Graph-Guided Networks for Complex Time Series

Marinka Zitnik

Department of Biomedical Informatics Broad Institute of Harvard and MIT Harvard Data Science

Joint work with X. Zhang, M. Zeman, and T. Tsiligkaridis

zitniklab.hms.harvard.edu

1

Complex time series

Multivariate time series are prevalent, including in healthcare, biology & climate science

Often *irregularly sampled* with varying time intervals between successive readouts and different sensors observed at different time points

Climate Climate Healthcare Space systems

It is critical to develop time series learning methods that are adaptive and flexible

Irregular vs. regular time series

Regular time series

Irregular time series

Graph-Guided Network for Irregularly Sampled Multivariate Time Series - ICLR 2022

Why are irregular time series challenging?

Prevailing ML methods:

- Assume aligned measurements
- Assume fixed-sized input data
- § Impute or fill-in missing values

Irregular time series:

- § Observations across sensors are not aligned
- § Varying times among adjacent observations
- § Arbitrary length: different samples have varying number of observations
- Different subsets of sensors recorded at different time points

Plan for today

■ Motivation for Raindrop

• Hierarchical learning of irregular time series ■ Constructing sensor dependency graphs ■ Generating embeddings of observations **• Generating sensor embeddings** § Generating sample embeddings

■ New datasets and experiments

Today: Flexible approach for learning on irregular time series

Inputs:

- Dataset of samples, e.g., sample $=$
- Each sample can have many sensors **l**
- Each sensor can have arbitrary number of irregularly sampled observations

Outputs:

- § Sample embeddings
- § Sensor embeddings
- § Observation embeddings
- § Predictors of sample-specific labels

Problem definition

Input

- Dataset D of irregularly time series samples
- Every sample S_i can have multiple sensors
- Every sensor can have arbitrary number of irregularly sampled observations/readouts

- Raindrop learns a function $f: S_i \to \mathbf{z}_i$ that maps S_i to a fixed-length representation z_i suitable for downstream tasks of interest, such as classification
- Using learned z_i , one can predict label $\widehat{y}_i \in \{1, ..., C\}$ for S_i

Tackle irregularity by leveraging inter-sensor dependencies

- Inter-sensor dependencies bring rich information to time series modeling
- We integrate recent advances in GNNs to fully take advantage of relational structure among sensors
	- We learn latent graph structures from multivariate time series and model time-varying inter-sensor dependencies through neural message passing
	- **First to use GNNs to model sample-varying and time**varying relational structure in irregular time series

Next: What motivates the use of inter-sensor dependencies?

Motivation

Raindrop is inspired by how raindrops hit a surface at varying times & create ripple effects that propagate through the surface

- Observations (i.e., raindrops) hit the sensor graph (i.e., surface) asynchronously and at irregular time intervals
- Every observation is processed by passing messages to neighboring sensors (i.e., creating ripples), taking into account the learned sensor dependencies

Raindrop: Irregular observations as "raindrops" hitting a "surface"

- Observations (i.e., raindrops) hit the sensor graph (i.e., surface) asynchronously and at irregular times
- Observations are processed by passing messages to neighboring sensors (i.e., creating ripples), taking into account the learned sensor dependencies

Raindrop: Irregular observations as "raindrops" hitting a "surface"

Raindrops

■ Observations

Surface

• Sensor dependency graph

Ripples:

• Neural message exchanged between neighboring sensors within each sample

Sensor dependency graph

Next: How to learn inter-sensor dependencies that can vary across samples and time?

