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An LMI approach for stability analysis and output-feedback stabilization of
discrete-time Lur’e systems using Zames-Falb multipliers

Ariádne L. J. Bertolin, Ricardo C. L. F. Oliveira, Giorgio Valmorbida, Pedro L. D. Peres

Abstract— This paper investigates the problem of stabil-
ity analysis and output-feedback stabilization of discrete-time
Lur’e systems where the nonlinearity is odd and slope bounded.
Using the linear matrix inequality (LMI) conditions from the lit-
erature to handle the `1 norm and positive realness constraints,
an iterative algorithm based on LMIs is constructed to assess
stability through the existence of a Zames-Falb multiplier of any
given order based on independent positive definite matrices for
the `1 norm and positive realness. More important, the method
can also deal with output-feedback stabilization. Numerical
examples illustrate the performance of the proposed approach
when compared with other methods.

I. INTRODUCTION

The feedback interconnection of a single-input single-
output linear time invariant (LTI) system G and a static
nonlinear function φ , as illustrated in Figure 1, is known
as a Lur’e system.

G(x,φ)

z
φ(z)

−

Fig. 1. Block diagram of a Lur’e system.

The stability analysis of this interconnection, the absolute
stability problem, is a nonlinear robust stability problem,
since the analysis is carried out for classes of nonlineari-
ties. The most general results consider sector nonlinearities,
namely nonlinearities satisfying φ(0) = 0 and, ∀z ∈ R \
{0}, α ≤ φ(z)/z ≤ α . Classical results such as the Circle
and Popov criteria in continuous-time assume only sector
boundedness of the nonlinearity. In discrete-time, however,
slope restriction of the nonlinearity is assumed since the first
results [1]–[5].

Slope restriction means that ∀z1,z2 ∈ R, z1 6= z2, one has
β ≤ (φ(z1)−φ(z2))/(z1− z2)≤ β . Clearly, slope restriction
rule out discontinuous nonlinearities such as quantization and
relay functions. On the other hand, sector- and slope-bounded
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nonlinearities still appear in a large class of engineering prob-
lems, modeling continuous piece-wise affine nonlinearities,
such as saturating actuator and also smooth nonlinearities.

The solution to the absolute stability problem is a cer-
tificate obtained only using the LTI system data, the sector
and slope bounds. There are two methods, using different
representations of the LTI system: in the time-domain, with
Lyapunov functions working as certificates, or in the fre-
quency domain (within an input-output framework), where
the stability certificates are transfer functions known as
multipliers. The rich literature on the topic keeps growing,
and different aspects, such as local stability analysis, have
recently been exploited [6], [7]. In particular, the absolute
stability problem has benefited from constructive approaches,
based on convex optimization [8], [9].

In the input-output framework, the stability analysis is
performed via loop transformations, where the multipliers,
are added to the feedback connection (e.g., the multiplier
to the nonlinear and its inverse to the linear branch). The
problem is to search for multipliers that preserve the proper-
ties of the nonlinearity for the nonlinear branch and assure
stability. In this context, a fundamental result to characterize
multipliers was given by O’Shea for continuous-time systems
and slope-restricted and monotone (i.e., β = 0) nonlinearities.
See the tutorial paper [10] for details. Those multipliers,
called Zames-Falb (ZF) multipliers, preserve the positivity
of the input-output relation of the nonlinear branch, by
imposing a constraint on the L1-norm of the multiplier
impulse response. The counterpart for discrete-time systems
has been proposed in [11], [12, Chapter 6]. Unfortunately,
the numerical search for a stability certificate in the form of
a multiplier is difficult, since the discrete-time ZF multipliers
have to verify an `1 norm constraint. Parameterizations
allowing for a convex search of a class of ZF multipliers were
first proposed for continuous-time systems [13]. Concerning
the discrete-time case, ZF multipliers obtained from the
solution of semidefinite programming can be found in [14]
or, more recently, in [15], [16]. In particular, [15] proposed
finite-impulse response (FIR) ZF multipliers and [16] allows
for the search of noncausal ZF multipliers.

