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Teaching Activities

TELECOM Lille (2007 — Present)

Télécom Lille is a French public engineering school (grande école) founded by Université de Lillel and
Institut Mines-Télécom, in 1991. Open to holders of a French Baccalaureate, two-year degree students
(roughly equivalent to a Bachelor’s degree) and to professionals, Télécom Lille has broadened access to
engineering degrees. Since my arrival in September 2007, I have designed new classes related to my
research topics that are proposed to the last year students. In particular, I have targeted two topics:
Introduction to Biometrics and 3D Acquisition, Modeling and Analysis. Since 2011, I'm the responsible
and the coordinator (with another colleague in the same department) of the Systems € Networks Security
module, proposed to the last year students.

2011 - present: Coordinator of the Systems & Networks Security module at Télécom Lille,

This module is proposed to the last year students. It provides a rich set of security topics, ranging
from computer system security to network security and security of emerging ICT applications, and it is
composed of lectures, conferences, and hands-on experiments, given by both guest lecturers from industry
and researchers from academia, offering technical and scientific perspectives on dealing with security
threats and attacks. The students are expected to gain insightful understanding on those significant
security issues and the latest security technologies, as well as learning to solve practical security problems
in creative and efficient ways. The module contains fundamental topics (Cryptography, Risk assessment,
Dependability, Network Protocols, Intrusion Detection Techniques, etc.) and a second part which changes
continuously according to the hot new topics in security (Cyber-criminality, Trust and Privacy, etc.).

2011 - present: Introduction to Biometrics,

Lectures and a practical project, proposed within the Systems € Networks Security module at Télécom
Lille. My research activities in the field of face recognition pushed me to introduce this class. It is
designed to first highlight the need of emerging biometrics and related applications. Then, it studied
more deeply some of the technologies such as Iris, Fingerprint and Face following a pattern recognition
methodology (preprocessing, feature extraction, pattern matching, datasets, evaluations, etc.). Usually, a
seminar from a company (Morpho'®, etc.) is proposed to give the industrial point-of-view, the systems
constraints and the new applications.

2008 - present: 3D Acquisition and Analysis Techniques,
Lectures, practices and demonstrations, proposed to the Multimedia module at Télécom Lille. I have

10www.morpho .com/7?lang=en
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introduce this class to allow our students discover multiple technologies of 3D imaging (stereo-vision,
structured-light, laser rangefinder, time-of-flight, etc.). Furthermore, I have introduced practices on 3D
mesh processing and analysis using the Visualization Toolkit (VTK) library't. With these practices, the
students discover tools for 8D mesh processing and scientific visualization. They work with a class library
entirely designed in an Object-Oriented fashion.

2007 - present: Algorithms and C/C++ programming,

Lectures, practices and project, proposed to the 1%t year students at Télécom Lille. First, with the Al-
gorithms teaching, the students learn how to design solutions for a given problem and how to write an
algorithm. Then, a translation to the C/C++ language which is built and executed, allow to touch on
the whole process.

2007 - present: Data Structure (E-learning),

Distant lectures, proposed within the apprenticeship curriculum at Télécom Lille. Here, the students are
apprentice and spend half of their time in a company and the other half at school for practices and exams.
I note that Télécom Lille has developed a strong expertise in e-learning, since 2000.

2007 - 2012: Multimedia Indexing and Retrieval,

Java development project, proposed to the last year students in the Multimedia module. With this project,
the students design and implement a graphical user interface and a set of image descriptors for image
retrieval. The project ends with an evaluation procedure using the appropriate criteria Recall/Precision,

F1i-score, etc. This project is proposed with the lectures on Multimedia Retrieval given by Prof. Mohamed
Daouds.

Ecole Centrale de Lyon (2004 — 2007)

Ecole centrale de Lyon, founded in 1857, is one of the oldest post-bachelor graduate schools (grande
école) in France. During my Ph.D. graduation, I got the chance to work with the professors at Ecole
Centrale de Lyon and to be involved in some classes,

2004 - 2007: Algorithms and Data Structure,
Practices proposed to the 15 year students at Ecole Centrale de Lyon (with Prof. Liming Chen).

2004 - 2007: Oriented Object Programming,
Practices proposed to the 2'* year students at Ecole Centrale de Lyon (with Prof. Christian Vial).

2006 - 2007: Information System Architecture (Java language),
Practices proposed to the % year students at Ecole Centrale de Lyon (with Prof. Christian Vial).

EPSI Lyon (2005 — 2006)

EPSI (Ecole Privée des Sciences Informatiques) is a French private school founded in 1961.

2005 - 2006: Software Engineering,

Lectures, practices and projects proposed to the engineer students at EPSI-Lyon. It was a nice experience
at this private school. In fact, I was the responsible of the Software Engineering module to study modeling
methodologies like UML (Unified Modeling Language) or MERISE. Several projects have been proposed
to the students to practice and design applications.

"http://www. vtk.org/
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Notations

TABLE 1: List of symbols and their definitions used in this habilitation.

Symbol

Definition /Explanation

X
[l -ll =
C
(X,Y)

n x 3 matrix of landmarks coordinates in R>.

the matrix Frobenius norm.

preshape space.

Riemannian metric on C

shape space.

tangent space to C at X € C.

equivalence class of X (orbit of X).

distance on C, do(X,Y) = cos*((X,Y)) .

exponential map function (exp : Tx (C) — C).

inverse exponential map function (exp™' : C — Tx(C)).
rotation group in R3.

a parametrized geodesic path on Kendall’s shape space.
the length of ~.

(f1, fa)

the unit interval [0, 1].

(also L?(I,R®)) refer to the infinite-dimensional function space of R?.
a parametrized continuous curve in R3.

the SRV function, q(t) = 8(t)//|18@)| .

the standard Euclidean norm in R®.

the the standard L? metric f01 f1(8) f2(s)ds

the standard L2 norm.

a parametrized geodesic path on the shape space of continuous curves.
the length of .

derivative of ¥ with respect to ¢.

group of orientation-preserving re-parametrizations in [0, 1].
equivalence class of SRVF under rotation and re-parametrization.
preshape space and shape space, respectively.

dC7 dS7 d./\/l
g
d,(a)
7

a facial surface represented as indexed collection of radial curves {5(0‘)}046[0727,].
the manifold of facial surfaces M = S0:271,

metrics on C, § and M, respectively.

a geodesic path between elements of M.

a geodesic path between curves of index a.

a sample mean on M of a set of facial shapes.

Sl
L8]
A

Cx

dS[Ov\o]

the unit circle.

a landmark of index [ on the face.

a variable for the value of the distance from the landmark r;.
a closed curve extracted around an arbitrary landmark r.

metric on 8% the manifold of facial patches.
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Chapter 1

Extended Summary

Over the last decade, I have directed my research towards the topic of 3D shape analysis and recognition
with a particular focus on studying facial surfaces and their dynamics (deformations). I have targeted
fundamental applications in pattern recognition — face recognition, facial expression classification and
soft-biometrics (gender, age, etc.) estimation — based on three-dimensional data. With the emergence
of modern shape theory and related approaches based on differential geometry, conducted mainly in 2D
domain, I have been attracted by the elegant theory and relevant geometric and statistical tools that it
offers. In particular, viewing shapes as elements of finite- or infinite-dimensional manifolds, the definition
of Riemannian structures (or metrics) on these manifolds, and computing statistics on them (sample mean
of shapes, sample covariance, etc.). These tools are suitable and computationally efficient to be applied
to pattern recognition problems, as shown in the literature of 2D domain. Throughout this habilitation,
my goal was to develop shape analysis frameworks for 3D faces and dynamic faces (4D faces), with the
specific interrelated goals of (1) matching facial surfaces (i.e. dense registration of the shapes modulo
rigid and non-rigid transformations); (2) comparing 3D shapes (i.e. define shape-preserving metrics);
(3) measuring/quantifying the deformations between them; and (4) averaging a population of shapes to
get representative shape, for instance. As I shall describe later on, the developed methodology is shown
to be promising from both empirical and theoretical perspectives and illustrate how several applications

can profit from the underlying mathematical framework.

Historically, I was among the first researchers focusing on 3D face modeling and recognition (Ben Amor
et al., 2006a) by investigating the (rigid) registration approaches, such as the well-known Iterative Closest
Point (ICP) algorithm and develop variants to perform region-oriented ICP to handle the facial expression
variations. It is important to mention that despite the slight overlapping with my early research conducted
within my Ph.D. project!, the methodology that I adopted later presents in someway a scientific jump in
several fronts. On the theoretical side, viewing the 3D facial shapes as elements of Riemannian manifolds

and the use of tools from Differential geometry to interpolate between them and to quantify their

'Refer to my earlier publications (Ben Amor et al., 2006a), (Ben Amor et al., 2006b), and (Ben Amor et al., 2008) for
more details.
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divergence, was my significant methodological evolution. Furthermore, modeling the shape variations
by action of groups on shape representations, as previously formulated by D.G. KENDALL and ULF
GRENANDER which leads to the Group theory, was my second methodological trend. This approach
resulted in a registration-comparison (leaded jointly) solution of 3D facial shapes. With the use of
appropriate mathematical representations and elastic shape analysis models, an efficient approach to
register facial surfaces in presence of the variations cited above, has been proposed. The contributions

of this habilitation are following:

% A mathematical representation of 3D faces through multiple curves suitable for shape analysis;
% An effective elastic model for 3D face registration and analysis leaded jointly;

% An efficient way to deform one surface into another which provides interpolation tools on the

underlying manifolds;

% Robust face recognition solutions under expression, occlusion and pose variations, as shown through

the extensive set of experiments conducted on publicly available Benchmarks;
% Relevant geometric tools to capture and learn deformations across 3D faces,
Algorithms for facial expression recognition from static and dynamic 3D data;

3 Morphology-inspired geometric features for soft-biometrics estimation.

In summary, this habilitation provides comprehensive frameworks for shape analysis of faces with appli-
cations to facial biometrics and facial expression analysis. Different pieces of the proposed computational

framework, our contributions and the application perspectives are raised in the following items:

3D Faces, Elements of Infinite-dimensional Riemannian Manifolds — In Pattern Recognition,
shapes are considered as one of the main cues for scene understanding, in addition to colors, textures
and motions. Shapes are usually represented as sparse landmarks or continuous contours which delimit
the external boundary of the objects. However, with the advancements of 3D scanning technologies,
like laser rangefinder, structured-light and time-of-flight cameras, it is possible to capture depth-maps
of the objects in the scene, which is a more complete description of the external boundary of shapes.
These 3D images (depth-maps) could be often converted to 3D point clouds, 3D surfaces (meshes) or
textured surfaces. Hence, there was an outstanding need for developing suitable tools and computa-
tional strategies for shape interpretation under many variablities of two kinds — (1) shape-preserving
transformations such as the rigid transformations (scaling, translations and rotations), and (2) shape-
changing transformations as the non-rigid deformations, which affect the shape. Because most of the
geometric features (landmark configurations, curves, surfaces, deformations) do not belong to Euclidean
spaces but rather to curved manifolds, a new methodology has emerged over the three last decades for

studying shapes and model their variabilities. The emerging school of modern shape theory, promoted



Chapter 1. Eztended Summary 4

by researchers as D.G. KANDELL and U. GRENANDER, consider the space of shapes representations as
a geometrical object akin to a Riemannian manifold on which it is possible to resort conventional tools
from Differential Geometry. Thus, shapes (or their mathematical representations) live on spaces on which
one should impose Riemannian metrics required to quantify shape similarity/difference, as a first goal.
There has been an increasing interest in using Riemannian frameworks for shape analysis of objects. One
reason for its increasing popularity is the breadth of the tools that it offers. On one hand it allows to
remove all shape-preserving transformations from the representation space, using the notion of quotient
spaces and, on the other, it provides geometric tools and algorithms for computing statistics (sample
means, covariances, etc.) of shapes useful in statistical modeling, for example. Our first contribution
relay on this point, after a pre-processing step, trough a new mathematical representation, we map the
facial surfaces on an infinite dimensional Riemannian manifold. Then, we derive algorithms to quantify

shapes divergence and compute statistics on the underlying shape space.

