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Modeling and Control of an Aerial Multi-Cargo System: Robust
Acquiring and Transport Operations

J. Castillo1,2, J. Escareno3, I. Boussaada1,2,4, O. Labbani3 and K. Camarillo5

Abstract— In this paper, we introduce the concept of a multi-
link unmanned aerial system (ML-UAS) designed for multi-
cargo transportation tasks. Such a system features three links
who are actuated by four flying robots. We present in detail the
dynamics modeling based on the Euler-Lagrange formulation. A
preliminary control scheme based on robust Adaptive Integral
Sliding Mode Control (AISMC) is applied considering the ML-
UAS model uncertainties and external disturbances. The control
objective is to follow/track avian-inspired acquiring patterns for
acquiring operations. The effectiveness of the proposed strategy
is validated by numerical simulations.

I. INTRODUCTION

In recent years, Unmanned Aerial Vehicles (UAVs) have
been used for different tasks in the industrial or the scientific
field. Recently, UAVs applications have been evolving spe-
cially those involving aerial environment-interactivity (ma-
nipulation, assembling, picking, transport) it is also the case
for swarm-based cooperation which demands a high degree
of dexterity [1].
Aerial robots have been extensively used for natural disaster
assessment. In this mission context, the contribution of micro
aerial vehicles (MAVs) remains restricted to the collection
of images either in hovering or in-motion flight. Thus,
the vehicles capable of picking, transporting and placing
represent an ideal solution for survival-kit delivering, rescue
operation, sensor deployment/acquiring. The impact of these
capabilities might be amplified whether we multiply the
aerial robots and develop efficient interaction algorithms.

A. Related work

There exist different approaches and strategies as well as
a variety of configurations to address the the multi-vehicles
interaction problem. Inspired by parallel manipulators, [2]
presents a flying robot composed of three off-the-shelf
quadcopters rigidly attached via an articulated structure.
The implementation aerial system, which comprises three
links and a platform, yielded to interesting results showing
the system’s dexterity as well as enhanced cargo capacity.
The necessity to increase efficiency flight raises the interest
in transformable/morphing flying robots. In [3] the problems
of flight stability and center of gravity shifting due to the
payloads motion are studied. In this regard, [4] exposes a
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multi-rotor aerial vehicle with two-dimensional multi-links
and demonstrates stable aerial transformation for high
mobility in three-dimensional environments. The DRAGON
transformable aerial robot is introduced in [5]. This flying
machine is a dual-rotor-embedded multi-link robot with the
ability of multi-degree of freedom aerial transformation
and the full pose control regarding the center of gravity of
multi-links.

The task of manipulation several cargos implies the under-
standing of the phenomena present in transporting a single
object which is a case widely studied in the literature. Hereof,
the implementation of Kalman Filter to estimate the payloads
disturbances [6] and the trajectory path picking generation
in windy environments [7] can be cited, along with the use
of learning automatas [8] and of fuzzy logic for computing
the effects of the cargos in several quadrotors [9].
Nonetheless, the control by the means of the H∞ control
theory has been adopted due to its robustness [10]. By
combining the H2 and H∞ controls, [11] solves the trajectory
tracking problem of a tilt-rotor UAV when transporting a
suspended load.
The Sliding Mode Control (SMC) is another robust strategy
control applied to aerial vehicles as in [7], [12] or [13].

B. Paper contribution

This paper presents the detailed longitudinal modeling and
robust control of a novel multi-link aerial interactive system
that is studied for multi-object acquisition and transport
tasks. The Euler-Lagrage approach is used to deduce the
equations of motion and couplings of the ML-UAS. The
resulting expressions are rewritten for the sake of the control
design. In terms of control, a Sliding Mode Controller
alongside an adaptive gain with an integral term of the
tracking error added to the sliding surface is designed (for
details [13], [5], [7]). Furthermore, an extension to the multi-
link case of the avian-inspired trajectory generation scheme
for aerial grasping is presented [7]. The latter is endowed
with a links-dependant trajectory dynamics to generate a
smooth pattern to achieve multi-object acquisition/placing.