Generate embedding of node *u* by capturing node dependencies through message passing

Sensor dependency graphs

Passing messages between neighboring sensors in every sample

Passing messages between neighboring sensors in every sample

Passing messages between neighboring sensors in every sample

Overview of Raindrop model

Hierarchical learning of irregular time series:

- Step 1: Construct sensor dependency graphs
- Step 2: Generate embeddings of observations
- § Step 3: Generate sensor embeddings
- Step 4: Generate sample embeddings

Step 1: Construct sensor dependency graphs

- Build a directed weighted graph for each sample
- Initialize as fully-connected graphs:
	- Can integrate additional domain knowledge
- During training, update neighbors & edge weights:
	- Graphs are time-sensitive
	- Graph are sample-sensitive
	- Similar graph for similar samples

Step 2: Embed observations

Directly learn observation embedding for active sensor

• Active sensor: Node u has been observed at time t

$$
\bm{h}_{i,u}^t = \sigma(x_{i,u}^t\bm{R}_u)
$$

§ Sensor-specific weight vectors \boldsymbol{R}_{u}

Step 2: Embed observations

Generate observation embedding for neighbors of the active sensor through message passing

- Edge weight $e_{i,uv}$
- Inter-sensor attention weight $\alpha_{i,uv}^t$

$$
\alpha_{i,uv}^t = \sigma\big(\!\bm{h}_{i,u}^t\!\bm{D}[\bm{r}_v||\bm{p}_i^t]^T\big)
$$

Embedding observation $x_{i,u}^t$

$$
\boldsymbol{h}_{i,v}^t = \sigma(\boldsymbol{h}_{i,u}^t \boldsymbol{w}_u \boldsymbol{w}_v^T \hspace{-0.3mm} \alpha_{i,uv}^t \hspace{-0.3mm} e_{i,uv})
$$

Graph-Guided Network for Irregularly Sampled Multivariate Time Series - ICLR 2022

Step 2: Update sensor dependency graphs

Average $\alpha_{i,uv}^t$ across timestamps t , update edge weights as:

$$
e_{i,uv}^{(l)}=\frac{e_{i,uv}^{(l-1)}}{|\mathcal{T}_{i,u}|}\sum_{t\in\mathcal{T}_{i,u}}\alpha_{i,uv}^{(l),t},
$$

- Prune edges in sensor graphs
	- Exemove bottom $K\%$ edges with smallest edge weights

Sample \mathcal{S}_i records the value $x_{i,u}^t$
of sensor u at time t

Step 3: Embed sensors

For sensor v , aggregate observation embeddings across all timestamps into a single sensor embedding

Step 4: Embed samples

Gather all sensor embeddings into a sample embedding using a readout function; Learned sample embedding support downstream tasks

Recap: Raindrop model

Hierarchical learning of irregular time series:

- Step 1: Construct sensor dependency graphs
- Step 2: Generate embeddings of observations
- § Step 3: Generate sensor embeddings
- § Step 4: Generate sample embeddings

Applications

- Experiments:
	- Datasets
	- Baseline methods
	- Evaluation metrics
- Results:
	- Setting 1: Classic time series classification
	- Setting 2: Leave-random-sensors-out
	- Setting 3: Group-wise time series classification

Experimental setup (1/2)

• P19: PhysioNet Sepsis Early Prediction

- § 40,336 patients, 34 sensors
- § Classification: Sepsis occurring or not
- **P12: PhysioNet Mortality Prediction**
	- 11,988 patients, 36 sensors
	- § Classification: Length of stay in the ICU (>3 days or not)
- PAM: PAMAP2 Physical Activity Monitoring
	- 5,333 samples, 17 sensors
	- 8-class classification: 8 activities of daily lives

Experimental setup (2/2)

§ Baselines:

- § Transformer: replacing missing values with zeros
- **•** Transformer-mean: Transformer + Imputation
- § GRU-D: RNN-based model
- § SeFT: Set functions-based model
- mTAND: Multi-time attention
- § Imbalanced datasets:
	- § P19, P12
	- P19: 96% negative samples
	- § P12: 93% positive samples
	- § AUROC, AUPRC
- § Balance datasets:
	- § PAM
	- § Accuracy, Precision, Recall, F1 score

Setting 1/3: Time series classification

- Predict the label for a given time series sample
- Randomly split into training set (80%), validation set (10%), and testing set (10%)