According to several studies (including my earlier work (Ben Amor et al., 2006a)), the most important
variability that we seek to filter out is the facial deformation. The scaling, the location and the rotations
could be removed by introducing pre-processing steps and using previous solutions (Kendall, 1984). To
tackle this issue, we have proposed to represent the facial surfaces as collections of radial curves emanating
from the nose tip (as a reference point). This impose a first level of parameterization of the facial surfaces.
The second level is to adopt an elastic model to pairwise register and compare the 3D curves through the
faces. Recall that in practice the 3D faces subject of the study are presented as 3D meshes devoid of order
(or parameterization) on them. Thus, representing facial surfaces as indexed collections of parametrized
curves is a crucial step in our shape analysis methodology. Some previous works (including ours) have
proposed similar representations through sets of curves (Samir et al., 2006, 2009)(Ben Amor et al., 2009,
Drira et al., 2009a)(Berretti et al., 2011), however, the radial curves representation is more suitable to
handle facial deformations (as we will discuss in Chapter 2, Section 2.4.1). The next step was to propose
a mathematical representation of 3D faces which account for the stretching, shrinking and bending of
the facial surfaces. We have adopted the Square Root Velocity Framework, proposed in (Joshi et al.,
2007, Srivastava et al., 2011) to compare facial surfaces through their parametrized radial curves. Based
on this representation, shapes (of 3D faces) are viewed as elements of an infinite-dimensional curved
manifold. The shape space is a quotient space of a pre-shape space under the action of the groups of
transformations. Tools from differential geometry are used to define a Riemannian metric on the shape

space and compute geodesics (most efficient way to deform on shape to another) under the elastic metric.

Shape Analysis of Static Faces — Due to the increasing importance of shape analysis of objects
in different applications, including 3D faces, a variety of mathematical representations and techniques
have been suggested in the literature. The difficulty in analyzing shapes of objects comes from the fact
that: (1) Shape representations, metrics, and models should be invariant to certain transformations. For
instance, rigid motions and re-parameterization of facial surfaces do not change their shapes, and any
shape analysis of faces should be invariant to these transformations. Several tools have been proposed

in our framework including (1) interpolating between 3D facial shapes using geodesics on manifolds;
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(2) measuring distances between shapes (length of geodesics); (3) averaging a set of shapes to define
sample means and statistical models on their tangent spaces. These ideas have been applied to 3D
face recognition under challenging variations such as expressions, occlusions, and pose variations (Drira
et al., 2010a, 2013a). Here, facial surfaces are parametrized as collections of curves are elements of an
infinite-dimensional manifold as described earlier. This methodology have been also successfully applied
to expression analysis from 3D static faces (Maalej et al., 2010, 2011). Here, shape analysis of local facial
patches (local surfaces around pre-defined landmarks) is used to capture and learn deformation patterns
for each class of expressions. Taking another direction, we have proposed in (Berretti et al., 2011) to use

SIFT feature descriptors of depth images around keypoints to perform 3D facial expression recognition.

Shape Analysis of Dynamic (4D) Faces — With the advancement in 3D imaging technologies, it
is possible nowadays to capture dynamic flows of objects for the purposes of merging them or making
analysis of their dynamics (motions). To reach the latter goal, an accurate dense registration of meshes
(frames) across time is important. One basic idea to capture facial deformations across 3D video se-
quences is to track mesh vertices densely along successive 3D frames. Specifically, in comparing shapes
of faces, it is important that similar biological parts are registered to each other across different faces.
Furthermore, it is important to use techniques that allow a joint registration and comparisons of surfaces
in a comprehensive framework, rather than in two separate steps. These two issues — invariance and
registration — are naturally handled using Riemannian methods where one can choose metrics that are
invariant to certain transformations and form quotient spaces (termed shape spaces) by forming equiva-
lence classes of objects that have the same shape. The elastic Riemannian metric that we used provides
a nice physical interpretation of measuring deformations between facial curves using a combination of
stretching and bending. We have introduced in (Drira et al., 2012, Ben Amor et al., 2014a) a novel
method to capture densely and faithfully the facial deformations, grounding on Riemannian geometry,
called Dense Scalar Fields (DSFs). The elastic deformations are accurately captured by the DSF fea-
tures and used for expression classification. The main motivation of using a Riemannian approach is to
perform registration that matches corresponding anatomical features, and obtain deformation fields that

are physically interpretable.

Learning Geometric Features for Classification — In this part of our work, we utilize ideas from
two growing but disparate fields in computer vision — shape analysis using tools from differential geometry
and Machine Learning techniques — to learn the geometric features for classification tasks. For example, in
(Ballihi et al., 2012a,b) we have used the Adaboost algorithm to select and highlight salient geometrical
facial features that contribute most in 3D facial biometrics. Firstly, a large set of geometric features
(curves) are extracted using level sets (circular curves) and streamlines (radial curves) of the Euclidean
distance functions of the facial surface; together they approximate facial surfaces with arbitrarily high
accuracy. Then, we used the shape analysis techniques in order to measure shapes difference and capture
their deformations that are fed up to the Boosting step. A second idea was to derive from the geometric
features Euclidean representations, then apply Machine Learning algorithms to perform face classification.

For example, the Dense Scalar Fields are the magnitude of the shooting vectors (elements of different
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tangent spaces), which bring their initial representation to an Euclidean vector space. Thus, applying
traditional classification algorithms (Random Forest, Hidden Markov Models, Support Vector Machines,
etc.) for face classification become possible. These ideas have been tested in facial expression recognition
(Maalej et al., 2011, Ben Amor et al., 2014a) and more recently in soft-biometrics estimation (Xia et al.,

2013a, 2014a), such as gender classification and age estimation.

Manuscript Organization

After this executive summary of the habilitation contributions, Chapter 2 describes scientific challenges
of 3D face analysis and provide a brief review of modern shape theory with an essential background of
shape analysis of landmark-based representations and continuous parametrized curves. It also details our
methodology for shape analysis of 3D faces and shows our practical and unified computing framework.
Chapter 3 targets our first application, 3D face recognition under pose, expression and occlusion varia-
tions. In Chapter 4 we explore the role of shapes in facial expression analysis and recognition, from static
or dynamic data. We present in Chapter 5 our third application related to soft-biometrics estimation
using Morphology-inspired geometric descriptions. Finally Chapter 6 presents our current research and

some perspectives for future directions.
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Chapter 2

Shape Analysis on Riemannian
Manifolds

The goal of this chapter is to provide a brief literature review and essential theoretical aspects required
to introduce our contributions in 3D shape analysis. We will start by reviewing some pioneering work
from the literature related to modern shape theory ranging from landmarks (a dataset of registered
anchor points), in particular the Kendall’s shape analysis methodology, to landmark-free geometrical
representations, including 3D continuous curves. Then, we will introduce the geometrical shape analysis
framework grounding on Riemannian geometry proposed in our research for 3D shape analysis. In
particular, we will emphasize on two key ideas — (1) the mathematical representation of the studied
shapes, and (2) the geometric tools defined on the space of these representations for the purposes to
measure distances between shapes, interpolate between them, quantify their shape difference, estimate an
average shape as well as estimate the shape variability within a class of shapes. One important difficulty
to lead shape analysis is that the study of the representations involves non-linear spaces (i.e. not vector
spaces), thus tools commonly used to process the shapes are not valid. For that reason, shape analysis
often implies Differential Geometry to study curved spaces formed by shape representations and to
develop appropriate tools to resolve the tasks above-cited. Another important fundamental aspect which
has emerged is to consider the variabilities induced by the transformations such as rotations, translation,
scaling, and deformations (diffeomorphisms) as actions of certain groups on the space of representations.
Thus, the study of the groups and their actions which involves knowledge in Group theory, is required
to conduct transformation(s)-invariant shape analysis. Later, through this habilitation, we will discuss
the benefits of the geometric shape analysis methodology and will provide some illustrations involving

3D face analysis applications.

Recall that the aim of shape analysis is to develop mathematical descriptions of shapes, so that shapes of

objects can also be measured and quantitatively compared. In particular, goals of shape analysis include:
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%+ Quantifying similarity (or difference) between shapes — The space of shape descriptors
is equipped with a sort of distance function d. This function measures the difference between
shapes, enabling us to make statements such as shape z is more similar to y than to z (formally,
d(z,y) < d(z,z)).

% Finding the most efficient way to deform one shape into another — By viewing shapes as
elements of a given shape space, it is often possible to define paths (curves) on that shape space
connecting two arbitrary shapes. Minimal curves (in term of length) provide the most efficient way
to deform one shape into another and can be seen as an interpolation between these shapes. This
needs first algorithms to produce dense correspondence between the shapes that seek to optimally

register them.

% Defining a mean shape to represent a shape class — Given a set of shapes, points of the shape
space, one seek here to define a sample representative mean shape of that class. As shape spaces are
curved spaces, we need to use appropriate approaches from differential geometry involving tangent

spaces to design algorithms to estimate a sample mean.

% Shape classification — Suppose we have a database of previously-observed shapes from each of
several different classes. Given a test shape, we would like to determine which of these classes the
test shape most likely belongs to. In classification tasks, it is often useful to define probability

densities of shapes given a mean shape and a set of training samples.

Thanks to tools from Differential Geometry, achieving the goals above-mentioned become possible. In
the following sections, I shall review essential concepts and related methods from state-of-the-art which
offered elegant theories and computational algorithms for shape analysis. From this point-of-view, my
research is indebted to the seminal work of D.G. KENDALL (Kendall, 1984) and his colleagues (Dry-
den and Mardia, 1998) on statistical shape analysis of landmark-based representations, the work of U.
GRENANDER on shape theory formulation (Grenander, 1993), and the recent work of A. SRIVASTAVA
and his group in elastic shape analysis of continuous curves in R™, in particular (Klassen et al., 2004),
(Joshi et al., 2007), and (Srivastava et al., 2011). I should also cite the work conducted in M. DAOUDI’s
group in the field of 3D face recognition using iso-level curves (Samir et al., 2006, 2009), before I joined
his group and get involved in the research on that topic. Next section will provide a brief literature

review of 3D face analysis as a particular challenging case of 3D shape analysis.

2.1 3D Faces, Particular 3D Shapes

The exploitation of the 3D shape of the face rather than its appearance with definition of innovative
algorithms for 3D face matching has been a growing field of research in recent years. In addition to

face recognition, many applications have been targeted as facial expressions analysis and Action Units
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detection, and soft-biometrics estimation (gender, ethnicity and age). The up-to-date list of the solutions
proposed can be derived from the survey of (Bowyer et al., 2006a) and the literature reviews of (Drira
et al., 2013a)(Ben Amor et al., 2014a)(Xia et al., 2014b). A collection of 3D face data sets have also been
made available, thus providing the opportunity to have fair comparison between different solutions. The
Face Recognition Grand Challenge (FRGC) initiative, directed by NIST, provides common data sets to
be used as a reference for training (FRGCvl) and evaluation (FRGCv2) ; a 3D face recognition contest
was launched in 2005, with the final results published in 2006 (Phillips et al., 2005). Since then, several
3D face recognition approaches have been developed. In the same direction, some research groups are
interested on performing facial expression recognition from 3D still images (Wang et al., 2006a)(Berretti
et al., 2011)(Fang et al., 2011)(Gong et al., 2009a)(Le et al., 2011)(Mpiperis et al., 2008a)(Tang and
Huang, 2008a) and very recently from 4D face sequences (Sun et al., 2010a) and (Sandbach et al., 2012a).
Thanks to the publicly available databases such as BU-3DFE and Bosphorus for static analysis and BU-
4DFE for dynamic analysis, many research groups have investigated the problem with the assumption
that the 3D facial geometry could be more informative (in terms of deformations) that planar images,

thus their use can achieve better performances as demonstrated in (Sandbach et al., 2012a).

