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Abstract: The interest in using delayed design is emphasized in recent research on the
stabilization of finite/infinite dimensional dynamical systems. In particular a property called
multiplicity-induced-dominancy (or MID for short) allowing for a reduced-complexity delayed-
controller design showed its efficiency in fast damping of harmful oscillations. This contribution
is concerned with oil-well drilling systems torsional vibrations, which constitute an important
source of economic losses; drill bit wear, pipes disconnection, borehole disruption and prolonged
drilling time, among other consequences. Such torsional vibrations are assumed to be governed
by a wave equation with weak damping term. The MID-based design is further exploited
to quench the torsional vibrations along the rotary drilling system. The proposed control
law guarantees the existence of robustness margins with respect to delays and parameters
uncertainties. Numerical investigation of the performance as well as the robustness of the
corresponding control law will be presented.

1. INTRODUCTION

In this paper we consider the stabilization of torsional
oscillations for a drilling system. Our approach is based on
a multiplicity-induced-dominancy (MID) property allow-
ing the design of a reduced-complexity delayed-controller
(adjusted from Boussaada et al. (2019a)). The resulting
closed-loop system is proved to be robust to uncertainties
on the parameters and to delays in the loop.

The dynamical behavior of drill-strings is complex as
many dynamic phenomena are involved, as vibrations,
bending and twisting quasi-static motion, bit-rock inter-
actions Kapitaniak et al. (2015); Spanos et al. (2003).
In particular, the drill-string interaction with the bore-
hole gives rise to a wide variety of non-desired oscilla-
tions Dunayevsky et al. (1998); Jansen (1995); Saldivar
et al. (2011) which can be classified depending on the
direction they appear. Among them, the longitudinal (or
axial) oscillations may cause a bit-bouncing effect that
is characterized by a repetitive loss of contact of the bit
with the bottom of the well Aarsnes and Aamo (2016),
Depouhon and Detournay (2014), Germay et al. (2009);
Zhou and Krstic (2016). Torsional vibrations can appear
due to downhole conditions (such as significant drag,
tight or formation characteristics Nandakumar and Wier-
cigroch (2013) for instance) or due to side forces induced
by Coulomb friction Aarsnes and Shor (2018). They are
known as stick-slip and are characterized by a series of
stick (the bit stop rotating) and slip (a sudden release of
energy) Kamel and Yigit (2014). These self-excited unde-
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sirable vibrations may cause fatigue of the equipment or a
deterioration of the performance of the process implying a
reduction of the Rate of Penetration (ROP). They can also
lead to premature failing of the bit or provoke premature
wear and tear of drilling equipment resulting in fatigue
and induced failures such as pipe wash-out and twist-off
Mason et al. (1996). Thus, they may cause catastrophic
damages and at least wear to expensive components of
the drill-string Kriesels et al. (1999). In this context, a
clear understanding of drill-string dynamics appears to be
crucial to control these vibrations and consequently im-
prove the performance of drilling systems (ROP), prevent
any eventual damage and reduce safety risks. This explains
why an extensive research effort has been conducted in the
last five decades to suppress these undesirable oscillations
and in so far reduce the costs of failures and increase the
ROP (see the references cited in the survey Leine (1997)
and in Saldivar et al. (2016)).

During the drilling process, the operator wants to control
the downhole behavior of the drill-string (e.g. reach a
given rpm, a given orientation...) and optimize the ROP,
while avoiding undesired oscillations. To do so, it is usually
possible to impose (using the rotary table) the weight on
the drill-string and the torque at the surface. Automated
control laws have been designed to solve such control
problems Serrarens et al. (1998). Recent control law (which
are not simple PID controllers) are usually based on dis-
tributed parameter models. More precisely, the drill-string
dynamics can be modeled by a set of hyperbolic partial dif-
ferential equations (namely wave equations) coupled with
ODEs through their boundaries Di Meglio and Aarsnes
(2015). Such wave equations can then be rewritten as
neutral systems. In general, it may not be possible to



