients older than 65 years vs. younger patients
§ Split by gender: Male patients vs. Female patients 

§ Use one group as training set and randomly split the other 
group into validation (50%) and test set (50%)
§ Train on Young group à test on Old group
§ Train on Old group à test on Young group
§ Train on Male group à test on Female group
§ Train on Female group à test on Male group
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https://github.com/mims-harvard/Raindrop

Take away messages:
§ Irregular time series: Raindrop 

addresses the complexity of time 
series, e.g., misaligned observations, 
varying time gaps & varying numbers 
of observations per sensor

§ Inter-sensor structure: Raindrop 
adopts neural message passing to 
model inter-sensor dependencies in 
irregular time series

§ Great generalization: Raindrop has 
excellent performance in challenging 
settings, including setups where a 
subset of sensors have malfunctioned 
(i.e., no readouts at all)

Thank you!
Joint work with X. Zhang, M. 
Zeman, and T. Tsiligkaridis
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