Canonical forms Iso-level Curves and Stripes
(Bronstein et al., 2005, 2007) (Samir et al., 2006, 2009) (Ben Amor et al., 2009)
(Drira, 2009) (Ballihi et al., 2012)
Elastic Radial Curves \ / (Berretti et al., 2010)
(Drira et al., 2013)
(Ben Amor et al., 2014) Isometric deformations Non-rigid Registration
(Xia et al., 2014) | TPS (Lu et Jain, 2008)
Deformable Models ' FFD (Sandbach et al., 2012)
Annotated Deformable Model 3D/AD Face Analysis Rigid Registraﬁon

(Kakadiaris et al., 2007) (Passalis et al., 2011)
Model Adaptation and Vertex Tracking
(Sun et al., 2010)

ICP (Ben Amor et al., 2006)
(Faltemier et al., 2006)

. Al t al., 2008
Range image Features (Alyuz et a )

LBP, LCP, LNP, Spherical Harmonics, Princi | C Analvsi
Wavelets, Shape Index, rincipal Component Analysis

(Li et al., 2014) (Huang et al., 2014) (Colombo et al., 2013)

FIGURE 2.1: Literature review of 3D face analysis approaches for recognition, expression recognition and
soft-biometrics estimation.

Show in figure 2.10 is an overview of related approaches used in different applications, in particular face
and facial expression recognition. The fundamental ingredient of these approaches (performing on static
or on dynamic 3D data) is the facial matching (or correspondence). For example in face recognition it
is important to match accurately different anatomical parts of the face before using a defined metric to
derive a dissimilarity measure between the face (Bronstein et al., 2005a, 2007a). This step is also very
important to achieve dynamic analysis (Sun et al., 2010a) (Sandbach et al., 2012b). With the definition
of an appropriate metric, this is the most important step in 3D facial shape analysis because of the

multiple variabilities exhibited by the facial surface,
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Pose variations (missing data) Facial expression variations Internal and External occlusions

FiGURE 2.2: Different challenges of 3D face analysis: Pose variations, deformations caused by the ex-
pressions, occlusions, missing data, etc. (these examples are taken from the Bosphorus dataset).

% Facial Expressions induce non-rigid (often elastic) transformations to the facial surfaces (center of
Figure 2.2). One seek here to use metrics suitable to compare facial surfaces modulo such transfor-
mations. An assumption which states an approximation of the facial deformations to be isometric
under the intrinsic surface metric has been first proposed in (Bronstein et al., 2005b)(Bronstein
et al., 2007a) and considered by other groups (Samir et al., 2009)(Ben Amor et al., 2009) using
iso-level curves and (Berretti et al., 2010a) based on iso-stripes, to handle the deformation problem.
Another direction consists to use Deformable Face Models as illustrated in (Kakadiaris et al., 2007)
(annotated deformable model) and (Sun et al., 2010a) (Model Adaptation and Vertex Tracking)
to perform facial registration. The use of existing solution for non-rigid registration such as the
Thin-Plate Splines (TPS) in (Lu et al., 2006a) and the Free-Form Deformation (FFD) in (Sandbach

et al., 2012b) algorithms is explored to perform an accurate registration.

¢ External Occlusions result in external parts which will over the facial mesh (the right part of
Figure 2.2). One seek here to first remove the external occlusions which results in missing data,
then apply one of the following strategies, (1) tolerate the missing data using local approaches
(Mian et al., 2008)(Huang et al., 2011) or region-based approaches (Faltemier et al., 2008), or (2)
complete the missing data using generative statistical models (such as Gappy-PCA applied on range

images, as proposed in (Colombo et al., 2009)) then perform the analysis.

% Head Pose Variations induce self-occlusions which results in missing data on the facial surface
and luck of matching between the faces (left part of Figure 2.2). A rough registration step is

necessary to perform face comparison (Ben Amor et al., 2006b)(Lu et al., 2006a).

Accordingly, several works have investigated the problem of face analysis using static and dynamic 3D
data with fundamental problems of invariance and registration. From the description above, the proposed
approaches tackle one of the challenging problems. Abundant works have been proposed for non-rigid
registrations of facial surfaces, and others have been oriented to handle external occlusions or significant
pose variations. In this habilitation, we propose a novel methodology which can handle the above-cited
challenges under a unified Riemannian framework. As we will illustrate later, the — invariance and
registration — problems are solved jointly (in the same step) using an elastic model suitable to handle

the deformations. This framework allows also for formal statistical inferences, such as the estimation of
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missing facial parts using Principal Component Analysis on tangent spaces and computing average shapes.
These tools are useful in data completion and hierarchical clustering for efficient recognition. Facial
deformations are captured using the shooting directions (elements of tangent spaces of the underlying
manifold) computed between faces and serves to classify the facial expressions. Lastly, Morphology-
inspired perspectives are extracted using the same Riemannian framework to perform soft-biometrics
estimation and study the correlation between them. Although the ideas of using tools from Differential
Geometry and Machine Learning are disjoint, and rarely used together, we have successfully used them

to learn geometric features for classification.

2.2 Literature Review on Modern Shape Theory

Shapes of natural or man-made objects extracted from imaged scenes are important cues used in de-
tection, recognition, retrieval, clustering and classification. It points out the external form of someone
or something as produced by their outline and is usually viewed as a set of landmarks or continuous
boundary. A formal and intuitive definition of shape has been introduced in (Kendall, 1984) then in
(Dryden and Mardia, 1998) and considered later by many researchers in this field:

Shape is all the geometrical information that remains when location, scale and rotational effects are

filtered out from an object (definition taken as is from (Dryden and Mardia, 1998)).

This topic is not new!, that is, the biologist D’ARCY W. THOMPSON (Thompson, 1917) have proposed
theories in geometric species warping, which have been presented in his book On Growth and Form.
Thompson explored the degree to which differences in the forms of related animals could be described
by means of relatively simple mathematical transformations (Thompson, 1917). Thompson essentially
applied the idea of morphing to biological structures, whereby he plotted the contour landmarks of

various like-species and generated deformed grids based on the results.

The seminal work of Kendall (Kendall, 1984) (and later of (Dryden and Mardia, 1998)) and Bookstein
(Bookstein, 1986) resulted in elegant and comprehensive statistical shape analysis theory, that influ-
enced the modern theory of shapes and inspired many researchers with the introduction of methods and
techniques derived from differential geometry. Herein, shapes are represented by sets of ordering land-
mark points and their statistical variability imposes to deal with a set of Euclidean shape-preserving
transformations such us scaling, translation, and rotation. Starting with this space, Kendall method-
ically and rigorously proceed to remove variability due to translation, rotation, and (optionally) scaling
to arrive at their space of shape representations, which is the space of orbits under the action of the

rotation group. He also equipped this orbit space with a Riemannian metric, making possible to quantify

!This review cannot claim to provide an exhaustive account of the subject. Related theory and references listed in this
section mostly rely on the author’s view of the field. We encourage the reader to refer to the nice and comprehensive survey
written recently by L. YOUNES in (Younes, 2012) for a more complete picture.
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shape divergences (geodesic distance) and to provide geodesics between shapes. The notion of geodesic
distance is a basic tool for statistical shape analysis. Later, in (Dryden and Mardia, 1998) the authors
have discussed planar Procrustes analysis to highlight the main components of shape analysis. They

have defined tangent-space probability models to Kendall’s shape manifolds.

From a similar point-of-view, Grenander’s shape theory formulation (Grenander et al., 1991) viewed
continuous shapes as points on an infinite-dimensional, differentiable manifold. The variations between
shapes are modeled by actions of Lie groups on this manifold. Low-dimensional groups, such as rotation,
translation and scaling, change the object instances keeping the shape unchanged, while high-dimensional
groups (diffeomorphisms) smoothly change the object shapes (Younes, 1998). This theory proposed to
view the set of shape representations (the shape space) as quotient of the pre-shape space, obtained
by modding out shape-preserving transformations. The idea is to assume that there is a template
object, which represents the reference shape. Then, the variability of the shape is analyzed through the
deformations of this reference shape towards the actual observations: a shape difference is encoded by
the transformation that deforms one to reach the other. In (Grenander et al., 1991), the authors used
Markov models to represent the boundaries of non-rigid objects. They demonstrated how these models
can be used to detect objects in noisy images. By using deformable templates (Grenander, 1993) with
shape deformations modeled as action of diffeomorphisms, (Basri et al., 1998) described how to measure
similarity between objects in terms of the amount of stretching and bending necessary to turn the
shape of one object into the shape of another one. Work toward elastic shape analysis (using elastic
models) has been carried out by L. YOUNES in (Younes, 1998) followed by (Michor and Mumford,
2003) and (Mio et al., 2007), where some shape descriptors and metrics were derived. The key idea in
elastic analysis is that the mapping is nonlinear, i.e. points that are matched together are at unequal
distances from their origins. Such a matching can be considered as an elastic matching, as one curve has

to (locally) stretch, compress and bend to match the other.

Modern vision problems require a unifying framework for the statistical study of shapes and the devel-
opment of computational algorithms. This demand has spawned numerous studies of shapes in recent
years. For example, (Klassen et al., 2004) introduced a representation for planar curves parametrized by
arc-length in which each curve is represented by its angle function 6(t), defined as the elevation angle of
the tangent vector of the curve at ¢ (values are chosen so that 6 is continuous). This representation is
invariant to translation and reparametrization, and can be made rotation-invariant by vertically shifting
each angle function so that it has an average value of m. However, since all curves are required to be
parametrized by arc-length, it is not possible to reparametrize curves to improve the registration be-
tween them. They applied this framework to statistical modeling and analysis using large collections of
shapes (Srivastava et al., 2005). Other parametric shape analysis frameworks do allow the curves to be
reparametrized; these are referred to elastic shape analysis frameworks, since they model deformations
as combinations of bending and stretching. Mio et al. (Mio et al., 2007) used a parametric curve repre-
sentation along with an elastic metric obtained as a weighted combination of stretching and bending

energies. A general discussion of several classes of metrics on the space of smooth planar curves modulo
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reparametrization that can be introduced for this purpose can be found in (Michor and Mumford, 2007).
More recently, (Joshi et al., 2007, Srivastava et al., 2011) presented a special representation of curves,
called the Square-Root Velocity Function (SRVF), under which a specific elastic metric becomes an L2
metric and simplifies the shape analysis. The later family of approaches will be discussed in detail in
Section 2.4. Before coming to them, I shall present in the Section 2.3 the Kendall shape analysis approach

related to registered landmark representations.

When the state-of-the-art on shape analysis of landmarks configurations and curves (1D-functions, 2D-
curves (planar), ..) is now well established, there is nowadays a new trend to shape analysis of surfaces.
The main difference with continuous curves is that when the arc-length parametrization is a natural
choice to impose an "order” on curves, surfaces are completely devoid of order. So, one should first
impose a parametrization then move to the shape analysis task. It is well-known that the main difficulty
in 3D shape analysis is the registration of vertices across the 3D meshes before their comparisons. In
addition, the analysis methods should achieve desired invariance (which is closely related to the chosen
metric) to transformations such as rigid motions (rotations, translations and global scaling) and to re-
parameterizations (deformations). Some recent work studied shape spaces of parametrized surfaces and
the invariance to rigid transformations and change of parametrization (Bauer and Michor, 2011) and
(Kurtek et al., 2012).

Because of the difficulty of the over-mentioned problems, our focus was directed to facial surfaces and
all the variabilities than are able to exhibit. We can cite the head pose variations which results in
rigid transformations (mainly rotations) and missing data due to the self occlusions. Also, the facial
expressions which non-rigidly deform the surface and some times change its topology (when the mouth is
open for instance). When moving our faces in front of the 3D camera, it introduces translations, scaling
and spatial resolution changes. All these changes makes the problem difficult and conventional tools are
no more able to handle all the challenges in one step. For example, the well-known Iterative Closest

Point algorithm (Besl and McKay, 1992) works only for rigid surfaces thus do not tolerate deformations.