efficiently stabilize such systems using classical control
laws. Specific techniques have to be developed as an ap-
proximation of delay systems by a finite-dimensional rep-
resentation (early-lumping) may lead to the same degree of
complexity in the control design which can be potentially
harmful for the stability of the system. Consequently, dif-
ferent approaches have been developed to provide realistic
and effective control laws. A flatness-based approach has
for instance been developed in Aarsnes et al. (2018). More
recently, a low complexity control law with a reduced
number of tuning gains has been proposed in Boussaada
et al. (2019a) in the case of a vertical well. The controllers
gains are chosen such that the closed-loop system has a
particular structure and the corresponding spectrum lies
in the complex left-half plane.

In this paper, we modify the control law introduced in
Boussaada et al. (2019a), which is based on the MID
property, by adding a derivative action, thus introducing
an additional degree of freedom that facilitates a targeted
placement of the poles of the closed-loop system. The
proposed control law only requires the measurement of the
states at the boundaries of the system and consequently
does not need the design of a state observer. This is of
specific interest as the design of an observer for this class of
system may be difficult or computationally expensive (see
Aarsnes et al. (2019); Auriol et al. (2020) in which state-
observers are designed usign the backstepping approach.)
Moreover, we analyze the robustness properties of the
resulting closed-loop system. More precisely, we show that
it is robust with respect to uncertainties on the parameters
and delays in the actuation. These results are stated in a
general framework of quasi-polynomials functions since,
for the proposed control law, the closed-loop system can
be expressed using such a structure. It is worth mention-
ing that the rightmost root for quasipolynomial function
corresponding to stable retarded time-delay systems (also
in the neutral case under some assumptions) is actually
the exponential decay rate of its time-domain solution,
(see Mori et al. (1982) for an estimate of the decay rate
for stable linear delay systems or Boussaada et al. (2016)
for the dominancy properties). This dominancy property
presented in Hayes (1950) was used by the authors to
design the control law in Boussaada et al. (2019a). The
robustness aspects are considered by means of an algebraic
analysis in the Laplace domain.

The paper is organized as follows. In Section II, we give the
PDE model describing the torsional vibration of an oilwell
rotary drilling system. This model is then expressed as a
neutral equation. A stabilizing control law that guarantees
the damping of the different undesired vibrations is given
in Section III. Section IV is devoted to the robustness
analysis of the proposed control law. The different results
are expressed in a general framework of quasi-polynomials
functions. An illustrative example completes the paper in
Section V. Some concluding remarks are given in Section
VI.

2. PROBLEM FORMULATION

In this section we start by providing an hyperbolic partial
differential equations model to describe the torsional and
axial motions of the drill-string vibrations. Then, we

reduce such a model to a functional differential equation
of neutral type.

2.1 A Coupled Axial/Torsional Vibrations Model

Let us consider a vertical well for which the rotary table
(located at the top of the drill-string) sets the drill-
string into a rotary motion around its main axis. The
dynamics of interest can be obtained by assuming elastic
deformations and using equations of continuity and state.
More precisely, the torsional and axial vibrations can
be modeled by a set of hyperbolic PDEs (namely wave
equations) coupled through their boundaries. In what
follows, we denote L the length of the drill-string, Φ(z, t)
the rotary angle and U(z, t) the longitudinal position.
They are are functions of (z, t) evolving in {(z, t)| z ∈
[0, L], 0 < t < T}, the position z = 0 corresponding to
the top of the drill-string and the position z = L to the
bottom. We have Boussaada et al. (2012b):

∂2
zΦ(z, t) = c̃ 2∂2

t Φ(z, t), (1a)

∂2
zU(z, t) = c2∂2

tU(z, t), (1b)

with the boundary conditions

GJ∂zΦ(0, t) = β∂tΦ(0, t)− uT (t) (2a)