Even though significant progress has been achieved in
the stability analysis in recent years, the design of feedback
control laws has received less attention. In this context, only a
few results allowing to construct feedback laws for Lur’e sys-
tems were proposed. These results consider the time-domain
approaches and rely on quadratic Lyapunov functions. The
use of ZF multipliers for the synthesis problems, to the best



of the authors’ knowledge, has not been studied and the joint
search for multipliers and control gains can benefit from the
conservatism reduction obtained by the ZF multipliers.

The aim with this paper is to propose a synthesis procedure
based on LMIs for nonlinear output feedback stabilization
of discrete-time Lur’e systems. As a novelty, control gains
are directly variables of the problem and, thanks to an
appropriate relaxation procedure, the synthesis conditions
can be solved by means of an iterative algorithm with
local convergence. The stabilizability conditions rely on
constraints for the multipliers as in [14], [15]. The novelty is
the possibility of constructing multipliers of any given order
to assess the `1 norm and the real positiveness constraints.
As demonstrated by numerical examples, the method can be
less conservative than the method in [14] and is suitable for
the computation of feedback gains.

Notation: For a symmetric matrix, A > 0 (A < 0) means
that A is positive (negative) definite. For matrices or vec-
tors (>) indicates the transpose and He(A) = A+A>. The
symbol ? represents a symmetric term in a blocked square
matrix and diag(A1,A2) denotes a block diagonal matrix
composed by blocks A1 and A2. The identity matrix and
the zero matrix are denoted, respectively, by I and 0. The
symbol 1c represents a vector of dimension c with 1 in all
positions.

II. PROBLEM DEFINITION AND PRELIMINARIES

The stability problem is presented in what follows. The
extension to cope with control design is briefly discussed
in Section IV. Consider the discrete-time nonlinear Lur’e
system with state-space representation given by

x(k+1) = Ax(k)+Bφ φ(z(k))

z(k) =Czx(k)+Dφ φ(z(k)), k ∈ Z, k ≥ 0
(1)

where x ∈ Rnx is the state, φ ∈ R is the nonlinear input and
z ∈ R is the output. Matrices A, Bφ , Cz and Dφ are real and
have appropriate dimensions. The time-invariant nonlinearity
φ : R → R, φ(0) = 0, is an odd monotone function that
verifies the slope bound condition given by

0≤ φ(ẑ)−φ(z)
(ẑ− z)

≤ Λ (2)

for all z, ẑ ∈ R, z 6= ẑ, and φ(ẑ), φ(z) ∈ [0,Λ] where
Λ ∈ R is a given positive scalar. Furthermore, it is as-
sumed that system (1) also satisfies the following well-
posedness condition (1+ΛDφ ) > 0. By performing a loop
transformation, the stability of the interconnection illustrated
in Figure 1 of G (transfer function associated with the
quadruple (A,Bφ ,Cz,Dφ )) and φ can be investigated through
the existence of a ZF [17] multiplier M(z) = 1−H(z), such
that

Re{M(e jω)G̃(e jω)}> 0, ∀ω ∈ [0,2π] (3)

is verified, with G̃(e jω) = (1+ΛG(e jω)) and H(z) a rational
strictly proper transfer function. A state-space realization for
the multiplier M(z) is given by

xm(k+1) = Amxm(k)+Bmr(k)

ym(k) =Cmxm(k)+ r(k),

where xm ∈ RnM is the state, r ∈ R is the input and ym ∈ R
is the output, with matrices Am, Bm, and Cm of appropriate
dimensions. As a consequence, the state space realization of
M(z)G̃(z) is given by

AI =

[
A 0

BmΛCz Am

]
, BI =

[
Bφ

Bm(1+ΛDφ )

]
CI =

[
ΛCz Cm

]
, DI = (1+ΛDφ ).

