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Abstract: This paper studies double imaginary characteristic roots in the case of time-delay
systems with two delays as parameters. We aim to identify the direction in which double
roots cross the imaginary axis, when the delay parameters change. To determine what happens
when parameters are under a small perturbation, we present two methods: the algebraic and
geometric approaches. Taking a theoretical example, we show that, even if the two methods are
conceptually different, the provided results are consistent.

Keywords: Characteristic roots; Spectral analysis; Time delay; Stability analysis; Distributed
Parameter Systems.

1. INTRODUCTION AND PROBLEM STATEMENT

The stability of dynamical systems with time-delays has
been a problem of great interest in the last few decades.
It has been shown that the presence of delays is respon-
sible for rather complex behaviours, and it might induce
stability or instability, function of the domain in which the
delays take value. For systems with one delay as param-
eter, methods of identifying all the stable delay intervals
are given in Lee and Hsu (1969) and Walton and Marshall
(1987). As for systems with two delays as parameters, a
rich collection of stability charts (the parameter regions
where the system is stable) are presented in Stépán (1989).

In this paper, we study time-delay systems with two
delays, and focus our attention on how the stability charts
look like in a neighbourhood of a double (non semi-
simple) root of the characteristic equation. We present
two methods, the algebraic approach in Section 2 and
the geometric approach in Section 3, and briefly compare
them in Section 4. The algebraic approach we present
involves the computation of eigenvectors corresponding to
the double root. Geometric approach was introduced by
Gu et al. (2005, 2015) and is based on the continuity of
characteristic roots as functions of parameters (the two
delays). Both methods aim to judge characteristic roots
direction of crossing (the imaginary axis) when parameters
change.

Consider a linear time-delay system

ẋ(t) = A0x(t) +A1x(t− τ1) +A2x(t− τ2), (1)

where x ∈ Rn is the state vector, the constant delays τ1
and τ2 are real and positive, with A0, A1, A2 ∈ Rn×n. The
characteristic matrix of the system (1) is given by

M(s, τ) = sI −A0 −A1e
−sτ1 −A2e

−sτ2 , (2)

where τ = (τ1 τ2)
T

, I is the n × n identity matrix, and s
is the Laplace variable. Similar to the finite-dimensional
case, the characteristic equation of system (1) is given by

detM(s, τ) = 0. (3)

The roots of (3) are called characteristic roots of sys-
tem (1). Thus, the finite-dimensional nonlinear eigenvalue
problem of system (1) can be written as

M(s, τ)u = 0, (4)

where the vector u ∈ Cn \ {0} is called a right eigen-
vector corresponding to the characteristic root s. In a
similar manner, we can also construct a left eigenvector
vT ∈ Cn \ {0} corresponding to the eigenvalue s, satisfying
vTM(s, τ) = 0. Furthermore, the multiplicity of an eigen-
value as a root of the characteristic equation (3) is called
algebraic multiplicity. An eigenvalue is called simple if its
algebraic multiplicity is equal to one. Otherwise, the eigen-
value is called multiple. Note that, since matrices A0, A1

and A2 are real, eigenvalues are real or appear in complex
conjugate pairs. If in the case of a simple eigenvalue there is
a single corresponding eigenvector (up to a scaling factor),
a multiple eigenvalue can have one or several correspond-
ing eigenvectors. The maximal number of linearly indepen-
dent eigenvectors corresponding to a multiple eigenvalue
is called geometric multiplicity of the eigenvalue. In other
words, the geometric multiplicity is equal to the dimension
of the null space of the characteristic matrix (2). The
geometric multiplicity is less than or equal to the algebraic
multiplicity. A multiple eigenvalue is called semi-simple
if the algebraic and geometric multiplicities are equal,
otherwise the eigenvalue is called non semi-simple. If there
is a single eigenvector corresponding to the eigenvalue,
then the eigenvalue is called nonderogatory. For instance,
the nonderogatory case of zero eigenvalue, s = 0, with
algebraic multiplicity two and geometric multiplicity one
is known as Bogdanov-Taken singularity, and it has been



extensively studied in the literature, especially in models
with time delays (see Bogdanov (1975), Bogdanov (1981),
Boussaada et al. (2014), Campbell and Yuan (2008), Faria
(2003), Takens (1974)).