GJ∂zΦ(L, t) = −IB∂2
t Φ(L, t)− T (∂tΦ(L, t)) , (2b)

and

EΓ∂zU(0, t) = α∂tU(0, t)− uH(t) (3a)

EΓ∂zU(L, t) = −MB∂
2
tU(L, t)− T (∂tΦ(L, t)) . (3b)

The axial and torsional propagation velocities vU , vΦ,
are defined as: vU = c−1 and vΦ = c̃−1. They depend
on the system physical parameters (Young modulus E,
shear modulus G and density ρa), by means of :c =√

ρa
E and c̃ =

√
ρa
G . The two actuators are denoted uH

and uT . They respectively correspond to the brake motor
control (upward hook force) and to the torque produced
by the rotary table motor. The functions α∂Ut(0, t) corre-
sponds to a friction force of viscous type (where α is the
viscous friction coefficient). Finally, the term β∂tΦ(0, t)−
uT (t) corresponds to the difference between the motor
speed and the rotational speed of the first pipe.

The different geometrical and physical parameters of the
drill-string are assumed to be spatially constant. Note that
this assumption may be idealistic since the Bottom Hole
Assembly (lower part of the drillstring) is usually made of
bigger pipes with different physical properties. However,
the length of the BHA is usually much lower and its effect
can consequently be lumped into the ODE. We denote Γ
the shear modulus, J the polar moment of inertia, MB the
mass of the drill-string, IB the inertia moment 1 of the drill
bit. Finally the function T corresponds to the frictional
torque resulting from the interaction between the drill bit
and the rock. We model it by the following odd function

Boussaada et al. (2012a): T (x) = 2k̄x
k̄2+x2 , for which we have

the following local approximation:

1 The inertia moment is such that IB =MB r
2, where r is taken as

the averaged radius of drillpipe.



T (x) =
2

k̄
x+O

(
x3
)
,

For a further discussion on friction models in rotary
drilling systems, the reader is invited to see Marquez et al.
(2015). This frictional torque is one of the cause of the tor-
sional oscillations that creates the stick-slip phenomenon.
However, it is worth mentioning that the stick-slip oscilla-
tions may also be caused by a negative difference between
static and kinematic along-string Coulomb-type friction
Aarsnes and Shor (2018). It emphasizes the action of non-
linear forces along the drill-string (which are combined
with the bit rock interaction) in the torsional oscillatory
behavior of drilling systems. Although the effect of these
side-forces is not really important for vertical wells, they
have a significant importance when the well is not vertical.
The numerical values of the different parameters are given
in Table 1.

Table 1. Numerical values of the system parameters.

Sym. Param. Numerical value

L String length 1000 m
G Shear modulus 79.3× 109 N m−2

Γ Drillstring cross-section 35× 10−4 m2

J Second moment of area 1.19× 10−5 m4

IB Lumped BHA inertia 89 Kg m2

ρa Density 8000 Kg m−3

β Angular momentum 2000 N m s
γ Damping constant 6,053 10−7 Nms

rad
k̄ Friction top angle 2.6 10−3

2.2 Neutral-type model for the torsional oscillations

In this section we only consider the evolution of the rotary
angle Φ(z, t) that corresponds to the torsional oscillations
(1a) with the B.C. (2a)-(2b). Using the method of the
characteristics, it is possible to rewrite the state Φ(L, t) as
the solution of a neutral-type equation, thus relating the
system variables at both ends of the drilling rod. We can
show that there is a one-to-one correspondence between
the solutions of the mixed problem for hyperbolic PDE
and the initial value problem for the associated system
of functional equations Rasvan et al. (1975). This is of
interest as it implies that the techniques developed for time
delay systems can be used for hyperbolic PDEs.