Since the nonlinearities are assumed to be odd, a sufficient
condition to search for the multiplier M(z) assuring the
stability of the loop is to test the positive realness of system
M(z)G̃(z) while imposing ‖H‖1 < 1 (thus assuring that M(z)
is a ZF multiplier) [14], [17]. As in [14], the method can be
adapted for the design of anti-causal multipliers, by changing
matrices A, Bφ , Cz and Dφ . Defining an LTI discrete-time
system S with state space realization (A,B,C,D), LMI
conditions for the computation of a bound to the `1 norm and
positive realness of S (see for instance [14]) are reproduced
below.

Lemma 1 Let λ ∈ (0,1) be a given real scalar. System S
is stable with `1 norm bounded by

√
γ if there exist µ > 0

and a positive definite matrix S = S> such that[
A>SA−λS A>SB

? B>SB−µI

]
< 0 (4a)

[
(λ −1)S+C>C C>D

? (µ− γ)I +D>D

]
< 0. (4b)

Lemma 2 System S is stable and positive real if there
exists a positive definite matrix P = P>, such that[

A>PA−P A>PB−C
? B>PB−D>−D

]
< 0. (5)

A new LMI condition to search for a ZF multiplier M(z)
assuring the stability of the interconnection is proposed in
next section. As main difference from the conditions in [14],
the state-space matrices associated to M(z) appear affinely
in the inequalities and no change of variables is necessary.
Finsler’s Lemma, presented next, is used for the derivation
of the proposed conditions.

Lemma 3 (Finsler’s lemma [18]) Consider matrices Q ∈
R`×` and B ∈Rm×`, with rank(B)<` and BB⊥= 0. Then,
the following conditions are equivalent:

i) B>⊥QB⊥ < 0;
ii) ∃X ∈ R`×m such that Q+X B+B>X > < 0.

III. MAIN RESULTS

Theorem 1 Let the matrices Y i ∈ RnM×nM , i = 1,3,4, Y 2 ∈
RnM×1, X i ∈ R(nx+nM)×(nx+nM), i = 1,3,4, X2 ∈ R(nx+nM)×1,
with Y 4 and X4 of full rank, the real constant λ ∈ (0,1)
and the positive integer nM be given. If there exist matrices
Yi ∈ RnM×nM , i = 1,3,4, Y2 ∈ R1×nM Xi ∈ R(nx+nM)×(nx+nM),
i = 1,3,4, X2 ∈R1×(nx+nM), 0 < P> = P ∈R(nx+nM)×(nx+nM),



0 < S> = S ∈ RnM×nM , Am ∈ RnM×nM , Bm ∈ RnM×1, Cm ∈
R1×nM , µ > 0 and 0 < γ ≤ 1 such that

Q1 +He

(
Y1
Y2
Y3
Y4


︸ ︷︷ ︸

Y

[
Y 1 Y 2 Y 3 Y 4

]︸ ︷︷ ︸
Y

)
< 0, (6a)

(λ −1)S 0 −C>m
? (µ− γ) 0
? ? −1

< 0 (6b)

and

Q2 +He

(
X1
X2
X3
X4


︸ ︷︷ ︸

X

[
X1 X2 X3 X4

]︸ ︷︷ ︸
X

)
< 0, (7)

where

Q1 =


−λS 0 0 A>m
? −µ 0 B>m
? ? S −I
? ? ? 0

 , Q2 =


−P −C>I 0 A>I
? −2DI 0 B>I
? ? P −I
? ? ? 0

 ,
are verified, then the Lur’e system (1) is stable with the ZF
multiplier realization given by Am, Bm and Cm.