In this paper, we suppose that real matrices A0, A1, A2 are
such that the characteristic function p(s, τ) := detM(s, τ)
(also called quasi-polynomial) of system (1) has the form

p(s, τ) = p0(s) + p1(s)e−sτ1 + p2(s)e−sτ2 , (5)

where pk(s), k ∈ {0, 1, 2} are polynomials of s with real
coefficients.

Remark 1. For n = 2, consider

A0 =

(
a11 a12
a21 a22

)
,

A1 =

(
b11 b12
b21 b22

)
, A2 =

(
c11 c12
c21 c22

)
.

If at least one of the conditions

(C1): {b11 = 0, b12 = 0, c11 = 0, c12 = 0}
(C2): {b11 = 0, b21 = 0, c11 = 0, c21 = 0}
(C3): {b12 = 0, b22 = 0, c12 = 0, c22 = 0}
(C4): {b21 = 0, b22 = 0, c21 = 0, c22 = 0}

are satisfied, the characteristic function of system (1) can
be written of the form (5). Note that conditions (C1)–(C4)
are satisfied when matrices A1 and A2 are of rank 1. 2

Remark 2. (An equivalent eigenvalue problem). The eigen-
value problem (4) corresponding to the functional differ-
ential equation (1) is nonlinear and finite-dimensional. By
considering (as, for instance, in Hale and Lunel (1993))
a linear operator A = A0x(t) +A1x(t− τ1) +A2x(t− τ2),
with the domain

D(A) =

{
φ

∣∣∣∣φ, dφdθ ∈ C ([−max{τ1, τ2}, 0] ,Rn) ,

φ(0) = A0φ(0) +A1φ(−τ1) +A2φ(−τ2)} ,

such that Aφ = dφ
dθ , where C ([−max{τ1, τ2}, 0] ,Rn) is

the space of continuous functions from [−max{τ1, τ2}, 0]
to Rn, we can rewrite system (1) as an abstract or-
dinary differential equation ẋt = Axt, where xt(φ) ∈
C ([−max{τ1, τ2}, 0] ,Rn) is the function segment defined
by xt(φ)(θ) = x(φ)(t + θ), θ ∈ [−max{τ1, τ2}, 0] . Note
that the characteristic roots are the eigenvalues of A.
This allows us to write an infinite-dimensional and linear
eigenvalue problem,equivalent to (4), (sI −A)u = 0, with
u ∈ C ([−max{τ1, τ2}, 0] ,Cn). In addition, the correspond-
ing eigenfunctions of eigenvalue s take the form uesθ, with
θ ∈ [−max{τ1, τ2}, 0]. However, the algebraic approach
described in Section 2 is based on the finite-dimensional
and nonlinear form of eigenvalue problem (4). 2

This paper studies the behaviour of double imaginary char-
acteristic roots (double roots s = ±iω 6= 0 of characteristic
function (5)) under a small deviation of delay parameters
(τ1 and τ2) and compares the geometric approach and the
algebraic approach in the case of time-delay systems. By
definition (see for instance Campbell and Yuan (2008); Gu
et al. (2015)), we say that system (5) has a double root

s0 = ±iω0 at ω = ω0 for τ0 = (τ10 τ20)
T

if and only if

p(s0, τ0) =
∂p

∂s

∣∣∣∣s=s0
τ=τ0

= 0 and
∂2p

∂s2

∣∣∣∣s=s0
τ=τ0

6= 0.

In the sequel, we present the two approaches and illustrate
their implications by considering the following example.

Example 3. (Case study) Let the characteristic matrix be

M(s, τ) =

(
s+ 2e−sτ1 cos(1)− 1 1

−1− e−sτ2 + 2e−sτ1 sin(1) s− 1

)
. (6)

We compute the characteristic function corresponding to
the characteristic matrix (6), and obtain

p(s, τ) = s2 − 2s+ 2

+ [(2 cos 1) s− 2 (cos 1 + sin 1)] e−τ1s + e−τ2s. (7)