C. Problem Formulation

In the regard of aerial picking and transportation, a single
aerial rotorcraft is limited in dexterity and payload-carrying
capacity. The employment of several rotorcrafts and the the-
ory of multi-agent systems is often the emergent solution to
the aforementioned issues despite the interaction difficulties
and constrains [1], [4].
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Fig. 1. Multi-linked Unmanned Aerial System description

A flying kinematic chain inspired by the capabilities of aerial
vehicles, the dexterity of arm manipulators and a train-like
transporting operation is introduced herein to overcome the
established problematic.

D. Paper Outline

The paper is organized as follows: Section I corresponds to
the general description of the paper. Section II comprises the
equations describing the kinematics and the dynamics of the
chain. The mathematical motion description of the system is
used in Section III to generate a robust control law to over-
come the aforementioned problematic while the trajectory
generation is fully described in Section IV. We validate our
proposal by numerical simulations whose explanation and
results are given in Section V. Finally, the conclusions and
future work remarks are written in Section VI.

II. MATHEMATICAL MODELLING

Let us consider the 3 links and 4 rotorcrafts system as a
flying kinematic chain and its lateral dynamics only as shown
in Fig. 1.

The links are considered to be attached to the center
of gravity of the corresponding vehicles and to have a
frictionless angular motion since the due-to disturbances
can be mitigated by the robust controller [2] [10] [13]. In
addition, we assume that the links have the same length
ll ∈ IR and mass ml ∈ IR and, as a consequence, the same
moment of inertia Il ∈ IR. The attitude of the j–th link is
described by the angle Θ j ∈ IR where j = 1,2,3.
The attitude of the i–th rotorcraft (with i = 1,2,3,4) is given
by the angle θi ∈ IR and measured as shown in Fig. 1. The
masses of the vehicles are given as mr ∈ IR and their moments
of inertia as Ir ∈ IR.
The pose of j–th pendulum-like load is described by β j ∈ IR.
Furthermore, we consider their masses and lengths to be
mp j ∈ IR and lp j ∈ IR.

A. Kinematic equations

Based on the position of the chain ξ = [x z]T ∈ IR2 and
the angles Θ j and β j, the positions of the rotorcrafts ξri , the
links ξl j and the pendulums ξp j w.r.t. the inertial frame can
be computed as follows:

ξri =

[
xri

zri

]
= ξ +

Qill
2

[
CΘ2 +ViCΘDi
−SΘ2 −ViSΘDi

]
∈ IR2 (1)

ξl j =

[
xl j

zl j

]
= ξ +

Eill
2

[
CΘ2 +CΘ j

−SΘ2 −SΘ j

]
∈ IR2 (2)

ξp j =

[
xp j

zp j

]
= ξl j − lp j

[
Sβ j

Cβ j

]
∈ IR2 (3)

where S• = sin(•), C• = cos(•), Qk = sign(k−2.5), Dk =
(2k+1)/3, Ek = k−2 and Vk = k2−5k+6.
By time differentiating the Eqs. (1)-(3), the velocity of each
component are obtained, hence:

ξ̇ri = ξ̇ − Qill
2

[
SΘ2Θ̇2 +ViSΘDi

Θ̇Di

CΘ2Θ̇2 +ViCΘDi
Θ̇Di

]

ξ̇l j = ξ̇ − Eill
2

[
SΘ2Θ̇2 +SΘ j Θ̇ j

CΘ2Θ̇2 +CΘ j Θ̇ j

]
ξ̇p j = ξ̇l j − lp j

[
Cβ j β̇ j

−Sβ j β̇ j

]
The dynamics of the flying multi-link robot is then mod-

elled by the means of the Euler–Lagrange formalism.