Proof: Consider

B1⊥ =

[
I

−Y−1
4 Y 1 −Y−1

4 Y 2 −Y−1
4 Y 3

]

B2⊥ =

[
I

−X−1
4 X1 −X−1

4 X2 −X−1
4 X3

]
respectively as basis for the null spaces of Y and X , that
is, YB1⊥ = 0 and XB2⊥ = 0. Invoking Lemma 3, (6a) is
equivalent to B>1⊥Q1B1⊥ < 0, that can be rewritten as−λS 0 0

? −µ 0
? ? S

+He

((Y
−1
4 Y 1)

>

(Y−1
4 Y 2)

>

(Y−1
4 Y 3)

>

[Am Bm −I
])

< 0.

Last inequality is in the form ii) of Lemma 3 and, computing
a basis for the null space of [Am Bm − I], the following
equivalent condition can be obtained I 0

0 1
Am Bm

>−λS 0 0
? −µ 0
? ? S

 I 0
0 1

Am Bm

< 0,

which can be rewritten as[
A>mSAm−λS A>mSBm

? B>mSBm−µ

]
< 0. (8)

On the other hand, applying a Schur complement in (6b),
one has

diag
(
(λ −1)S+C>mCm,(µ− γ)

)
< 0. (9)

Conditions (8) and (9) correspond to the ones of Lemma 1
(with the feedforward term zeroed) assuring, since 0< γ ≤ 1,
‖H‖1 < 1, i.e., M(z) is a ZF multiplier.

Similarly, by Lemma 3, condition (7) is equivalent to
B>2⊥Q2B2⊥ < 0, that can be rewritten as−P −C>I 0

? −2DI 0
? ? P

 +He
((X

−1
4 X1)

>

(X−1
4 X2)

>

(X−1
4 X3)

>

[AI BI −I
])

< 0.

The above inequality is, again, in the form ii) of Lemma 3.
Then, computing a basis for the null space of [AI BI − I],
the following condition, equivalent to (5), can be obtained[

A>I PAI−P A>I PBI−C>I
B>I PAI−CI B>I PBI−2DI

]
< 0, (10)

proving the stability of the interconnected system.
Besides presenting the interesting fact that the the multi-

plier M(z) can be of any given order nM ≥ 1, the stability
conditions of Theorem 1 also have two additional appealing
features. First note that, differently from [14], two indepen-
dent positive definite matrices are used, namely P and S, one
to impose ‖H‖1 < 1 and another to certify the positive real-
ness of M(z)G̃(z). More interestingly, note that the matrices
of the system appear affinely in the conditions. This is used
to develop a method for the synthesis of controllers based
on the ZF approach, as discussed in Section IV.

On the other hand, the drawback of Theorem 1 is that
matrices X i and Y i must be given. Clearly, this is a source
of conservativeness. Next theorem proposes a strategy to
overcome this limitation.

Theorem 2 Let Y = [0 ν1nM − I I], such that ν2 < 1/nM ,
X = [0 0 − I I] and the change of variables

(Am,Bm,Cm) = ρ
−1(Am,Bm,Cm) (11a)

AI =
1
ρ

AI =

[
ρ−1A 0

BmΛCz Am

]
, BI =

1
ρ

BI =

[
ρ−1Bφ

Bm(1+ΛDφ )

]
CI =

1
ρ

CI =
[
ρ−1ΛCz Cm

]
, (11b)

where ρ > 0. Then, the conditions of Theorem 1 always have
a feasible solution with a finite value of ρ .

Proof: First, applying a Schur complement in inequal-
ity (6b), one has

diag
(
(1−λ )S−C>mCm,(γ−µ)

)
> 0

that is verified with Cm = 0 (note that λ ∈ (0,1)) and γ−µ >
0. In condition (6a), adopting the proposed choices and fixing
Y1 = 0, Y2 = 0.5ν1>nM

, Am = 0 and Bm = 0, one gets
−λS 0 0 0
? −µ +ν21>1 ν1>(Y3−0.5I) ν1>(Y4 +0.5I)
? ? S− (Y3 +Y>3 ) −I−Y>4 +Y3
? ? ? Y4 +Y>4

< 0.