For τ = τ0 = (τ10, τ20)T = (1, 2), the characteristic
function (7) has a double imaginary root s = s0 = ±iω0

at ω0 = 1. 2

2. ALGEBRAIC APPROACH

The eigenvalue s0 = ±iω0 = ±i in Example 3 is double
and non semi-simple. This implies that there exist u0 and
v0, a right, respectively left eigenvectors, and u1 and v1 a
right, respectively left generalized eigenvectors, such that
conditions

M0u0 = 0 (8)

M0u1 +M0
1u0 = 0 (9)

vT0 M0 = 0 (10)

vT1 M0 + vT0 M
0
1 = 0 (11)

are simultaneously satisfied (see Campbell and Yuan
(2008), Chapter 7 in Hale and Lunel (1993)), where

M0 =M(s0, τ0), (12)

M0
1 =

∂M(s, τ)

∂s

∣∣∣∣s=s0
τ=τ0

. (13)

Proposition 4. Eigenvectors u0, u1, v0 and v1 satisfy

vT0 M
0
1u0 = 0 (14)

vT1 M
0
1u0 = vT0 M

0
1u1 6= 0. (15)

Proof. Multiply equation (9) by vT0 on the left and obtain
(14) in view of (10). Multiply equation (9) by vT1 on the
left and obtain vT1 M0u1 = −vT1 M0

1u0. Multiply equation
(11) by u1 on the right and obtain vT1 M0u1 = −vT0 M0

1u1.
Thus, we have (15) because vT1 M

0
1 6= 0 and M0

1u1 6= 0. 2

We consider a simple case, where the delay parameters are
under a small perturbation ε > 0:

τ1(ε) = τ10 + ετ11, (16)

τ2(ε) = τ20 + ετ21. (17)

As τ(ε) is smooth, we can write a Taylor series expansion
of the characteristic matrix (2). Moreover, provided that
the eigenvalue is non semi-simple, we can write a Puiseux
series expansion of it and of the corresponding right
eigenvector (see, for instance, Kato (1995)):



s(ε) = s0 + ε
1
2 s1 + εs2 + . . . (18)

u0(ε) = u0 + ε
1
2w1 + . . . (19)

We can now replace equations (16), (17), (18), and (19) in
the eigenvalue problem (4) and write

M(s(ε), τ(ε))u(ε) = 0.

Note that we use series expansion of exponential functions,
as ε → 0 (for instance, we write e−εs0τ10 = 1 − εs0τ11 +
ε2s20τ

2
11

2 ). We collect the terms of equal powers of ε, more

precisely we collect only the first three orders (ε0, ε
1
2 , ε1)

and obtain

M0u0 = 0,

M0w1 + s1M
0
1u0 = 0, (20)

s1M
0
1w1 +

(
s21
2
M0

2 + s2M
0
1 +M1

1

)
u0 = 0, (21)

where the matrices M0, M0
1 , M0

2 , and M1
1 are given by

M0 = s0I −A0 −A1e
−s0τ10 −A2e

−s0τ20 , (22)

M0
1 = I + τ10A1e

−s0τ10 + τ20A2e
−s0τ20 , (23)

M0
2 =−τ210A1e

−s0τ10 − τ220A2e
−s0τ20 , (24)

M1
1 = τ11s0A1e

−s0τ10 + τ21s0A2e
−s0τ20 . (25)

Notice that equations (22) and (23) are explicit expressions
of (12) and (13), respectively. For the sake of uniqueness
of u0 and without any loss of generality, we can use the
normalization

vT1 M
0
1u0 = 1 = vT0 M

0
1u1. (26)

Divide equation (20) by s1 6= 0 and obtain 1
s1
M0w1 = M0u1

in view of (9). Since M0 6= 0, we can write w1 as

w1 = s1u1. (27)

Replace (27) in equality (21) and multiply by vT0 on the
left. We obtain

s21v
T
0 M

0
1u1 +

s21
2
vT0 M

0
2u0 + s2v

T
0 M

0
1u0 + vT0 M

1
1u0 = 0.

(28)

Now we use the second equality from the normalization
(26), and condition (14) from Proposition 4 in equation
(28), and write the expression of s1:

s1 = ±

√
− vT0 M

1
1u0

1 + 1
2v
T
0 M

0
2u0

. (29)

Given the continuity properties of the spectrum (Chap-
ter 1 in Michiels and Niculescu (2014)) and the Puiseux
series expansion (18), it is easy to see that under a small
perturbation of delay parameters (16)–(17) the double
characteristic root s0 = iω0 splits up into two simple char-
acteristic roots, which will move to the right or left half-
plane function of the sign of Re(s(ε)). These results can
be summarized in the following proposition and remarks.