B. Dynamics of the ML-UAS

Let the Lagrangian of the system be expressed as L =
K−U ∈ IR such that K and U stand for the total kinetic and
potential energies, respectively. Both terms are defined based
on the energies of the quadrotors (Kr and Ur), the links (Kl
and Ul) and the pendulums (Kp and Up), in the manner:

K = Kr +Kl +Kp ∈ IR ; U =Ur +Ul +Up ∈ IR

with

Kr =
4

∑
k=1

{
mr

2
(
ẋ2

rk
+ ż2

rk

)
+

Ir

2
θ̇

2
k

}
Ur = gmr

4

∑
k=1

zrk

Kl =
3

∑
k=1

{
ml

2

(
ẋ2

lk + ż2
lk

)
+

Il

2
Θ̇

2
k

}
Ul = gml

3

∑
k=1

zlk

Kp =
3

∑
k=1

mpk

2
(
ẋ2

pk
+ ż2

pk

)
Up = g

3

∑
k=1

mpk zpk

where g ∈ IR is the constant of gravity acceleration.
Let the vector of generalized coordinates be defined as
q= [q1 q2 ... q5]

T = [x z Θ1 Θ2 Θ3]
T ∈ IR5. By applying the

equation provided by the Euler–Lagrange formalism, i.e.

d
dt

∂

∂ q̇a
L− ∂

∂qa
L = τa with a = 1,2, ...,5 (4)

to the Lagrangian, the dynamics of the ML-UAS is provided.
It must be noticed that the attitudes of the vehicles are not
considered as generalized coordinates since these are used
as control inputs.
The equations of motion for the translation of the chain can
be expressed as



µ ẍ−
3

∑
k=1

{
Rkαk

(
SΘk Θ̈k +CΘk Θ̇

2
k
)
−

mpk lpk

(
Cβk

β̈k−Sβk
β̇

2
k

)}
= τx (5)

µ (z̈+g)−
3

∑
k=1

{
Rkαk

(
CΘk Θ̈k−SΘk Θ̇

2
k
)
+

mpk lpk

(
Sβk

β̈k +Cβk
β̇

2
k

)}
= τz (6)

where Rk = k2 − 3k + 1 and µ , α1, α2 and α1 ∈ IR are
constants defined as

µ = 4mr +3ml +
3

∑
j=1

mp j α1 = ll
(

mr +
ml

2
+

mp1

2

)
α2 =

ll
2
(
mp1 −mp3

)
α3 = ll

(
mr +

ml

2
+

mp3

2

)
Meanwhile, the equations of motion of the links follow

the general form:

ι jΘ̈ j−R jα j

(
SΘ j ẍ+CΘ j (z̈+g)

)
+

E2
j

llα j

2

{
C(Θ j−Θ2)Θ̈2 +S(Θ j−Θ2)Θ̇

2
2

}
+

E jη j

{
S(Θ j−β j)β̈ j−C(Θ j−β j)β̇

2
j

}
+(

1−E2
j
) 3

∑
k=1

{
Ekηk

{
S(Θ2−βk)β̈k− C(Θ2−βk)β̇

2
k

}
+

llαk

2
{

C(Θk−Θ2)Θ̈k− S(Θk−Θ2)Θ̇
2
k
}}

= τl j (7)

By applying Eq. (4) and considering the β j instead of the
generalized coordinates qa, the dynamics of the payloads can
be represented in the general form:

mp j l
2
p j

β̈ j−mp j lp j

(
Cβ j ẍ−Sβ j (z̈+g)

)
+

E jη j

(
S(Θ2−β j)Θ̈2 +C(Θ2−β j)Θ̇

2
2+

S(Θ j−β j)Θ̈ j +C(Θ j−β j)Θ̇
2
j

)
= τp j (8)

Along the Eqs. (7) and (8), new constants were introduced
to reduce the expression, these are:

η j =
mp j lp j ll

2
∈ IR

ι1 = l2
l

(
mr +

ml

4
+

mp1

4

)
+ Il ∈ IR

ι2 = l2
l

(
mr +

ml

2
+

mp1

4
+

mp3

4

)
+ Il ∈ IR

ι3 = l2
l

(
mr +

ml

4
+

mp3

4

)
+ Il ∈ IR

As previously mentioned, the aerial vehicles are the actua-
tors of the system, thus we consider their rotational dynamics

Irθ̈i = udi

where udi ∈ IR is the control input of the i–th vehicle.