Choosing Y3 = 0.5I, Y4 =−0.5I, one has

diag
(
−λS,−µ +ν

21>1,S− I,−I
)
< 0

that, since −µ + ν21>1 = −µ + ν2nM < 0 because ν2 <
1/nM by assumption, holds for any S satisfying 0 < S < I.
Furthermore, the choices made in (11b) produce

AI =

[
ρ−1A 0

0 0

]
, BI =

[
ρ−1Bφ

0

]
, CI =

[
ρ−1ΛCz 0

]
.

Then, in condition (7), using X1 = X2 = 0 and X3 = −X4 =
I/2 one has 

−P −C>I 0 A>I
? −2DI 0 B>I
? ? P− I 0
? ? ? −I

< 0.

By a diagonal dominance argument, a sufficiently large value
of ρ assures that the feasibility of the last inequality can be
guaranteed by

diag
(
−P,−2DI ,P− I,−I

)
< 0.

The negativity of blocks (1,1) and (3,3) is assured for 0<P<
I, while the well-posedness condition (1+ΛDφ ) = DI > 0
guarantees that (2,2)< 0 holds.

The variable ρ introduced in Theorem 2 can be viewed as
a relaxation in the matrices of the system, assuring a feasible
solution to the modified Theorem 1 for a sufficiently large
ρ . However, to certify the stability of the original system,
the inequalities have to hold for ρ = 1.

Remark 1 As ρ appears affinely in the conditions of Theo-
rem 1 with the modifications proposed by Theorem 2, ρ can
be minimized when solving the inequalities of Theorem 1.
Moreover, from a feasible solution for Theorem 1 (with some
value of ρ), the resulting matrices X>i and Y>i can be used
as new values for X i and Y i, thus yielding a new feasible
solution.

These features allow the formulation of an iterative proce-
dure, Algorithm 1 (below), where itmax sets a stop criterion
and Y and X are the initial matrices required by Theorem 1.
Applying the results of Theorem 2, the procedure converges
to a finite vale of ρ . If ρ ≤ 1 at some iteration, then the
stability of the Lur’e system can be certified. Algorithm 1 is
executed for a set of values linearly spaced of λ ∈ (0,1) and
a fixed nM ≥ 1 (order of the multiplier M(z)).

Next theorem shows an important property of Algorithm 1.

Theorem 3 The sequence of values ρκ provided by Algo-
rithm 1 is non increasing.

Proof: Suppose that at iteration κ a finite value for
ρκ , associated to the variables Pκ , Sκ , Yκ and Xκ , has
been obtained. Since He(YY ) = He(Y>Y>) and He(XX) =

He(X>X>), the choices Y κ+1 =Yκ and Xκ+1 =Xκ guarantee
a new feasible solution by construction, assuring that ρκ+1
cannot increase, that is, ρκ+1 ≤ ρκ .

Algorithm 1: Iterative procedure for stability

Input parameters: itmax, nM , Y = [Y 1 Y 2 Y 3 Y 4] and
X = [X1 X2 X3 X4], κ ← 0;

Make the changes of variables as in (11);
while κ < itmax do

κ = κ +1;
minimize ρκ subject to (6a), (6b) and (7) ;
if ρκ ≤ 1 then

return ρκ

end
Y = Y>, X = X>;

end

As mentioned above, the stability of the Lur’e system (1)
is proven with ρ = 1. The next theorem shows that a feasible
solution with a ρ < 1 also guarantees stability.