Namely, as described in Boussaada et al. (2019a), using
the linearization of T given above, the system (1a) with
the boundary conditions (2a)-(2b) reduces to a to an I/O
system which is a neutral system of order 3 :

(− βIB
αL2GJc

− IB
2αL

)
...
ΦL(t)+(

βIBαL
2GJc

− IBαL
2

)
...
ΦL(t− 2τ)

−(
β

2αL
+
GJc

2αL
)Φ̈L(t)+(

GJc

2
αL−

βαL
2

)Φ̈L(t− 2τ)

−(2
GJc

2αL
ζ +

β

2αL
)Φ̇L(t)+(2

GJcζαL
2

− βζαL
2

)Φ̇L(t− 2τ)

+
ζ2GJc

2αL
ΦL(t) +

ζ2GJc

2αL
ΦL(t− 2τ)

=
1

k̄
(αLΦ̈L(t− 2τ)+α−1

L Φ̈L(t))− 2

k̄
(αLΦ̈L(t− 2τ)

− α−1
L Φ̈L(t))− u̇T (t− τ)− ζuT (t− τ),

(4)

The delay τ = cL represents the total transport time for
the torsional wave to travel from one to the other extremity
of the drillstring.

3. LOW COMPLEXITY CONTROLLER DESIGN

In this section, we design a stabilizing control law that
stabilizes (4). This control law is inspired from Boussaada
et al. (2019a) and is based on the multiplicity induced-
dominancy (MID) property which was underlined in Bous-
saada et al. (2016, 2018b) for retarded time-delay systems
and exploited in several applications Boussaada et al.
(2017, 2018a); Boussaada and Niculescu (2018). However,
due to the specific structure of the system (neutral), the
MID properties for time-delay systems of neutral type
had to be adjusted. This has been done in Boussaada
et al. (2019a) for instance. Compared to Boussaada et al.
(2019a), the control law we propose in this paper includes
a action on the derivative term. This introduces a sup-
plementary degree of freedom that can be used to enforce
the characteristic equation of the closed-loop system to
have multiple negative spectral values. Under appropriate
conditions, such a multiple root may be the dominant
one among the spectrum, guaranteeing the stability of
the closed-loop system. Adding this additional degrees of
freedom (by means of this derivative term) means that
the multiplicity of the dominant root can be increased
compared to Boussaada et al. (2019a), thus improving the
closed-loop performance. More precisely the control law we
consider is defined by uT (t) = κ1 ΦL(t− τ) +κ2 Φ̇L(t− τ),
where the delay τ is the same as the intrinsic delay of the
nominal system. Consequently, we have u̇T (t) = κ1 Φ̇L(t−
τ) + κ2 Φ̇L(t− τ) and the closed-loop system (4) rewrites

a3

...
ΦL(t) + b3

...
ΦL(t− 2τ)

a2Φ̈L(t) + b2Φ̈L(t− 2τ)

a1Φ̇L(t) + b1Φ̇L(t− 2τ)

+ a0ΦL(t) + b0ΦL(t− 2τ) = 0,

(5)

where:

a3 = − βIB
αL2GJc

− IB
2αL

, b3 =
βIBαL
2GJc

− IBαL
2

,

a2 =− β

2αL
− GJc

2αL
− 3

k̄αL
, b2 = κ2 +

GJc

2
αL−

βαL
2

+
αL
k̄
,

a1 = −GJc
αL

ζ − β

2αL
, b1 = κ1 + κ2ζ +GJcζαL −

βζαL
2

,

a0 =
ζ2GJc

2αL
, b0 = κ1ζ +

ζ2GJc

2αL
where

c =

√
ρa
G
, ζ =

γ

2c2
, αL = e−cLζ , τ̃ = 2τ = 2cL,

(6)

Such a system is of neutral type (since a3 6= 0 and
b3 6= 0). Using the Laplace transform, we can rewrite it
as a quasipolynomial including one delay.

L(s) = P (s) +Q(s)e−sτ̃ ,

P (s) =

3∑
i=0

aks
k, Q(s) =

3∑
i=0

bks
k,

(7)

The main results can be resumed as follows.