Proposition 5. Assume that a double and non semi-simple
characteristic root of system (5) is located on the imag-
inary axis, but not at the origin. Then, under a small
perturbation of delay parameters of the form (16)–(17)
this double characteristic root splits up into two simple
roots, and each one of them will move towards stability
(instability) if Re(s(ε)) < 0 (Re(s(ε)) > 0). 2

Remark 6. Provided that Re(s0) = 0, we might suppose,
in general, that the sign of Re(s(ε)) is given by the sign of
Re(s1) as defined in equation (29), when ε is very small.
However, knowing the sign of Re(s1) is not enough to
conclude over a global tendency of the double root to
move towards stability or instability, as we shall illustrate
in the sequel. This is why we take a further step, multiply
equation (21) with vT1 on the left, and obtain the following
expression of s2,

s2 =
vT0 M

1
1u0

1 + 1
2v
T
0 M

0
2u0

(
vT1 M

0
1u1 +

1

2
vT1 M

0
2u0

)
− vT1 M1

1u0, (30)

in view of normalization (26). Other terms of s(ε) might
be found in a similar way. 2

Remark 7. In order to approximate the value of s(ε),
function of ε, τ11, and τ21, we use s(ε) defined as in
equation (18), where s1 is given by (29), s2 is given by (30),
with M0

1 , M0
2 , and M1

1 given by (23)–(25), u0 and vT0 are
normalized right, respectively left eigenvectors, satisfying
(26), and u1 and v1 are generalized right, respectively left
eigenvectors, satisfying equations (8)–(11). 2

Remark 8. Note that the double non semi-simple root will
split up into two simple roots. The plus sign from equation
(29) corresponds to one of these simple roots, and the
minus sign corresponds to the other simple root. 2

Remark 9. Roughly speaking, the double root will split
up into two simple roots that will follow one of the two
tendencies: either one root moves towards a half-plane,
and the other root towards the other half-plane, or both
roots moves towards the same half-plane. This means
that we have two types of qualitative behaviour when
a perturbation ε arises. We illustrate both situations on
Example 3. 2

In the sequel, we consider the characteristic matrix (6) in
Example 3. A right eigenvector u0 satisfying (8) is of the
form

u0 =

(
α1 + iα2

−(cos(2)− i(−1 + sin(2))) (α1 + iα2)

)
,

where α1, α2 ∈ R. We compute the generalized right eigen-

vector u1 = (β1 + iβ2 u12)
T

, verifying (9), with β1, β2 ∈ R
and

u12 = (cos(2)− i sin(2))α1 + (i cos(2) + sin(2))α2 −
− (i+ cos(2)− i sin(2)) (β1 + iβ2) ,

In the same manner we write the left eigenvector vT0
satisfying equation (10)

v0 =

(
(1− i) (γ1 + iγ2)

γ1 + iγ2

)
,

and the left generalized eigenvector vT1 such that condition
(11) holds:

v1 =

(
−γ1 − iγ2 + (1− i)δ1 + (1 + i)δ2

δ1 + iδ2

)
,

with γ1, γ2, δ1, δ2 ∈ R. The normalization condition (26)
leads to the following constraint on α1, α2, γ1, and γ2:

α1 = 0, α2 =− 1

γ2 (cos 2 + sin 2 tan 2)
,

γ1 = −γ2 tan 2, γ2 6= 0.



Therefore, the normalized eigenvectors satisfy

u0 =
1

γ2

(
−i cos 2

cos 2(−1 + i cos 2 + sin 2)

)
,

u12 =
cos 2(−i cos 2− sin 2)

γ2
−

− (cos 2− i(−1 + sin 2)) (β1 + iβ2) ,

v0 = γ2

(
(1 + i)(1 + i tan 2)
− tan 2 + i

)
,

v1 =

(
(−i+ tan 2)γ2 + (1− i) (δ1 + iδ2)

δ1 + iδ2

)
.