Theorem 4 Consider the relaxations given in Theorem 2
and the existence of two solutions of (6) and (7), at iterations
κ and κ +1, provided by Algorithm 1 such that

Q1,κ +He(YκY>κ−1)< 0, Q2,κ +He(Xκ X>κ−1)< 0(λ −1)Sκ 0 −C>m/ρκ

? (µκ −1) 0
? ? −I

< 0, ρκ > 1 (12)

Q1,κ+1 +He(Yκ+1Y>κ )< 0, Q2,κ+1 +He(Xκ+1X>κ )< 0(λ −1)Sκ+1 0 −C>m/ρκ+1
? (µκ+1−1) 0
? ? −I

< 0, ρκ+1 < 1

(13)

Then, matrices Am, Bm and Cm can be obtained for the
original system (i.e., for ρ = 1) from a convex combination
of the two solutions.

Proof: Consider positive scalars ζκ and ζκ+1 such that

ζκ +ζκ+1 = 1, ζκ =
ρκ(1−ρκ+1)

ρκ −ρκ+1
, ζκ+1 =

ρκ+1(ρκ −1)
ρκ −ρκ+1

.

Multiply the inequalities in (12) by ζκ , (13) by ζκ+1,
summing up accordingly. Then, by analyzing Am in block
(4,1) of the term ζκQ1,κ +ζκ+1Q1,κ+1 one has

ζκ

1
ρκ

Am,κ +ζκ+1
1

ρκ+1
Am,κ+1 =

ρκ(1−ρκ+1)

ρκ −ρκ+1

1
ρκ

Am,κ

+
ρκ+1(ρκ −1)

ρκ −ρκ+1

1
ρκ+1

Am,κ+1 =
1−ρκ+1

ρκ −ρκ+1
Am,κ

+
ρκ −1

ρκ −ρκ+1
Am,κ+1. (14)

Following similar steps, Bm and Cm can also be recovered.
Therefore, the stability of the original system (i.e., when ρ =
1) can be assured by the ZF multiplier with matrices Am, Bm
and Cm obtained as convex combinations of the matrices that
solve (12) and (13).



To illustrate, consider that system (1), modified
according to Theorem 2, is represented by Gκ =
(Aκ/ρκ ,Bφκ

/ρκ ,Czκ
/ρκ ,Dφ ) at iteration κ . Figure 2

shows a sequence of “relaxed” systems Gκ produced by
Algorithm 1 until iteration κ?, where the value of the
relaxation level is less than one. Note that two consecutive
relaxed systems, for instance, G1 and G2, only have in
common the set of slack variables X i1,Xi2 and Y i1,Yi2. The
positive definite matrices P1, P2, S1 and S2, and the ZF
multipliers M1(z) and M2(z) are distinct. However, any
system obtained as a convex combination of G1 and G2,
that is, ζ G1 +(1− ζ )G2, ζ ∈ [0,1], has its own multiplier
by simply combining accordingly M1(z) and M2(z). This
property is obtained thanks to the fact that the system
matrices as well as the multipliers appear affinely in the
conditions of Theorem 1. Clearly, the interest relies on the
last two iterations, where a multiplier proving the stability
of the original system (i.e., for ρ = 1) can be extracted.

...
G1

ρ1 > 1
G2

ρ2 > 1

Gκ?−1
ρκ?−1>1

G?
κ

ρ?
κ < 1

X i1,Xi2, Y i1,Yi2 X iκ?−1,Xiκ? , Y iκ?−1,Yiκ?

Fig. 2. Diagram illustrating the sequence of “relaxed” systems Gκ =
(Aκ/ρκ ,Bφκ

/ρκ ,Czκ
/ρκ ,Dφ ) produced by Algorithm 1, κ = 1, . . . ,κ?.

Although the sequence of values for ρ is non-increasing,
as shown in Theorem 3, it is not possible to conclude on the
strict decrease of ρ as a function of κ . The problem (even
in the context of stability analysis only) is nonconvex and,
therefore, ρ may converge to a value greater than one.