Models	P19		P ₁₂			PAM			
	AUROC	AUPRC	AUROC	AUPRC	Accuracy	Precision	Recall	F1 score	
Transformer Trans-mean GRU-D SeFT mTAND RAINDROP	83.2 ± 1.3 84.1 ± 1.7 83.9 ± 1.7 78.7 ± 2.4 80.4 ± 1.3 87.0 ± 2.3	47.6 ± 3.8 47.4 ± 1.4 46.9 ± 2.1 31.1 ± 2.8 32.4 ± 1.8 51.8 ± 5.5	65.1 ± 5.6 66.8 ± 4.2 67.2 ± 3.6 66.8 ± 0.8 65.3 ± 1.7 72.1 ± 1.3	95.7 ± 1.6 95.9 ± 1.1 95.9 ± 2.1 96.2 ± 0.2 96.5 ± 1.2 97.0 ± 0.4	83.5 ± 1.5 83.7 ± 2.3 83.3 ± 1.6 67.1 ± 2.2 74.6 ± 4.3 88.5 ± 1.5	84.8 ± 1.5 84.9 ± 2.6 84.6 ± 1.2 70.0 ± 2.4 74.3 ± 4.0 89.9 ± 1.5	86.0 ± 1.2 86.4 ± 2.1 85.2 ± 1.6 68.2 ± 1.5 79.5 ± 2.8 89.9 ± 0.6	85.0 ± 1.3 85.1 ± 2.4 84.8 ± 1.2 68.5 ± 1.8 76.8 ± 3.4 89.8 ± 1.0	

Table 1: Method benchmarking on irregularly sampled time series classification task (Setting 1).

Setting 2/3: Leave-sensors-out

Dataset P19:

- 38,803 patients, 34 sensors
- Label: Sepsis or not
- Missing sensors: 10-50%

Results: Larger missing rate, larger margin over existing methods

Graph-Guided Network for Irregularly Sampled Multivariate Time Series - ICLR 2022

Setting 3/3: Group-wise time series classification

- Split samples into two groups based on attributes
	- § Split by age: Patients older than 65 years vs. younger patients
	- Split by gender: Male patients vs. Female patients
- Use one group as training set and randomly split the other group into validation (50%) and test set (50%)
	- **Train on Young group** \rightarrow **test on Old group**
	- Train on Old group \rightarrow test on Young group

XX 3.3

- Train on Male group \rightarrow test on Female group
- Train on Female group \rightarrow test on Male group

Generalizing to a new patient group

Motivation for Raindrop

Raindrop takes samples as input, each sample containing multiple sensors and each sensor consisting of irregularly recorded observations (e.g., in clinical data, an individual patient's state of health, recorded at irregular time intervals with different subsets of sensors observed at different times). Each observation is a real-value scalar (sensor readout).

Raindrop is inspired by how raindrops hit a surface at varying time intervals and create ripple effects that propagate throughout the surface (as shown in the following figure). Mathematically, in Raindrop, observations (i.e., raindrops) hit the sensor graph (i.e., the surface) asynchronously and at irregular time intervals; each observation is processed by passing messages to neighboring sensors (i.e., creating ripples), taking into account the learned sensor dependencies.

The key idea of Raindrop is that the observed sensors can indicate how the unobserved sensors currently behave, which can further improve the representation learning of irregular multivariate time series. Taking advantage of the inter-sensor dependencies and temporal attention, Raindrop leans a fixeddimensional embedding for irregularly sampled time series.

Take away messages:

- **Irregular time series: Raindrop** addresses the complexity of time series, e.g., misaligned observations, varying time gaps & varying numbers of observations per sensor
- **Inter-sensor structure: Raindrop** adopts neural message passing to model inter-sensor dependencies in irregular time series
- **Great generalization:** Raindrop has excellent performance in challenging settings, including setups where a subset of sensors have malfunctioned (i.e., no readouts at all)

Thank you!

Joint work with X. Zhang, M. Zeman, and T. Tsiligkaridis

https://github.com/mims-harvard/Raindrop