Our idea is to represent the facial surfaces by collections of curves. The facial curves have a fixed
ordering and only one-dimensional diffeomorphisms are needed for their registration. One can view our
methodology as a natural transit from curves to 3D surfaces, with applications to 3D face analysis. In
the following sections, we shall give a brief review of Kendall’s approach for shape analysis, then move to
continuous curves. We will close the chapter by presenting our methodology for shape analysis of 3D faces
and the derived tools to register facial surfaces, compare and average them and quantify accurately their
divergence. These tools will be applied in the next chapters for face recognition (Chapter 3), expression

recognition (Chapter 4) and soft-biometrics estimation (Chapter 5).
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2.3 Kendall’s Shape Space and Procrustes Analysis

Kendall’s Shape Analysis approach provides an elegant and comprehensive framework applied to discrete
landmarks representation and provides tools derived from differential geometry which can be used to
come to the shape analysis aims cited above. This framework is useful in many applications involving
registered landmarks configurations, in medical images, animal anatomy understanding, etc. Let X €
R™*3 represents a discrete points set or a configuration of n landmarks in R3 (here, we will restrict ideas
to the landmarks in R3, extension to R¥ is straightforward). Starting with this space, (Kendall, 1984)
methodically and rigorously proceed to remove variability due to translation, rotation, and (optionally)
scaling to arrive at their space of shape descriptors, which is the space of orbits under the action of
the rotation group. They also equip this orbit space with a Riemannian metric, making it possible to
compute distances and geodesics between shapes. More formally, they are interested in analyzing shapes
of the set of configurations X, i.e analysis should be invariant to rotations, translations, and global
scaling. The setup for this shape analysis is described next. To remove translation, a possible common
way is to force X to satisfy: ;' X;; =0, for j = 1,2,3, via translation. Similarly, to remove the
scale we assume that || X|[|r = />, ; XZ]- = 1. Let Cp be the set of all such centered configurations of
n landmarks in R3, i.e. Co = {X € R”3|Y" X, ;=0 for j=1,2,3}.Cois a3(n—1) dimensional

(n—1)

vector space and can be identified by R? . Since in some applications it is required to filter out the

scale variability, the pre-shape space can be defined to be:
C= {X € COH‘XHF = 1}.

C is a unit sphere in R3~1) and, thus, is (3n — 4) dimensional. The tangent space at any pre-shape X
is given by:
Tx(C) = {V € Co|trace(VT X) = 0} .

While the translation and scaling are removed from the representation, one still need to account for
the rotation variability. For any X € C, we define an equivalence class: [X]| = {XO|O € SO(3)} that
represents all rotations of a configuration X. The set of all such equivalence classes, S = {[X]|X € C} =
C/S0(3), is called the shape space of configurations having n landmarks. The tangent space at any shape
[X] is defined to be:

Tix)(S) ={V € Coltrace(VTX) =0, trace(VTXS) =0}, (2.1)

where S is any 3 x 3 skew-symmetric matrix. The first condition makes V tangent to C and the second
makes V' perpendicular to the rotation orbit and, together they force V' to be tangent to the shape space
S.
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TAC) Shige sphere S

[Y] : orbitof Y

[X] : orbit of X

(XY) = L(¥) dg([X1,[Y]) = L(¥)

FIGURE 2.3: A pictorial of the spherical structure of the manifold C, on the left panel, X (green) and Y’

(red) are elements of C the geodesic v connecting them (white path), Tx (C) (green) is the velocity space

of C attached to X, and the shooting vector V obtained by exp)_(1 (Y). The right panel shows the Shape

Sphere with two elements [X] and [Y] on it as well as the geodesic path v (white path) and the distance
between [X] and [Y] on S defined as the length of v, L(7).

In view of the spherical structure of C, the expressions for the exponential map and its inverse are well
known, and can be easily adapted to §. Shown in Fig. 2.3 are the geometry of the pre-shape (left) and
shape (right) spaces with notations that will be detailed by the following items:

1. Exponential Map: The exponential map is given by: for any V' € Tjx; (S),

exppx (V) = |:COS(9)X + SH;(Q)V , (2.2)
0= \/(V, V)= \/trace(VVT) .
2. Inverse Exponential: The inverse exponential map is given by:
expr([Y]) = o (YO* — cos(0)X) (2.3)
() ’ '

0 = cos L ({X,YO*)) = cos ! (trace(X (YO*)T)) .

Here O* is the optimal rotation of Y that aligns it with X: O* = argminpego) X — YO

3. Geodesic Path: Also, assuming standard Riemannian metric on S, the geodesic between any two

configurations [X], [Y] € S is given by [y(7)] where

v(T) = sinl(e) (sin((1 — 7)0) X + sin(70)Y O*) (2.4)

0 =cos '({(X,YO") , (2.5)
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(a) Source (b) Target

(c) Geodesic path connecting shapes of (a) and (b)

FIGURE 2.4: An illustration of face landmarks interpolation under two different facial expressions (a)

Neutral face with extracted 2D landmarks and (b) Surprised face with extracted landmarks. Part (c)

gives the interpolation on the shape space between shapes from (a) and (b) called also geodesic connecting
these shapes.

where O* is the optimal rotation as stated in the previous item. To illustrate this idea, let’s consider
facial images given in (a) and (b) of figure 2.4 and the landmarks extracted on them. One can
apply the interpolation formula given by Eq. 2.4 to these configurations and get the geodesic (1)

at discrete 7, given in panel (c).

. Procrustes Metric: This 6 given in Eq. 2.4 is also the geodesic distance separating [X] and [Y]
(length of the shortest path connecting [X] and [Y]) in the shape space S, i.e.

ds([X],[Y]) = 6 = cos 1 ({X,YO")) .

. Parallel Translation: For shapes [X] and [Y], and a tangent vector V' € Tix(S), the parallel
transport of V' to [Y], along a geodesic connecting [X| and [Y], is given by:

2(V,Y0")

-1 (X +YO"). 2.
X vort YY) 20

Vixi-y =V

. Mean and Median Shape Estimation: Another important tool in shape analysis of landmarks
configurations is computing their statistical summaries. Given a set of landmarks, one would like
to compute their statistical mean as a template for that shape. In case of noisy observations and in
the presence of outliers, one often uses a median instead of the mean to minimize the influence of

outliers. Therefore, we need tools to compute mean and median of sets of shapes under the chosen
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shape metric. For a set of given shapes [X],...,[X}], the two quantities of interest are defined to
be:
k
Mean i = argminst([X],[Xi})Q,
[Xles =1
k
Median m = argminst([X], (X)) -
[(X]eS =1

The formulas for computing the inverse exponential map (exzp~!) and the exponential map (exp)

are given by Eqns. 2.3 and 2.2, respectively.

As stated earlier, the spherical structure of the manifold of interest keeps the methodology quite simple
and computationally efficient. For example, the great circles on the n-sphere (unit sphere in R"*1) are
geodesics of the n-sphere. A great circle is given by the intersection of the sphere with a 2-plane that pass
through the origin in the Euclidean space R™*! and the ending points of the geodesic, which could be
computed explicitly using Eq.2.4. Same comment for the remaining geometric tools as the Exponential
map (exp) and Inverse Exponential map (exp~!) given by Eq. 2.2 and Eq. 2.3, respectively. This elegant
framework and the suite of geometric tools that it can provide can be applied in many applications where

registered landmarks configurations are available.

Shape spaces of landmarks are still an active research topics and are used in large number of applications.
Recently, based on Kendall’s approach, we have proposed in [J1-s] (Major Revisions in PAMI) a set of
geometric tools for shape analysis of skeletal data estimated from the depth information measured by
depth sensors such as the Kinect. The proposed framework studies the problem of classifying actions
of human subjects using depth movies generated by the Kinect or other depth sensors. Representing
human body as dynamical skeletons, we study the evolution of their (skeletons’) shapes as trajectories
on Kendall’s shape manifold. More details bout this work and some on-going research are given in the
last chapter (Chapter 6) of this habilitation as one of our future research directions. The shape theory
of Kendall and his school (Kendall, 1984)(Dryden and Mardia, 1998) meets many of the requirements of
shape analysis, but the use of landmarks is a drawback. Additionally, while the simplicity of the shape
representation is very attractive from a computational standpoint, it often leads to unsatisfactory inter-
polations. More recent shape analysis approaches have been introduced based on Kendall’s achievements

but oriented to continuous parametrized curves which will be the subject of the next section.

2.4 Shape Space of Parametrized Curves and Elastic Analysis

Several applications of shape analysis required modeling the objects of interest as continuous boundaries,
planar curves from 2D imaging and 3D surfaces from 3D imaging, for instance, the contours extracted

from imaged scenes of humans (in this case we talk about silhouettes) or animals or any other general
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object. In medical image analysis, boundaries of anatomical parts can be approximated by surfaces in R3.
More recently, in face analysis one can use rangefinder laser scanner to capture the external boundary
of the frontal part of the human head, the face, and use it in tasks of surgery simulation, realistic face

animation or recognition.

Among the last decades, there has been a considerable effort in shape analysis of continuous objects,
in particular continuous curves. Consequently, an abundant literature on shape analysis of curves rep-
resented mathematically to be elements of infinite-dimensional Riemannian manifolds. (Ghorbel, 1992)
proposed to use Fourier descriptors and moment features for global shape representation. This approach
has been used in (Ghorbel et al., 1996, Daoudi et al., 1999) for motion analysis and in (Ghorbel, 1998)
for image coding. An harmonic analysis (Fourier transform for separating the shape description and the
transformations) allows them to derive the notions of shape, shape space and the invariant feature space
as well as a metric to compare them. (Younes, 1999) defined shape space of planar curves and derive
a Riemannian approach for interpolation and comparison. (Michor and Mumford, 2006) have studied
different choices of Riemannian metrics for comparing shapes of closed planar curves. More recently,
(Mio et al., 2007) have proposed a family of elastic metrics able that account for the stretching and
bending to deform one shape into another. In particular the Fisher-Rao metric (Mio et al., 2007) allows
to keep the distance between shapes unchanged when changing their parametrization. (Joshi et al.,
2007) have introduced an interesting mathematical representation of curve shapes called SRVF (Square
Root Velocity Function). Taking this representation, the elastic metric for comparing shapes of curves
becomes the simple L?-metric, as shown in (Srivastava et al., 2011). This point is very important as it
simplifies the analysis of curves, under the elastic metric, to the standard functional analysis. As many
contributions introduced in this habilitation build on the Square Root Velocity (SRV) framework,
I shall briefly recall ideas and properties of such representation in shape analysis of curves. Then, in

section 2.5, we will describe our 3D shape analysis methodology applied to facial surfaces.

2.4.1 The Square Root Velocity (SRV) Representation

Let 8 : I — R3, represent a parameterized smooth curve, where I = [0,1]. Note that the set of all such
curves is the Hilbert space L?(I,R?) or simply L2 Given a function 3, let ||3]| = 1/ [; |8(t)|2dt its L2
norm?. If 51 and By are two arbitrary elements of .2, then we can compute the distance between them
given by ||f1 — f2||. However, the distance value can vary with the parametrization function, so that
|81 — B2l # ||froy —Baox| (y: I — Iisa re-parameterization function and let T' be the set of all
such functions), which has deep repercussions on shape analysis. To handle this issue, in stead of using
B, (Joshi et al., 2007) proposed to represent it mathematically using the Square Root Velocity Function
(SRVF) given by,

a(t) = B(1)// 1B, (2.7)

*From now, we will use | - | to denote the standard Euclidean norm in R* and || - || to denote the L*-norm.
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q is a special function of § that simplifies computations under the elastic metric introduced in (Mio et al.,
2007), as we will show later. More precisely, as shown in (Srivastava et al., 2011), the elastic metric for
comparing shapes of curves becomes the simple L?-metric under the SRVF representation. Furthermore,
under the L2-metric, the group of re-parametrization acts by isometries on the manifold of ¢ functions,
which is not the case for the original curve 3, so that we have ||g1 — q2|| = ||g1 0y — g2 07y]|. Also note that
if we are given g € IL?(I,R3), there exists a curve 3 (unique up to a translation) such that the given ¢ is

the SRV function of that curve. This curve can be obtained using the equation: 5(t) = [; q(s)|q(s)|ds.