C. Disturbed system

The system itself is composed by the actuators (MAVs)
and the rigid links, in this regard the effects of the payloads
can be treated as disturbances, which leads to a nonlinear
representation of the system in the form:

M(q) q̈+C(q, q̇) q̇+G(q) = u+ρ (9)

such that

M(q)=


m11 0 αSΘ1 0 −αSΘ3

0 m22 αCΘ1 0 −αCΘ3
αSΘ1 αCΘ1 m33 m34 0

0 0 m43 m44 m45
−αSΘ3 −αCΘ3 0 m54 m55

∈ IR5×5

with the elements of the matrix being

m11 = m22 = 4mr +3ml

m33 = m55 = l2
l (mr +0.25ml)+ Il

m34 = m43 = 0.5llαcCΘ1−Θ2

m44 = l2
l (mr +0.5ml)+ Il

m45 = m54 = 0.5llαcCΘ2−Θ3

α = ll (mr +0.5ml)

The term C(q, q̇) q̇ in Eq. (9) corresponds to the Coriolis
and centripetal effects and it is given as:

C(q, q̇) q̇ =


α
(
CΘ1Θ̇2

1−CΘ3Θ̇2
3
)

−α
(
SΘ1Θ̇2

1−SΘ3Θ̇2
3
)

ll
2 αSΘ1−Θ2Θ̇2

2
− ll

2 α
(
SΘ1−Θ2Θ̇2

1−SΘ2−Θ3Θ̇2
3
)

− ll
2 αSΘ2−Θ3Θ̇2

2

 ∈ IR5

The gravitational effects are comprised in the vector

G(q) =
[
0 m22g αgCΘ1 0 −αgCΘ3

]T ∈ IR5

At the right part of Eq. (9), the control input vector u =[
ux uz uΘ1 uΘ2 uΘ3

]T ∈ IR5 and the disturbances vector ρ ∈
IR5 are found.
The perturbations affecting the translational motion are set
based on Eqs (5) and (6) as

ρx =
3

∑
k=1

{
mpk ẍ+mpk lpk

(
Cβk

β̈k−Sβk
β̇

2
k

)}
ρz =

3

∑
k=1

{
mpk (z̈+g)−mpk lpk

(
Sβk

β̈k +Cβk
β̇

2
k

)}
For each link motion disturbance, the friction between the

corresponding link and the pendulous payload is considered
by the addition of the term γ j

(
β̇ j− Θ̇ j

)
where γ j ∈ IR is the

friction coefficient. This last consideration implies that the
friction effect must be equally considered in the dynamics
of the cargos (Eq. (8)) in the term τp j .



ρΘ1 = −l2
l

mp1

4
Θ̈1− ll

mp1

2
(
SΘ1 ẍ+CΘ1 z̈

)
−

l2
l

mp1

4
(
C(Θ1−Θ2)Θ̈2 +S(Θ1−Θ2)Θ̇

2
2
)
+

η1

(
S(Θ1−β1)β̈1−C(Θ1−β1)β̇

2
1

)
− ll

mp1

2
gCΘ1 +

γ1

(
β̇1− Θ̇1

)
ρΘ2 = −

(
l2
l

(mp1

4
+

mp3

4

))
Θ̈2−(

ll
2
(
mp1 −mp3

))(
SΘ2 ẍ+CΘ2 z̈

)
−

l2
l

mp1

4
(
C(Θ1−Θ2)Θ̈1−S(Θ1−Θ2)Θ̇

2
1
)
−

l2
l

mp3

4
(
C(Θ3−Θ2)Θ̈3−S(Θ3−Θ2)Θ̇

2
3
)
+

η1

(
S(Θ2−β1)β̈1−C(Θ2−β1)β̇

2
1

)
−

η3

(
S(Θ2−β3)β̈3−C(Θ2−β3)β̇

2
3

)
−

ll
2
(
mp1 −mp3

)
gCΘ2 + γ2

(
β̇2− Θ̇2

)
ρΘ3 = −l2

l
mp3

4
Θ̈3 + ll

mp3

2
(
SΘ3 ẍ+CΘ3 z̈

)
−

l2
l

mp3

4
(
C(Θ3−Θ2)Θ̈2 +S(Θ3−Θ2)Θ̇

2
2
)
−

η3

(
S(Θ3−β3)β̈3−C(Θ3−β3)β̇

2
3

)
+ ll

mp3

2
gCΘ3 +

γ3

(
β̇3− Θ̇3

)
The well defined model in Eq. (9) is used in the upcoming

section in order to design the AISM controller.