Now we write M0
2 and M1

1 of the form

M0
2 =

∂2

∂s2
M(s, τ)

∣∣∣∣s=s0
τ=τ0

,

M1
1 = τ11

∂

∂τ1
M(s, τ)

∣∣∣∣s=s0
τ=τ0

+ τ21
∂

∂τ2
M(s, τ)

∣∣∣∣s=s0
τ=τ0

,

and recover the explicit formulae (24) and (25), respec-
tively. More precisely, we obtain

M0
2 =

(
2e−i cos 1 0

−i− (4− i)e−2i 0

)
,

M1
1 =

(
−2ie−i cos 1τ11 0

e−2i
(
iτ21 −

(
−1 + e2i

)
τ11
)

0

)
.

We compute s1 function of τ11 and τ21, using equation
(29):

s1 = ±

√
(2i+ (4 + 2i)e2i) τ11 − 2iτ21

−1 + (1− 2i)e2i
.

Using formula (30), we write s2 function of τ11 and τ21

s2 =

(
3
80 + i

80

)
sec 2(cos 1− i sin 1)

(cos 1− (1− i) sin 1)((1 + i) cos 1 + sin 1)

[(1 + i)((115 + 82i) cos 1 + (87 + 14i) cos 3

+ (61− 2i) cos 5 + (9 + 18i) cos 7− (73− 194i) sin 1

− (53 + 70i) sin 3− (25− 70i) sin 5− (45 + 18i) sin 7)τ11
+ 2(cos 1− i sin 1)((42− 40i)− (21− 4i) cos 2

+ (22− 40i) cos 4− (3− 4i) cos 6 + (4 + 28i) sin 2

+ (4 + 4i) sin 4− (4− 24i) sin 6)τ21].

Now that we have concrete expressions of s1 and s2
function of τ11 and τ21 for Example 3, we proceed
with giving values to τ11, τ21, and ε in order to il-
lustrate Proposition 5. Suppose γ2 = β1 = β2 =
γ1 = γ2 = 1. We consider two simple cases, as fol-
lows, and compute the value of s(ε) for each case:

case τ11 τ21 ε s(ε)

(a) 0 1 0.001
0.0076423 + 0.963458i

0.0000623462 + 1.02993i

(b) 0 -1 0.001
0.0293821 + 1.0071i

−0.0370867 + 0.999517i

We notice that if we fix τ1 and increase τ2, then the double
root splits up into two simple roots moving towards insta-
bility (with positive real part), as depicted in Figure 1,
left. On the other hand, if we fix τ1 and decrease τ2, then
the two simple roots will move one towards instability, and

the other one towards stability, as illustrated in Figure 1,
right. Figure 1 was obtained by using QPmR algorithm

Re(s)
case (a)

-0.2 0 0.2 0.4

Im
(s

)

-2

-1

0

1

2

Re(s)
case (b)

-1 0 1

Im
(s

)

-2

-1

0

1

2

Fig. 1. Double charcteristic root behaviour for Example 3.
Yellow points (lying on the imaginary axis) corre-
spond to τ10 = 1 and τ20 = 2. Case (a): fix τ1 = 1
and increase τ2 from 2 to 3. Case (b): fix τ1 = 1 and
decrease τ2 from 2 to 1.9.

developed by Vyhlidal and Zitek (2009). Yellow points
s = ±i correspond to ε = 0, τ1 = 1 and τ2 = 2. Fix
τ1 = 1 (i.e. τ11 = 0). For case (a), the characteristic roots
of the quasi-polynomial are computed by using QPmR
algorithm, for each value of τ2, from 2 to 3 using a step
of 10−3. In Figure 1 left, characteristic roots s(ε) are rep-
resented by coloured points (yellow points corresponding
to ε = 0). We remark that these points become red as τ2
increases, i.e. as perturbation ε increases. We can see that
double root s = ±i splits up into two simple roots that
will move towards the right half-plane. This is coherent to
our computation of s(ε) of the form (18), using equations
(29) and (30). For case (b), we decrease τ2 from 2 (yellow
points) to 1.9 (red points) using a step of 10−3, and we
notice in Figure 1 right that the double root splits up
into two simple roots going in opposite directions, one to
the left half-plane, and the other one to the right half-
plane. This is also consistent with our prediction based on
computing s(ε) as in (18).