IV. NONLINEAR FEEDBACK CONTROL LAW

The problem of synthesis of stabilizing controllers for
Lur’e systems is investigated in this section. To the best of
the authors’ knowledge, this challenging problem has not
been investigated before using the ZF multiplier approach in
terms of LMIs. Consider system (1) with an extra control
signal u ∈ Rm entering through matrix Bu, and a measured
output y ∈ Rp, y = Cyx. Under the static output-feedback
control law u = Ky+Kφ φ(z), the state-space representation
for the closed-loop system is given by

x(k+1) = Aclx(k)+Bclφ(z(k))

z(k) =Czx(k)+Dφ φ(z(k))

with Acl = A+BuKCy and Bcl = Bφ +BuKφ . As the main
advantage of the proposed method when compared to previ-
ous approaches from the literature, the extension to cope with
feedback design is immediate, since matrices Acl , Bcl , Cz and
Dφ appear affinely in the conditions. Due to the relaxation
variable ρ , the only setting that must be done before applying
Algorithm 1 is to consider the change of variables K = K/ρ

and Kφ = Kφ/ρ .

V. EXAMPLES

In this section, numerical examples illustrate the perfor-
mance of the proposed conditions when compared with meth-
ods from the literature. For each model, the aim (performance
criterion) is to find the maximum value of Λ such that the
system is stable (or stabilizable), and this search is performed
by a bisection procedure with precision given by 10−3. The
LMI conditions were programmed and solved in Matlab
using the parser Yalmip [19] and the solver Mosek [20].
The setup of the PC is: Core i7, 16GB RAM, Windows 10
64 bits, Matlab 8.5 (R2015a) 64 bits, Mosek 9.2.35.

Experiment 1 – Stability Analysis

Consider the systems in [15] (numbered from 1 to 6)
and model 7 given by G7(z) = (0.5z2+0.85z+0.598)/(z2−
0.3z− 0.46) with the respective state-space realizations in
canonical controllable form. Algorithm 1 (A1), with nM =
{1,2}, ν = 0.7 and itmax = 50, and the conditions of [14]
(ACH13) and [15] (CHZAW20), with n f = nb = n∗, are com-
pared in terms of the maximum value of Λ obtained for each
system. The results are presented in Table I. The subindices
c and ac associated to A1 and ACH13 indicate causal and
anti-causal multipliers (obtained with the change of variables
indicated in [14]), respectively. Note that, compared with
ACH13 (also based on `1 norm and positive realness), A1
provided slightly superior performance in all systems, with
the order of multiplier lower than the order of the system
(nM < nx). Larger values of nM than the ones reported in
Table I did not result in significant improvements. In general,
the FIR approach CHZAW20 outperforms all the methods.
Regarding the numerical complexity, A1 is more time con-
suming due to the need of performing iterations (which
number increases as the bisection procedure approaches the
maximum achievable value of Λ). Nevertheless, this can be
seen as the price to be paid to have an analysis condition
that can be extended for control design, as shown next.

Experiment 2 – Control Design

The purpose is to evaluate the performance of the proposed
output-feedback stabilization conditions, using the same sys-
tems (1, . . . ,7) previously evaluated, with Cy = Cz and the
following control input matrices

(1,6,7): B>u =
[
0 1

]
, (2,3): B>u =

[
0 1 0 0

]
,

(4): B>u =
[
0 1 0 0 0

]
, (5): B>u =

[
0 1 0

]
The objective is to obtain the maximum Λ such that the
closed-loop system is stable. For simplicity, the same value
of λ obtained for the stability analysis, reported in the upper
part of Table I, is used (new searches on λ could improve
the results). The results are shown at the bottom part of
Table I in pairs Λs f ,Λo f with the values of Λs f for state-
and Λo f for output-feedback (+100 means values larger than
100). The output-feedback gains and multipliers obtained
with A1, associated with the largest values of Λ (boldface
in the bottom part of Table I), are given in Table II. For
the sake of comparison, the results from the stabilization



TABLE I
MAXIMUM Λ (WITH CORRESPONDING λ OR n∗) FOR SYSTEMS 1 TO 7 BY A1 (itmax = 50) AND ACH13, CAUSAL c AND ANTI CAUSAL ac, CHZAW20

(FIR, WITH n f = nb = n∗) AND NYQUIST CRITERION. THE CONTROL DESIGN RESULTS ARE SHOWN AT THE BOTTOM PART.