III. CONTROL

For control purposes, let the dynamics of the system, based
on Eq. (9), be expressed as:

q̈ = f (q, q̇)+B(q)u+w (10)

where f (q, q̇)= fo (q, q̇)+∆ f is the dynamic state-dependent
function of the system defined by the nominal dynamics
fo (q, q̇) = −M−1 (q)(C(q, q̇) q̇+G(q)) and the unmodeled
uncertainties ∆ f ∈ IR5. The control matrix B(q) ∈ IR5×5 is
composed by the nominal control matrix Bo (q) = M−1 (q)
and the uncertainties in the control matrix ∆B ∈ IR5×5 re-
sulting in B(q) = Bo (q)+∆B. The term w−M−1 (q)ρ ∈ IR5

comprises the external disturbances [12].
According to [12] and [13], we must provide a control
input u = uo + uw such that uo ∈ IR5 mitigates the nominal
dynamics and uw ∈ IR5 compensates the parametric and
environmental uncertainties.
Defining the tracking error vector as e = q−qd ∈ IR5 where
the vector qd defines the desired trajectories, we can propose
a sliding surface as follows

σ = ė+λe+ ε ∈ IR5 (11)

where ε is a vector containing the integral terms of the error
[7] and Λ = diag

(
λx λz λΘ1 λΘ2 λΘ3

)
∈ IR5×5 is a diagonal

matrix of control gains such that each λ–gain satisfies λ > 0.
The control input must approach σ to zero and sustain it
there (σσ̇ < 0). Then the nominal control input shall provide
stability once the system has reached the sliding surface, i,
e. σ̇ = 0 ∈ IR5 (with 0 the zero vector), i.e:

0 = ë+Λė+ e

By the substitution of the error and its time derivatives,
we obtain that

uo = C(q, q̇) q̇+G(q)+M(q)
(

q̈d−Λė− e
)

(12)

To mitigate the plant parameter variations and the external
disturbances, a viable solution is to consider the control input
uw according to the SMC theory as

uw =−M(q)HT (σ) (13)

such that H = diag
(
ηx ηz ηΘ1 ηΘ2 ηΘ3

)
∈ IR5×5 cor-

responds to a matrix of adaptive control gains, all
subjected to the restriction η > 0 ∈ IR and T =[
signσx signσz ...signσΘ3

]T ∈ IR5.
Let us recall Eq. (11) and express its time derivative based
on the model in Eq. (10) as:

σ̇ = fo (q, q̇)+Bo (q)u− q̈d +Λė+ e+WL (14)

with the term WL = ∆ f +∆Bu+w ∈ IR5 being the Lumped
uncertainties vector, bounded in the manner

||WL||<
∣∣∣∣∣∣Hd

∣∣∣∣∣∣ (15)

where Hd = diag
(

ηd
x ηd

z ηd
Θ1

ηd
Θ2

ηd
Θ3

)
∈ IR5×5 is the ter-

minal value of H.
In order to achieve Hd , the dynamics of H is defined as

Ḣ = A−1SA ∈ IR5×5 (16)

with SA = diag
(
|σx| |σz|

∣∣σΘ1

∣∣ ∣∣σΘ2

∣∣ ∣∣σΘ3

∣∣) ∈ IR5×5 and
A = diag

(
αx αz αΘ1 αΘ2 αΘ3

)
∈ IR5×5 which defines the

adaptation speed of the η–gains.

A. Lyapunov stability analysis

Let us consider the following Lyanpunov candidate func-
tion

V =
1
2

σ
T

σ +
1
2

1T H̃T AH̃1 ∈ IR (17)

with H̃ = H−Hd being the adaptation error and 1 ∈ IR5 the
ones vector.
By time differentiating Eq. (17) and considering Eqs. (12),
(13) and (14), the time derivative of the Lyapunov candidate
function can be expressed as

V̇ = σ
T
(

WL−HdT (σ)
)

and since σT HdT (σ)≥ 0 by definition, and considering the
boundness property of WL (Eq. (15)), it follows that V̇ ≤ 0
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Fig. 2. Control strategy for the ML-UAS

∀t > 0 which ensures the asymptotic stability of the system
subjected to the proposed control law.