2.4.2 Pre-shape Space of SRV Functions

Consider the space C = {q: I — R3| ||q|| =1} C L2(I,R3), be the pre-shape space of such representa-
tions. C is a space of shape descriptors which are invariant with respect to translations and scaling, that
is, if two curves differ only by a scaling or a translation, then both of these curves will have the same
representative in C. Because the ¢ function involves the first derivative (ﬁ ), it is translation-invariant, but
still varies under scaling, rotations, and reparametrizations. It is made scaling invariant by first scaling
all the ¢ functions to unit length (||q|| = \/f[ lq(t)|?dt = \/f[ |3(t)|dt = L(B) = 1). With the L2 metric

on its tangent spaces, C becomes a Riemannian manifold. However, C is called a pre-shape space because

curves that differ only by a rotation or a reparametrization will still have different representatives in C.
Now, that we have identified the pre-shape space, C sub-manifold of L2, the tangent space at a point
q € C is the set of all vectors which are orthogonal to ¢, T,(C) = {v € L*(I,R?)|(¢,v) = 0}. Each
tangent space is equipped with the usual L.? inner product, and the geodesics on C are the great circle
paths (where a great circle path is the intersection of C with a two-dimensional subspace of I.?). The

geodesic path between any two points p, g € C is given analytically by, ¥ : [0,1] — C, where

P(t) = — (sin((1 —t)8)p + sin(6t)q) , (2.8)

and the geodesic length (the geodesic distance) is given by,

de(p,q) = L(v) = 6 = cos™ ' ({p, ). (2.9)

Figure 2.5 illustrates the spherical structure of the preshape space C of the SRV functions. Given two
elements ¢ and g2 the geodesic connecting them is given explicitally by the parametrization of the minor-
arc of the great circle passing throw the center of the hyper-sphere, ¢; and ¢o. The shooting vector (or
the initial velocity vector) v at ¢; pointing towards g2 along the geodesic ¥ connecting ¢; and ¢z is given

by @b(f)lt:o, the first derivative of ¥ with respect to the parameter ¢ taken at ¢t = 0.
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Preshape sphere C

d.(gy, a;) = L(Y)

FIGURE 2.5: Geometry of the pre-shape space C, q; and ¢y are elements of C, ¥(t) denote the geodesic
connecting ¢, and g and T, (C) is the tangent space to C on ¢i.

The exponential map (exp : Ty, (C) — C) and its inverse (exp~! : C — Ty, (C)) are also given with explicit
formulas (similarly to the Kendall’s shape space of landmarks configurations, presented in Section 2.3)

and could be easily extended to the shape space that will be presented in the next section.

2.4.3 Shape Space as Quotient Space and Elastic Metric

To study the shapes of parametrized curves in a rotation and reparametrization-invariant fashion, one

should identify all rotations and re-parameterizations of a curve as an equivalence class which is,

[q] = closure{,/4(t)Oq(y(t))|O € SO(3), ~ €T} (2.10)

Here I' denote the group of orientation-preserving diffeomorphisms of I to itself (representing reparametriza-
tions), and SO(3) denote the group of orthogonal 3 x 3 real matrices with determinant +1 (representing
rotations in R3). The set of such equivalence classes, denoted by S = {[q]l¢ € C} is the shape space
of SRV functions defined in R?. S is a metric space with the metric inherited from the larger space C.
To obtain geodesics and geodesic distances between elements of S, one needs to solve the optimization

problem:

(0",v") = argmin  de(q1,V7O(g2 07))- (2.11)

(0,7)€50(3)xT
While for a fixed rotation O € SO(3), the optimization over I' is done using the Dynamic Programming
(DP) algorithm (Bellman, 1957), for a fixed v € T', the optimization over SO(3) is performed using SVD

(Singular Value Decomposition). By iterating between these two steps, we can reach a solution for the
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joint optimization problem. Let ¢3(t) = \/3*(t)O*q2(7*(t))) be the optimal element of [g2], associated
with the optimal rotation O* and the best re-parameterization v* of the second curve, then the geodesic

distance between [¢1] and [¢2] in S is given by (Eqn. 2.12):

ds([q1], la2]) = de(q1, 43) (2.12)

The geodesic path connecting [g1] and [g2] elements of S is given by (Eqn. 2.8), with a difference that g3
replace ¢o. Invariance to rotation and reparametrization is achieved by modding out the actions of SO(3)
and the group I' of orientation-preserving diffeomorphisms. Both of these group actions are isometric
with respect to the L2 metric, which gives rise to a distance function on the space of orbits. Let us recall
how the actions of the groups I' and SO(3) (and SO(3) x I') act on the preshape space. Details and
proofs are given in (Srivastava et al., 2011) and (Robinson, 2012), we briefly recall some of them here for

convenience.

e Action of SO(3) on C — the rotation group SO(3) acts from the left on C by multiplication. This

action is isometric; for any ¢1,¢2 € C and any O € SO(3), we have

001.00) = [ (O(t), O d (2.13)
= [ ta.e0) d (2.14)
= (q1,q2)

The second equality comes from the fact that SO(3) acts by isometry on R3. The following equality
is trivial: ||Og1 — Ogal| = |1 — ¢2]l-

e Action of I' on C — The reparametrization group I' acts on C from the right as follows: for v € T’

and ¢ € C,

(¢,7) = VA(go) (2.15)

The action is defined in this way so that acting on an SRVF is equivalent to reparametrizing the

corresponding curve. Now, to see that I' acts by isometries, let ¢q1,q2 € C, and let v € I'. Then
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(o)) = [ (VIahOFeto) d (2.16)
= [ (@b a6w) Vi (217)

I

= [ @®.w) @

(a1, q2)

Here also, we can derive the following equality [|(q1,7) — (g2,7)| = |lg1 — ¢2||- Another useful fact
is that these two actions commute: reparametrizing and then rotating gives the same result as

rotating and then reparametrizing. Let ¢ € C, O € SO(3), and v € T, then,

0(q,7) = O(\/4(g 7)) = V3((Ogq o)) = (Og,7) (2.18)

If ¢1 and g2 are SRVEFEs of two curves 1 and (39, respectively, then it is easy to show that under the

L? norm, [lq1 — g2]| = [IV3(q107) = v/F(azo9)||, for all y € T, while [|81 = Ba|| # [|(Broy) — (Bzo9)],
in general. This is one important reason why SRVF ¢ is a suitable representation of curves than 8

for shape analysis.
Shape sphere S

[9,] : orbit of g, [9,] : orbit of g,

FIGURE 2.6: Shape space S = C/SO(3) x I' with [¢1] and [gz] elements of S (orbits of shapes on C).

g5 = \/7*O*qa 0ov* where O* € SO(3), ~* €T are the optimal rotation and the best reparametrization,
respectively. 1(t) denote a geodesic connecting [g;] and [g2].

e The Shape Space S — The feature space of shape representations will be a sort of quotient of C
under the actions of SO(3) and I'. We then define the shape space as the set of all such closed-up
orbits (as defined previously in Eqn. 2.10) by S = {[¢]|¢ € C} = C/SO(3) x . Shown in Figure 2.6

a pictorial illustrating the space space S, two orbits [¢1] and [¢2], a geodesic connecting them ).
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e Metric on the Shape Space S — To define a distance between two closed-up orbits [q1], [¢2] € S,
one simply take the smallest distance between any pair of representatives. Formally, let [¢1], [¢2] € S,

the metric dg is given by Eqn. 2.19:

ds(lq1), [e2]) = arginf  de(v, w)
”G[Q1LWE[CI2]

= arginf dC (Ol ((]17 71); Ol (q27 ’72))
01,02630(3),71,’}/2€F

= arginf  de(q1,0(q2,7)) (2.19)
0€50(3),veT

The last equality follows from the fact that both group actions are isometric. Recall that our elastic

matching problem is that of finding a pair (4, O) subject to,

(5:0)= _angint [ lla(®) - O3 (aar (o)) P (220)

~€eT,0€S0

e Optimal Matching — Find an optimal re-parametrization between ¢ functions, when scaling,
translation and rotations are filtered out, can be viewed as an optimal matching between the
corresponding parametrized curves [ throw their SRV functions. In other worlds, the problem
of matching 51 and (3 is turned out to find an optimal re-parametrization between [¢1] and [g2],

respectively their SRVF which will realize the minimum distance between the orbits.

(a) Source (b) Registration result (c) Target

AN

(d) Geodesic path connecting shapes of (a) and (b)

FIGURE 2.7: An example of optimal matching of two parametrized curves of hands under deformations.
One needs a combination of bending and stretching to match anatomical parts as the tips of the fingers
and the valleys between them.
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To illustrate the key idea behind the theoretical framework, presented above, for shape analysis of
parametrized curves (in R?), we consider in figure 2.7, two hands boundaries ((a) and (c)) extracted
from images. Panel (b) illustrates a dense registration of their shapes, and panel (d) draws a geodesic
path connecting them. One should note that this result is important as it allows to (jointly) compute

the optimal registration and the distance between shapes.

As stated previously, shape analysis of continuous curves is now rich and one can develop techniques
which achieve invariance to the standard transformations (rigid and re-parametrization). In many other
applications involving 3D imaging technologies, an outstanding need is observable for developing suitable
tools and computational strategies for 3D shape interpretation. Nowadays, this need is growing in
computer vision due to the huge advancements in cost-effective 3D sensors. In stead of curves, the
output data is three-dimensional and are represented as depth-maps, point clouds or 3D meshes. In the
following section, I shall describe our contributions to 3D face shape analysis through a multiple curves
approximation. Thus our contributions could be viewed as a transit step to 3D shape analysis which
provide a comprehensive framework to compute geodesics and distances, achieve accurate registration

between facial surfaces, develop statistical models for 3D face shape completion, etc.

2.5 Shape Analysis of Facial Surfaces

Understanding human faces by computers is still an active research area and find its application in many
applications ranging from face detection to emotion interpretation. Classical approaches are based on the
face appearance extracted from 2D still images (and videos). As 2D images are the result of the camera
projection of the scene, the 3D geometry of the face is lost. Few works emphasize on the role of 2D face
geometry based on the Active Appearance Model or the Active Shape Models. With the advancement in
3D imaging systems (mainly optical), there has been an increasing effort (since 2005-2006) to 3D faces.
This has been marked by the release of the Face Recognition Grand Challenge dataset (phi) accompanied
with a well-defined evaluation protocol, and the publication of first results using this dataset and other
in-house datasets (Heseltine et al., 2004)(Lu et al., 2004)(Bronstein et al., 2005c¢)(Ben Amor et al.,
2006a)(Samir et al., 2006)(Berretti et al., 2006)(Bowyer et al., 2006a) 3. The aim of the research that
we present here is to introduce relevant tools and computational algorithms for the purpose of shape
analysis of facial surfaces (both static, 3D, and dynamic, 4D) with applications to face recognition, facial
expression recognition and soft-biometrics estimation. In this section, I shall discuss the main challenges
of facial shape analysis and introduce many facets of our contributions to handle these challenges. The
details related to each of the above mentioned applications will be discussed in the next chapters. To
do so, I shall refer to the mathematical background presented in the previous sections to describe the
proposed Riemannian framework for 3D face analysis and its relevant geometric tools used in our target

applications.

3We refer the reader to the next three chapters for a more complete state-of-the-art in each application
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2.5.1 Motivation for Elastic Radial Curves

The changes in facial expressions affect different regions of a facial surface differently. For example, during
a smile, the top half of the face is relatively unchanged while the lip area changes a lot, and when a person
is surprised the effect is often the opposite. If chosen appropriately, curves have the potential to capture
regional shapes and that is why their role becomes important. The locality of shapes represented by facial
curves is an important reason for their selection. The next question is: Which facial curves are suitable
for recognizing people? Curves on a surface can, in general, be defined either as the level curves of a
function or as the streamlines of a gradient field. Ideally, one would like curves that maximally separate
inter-class variability from the intra-class variability (typically due to expression changes). The past
usage of the level curves (Samir et al., 2006, 2009) (of the surface distance function) has the limitation

that each curve goes through different facial regions and that makes it difficult to isolate local variability.

FIGURE 2.8: A smile (see middle) changes the shapes of the curves in the lower part of a the face while
the act of surprise changes shapes of curves in the upper part of the face.