Thus, we identify two type of tendencies when a double
non semi-simple root lying on the imaginary axis is subject
to a perturbation: either one root will go into a half-plane,
and the other root into the other half-plane, or both roots
move towards the same half-plane.

3. GEOMETRIC APPROACH

In order to use this approach as described in Gu et al.
(2015), the standing assumption

D = det

(
Re
(
∂p
∂τ1

)
Re
(
∂p
∂τ2

)
Im
(
∂p
∂τ1

)
Im
(
∂p
∂τ2

))
s=s0
τ=τ0

6= 0 (31)

has to be satisfied. It has been proven that there is a
bijection between the complex plane (where the quasi-
polynomial (5) characteristic roots lie) and parameter
space (τ1− τ2 space). More precisely, the parameter space
is divided by the stability crossing curve T (defined as
in Gu et al. (2005)) into an S-sector and a G-sector, as
depicted in Figure 2.
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Fig. 2. τ1 − τ2 parameter space is divided by the stability
crossing curve into a small sector, called S-sector, and
a large sector, named G-sector.

The point C′ in Figure 2 corresponds to the double root
s0 = ±iω0 on the complex plane. This means that the
coordinates of τ1 and τ2 corresponding to C′ are nothing
else than τ10 and τ20, for which the quasi-polynomial (3)
has a double root at s0 = ±iω0. Moreover, for τ1 and
τ2 taking values on the curve A′C′B′ (on the stability
crossing curve T ), the quasi-polynomial (3) has simple
characteristic roots s = ±iω. Note that the stability
crossing curve contains both positive and negative local
stability crossing curves (A′C′ and B′C′). For instance,
if A′C′ is the positive (negative) local stability crossing
curve, and (τ1, τ2) takes values on this curve, then the
characteristic equation (3) has at least one imaginary
characteristic root s = iω, with ω > ω0 (ω < ω0). In
addition, the stability crossing curve T is a separation
curve that divides τ1 − τ2 parameter space into regions,
such that the number of characteristic roots on the right
half complex plane remain constant as the parameters vary
within each such region.

Theorem 7 in Gu et al. (2015) confirms what it has been
discussed in the previous section, that when a perturbation
occurs on the parameters τ1 and τ2 the characteristic
roots move according to a specific pattern: either both
roots move toward the same half-plane (corresponding to
the case where the pair (τ1, τ2) moves towards S-sector
in the parameter space), or one root moves into the
right half-plane and the other one into the left half-plane
(corresponding to the case where the parameter set (τ1, τ2)
moves towards G-sector in the parameter space). However,
judging towards which half-plane the two characteristic
roots move when (τ1, τ2) is in S-sector additionally requires
knowing the sign of a parameter κ, defined as follows.

κ =

Re

[
∂2p

∂s2

(
−∂

3p

∂s3
+ 3

∂2p

∂τ1∂s

∂2τ1
∂u2

+ 3
∂2p

∂τ2∂s

∂2τ2
∂u2

)]
s=s0
τ1=τ10
τ2=τ20
γ=i

,

where u represents the perturbation on s. We can evaluate
∂2τ1
∂u2 and

∂2τ2
∂u2 , by using[

∂2τ1
∂u2

∂2τ2
∂u2

]
= −

[(
Re
(
∂p
∂τ1

)
Re
(
∂p
∂τ2

)
Im
(
∂p
∂τ1

)
Im
(
∂p
∂τ2

))−1 Re

(
∂2p

∂s2
γ2

)
Im

(
∂2p

∂s2
γ2

)]
s=s0
τ1=τ10
τ2=τ20

,

(32)

with γ = ±i. Notice that the inverse matrix in equation
(32) exists due to hypotheses (31). Thus, the case where

(τ1, τ2) pair moves towards S-sector can be summarized in
the following criterion.

Criterion 10. If (τ1, τ2) is in the S-sector in a sufficiently
small neighbourhood of (τ10, τ20), then the two character-
istic roots in the neighborhood of s0 are both in the left
(right) half-plane if κ < 0 (κ > 0). 2

In the sequel, we use the geometric approach and apply
Criterion 10 on Example 3.