B. MAVs control

In order to control the attitude of the vehicles, we choose
a PD controller given as

udi =−Kpiepi −Kvievi

where the constants Kpi , Kvi ∈ IR correspond to the pro-
portional and derivative gains, respectively, the position and
velocity errors are defined as epi = θi− θ d

i ∈ IR and evi =
θ̇i − θ̇ d

i ∈ IR in which the index d stands for the desired
position and velocity. The stability of this controller has
already been proved in [14].
The desired orientation of the vehicles and the forces to be
exerted by each aerial vehicle are computed based on the
control inputs generated by the AISM controller.
Let us recall the control input vector in Eq. (9) and the
description of the system in Fig. 1, thus

ux
uz

uΘ1
uΘ2
uΘ3

=


Sθ1 f1 +Sθ2 f2 +Sθ3 f3 +Sθ4 f4
Cθ1 f1 +Cθ2 f2 +Cθ3 f3 +Cθ4 f4

ll
2

(
CΘ1−θ1 f1−CΘ1−θ2 f2

)
ll
2

(
CΘ2−θ2 f2−CΘ2−θ3 f3

)
ll
2

(
CΘ3−θ3 f3−CΘ3−θ4 f4

)


To avoid the under actuation of the system, let us establish

∀t > 0 that θ d = θ d
1 = θ d

2 = θ d
3 = θ d

4 ∈ IR which leads to

θ
d = tan−1

(
ux

uz

)
Therefore the force that each MAV should exert over the

system can be computed according to the expression


f1
f2
f3
f4

=
1
4


1 3 2 1
1 −1 2 1
1 −1 −2 1
1 −1 −2 −3




√
u2

x +u2
z(

2uΘ1

)
/
(

llCΘ1−θ d

)
(
2uΘ2

)
/
(

llCΘ2−θ d

)
(
2uΘ3

)
/
(

llCΘ3−θ d

)
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The control section is summarized in Fig. 2 which shows
the control algorithm in a graphical representation for a better
understanding. Additionally, the block of trajectory planning
can be appreciated thus it is described in the following
section.

IV. TRAJECTORY PLANNING AND PICKING STRATEGY

The trajectory for the altitude of the overall system is
based on a co-sinusoidal function whose parameters (fre-
quency and amplitude) are updated based on the object
location (xo,zo) [7]:
The desired trajectory in Ix is given in order to keep a
constant velocity vh ∈ IR, i. e.

xd (t) = vht ∈ IR

Based on this speed pattern, and considering the position
in Ix of the object (xo ∈ IR), we define the grasping time
tg ∈ IR as

tg =
vh

xo

For the motion in Iz, the desired trajectory is defined based
on tg, the altitude of the chain during the operation zre f ∈
IR, the length of the pendulums lp = lp1 = lp2 = lp3 and the
position of the object in the corresponding axis zo ∈ IR.

zd (t) = zre f +
{

zre f − (lp + zo)
}

cos
(

π

tg
t
)

(18)

The desired attitude of the links is computed based in
a tangent relation w.r.t. the translational pattern. By time
differentiation of Eq. (18) and adopting a sign change in the
sin function due to the measurement convention, we compute
Θd

2 as:

Θ
d
2 = tan−1

({
zre f − (lp + zo)