In contrast, the radial curves with the nose tip as origin, that we propose here, have a tremendous
potential. This is because: (i) the nose is in many ways the focal point of a face. It is relatively easy and
efficient to detect the nose tip (compared to other facial parts) and to extract radial curves, with nose tip
as the center, in a completely automated fashion. It is much more difficult to automatically extract other
types of curves, e.g. those used by sketch artists (cheek contours, forehead profiles, eye boundaries, etc);
(ii) Different radial curves pass through different regions and, hence, can be associated with different
facial expressions. For instance, differences in the shapes of radial curves in the upper-half of the face
can be loosely attributed to the inter-class variability while those for curves passing through the lips and
cheeks can largely be due to changes in expressions. This is illustrated in Fig. 2.8 which shows a neutral
face (left), a smiling face (middle), and a surprised face (right). The main difference in the middle face,
relative to the left face, lies in the lower part of the face, while for the right face the main differences lie
in the top half; (iii) Radial curves have a more universal applicability. The curves used in the past have
worked well for some specific tasks, e.g., lip contours in detecting certain expressions, but they have not
been as efficient for some other tasks, such as face recognition. In contrast, radial curves capture the full
geometry and are applicable to a variety of applications, including facial expression recognition; (iv) In

the case of the missing parts and partial occlusion, at least some part of every radial curve is usually
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available. It is rare to miss a full radial curve. In contrast, it is more common to miss an eye due to
occlusion by glasses, the forehead due to hair, or parts of cheeks due to a bad angle for laser reflection.
This issue is important in handling the missing data via reconstruction, as shall be described in chapter
3; (v) Natural face deformations are largely (although not exactly) symmetric and, to a limited extent,
are radial around the nose. Based on these arguments, we present here a novel geometrical representation

of facial surfaces using radial curves that start from the nose tip.

3D Face with open Nosetib 3D Face with closed
mouth 2 mouth
Upper lip
Lower lip

FIGURE 2.9: An example of matching radial curves extracted from two 3D faces of the same person: a
curve with an open mouth (on the left) and a curve with a closed mouth (on the right). One needs a
combination of stretching and shrinking to match similar points (upper lips, lower lips, etc)

Consider the two parameterized curves shown in Fig. 2.9; call them 57 and 2. Our task is to automati-
cally match points on these radial curves associated with two different facial expressions. The expression
on the left has the mouth open whereas the expression on the right has the mouth closed. In order to
compare their shapes, we need to register points across those curves. One would like the correspondence
to be such that geometric features match across the curves as well as possible. In other words, the lips
should match the lips and the chin should match the chin. Clearly, if we force an arc-length parameteriza-
tion and match points that are at the same distance from the starting point, then the resulting matching
will not be optimal. The points A and B on 5 will not match the points A’ and B’ on 35 as they are not
placed at the same distances along the curves. For curves, the problem of optimal registration is actually
the same as that of optimal re-parameterization. This means that we need to find a re-parameterization
function ~y(t) such that the point (5(t) is registered with the point f2(7(t)), for all ¢. The question is
how to find an optimal ~ for an arbitrary f; and B2?7 Keep in mind that the space of all such ~ is
infinite dimensional because it is a space of functions. As described in section 2.4, this registration is
accomplished by solving an optimizing problem using the dynamic programming algorithm, but with an
objective function that is developed from a Riemannian metric. The chosen metric, termed an elastic
metric, has a special property that the same re-parameterization of two curves does not change the
distance between them. This, in turn, enables us to fix the parameterization of one curve arbitrarily

and to optimize over the parameterization of the other. This optimization leads to a proper distance
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(geodesic distance) and an optimal deformation (geodesic) between the shapes of curves. In other words,

it results in their elastic comparisons (refer to section 2.4 for details).

2.5.2 Mathematical Representation of Facial Shape

A facial surface S will be represented by a collection of radial curves that are defined as follows. Although
S is a triangulated mesh, we start the discussion by assuming that it is a continuous surface. Let
{p(®)}2€10.27] denote the collection of radial curves on S which makes angles a with a reference radial
curve. The reference curve on S is chosen to be the vertical curve after the face has been rotated to the
upright position (a« = 0). Figure 2.10 illustrates the 3D facial surface approximation by collections of

radial curves and their pairwise correspondence.

(a)

/ Reference radial curve (b) — Reference radial curves

Radial curves

FIGURE 2.10: (a) 3D face approximation by a collection of radial curves; (b) pairwise correspondence of
the facial curves.

We will use the elastic shape analysis of parametrized curves described in section 2.4 because it is
particularly appropriate in our shape analysis of facial surfaces. This is because (1) such analysis uses
the Square-Root Velocity Function (Joshi et al., 2007) representation which allows us to compare local
facial shapes in presence of elastic deformations, (2) this method uses a representation under which the
elastic metric (Mio et al., 2007) reduces to the standard L? metric and thus simplifies the analysis, (3)
under this metric the Riemannian distance between curves is invariant to the re-parametrization. To
analyze the shape of § = {B(O‘)}[O’QW}, we shall represent each curves $(®) mathematically using the
square-root representation (presented in section 2.4) such as ¢(®(t) = B(O‘) (t)/\/ |6(0‘) (t)] ). Here t is
a parameter € I and |- | is the standard Euclidean norm in R3. Following the over-mentioned shape
representation F = {q(a)}[o’m, facial shapes could be viewed as elements of the Riemannian manifold
M = 8027 Hence, all the geometric tools defined on S are straightforward in M, as we will describe

later.

2.5.3 Joint Shape Registration and Comparison

e Dense Shape Registration — The difficulty in analyzing shapes of objects comes from the fact

that: (1) Shape representations, metrics, and models should be invariant to certain transformations
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that are termed shape preserving. For instance, rigid motions and re-parameterizations of facial
surfaces do not change their shapes, and any shape analysis of faces should be invariant to these
transformations. (2) Registration of points across objects is an important ingredient in shape
analysis. Specifically, in comparing shapes of faces, it makes sense that similar biological parts are
registered to each other across different faces. Furthermore, it is important to use techniques that
allow a joint registration and comparisons of surfaces in a comprehensive framework, rather than
in two separate steps. These two issues— invariance and registration—are naturally handled using
Riemannian methods where one can choose metrics that are invariant to certain transformations and
form quotient spaces (termed shape spaces) by forming equivalence classes of objects that have the
same shape. The elastic Riemannian metric used in this work provides a nice physical interpretation
of measuring deformations between facial surfaces, through the radial curves representation, using
a combination of stretching and bending. Figure 2.11 gives four examples of facial curves matching

under facial expression variations using the elastic model.

FIGURE 2.11: Four examples of facial curves matching results using the elastic Riemannian method.

Figure 2.12 provides an example of facial shapes registration through the radial curves representa-

tion. For better visibility, four different resolutions of the registration result are shown.

e Metric on the Manifold M — To define a distance between two facial shapes Fi, F» € M, one
simply integrate over all « the distance between pairwise-corresponded SRVFEs of the curves on the

faces F1 and Fa, given by :

dp(F1, ) = 02” ds([a\™], [5™]) da (2.21)

where F; = {[qi(a)]ae[o,%r]}’ the set of SRV functions on the face when varying the parameter .

2.5.4 Geodesics and Shapes Interpolation

Since we have deformations (geodesic paths) between corresponding curves, we can combine these defor-
mations to obtain deformations between full facial surfaces. In fact, these full deformations can be shown
to be formal geodesic paths between faces, when represented as elements of M = S%27] According to

the Theorem provided in (Samir et al., 2009) (page 94) adapted to our case, if we are given a path in M
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FIGURE 2.12: Results of the optimal matching (dense registrations) of two facial surfaces of same subject
with different expressions viewed at different resolutions for better visibility.

represented as U : [0,27] x I — M. For each a € [0,27], define (®) : I — S by (®) = ¥(a,t). Then
VU is a geodesic in M if Yo € [0, 27], (@ is a geodesic in S. Thus, the geodesic path between any two
points Fi, F2 € M is given by, ¥ : [0,1] — M, where
1
@O = — (s _ gy, (@) (o)

() = S0 (0] (sm((l 7)0\*)qy " + sin(67)gs ) (2.22)
and the length of the geodesic is (®) = d¢ (qga), qéa)*) = cos™ (< (a), qga) >) These geodesics provide a
tangible benefit, beyond the current algorithms that provide some kind of a similarity score for analyzing
faces. In addition to their interpretation as optimal deformations under the chosen metric, the geodesics
can also be used for computing the mean shape and measuring the shape covariance of a set of faces, as

illustrated later. Figure 2.13 illustrates an example of geodesic path between faces through their radial

curves representations viewed under different view angles for better visibility.

The figure 2.14 illustrates the benefit of use of the elastic model (in the shape space) over the non-elastic
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F1GURE 2.13: An example of geodesic path connecting shapes of 3D faces through the radial curves
representation. The figure shows three different views of the same geodesic.

model (in the pre-shape space) and an Euclidean model (using the ICP algorithm). While, the top panel
(a) shows the shape interpolation for an intra-class example (expressive and neutral faces of the same
person), the second panel shows an inter-class example (faces of different persons). In both examples,
it is clear to note the most natural deformations are exhibited by the intermediate faces (equally spaces
points from the geodesic) of the first path performed in the shape space, using the elastic model. The
remaining paths in the pre-shape space and in the Euclidean space presents less-natural deformations.
Due to the accurate dense correspondence achieved by the elastic model, the first path showed in the
panel (b) of this figure represents the most efficient way to deform the source face to the target face when
keeping the anatomical parts of the faces in the intermediate faces. The application of these ideas will
be shown in Chapter 3 dedicated to 3D face recognition, in which a definition of a metric to compare

faces, is a crucial step in designing face recognition algorithms.

2.5.5 Sample Mean of 3D Faces

As mentioned above, an important advantage of our Riemannian approach over many past work on 3D
face analysis is its ability to compute summary statistics of a set of faces. For example, one can use
the notion of Karcher mean (Karcher, 1977) to define an average face that can serve as a representative
face of a group of faces. To calculate a Karcher mean of facial surfaces {F*, ..., F*} in M, we define an

objective function:
k

Vi M= RYV(EF) =Y du(F,F)?

i=1

The Karcher mean is then defined by:

F = argjrrréi/{l/lV(f).
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(a) Intra-class geodesic paths

b) Inter-class geodesic paths

In Shape space

In Pre-shape space

|ICP-based

In Shape space

In Pre-shape space

ICP-based

FIGURE 2.14: (a) Intra-class deformations achieved from top-to-bottom in the shape space (using the

elastic model); in the preshape space (using an non-elastic model); and in R? using the iterative closest

point algorithm (Besl and McKay, 1992) to align the faces and to establish a dense correspondence using
the closest-point criteria. (b) Inter-class deformations using the three over-mentioned methods.

The algorithm for computing Karcher mean is a standard one, see e.g. (Dryden and Mardia, 1998) and

successfully used in (Drira et al., 2009b) to compute the mean of 3D nasal shapes.
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a) Intra-class Karcher Mean

b) Inter-class Karcher Mean

FIGURE 2.15: Three examples of Karcher means (in red), the first two computes the mean shape of faces
within the same class, the third example shows the result for a set shapes comping from different classes.

This minimizer may not be unique and, in practice, one can pick any one of those solutions as the mean
face. This mean has a nice geometrical interpretation: F is an element of M that has the smallest total
(squared) deformation from all given facial surfaces {F', ..., F*¥}. Three examples of Karcher sample
means for sets faces are given in figure 2.15. On the left the set of faces to be averaged and on the right
(in red) the mean sample shape. When the two first examples illustrate the means of faces taken from
a single class of person but with expression variations, the third example average a set of shapes from

different classes of different age, different gender and different ethnic group.

We shall use this tool in Chapter 3 in 3D face recognition in two tasks (1) Hierarchical clustering of
the gallery for efficient face recognition and (2) design a statistical model for partially-obscured face

completion.

2.5.6 Optimal Deformations (Dense Scalar Fields)

In some applications, it is also interesting to capture accurately the deformations exhibited by the 3D
faces in order to analyze locally the deformations or to track the facial motions. In order to capture

and model the deformations of the face induced by facial movements, we propose to use the same facial



Chapter 2. Shape Analysis on Riemannian Manifolds 34

representation by radial curves and to use tools from differential geometry to effectively capture the
deformations between two arbitrary faces or along a video of dynamic faces. To this end, we propose
to exploit the notion of shooting vector along a geodesic to capture the facial deformations between
facial shapes, end points of a geodesic on M, and derive our Dense Scalar Fields (Drira et al., 2012,

Ben Amor et al., 2014a).