Proposition 1. Boussaada et al. (2019a) The linearized
system (5) subject to the controller uT (t) = κ1 ΦL(t−τ)+

κ2 Φ̇L(t− τ) has the following properties in closed-loop :

• The maximal multiplicity of any root of the quasipoly-
nomial L given in (7) with arbitrary coefficients
(ak, bk)0≤k≤3 is bounded by 7.

• If | bka3 | < 1 ∀ 0 ≤ k ≤ 3 and such a maximal multiplic-
ity is reached, then the corresponding spectral value
is real and dominant.

The proposed control law uT introduces two degrees of
freedom by means of κ1 and κ2. These two tuning param-
eters can be used to modify the dominant root of L. This
dominant root can somehow be seen as an additional tun-
ing parameter (under the constraint that the coefficients
(b0, b1, b2) must verify the constraint (5)). Having three
degrees of freedom, it may become possible to find a dom-
inant root of order 3. This is a considerable improvement
compared to Boussaada et al. (2019a), where the dominant
root was simply of order 2. More precisely, we have the
following proposition.

Proposition 2. If the system parameters are chosen in
Table 1 and if b0, b1, b2 verify (8)-(10), then s0 = −3 is
a triple root for (7). In particular, if the parameter values
are the ones given in Table 1 then the controller gains
satisfy κ1 = −16929630.76, κ2 = −302236.4149 and the
triple root at s0 = −3 is dominant. In such a case the
trivial solution is asymptotically stable.

Sketch of the proof The proof is based on the argument
principle applied on the translation of standard Bromwich
contour at s0 = −3, which allows to count the roots of the
quasipolynomial with <(s) > −3. by defining a specific
integration contour γ. Then an integral over γ is defined
as the sum of the integrals over the directed smooth curves
that make γ up. See Boussaada et al. (2019b) for details.

It is worth mentioning that the proposed control law only
requires the value of the state at the boundary x = L.
If a sensor located at x = L is available, this implies
that we do not need to design a state-observer. This is of
specific interest as it means that the proposed approach is
not computationally expensive. More precisely, the design
of a state observer may require solving a set of PDEs in
real time (see Aarsnes et al. (2019); Auriol et al. (2020)
for the design of state-observers using the backstepping
approach). However, from a physical point of view it
may be hard and expensive to have a sensor available at
the bottom of the well. Moreover, the frequency of such
(noisy) measurements would be extremely low. Thus, for
the considered drilling example, the design of an observer
may be necessary. We believe that this can be done
following a similar approach, which would be much easier
to implement compared to Aarsnes et al. (2019) (even if in
this reference, the authors consider a more general case of
a non-vertical well subject to non-linear side-forces friction
terms). However, for other physical applications for which
such a sensor would be available, this is an crucial asset of
our approach.

4. ROBUSTNESS ASPECTS

In this section, we consider the robustness properties of
the control law uT (t) = κ1 ΦL(t − τ) + κ2 Φ̇L(t − τ) we
have designed in the previous section. These results will
be stated in a general framework. More precisely, let us
consider two quasi-polynomial functions G(s) and K(s)
respectively defined by

G(s) =

n∑
k=0

aks
k +

n∑
k=0

bks
ke−sτ , (11)

K(s) =

p∑
k=0

cks
k +

p∑
k=0

dks
ke−sτ , (12)

where s denotes the Laplace variable, and where the
coefficients ak, bk, ck, dk and τ are real and constant. We
assume that anbn 6= 0. This means that the equation
G(s) = 0 corresponds to the characteristic equation
associated to a neutral system of order n. Let us consider
the system defined in the Laplace domain by

G(s)X(s) = u(s), (13)

where X denotes the state of the system and where u
denotes the actuation. Let us define the control law u as
a feedback with the following structure

u(s) = K(s)X(s). (14)

Consequently, the closed-loop system rewrites as a neutral
equation

(G(s)−K(s))X(s) = 0. (15)

In this section, we will show that if the control operator
K(s) guarantees the exponential stability of the closed-
loop system (15), then, under some assumptions on the
structure of K, this closed-loop system is robust to small
uncertainties in the parameters and to delays in the
actuation. The robustness with respect to delays in the
actuation (delay-robustness) requires a nice behavior of
the open-loop system at high frequencies. More precisely,
we need to guarantee that the principal part of the
operator associated to G(s) generates an exponentially
stable semigroup. This leads to the following assumption

Assumption 3. The coefficients bn and an verify

|bn| < |an|.