System 1 2 3 4 5 6 7
ACH13c 12.437 (0.001) 0.768 (0.046) 0.234 (0.679) 3.360 (0.299) 2.332 (0.692) 0.917 (0.120) 12.439 (0.320)
ACH13ac 1.499 (0.870) 0.481 (0.460) 0.305 (0.021) 3.236 (0.653) 2.447 (0.100) 1.050 (0.035) 11.238 (0.905)
A1c,nM=1 12.983 (0.001) 0.512 (0.044) 0.195 (0.728) 2.723 (0.298) 2.321 (0.498) 0.925 (0.451) 14.314 (0.460)
A1c,nM=2 12.982 (0.001) 0.773 (0.045) 0.215 (0.350) 3.360 (0.300) 2.446 (0.499) 0.929 (0.146) 14.888 (0.600)
A1ac,nM=2 2.460 (0.799) 0.538 (0.650) 0.256 (0.800) 3.243 (0.699) 2.447 (0.100) 1.080 (0.300) 14.895 (0.099)

CHZWA20 (FIR) 13.511 (17) 1.105 (2) 0.312 (3) 3.824 (2) 2.447 (1) 1.086 (1) 14.895 (1)
Nyquist 36.100 2.745 0.312 7.907 2.447 1.087 14.895

Stability bounds: Λs f ,Λo f (Λs f state- and Λo f output-feedback)
A1c,nM=2 24.061, 23.810 1.883, 1.953 20.625, 0.317 +100, 7.466 +100, 2.541 27.930, 1.147 +100, +100
A1ac,nM=2 21.242, 21.665 2.331, 2.108 12.677, 0.324 +100, 8.502 +100, 2.541 85.938, 1.160 +100, +100

BPOV20 (sector) 19.992, 19.997 1.728, 1.999 19.618, 0.324 +100, 5.282 +100, 2.541 +100, 1.165 N/A

TABLE II
OUTPUT-FEEDBACK GAINS (K,Kφ ) AND ZF MULTIPLIERS M(z) (FOR

THE MAXIMUM VALUES OF Λ, IN BOLD, IN TABLE I) CERTIFIED BY A1
WITH nM = 2 IN EXPERIMENT 2, SYSTEMS 1–7.

1 (1.0955, 0.6647) z2−0.7711z−0.0191
z2+0.0032z

2 (0.1062, 0.4425) 0.8233z2−2.5855z+2.8053
z2−3.2657z+2.8053

3 (0.0771, 0.3796) 4.365z2−23.74z+21.55
z2−5.071z+21.55

4 (−0.0872, 0.4135) 0.3569z2−3.2875z+3.1978
z2−3.0567z+3.1978

5 (1.8679, 0.3640) z2+0.4707z−0.1859
z2+0.3772z−0.1629

6 (−1.0088, −0.7425) 3.7623z2+32.5453z+41.9304
z2+11.3978z+41.9304

7 (−0.7311, −1.3567) z2+0.0827z−0.1262
z2−0.0447z−0.3615

method in [21] (BPOV20), based on a quadratic Lyapunov
function, for system (1) with Dφ = 0 and only sector bounded
nonlinearities, are detailed in the last row of Table I. With
the exception of System 6, A1 sharply improves Λ when
compared with the open-loop values and the method of
BPOV20.

VI. CONCLUSIONS

An LMI-based iterative method for the stability analysis
of discrete-time Lur’e systems in terms of ZF multipliers has
been proposed. Competitive in terms of accuracy but more
time-demanding, the main interest of the approach is the
immediate extension to deal with feedback control. Future
work aims to investigate extensions to handle noncausal and
FIR multipliers as well as multiple-input multiple-output
systems.
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