*,

Shape sphere S T 1(C)

FIGURE 2.16: The tangent vector field (in yellow) along a geodesic ¢ and the shooting vector V' (arrow
in black) element of T, (C) at the source point of the same geodesic 1 one [¢1] pointing towards [ga] (or
q1 pointing towards ¢ ).

More formally, for each SRV representation ¢(® of a given original curve 3(® the tangent vector field

on this geodesic is then written as %(;) :[0,1] = T})) (S), and is obtained by the Eqn. 2.23:

(@) _
W _ o (cos((l - T)H)qga) - cos(HT)qéa)*) . (2.23)

The tangent vector field along a geodesic path v connecting ¢; to ¢o is illustrated in Figure 2.16 by

yellow arrows. Knowing that on geodesics, the covariant derivative of its tangent vector field is equal to

0, dqfl(:) is parallel along the geodesic 1(® and one can represent it with %(:K)\T:o without any loss of

information. Accordingly, Eqn. (2.23) becomes at the source point ¢; (7 = 0), Eqn. (2.24):

dyp(@) B gla) () (a) () ()
7|T:o—m(qg — cos(0@))g{*) (61 # 0). (2.24)

Figure 2.16 illustrates the idea to map the two radial curves on the Hyper-sphere C in the Hilbert space
through their SRVFEs ¢; and g9, and shows the geodesic path connecting these two points ¥. The tangent
vectors of this geodesic path represent a vector field whose covariant derivative is zero. According to
this, %’T:O becomes sufficient to represent this vector field, with the remaining vectors obtained by
parallel transport of %‘TZO along the geodesic ¢*. In this way, the vector %]720 represents the dense

deformation field between two given SRVF ¢. and ¢2. Based on the above representation, we define



Chapter 2. Shape Analysis on Riemannian Manifolds 35

the Dense Scalar Fields capable to capture deformations between two 3D faces through their radial

multiple radial curves representation and using the elastic model for shape analysis.

Neutral

FI1GURE 2.17: Deformation Scalar Fields computed between a neutral face of a given subject and the
apex frames of the sequences of the six prototypical expressions of the same subject. The neutral scan is
shown on the left. Corresponding texture images are also illustrated with each DSFs colormap.

A graphical interpretation of this mathematical representation is given in Figure 2.17. This figure pro-
vides the Dense Scalar Fields computed between a neutral face and expressive faces of the same person
exhibiting the six universal facial expressions. The amount of deformation between them can be appreci-
ated in this figure, as each facial expression shows different pattern of deformations. This representation

will be used in Chapter 4 for facial expression classification from dynamic flows of 3D faces.

2.6 Conclusion

In this chapter, we have provided essential theoretical aspects and related literature to our research. We
have started by the Kandall’s shape analysis framework and we have presented Differential geometry
and Group theory tools to remove shape-preserving transformations (scaling, location, rotation and
re-parameterization). Although, the Kendall’s approach is applicable only on shapes with registered
landmarks representation, it provides a comprehensive framework. When moving to continuous (non-
registered) shapes, an additional challenge appears, which is the re-parametrisation. Recent methods,
inspired from the seminal Granender’s shape theory, view the set of shape descriptors (the shape space)
as quotient of the pre-shape space, obtained by modding out shape-preserving transformations. Thus,
viewing smooth changes in shapes as action of diffeomorphisms (or the group of ) is the key idea to to
measure similarity between shapes in terms of the amount of stretching and bending necessary to turn
one shape into another. This latter idea presents the foundations of our research on shape analysis and

comparison of 3D facial shapes. Find jointly an accurate facial surfaces registration trough representation
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by collections of elastic radial curves and return a distance between shapes in terms of the amount of

stretching and bending is one of main contributions of our research.
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Chapter 3

3D Face Recognition

In this chapter! I shall describe our contributions to 3D shape analysis with application to a fundamental
problem in computer vision, Face Recognition. In fact, the head pose variations and the presence of
external occlusions which lead to unregistered and obscured data, as well as the intra-class variations due
to facial expressions, cause enormous variability, making the problem highly challenging. Throughout this
part of the habilitation, 1 shall describe the application of our comprehensive and unified computational
Riemannian framework (presented in Chapter 2) and its ability to cover many facets of 3D shape analysis
where the robustness to the aforementioned variations is our central goal. We propose a mathematical
representation of 3D facial shapes through collections of curves and use elastic shape analysis to develop
a Riemannian framework for analyzing their full shapes. Thus, shapes of 3D faces are viewed as points on
some Riemannian manifolds, and one should define appropriate metrics for shape interpolation, distance
measurement, and so on. I have benefited to conduct this research from many exemplary efforts and
development of elegant and mature methodologies of shape analysis of parametrized curves developed
so far?. From this point of view, my research is indebted to some of these seminal previous works (cf.
(Dryden and Mardia, 1998) or the Kendall’s school, (Klassen et al., 2004), (Srivastava et al., 2011), and
(Samir et al., 2006, 2009)).

I shall emphasize, in particular, on how our facial surfaces representation, along with the defined elastic
Riemannian metric, seems natural for performing, jointly, accurate dense registration (or matching) and
comparison of 3D facial surfaces. Both the robustness (invariance) to variations in shape comparison and
registration are naturally handled using Riemannian methods where the proposed metric is invariant to
certain transformations and form quotient spaces (termed shape spaces) by forming equivalence classes
of faces that share the same shape under shape-preserving transformations. We have adopted an elastic
Riemannian metric which provides a nice physical interpretation of measuring deformations between facial

curves using a combination of stretching and bending (Drira et al., 2013a, 2010b). This latter property

!The content of this chapter is based on our published papers (Ballihi et al., 2012b), (Drira et al., 2013a) and (Drira
et al., 2009Db).
2Refer to the previous chapter for an historical review of this school of shape analysis.

38
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makes the registration of facial surfaces accurate by matching corresponding anatomical features on the
facial surfaces. We have targeted the 3D face recognition problem as first application of the theoretical
and computational framework (Drira et al., 2013a, 2010b), for which interpolation between 3D shapes
through accurate registration, averaging a set of 3D shapes and completion of partially obscured shape
are possible. It is shown to be promising from both — empirical and theoretical — perspectives. In
terms of the empirical evaluation, our results match or improve the state-of-the-art methods on several
prominent databases, each posing a different type of challenge. From a theoretical perspective, this
framework allows for formal statistical inferences, such as the estimation of missing facial parts using
PCA on tangent spaces and average shapes computation. Because of the importance of efficiency when
designing face recognition solutions, we have also introduced two solutions, (1) a feature selection step
using Adaboost algorithm, to select and highlight salient geometrical facial features that contribute most
in 3D face recognition (Ballihi et al., 2012a,b)and (2) an hierarchical organization, a tree-like Gallery
organization of 3D faces. This latter imply comparisons performed only at the nodes of the tree. It has
been explored on 3D facial shapes (Drira et al., 2010c) and 3D nasal shapes (Drira et al., 2009b) for

partial biometrics. To construct such a shape tree one need to be able to cluster similar shapes.

3.1 Motivation and Related Work

Due to the natural, non-intrusive, and high throughput nature of face data acquisition, automatic face
recognition has many benefits when compared to other biometrics. Accordingly, automated face recogni-
tion has received a growing attention within the computer vision community over the past three decades.
Among different modalities available for face imaging, 3D scanning has a major advantage over 2D color
imaging in that nuisance variables, such as illumination and small pose changes, have a relatively smaller
influence on the observations. However, 3D scans often suffer from the problem of missing parts due to
self occlusions or external occlusions, or some imperfections in the scanning technology. Additionally,
variations in face scans due to changes in facial expressions can also degrade face recognition perfor-
mance. In order to be useful in real-world applications, a 3D face recognition approach should be able
to handle these challenges, i.e., it should recognize people despite large facial expressions, occlusions and

large pose variations.

Some examples of face scans highlighting these issues are illustrated in Fig. 3.1. We note that most
recent research on 3D face analysis has been directed towards tackling changes in facial expressions while
only a relatively modest effort has been spent on handling occlusions and missing parts. Although a
few approaches and corresponding results dealing with missing parts have been presented, none, to our
knowledge, has been applied systematically to a full real database containing scans with missing parts. In
this chapter, we adopt the Riemannian framework introduced in Chapter 2, in the process dealing with

large expressions, occlusions and missing parts. Additionally, we provide some basic tools for statistical
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FIGURE 3.1: Challenges of 3D face recognition: expressions, obscured data, pose variations (self-
occlusion) and external occlusions.

shape analysis of facial surfaces. These tools help us to compute a typical or average shape and measure

the intra-class variability of shapes, and will even lead to face atlases in the future.

The task of recognizing 3D face scans has been approached in many ways, leading to varying levels of
successes. We refer the reader to one of many extensive surveys on the topic, e.g. see (Bowyer et al.,
2006b). Below we summarize a smaller subset that is more relevant to our work. Deformable template-
based approaches — There have been several approaches in recent years that rely on deforming facial
surfaces from one into another, under some chosen criteria, and use quantifications of these deformations
as metrics for face recognition. Among these, the ones using non-linear deformations facilitate the local
stretching, compression, and bending of surfaces to match each other and are referred to as elastic
methods. For instance, Kakadiaris et al. (Kakadiaris et al., 2007) utilize an annotated face model to
study geometrical variability across faces. The annotated face model is deformed elastically to fit each
face, thus matching different anatomical areas such as the nose, eyes and mouth. In (Passalis et al.,
2011), Passalis et al. use automatic landmarking to estimate the pose and to detect occluded areas. The
facial symmetry is used to overcome the challenges of missing data here. Similar approaches, but using
manually annotated models, are presented in (ter Haar and Velkamp, 2010, Lu and Jain, 2008). For
example, (Lu and Jain, 2008) uses manual landmarks to develop a thin-plate-spline based matching of
facial surfaces. A strong limitation of these approaches is that the extraction of fiducial landmarks needed
during learning is either manual or semi-automated, except in (Kakadiaris et al., 2007) where it is fully
automated. Local regions and features approaches — Another common framework, especially for
handling expression variability, is based on matching only parts or regions rather than matching full faces.
Lee et al. (Lee et al., 2005) use ratios of distances and angles between eight fiducial points, followed by
a SVM classifier. Similarly, Gupta et al. (Gupta et al., 2007) use Euclidean/geodesic distances between
anthropometric fiducial points, in conjunction with linear classifiers. As stated earlier, the problem of
automated detection of fiducial points is non-trivial and hinders automation of these methods. Gordon
(Gordan, 1992) argues that curvature descriptors have the potential for higher accuracy in describing
surface features and are better suited to describe the properties of faces in areas such as the cheeks,
forehead, and chin. These descriptors are also invariant to viewing angles. Li et al. (Li et al., 2009)
design a feature pooling and ranking scheme in order to collect various types of low-level geometric