If this assumption does not hold, then the operator G(s)
has an infinite number of zeros in the complex right half
plane (RHP) which means that any linear control will lead
to a zero delay margin (Logemann et al., 1996, Theorem
1.2) i.e. for any control law u(t) the closed-loop system
becomes unstable when there is an (arbitrarily small) delay
δ > 0 in the loop. Finally, the approach we propose to
prove the existence of robustness margins requires the
following assumption

Assumption 4. The degree of the the quasi-polynomial
function K is chosen such that n > p (i.e. the order of
the open-loop transfer function is larger than the order of
the control transfer function).

Let us now assume that the different parameters of the
system (i.e. the coefficients that appear in the definition
of the function G) are subject to small uncertainties and
that there is a delay in the loop. More precisely, let us
assume that the real plant operator now rewrites



b0 =−
(9 a0 − 27 a1 + 81 a2 − 243 a3) τ2

2e3 τ
−

(6 a0 − 54 a2 + 324 a3) τ

2e3 τ
−

−54 e3 τ b3 + 2 a0 − 54 a3

2e3 τ
, (8)

b1 =−
(3 a0 − 9 a1 + 27 a2 − 81 a3) τ2

e3 τ
−

(a0 + 3 a1 − 27 a2 + 135 a3) τ

e3 τ
−

−27 e3 τ b3 + a1 − 27 a3

e3 τ
, (9)

b2 =− 1/2
(a0 − 3 a1 + 9 a2 − 27 a3) τ2

e3 τ
− 1/2

(2 a1 − 12 a2 + 54 a3) τ

e3 τ
− 1/2

−18 e3 τ b3 + 2 a2 − 18 a3

e3 τ
. (10)

Gu(s) =

n∑
k=0

āks
k +

n∑
k=0

b̄ks
ke−sτ̄ , (16)

where for all k we have āk = ak + δak , b̄k = bk + δbk ,
c̄k = ck + δck , d̄k = dk + δdk and τ̄ = τ + δτ , the terms
δak , δbk , δck , δdk and δτ representing small (unknown)
constant uncertainties acting on the different parameters
of the systems. We denote κ their common upper-bound.
We also consider a delay δ > 0 acting on the actuation.
Consequently, the closed-loop system now rewrites

(Gu(s)−K(s)e−sδ)X(s) = 0. (17)

The next proposition guarantees the existence of robust-
ness margins for the control law u(t) defined in (14).

Proposition 5. Suppose that Assumption 3 and Assump-
tion 4 are satisfied. Suppose that the control law u(s) =
K(s)X(s) stabilizes the nominal system (13). Then, there
exist δmax > 0 and κ0 > 0 such that for every delay
δ < δmax and for every set of uncertainties δak , δbk , δck ,
δdk and δτ such that κ < κ0, the state X(s) solution of
the uncertain neutral system (17) exponentially converges
to zero.

Proof. The characteristic equation associated to the sys-
tem (17) is given by

Gu(s)−K(s)e−sδ = 0. (18)

We need to prove that the solutions of this equation are
all located in the complex left half-plane if the delays and
uncertainties are small enough. Equation (18) rewrites for
s 6= 0

ān + b̄ne−sτ̄ = − 1

sn

n−1∑
k=0

(āk + b̄ke−sτ̄ )sk

+
1

sn
e−sδ(

p∑
k=0

cks
k +

p∑
k=0

dks
ke−sτ ), (19)