To begin with, we verify whether the standing assumption
(31) is satisfied, and compute D ' 1.74159 6= 0. The
parameter space is depicted in Figure 3. The stability
crossing curve has been computed as in Gu et al. (2005).

0.6 0.8 1 1.2 1.4

2

2.2

2.4

2.6

τ
1

τ 2

Fig. 3. τ1 − τ2 parameter space for Example 3.

We note that the neighbourhood of (τ10, τ20) = (1, 2) is di-
vided by the stability crossing curve T into an S-sector and
a G-sector. The cusp at (1, 2) corresponds to s0 = ±iω0.

Provided that D > 0, we compute κ ' 30.7082 > 0.
Therefore, according to Criterion 10, both imaginary roots
move to the right half-plane as (τ1, τ2) moves to S-sector.
According to Theorem 7 from Gu et al. (2015), as (τ1, τ2)
moves to G-sector, one of the two imaginary roots moves to
the right half-plane, the other moves to the left half-plane.
In other words, as (τ1, τ2) moves from the S-sector to the
G-sector through the (1, 2), one root moves from the right
half-plane to the left half-plane passing through the point i
on the imaginary axis, another root on the right half-plane
moves to touch the imaginary axis at i then return to the
right half-plane.

4. CONCLUDING DISCUSSION ON THE TWO
METHODS

In this paper we have presented two methods that can
be used to analyse the behaviour of a double non semi-
simple characteristic root under a small perturbation of
the parameters. More precisely, we have studied the case
where the parameters are two delays of a system written
of the form (1), for which the characteristic equation is
given by (3).

The two methods are rather different and we denote
them by algebraic and geometric approach, respectively.



However, both methods suggest that characteristic roots
follow the same pattern when a perturbation occurs under
the parameters.

The former method is based on eigenvectors computation.
Even if in this paper we have only discussed the non semi-
simple double roots case, a similar study can be made
for double semi-simple characteristic roots. The latter
method involves the computation of partial derivatives
of the quasi-polynomial (3) with respect to the delays,
up to the third order. Using the geometric approach
implies that condition (31) must be satisfied. Nonetheless,
one difference with respect to the method presented in
Section 2 is that the geometric approach (and Criterion 10)
presented in this paper applies to both semi-simple and
non semi-simple characteristic roots. In other words, the
main limitation when using the algebraic approach is
that we have to separately treat semi-simple and non
semi-simple double characteristic roots, and the geometric
approach main limitation is that assumption (31) has to
be satisfied.

Both approaches show that there are typically two type
of situations when a deviation on the delays occurs in the
parameter space: either the two imaginary roots move to
the same half-plane of the complex plane, or one of the
imaginary roots moves to the left half-plane and the other
one moves to the right half-plane. This is rather surprising
in the case of double non semi-simple characteristic roots:
the trajectory of such a root when a perturbation ε occurs
is described by the equation (18), where s0 lies on the
imaginary axis, and s1 is given by equation (29). Note that
the double root splits up into two simple roots, the positive
real part s1 corresponding to a root, and the s1 with
negative real part corresponding to the other simple root.
Some publications in the literature suggest that this is why
non semi-simple double roots always splits up into two
simple roots following only one type of tendency, which is
to move towards different half-planes of the complex plane.
The main message of this paper is that we have to pay
attention to the quantification of the small neighbourhood,
which remains an open problem at least for the algebraic
approach. We can briefly illustrate this on Example 3, as
follows.

We consider a point in S-sector, (τ1, τ2) = (1.1, 2.6), as
depicted in Figure 3. We have seen in Section 3 that in
this case both imaginary roots move to the right half-
plane. We can verify that we obtain the same result by
using algebraic approach, by choosing ε = 0.1, τ11 = 1
and τ21 = 6 in equations (16)–(17). Thus, we compute
s(ε) written of the form (18), yielding the value of the
two roots s = 0.975521 − 0.254494i and s = 0.826199 −
1.58361i. As both roots have positive real part, they are
both in the right half-plane. Of course, we can always
find an extremely small value for ε such that we end
up with two simple roots lying on different sides of the
imaginary axis, but this choice rises a natural question
regarding the relevance of considering such a value for
the control community. We conclude by saying that when
choosing values for ε, τ11 and τ21 we have to decide upon
what a small neighbourhood means, which remains an open
question.
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