} π

tg
sin
(

π

tg
t
))
∈ IR

which, alongside the geometric relations described in Fig. 3,
leads to define



Fig. 4. Translational behavior of the ML-UAS comparison

Fig. 5. Rotational links behavior of the ML-UAS comparison

Θ
d
1 = π−2tan−1

(
2
{

zre f − (lp + zo)
}

ll

)
+Θ

d
2 ∈ IR

Θ
d
3 = 2tan−1

(
2
{

zre f − (lp + zo)
}

ll

)
+Θ

d
2−π ∈ IR

V. NUMERICAL SIMULATIONS AND RESULTS

To validate our control strategy proposal, we developed a
numerical simulation with the parameters presented in Table
I in which we compared the performance of the system under
the command of a PD controller and the AISM controller.
The PD control law was defined as

u =−KPe−KVė+M
(

qd
)

q̈d +C
(

qd , q̇d
)

q̇d +G
(

qd
)

where KP, KV ∈ IR5×5 are the diagonal control gain matrices
of the PD controller to command the overall system.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
mr 0.62 kg Az 7 m
Ir 0.253 kg m2 tg 40 s
ml 0.1 kg vh 0.25 m/s
Il 0.0125 kg m2 xo 12.5 m
ll 1 m zo 0.5 m

mp1 0.3 kg γ j 0.035
mp2 0.3 kg g 9.81 m/s2

mp3 0.4 kg lp 0.5 m

Fig. 6. Payloads motion comparison

Fig. 7. Translational motion disturbances

The initial conditions of the flying chain were all set to
zero as well as the initial attitude of the vehicles.
Moreover, the simulation was divided in 3 different phases
described in Table II.

TABLE II
SIMULATION MOTION PHASES

Phase Time marks (s)
Az and vh reaching phase 0≤ t < 30
Avian inspired trajectory and 30≤ t < 70
picking operation
Stabilization and Az reaching phase 70≤ t

The results of the simulation are exposed in Figs. 4-9,
where the vertical dashed lines in black represents the time
marks described in Table II. The three different colors at the
background indicates the moment when a payload is picked
and transported.
Fig. 4 shows the translational motion of the flying kinematic
chain and the corresponding errors. It can be inferred from
the Ix plot that both controllers drive the system to reach
the desired horizontal velocity. It is clear that the motion
in Iz is successfully tracked by the two controllers until the
picking operation starts, in this regard, we can appreciate the
robustness of the AISMC.
The motion of the payloads is described in Fig. 6 where
the amplitude of the oscillation reaches a larger value in the
case of the AISM control than in the application of the PD
control.

The movement of the cargos influences directly the dy-
namics of the overall system as it adds the disturbances previ-
ously described in section II. Fig 7 shows the magnitude and



Fig. 8. Rotational links motion disturbances

Fig. 9. MAVs behaviour comparison

the behavior of the disturbances produced by the pendulum-
like motion of each payload altering the translation of the
chain.
The rotational disturbances are shown in Fig. 8 where the
disturbances are observed to follow the same behaviour for
both cases, differing only in the peak at t = 70 s presented
when applying the AISMC. These peaks imply that the
transition is suddenly done and that a modification in the
transition strategy needs to be considered in order to have a
smoother disturbances influence.
It can be inferred from Fig. 9 that the perturbations are
mitigated by the MAVs rotational motion. When implement-
ing the AISMC, the magnitude of the disturbances rises
nevertheless the picking pattern is successfully tracked due
to the actuators response. In the case of the PD control, no
considerable oscillations are present in the motion of the
aerial vehicles though the picking trajectory is not followed.

An animation of the simulation is available at
https://youtu.be/4lIr6Zuocmg.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we have computed the dynamic model of
a novel flying kinematic chain, besides, a robust controller
based on sliding mode control and adaptive parameters was
conceived.
Based on the results obtained from the simulations and the
Lyapunov stability analysis, the AISM controller provides
stability to the system and disturbances tolerance to accom-
plish the picking and transport operations.
An improvement of the picking strategy shall be proposed
based on a moving objective, in addition the motion of the

payloads and the velocity of the operation will be analyze to
design an strategy for smooth links transition.
The dynamics of the actuators play an important roll in the
performance of the system since so a robust control law will
be applied to these MAVs.
The extension to a three dimensional space and the experi-
ments concerning our proposal are conjointly left for future
works.
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J. Rodrı́guez-Reséndiz, “Comparison of pd, pid and sliding-mode
position controllers for vtail quadcopter stability,” IEEE Access, vol. 6,
pp. 38 086–38 096, 2018.