Since Assumption 3 is satisfied, there exist κ̄ > 0 such
that if κ < κ̄, then |b̄n| < |ān|. Thus (see Hale and
Lunel (2013)), the left part of (19) is lower-bounded by
a constant η > 0 for s ∈ C+ = {s ∈ C,<(s) ≥ 0}. Due
to Assumption 4 the right part of (19) converges to zero
when |s| goes to infinity. Thus, there exists M0 > 0 such
that for all s ∈ C+ with |s| > M0, the right part of (19)
is smaller than η

2 . This implies that (18) does not have a
solution on C+ if |s| > M0. Let us now consider s ∈ C+

such that |s| ≤M0. Equation (18) rewrites

G(s)−K(s) = (G(s)−Gu(s))−K(s)(1− e−sδ). (20)

Since the control law u(s) = K(s)x(s) stabilizes the
nominal system, there exists η1 > 0 such that for all
s ∈ C+ we have |G(s) − K(s)| > η1. Since |s| ≤ M0,
the function K is bounded on the considered domain.
Consequently, there exists δmax > 0 such that |K(s)(1 −
e−sδ)| < η1

4 . Similarly, we have the existence of κ̃ > 0 such
that for κ < κ̃, |G(s)−Gu(s)| < η1

4 . This implies that (20)

Fig. 1. The spectral values’ distribution for equation (5)
is illustrated using QPmR toolbox from Vyhlidal and
Źıtek (2009). We have a triple root at s = −3.

does not have any solution on C+ if |s| ≤ M0. Choosing
κ0 = min κ̄, κ̃ concludes the proof.

This proposition can now be applied for the stabilization
of torsional oscillations.

Proposition 6. Consider the neutral system (5) with the

control law uT (t) = κ1ΦL(t − τ) + κ2 Φ̇L(t − τ). It this
control law stabilizes the system (namely if all the roots
of the quasipolynomial L(s) defined in (7) have negative
real part), then it is robust with respect to uncertainties
in the parameters and delays in the loop.

Proof. The control law uT (t) rewrites (using the Laplace
transform) as uT (s) = κ1e−sτ + κ2se

−sτ . The rest of the
proof is a straightforward application of Proposition 5.

5. ILLUSTRATIVE EXAMPLE

In this section, we numerically illustrate our results. The
values of the different parameters are defined in Table 1. In
Figure 1, we have pictured the spectral values’ distribution
of the characteristic function (7) for the gains defined in
Proposition 2. It is important to notice that the multiple
root at s0 = −3 is dominant, which guarantees that
the closed loop-system is asymptotically stable. Finally,
we have pictured in Figure 2, the distribution of the
roots for the characteristic function (7) in presence of
an uncertainty acting on the length of the well L. The
red branches correspond to a positive uncertainty whose
value vary between 0 and 30% of the real value of L. The
blue branches correspond to a negative uncertainty. It is
important noticing that such an uncertainty modifies all
the coefficients ai (since αL directly depends on L) and the
delay τ . As stated in Proposition 6, the system is robust
with respect to this uncertainty, if it is small enough.



Fig. 2. Sensibility of the spectral values for equation (5)
with respect to an uncertainty acting on the length L
(positive uncertainty in blue, negative in red)

6. CONCLUDING REMARKS

In this paper, we have used a PDE model of the torsional
oscillations of a drilling system. Following the approach
given in Boussaada et al. (2019a), this system has been
rewritten as a third-order neutral equation with a single
delay. We then have designed a reduced complexity delayed
stabilizing controller that enables an appropriate pole-
placement of the closed-loop system. Compared to Bous-
saada et al. (2019a), this control law now include a deriva-
tive action, then introducing a new degree of freedom.
The obtained controller acts for damping oscillation of
the wave equation. The proposed control law only requires
the measurement of the state at the boundary. If such a
measurement is available (which may not be the case for
the considered drilling application), then our control law
does not require an observer for practical implementation.
Finally, this control law has been proved to be robust with
respect to uncertainties and delays. This has been done by
means of an analysis in the Laplace domain and validated
through simulations.
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