features, such as curvatures, and rank them according to their sensitivity to facial expressions. Along
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similar lines, Wang et al. (Wang et al., 2010) use a signed shape-difference map between two aligned 3D
faces as an intermediate representation for shape comparison. McKeon and Russ (McKeon and Russ,
2010) use a region ensemble approach that is based on Fisherfaces, i.e., face representations are learned
using Fisher’s discriminant analysis. In (Huang et al., 2010), Huang et al. use a multi-scale Local Binary
Pattern (LBP) for a 3D face jointly with shape index. Similarly, Moorthy et al. (Moorthy et al., 2010)
use Gabor features around automatically detected fiducial points. To avoid passing over deformable parts
of faces encompassing discriminative information, Faltemier et al. (Faltemier et al., 2008) use 38 face
regions that densely cover the face, and fuse scores and decisions after performing ICP on each region.
A similar idea is proposed in (Spreeuwers, 2011) that uses PCA-LDA for feature extraction, treating
the likelihood ratio as a matching score and using the majority voting for face identification. Queirolo
et al. (Queirolo et al., 2010) use Surface Inter-penetration Measure (SIM) as a similarity measure to
match two face images. The authentication score is obtained by combining the SIM values corresponding
to the matching of four different face regions: circular and elliptical areas around the nose, forehead,
and the entire face region. In (Alyuz et al., 2008), the authors use Average Region Models (ARMs)
locally to handle the challenges of missing data and expression-related deformations. They manually
divide the facial area into several meaningful components and the registration of faces is carried out by
separate dense alignments to the corresponding ARMs. A strong limitation of this approach is the need
for manual segmentation of a face into parts that can then be analyzed separately. Surface distance
based approaches — There are several papers that utilize distances between points on facial surfaces
to define features that are eventually used in recognition. (Some papers call it geodesic distance but, in
order to distinguish it from our later use of geodesics on shape spaces of curves and surfaces, we shall call
it surface distance.) These papers assume that surface distances are relatively invariant to small changes
in facial expressions and, therefore, help generate features that are robust to facial expressions. Bronstein
et al. (Bronstein et al., 2005a) provide a limited experimental illustration of this invariance by comparing
changes in surface distances with the Fuclidean distances between corresponding points on a canonical
face surface. To handle the open mouth problem, they first detect and remove the lip region, and then
compute the surface distance in presence of a hole corresponding to the removed part (Bronstein et al.,
2007b). The assumption of preservation of surface distances under facial expressions motivates several
authors to define distance-based features for facial recognition. Samir et al. (Samir et al., 2009) use the
level curves of the surface distance function (from the tip of the nose) as features for face recognition.
Since an open mouth affects the shape of some level curves, this method is not able to handle the
problem of missing data due to occlusion or pose variations. A similar polar parametrization of the
facial surface is proposed in (Mpiperis et al., 2008b) where the authors study local geometric attributes
under this parameterization. To deal with the open mouth problem, they modify the parametrization by
disconnecting the top and bottom lips. The main limitation of this approach is the need for detecting the
lips, as proposed in (Bronstein et al., 2007b). Berretti et al. (Berretti et al., 2010b) use surface distances

to define facial stripes which, in turn, is used as nodes in a graph-based recognition algorithm.

The main limitation of these approaches, apart from the issues resulting from open mouths, is that they
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FIGURE 3.2: Significant changes in both Euclidean and surface distances under large facial expressions.

assume that surface distances between facial points are preserved within face classes. This is not valid
in the case of large expressions. Actually, face expressions result from the stretching or the shrinking of
underlying muscles and, consequently, the facial skin is deformed in a non-isometric manner. In other
words, facial surfaces are also stretched or compressed locally, beyond a simple bending of parts. In
order to demonstrate this assertion, we placed four markers on a face and tracked the changes in the
surface and Euclidean (straight line) distances between the markers under large expressions. Fig. 3.2
shows some facial expressions leading to a significant shrinking or stretching of the skin surface and,
thus, causing both Euclidean and surface distances between these points to change. In one case these
distances decrease (from 113 mm to 103 mm for the Euclidean distance, and from 115 mm to 106 mm for
the surface distance) while in the other two cases they increase. This clearly shows that large expressions
can cause stretching and shrinking of facial surfaces, i.e., the facial deformation is elastic in nature.
Hence, the assumption of an isometric deformation of the shape of the face is not strictly valid, especially

for large expressions. This also motivates the use of elastic shape analysis in 3D face recognition.

3.2 Data Pre-processing and Representation

To analyze facial surfaces (or their shapes), one should first preprocess them and provide the way to
represent them as multiple curves. This will be the subject of this section wich will introduce the pipeline

of 3D scans pre-processing to denoise the data and to extract the informative part of the face (the facial



Chapter 3. 3D Face Recognition 43

surface) and the procedure to extract the radial curves, our approximation (or parametrization) of the

3D facial meshes.

3.2.1 3D Face pre-processing

Since the raw data contains a number of imperfections, such as holes, spikes, and include some undesired

parts, such as clothes, neck, ears and hair, the data pre-processing step is very important and non-trivial.

! Result of previous stage
1

- > Links between stages

4 A

Acquisition — Filling holes " Cropping —® Smoothing

FicUrEe 3.3: The different steps of preprocessing: acquisition, filling holes, cropping and smoothing

As illustrated in Fig. 3.3, this step includes the following items:

% The hole-filling filter identifies and fills holes in input meshes. The holes are created either because
of the absorption of laser in dark areas, such as eyebrows and mustaches, or self-occlusion or open
mouths. They are identified in the input mesh by locating boundary edges, linking them together

into loops, and then triangulating the resulting loops.

% A cropping filter cuts and returns parts of the mesh inside an Euclidean sphere of constant radius
centered at the nose tip, in order to discard as much hair as possible. The nose tip is automatically

detected for frontal scans and manually annotated for scans with occlusions and large pose variation.

% A smoothing filter reduces high frequency components (spikes) in the mesh, improves the shapes

of cells, and evenly distributes the vertices on a facial mesh.

The output of the pre-processing step will be a 3D facial mask with the nose tip coordinates, detected
automatically. Holes of limited size are filled and the noise filtered out, in addition, only the informative
part of the face is kept for the analyze. We have used existing filters from the open source Vizualisation

toolkit library® to design the outlined pipeline.

Shttp://www.vtk.org/
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3.2.2 3D Face Representation by Elastic Radial Curves

Each facial surface is represented by an indexed collection of radial curves that are defined and extracted
as follows. Let S be a facial surface obtained as an output of the preprocessing step. The reference curve
on S is chosen to be the vertical curve after the face has been rotated to the upright position. Then,
a radial curve 3(® is obtained by slicing the facial surface by a plane P(®) that has the nose tip as its
origin and makes an angle o with the plane containing the reference curve. That is, the intersection of
P@ with S gives the radial curve 3(®). We repeat this step to extract radial curves from S at equally-
separated angles, resulting in a set of curves that are indexed by the angle «. Fig. 3.4 shows an example
of this process. If needed, we can approximately reconstruct S from these radial curves according to
S & Up @) = Ua{S N P(O‘)}. Using these curves, we will demonstrate that the elastic framework is well
suited to modeling of deformations associated with changes in facial expressions and for handling missing

data.

FIGURE 3.4: Extraction of radial curves: images in the middle illustrate the intersection between the
face surface and planes to form two radial curves. The collection of radial curves is illustrated in the
rightmost image.

In this application (Face Recognition), the probe face is first rigidly aligned to the gallery face using the
ICP algorithm. In this step, it is useful but not critical to accurately find the nose tip on the probe face.
As long as there is a sufficient number of distinct regions available on the probe face, this alignment can
be performed. Next, after the alignment, the radial curves on the probe model are extracted using the
plane P, passing through the nose tip of the gallery model at an angle « with the vertical. This is an
important point in that only the nose tip of the gallery and a good alignment between gallery-probe is

needed to extract good quality curves.

3.3 Tools on the Manifold of 3D Faces

In this section we will use the framework described in Chapter 2, in particular the tools designed to

interpolate between shapes (geodesics) and the length of these paths, under the defined elastic metric.
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Recall that the central goal is given two facial surfaces how to quantify their difference under deforma-
tions (caused by expressions), missing data, occlusions and pose variations. Recall also that throw the
representation by elastic radial curves, we view the shapes of 3D faces as element of an infinte-dimentional
manifold termed M equipped with a Riemannian elastic metric (da). We have demonstrated the bene-
fits of the Riemannian approach which allows jointly accurate dense correspondence between 3D surfaces
(when counting for the elastic deformations that exhibit the expressive faces). These properties are

suitable in face recognition as stated in Section 3.1 to handle the facial deformations.

3.3.1 Shape Interpolation — Geodesics on the Shape Space

Given two 3D shapes, since we have deformations (geodesic paths) between their pairwise radial curves,
we can spatially interpolate these deformations to obtain deformations between full facial surfaces. In
fact, these full deformations can be shown to be formal geodesic paths between faces, when represented
as elements of M = Sl027 Shown in Fig. 3.5 are examples of some geodesic paths between source and
target faces. It illustrates geodesic paths between faces of different subjects, and are termed inter-class
geodesics. One can note that the shape located at the center of each path correspond to the average shape
between the source ans the target. As illustrated, it has an intermediate-smooth morphology between
the shapes of the ending points of each geodesic. In other worlds, when considering two facial shapes of
different age, different gender or different ethnicity on could generate with our method a typical average

face between them, in a mathematical way!

FIGURE 3.5: Three examples of inter-class geodesic paths. In each row, the first and the last 3D shapes
represent respectively the source and the target faces, the intermediate shapes are equally-spaces points
from the geodesic gerenated by our algorithm.

Shown in Fig. 3.6 are examples geodesic paths between faces of the same person conveying different

expressions, and are termed intra-class geodesics. In the same way, we can note that the central shape
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on each of these paths represent the middle intermediate deformation from the source and the target

FIGURE 3.6: Three examples of intra-class geodesic paths. In each row, the first and the last 3D shapes
represent respectively the source and the target faces, the intermediate shapes are equally-spaces points
from the geodesic gerenated by our algorithm.

shapes.

These geodesics provide a tangible benefit, beyond the current algorithms that provide some kind of
a similarity score for analyzing faces. These geodesic paths illustrate the most efficient way to deform
one shape into another. The accurate dense correspondence, one of the essential ingredients of shape
analysis, plays an important role to get these natural-like deformations (or morphing). In fact, matching
accurately different anatomical parts of the faces yields with accurate deformations, hence the importance
of use elastic models in shape analysis of facial surfaces. In addition to their interpretation as optimal
deformations under the chosen metric, the geodesics can also be used for computing the mean shape and

measuring the shape covariance of a set of faces, as illustrated later.

3.3.2 Expression-Robust 3D Face Recognition

We will show in this section the benefits of using our elastic model in comparing facial surfaces ex-
hibiting different facial expressions. The goal here is the robustness to the deformations introduced by
the expressions. We should note here that in case of open mouth which often results in a hole, the
preprocessing algorithm presented in section 3.2.1 will fill the hole by locating the edges and interpo-
lating between them. An other important step is to discrete the shape representation both by indexed
collections of radial curves and finite-points representations of each curve, starting from the nose tip.

To this end, facial surface S is represented by an indexed collection of radial curves, indexed by the n

2r 4m

s s 277@}. Thus, the shape of a facial surface can been represented

uniform angles A = {0
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as an element of the set §™ ~ M. The indexing provides a correspondence between curves across faces.
For example, the curve at an angle a on a probe face is compared with the curve at the same angle
on a gallery face. Thus, the distance between two facial surfaces is dpg : 8™ x 8™ — R>g, given by
dm(FLFH) =15 e dg([q%a], [ éa)]). Here, [qga)] denotes the SRVF of the radial curve ﬁi(a) on the it
facial surface, ¢ € 1,2 .

To explore experimentally the ability of our elastic model to be robust the facial exressions, we conducted
our experiments on the FRGC2.0 dataset (Face Recognition Grand Challenge)(Phillips et al., 2005).
The dataset contains 4007 3D scans of 466 subjects with near-frontal pose. About 40% of the scans

are expressive. In our experiment we will consider the manual clustering of the 3D scans into three

categories: neutral expression, small expression, and large expression as illustrated in Figure 3.7.

Nautral faces (Gallery) Small expressions (Probe) [0 Large expressions (Probe)

Ficure 3.7: Examples of 3D preprocessed scans from the FRGC2.0 dataset. The Gallery faces are
almost neutral as shown by the top row. The set of probe faces includes small expressions (in red) and
large expressions (in blue) as shown in the second row.

As shown in Figure 3.7, the facial surfaces output of the pre-processing step are of good quality. Now,
we will report experimental results both under the identification and verification scenarios, using the

commonly used evaluation criteria in biometrics.

I. Identification Scenario: The gallery consists of the first scans for each subject in the database, and
the remaining scans make up the probe faces. This dataset was automatically preprocessed as described
in the Section 3.2.1. The left panel of Figure 3.8 shows the Cumulative Matching Curves (CMCs) of our
method under this protocol for the three cases: neutral vs. neutral, neutral vs. non-neutral and neutral
vs. all. Note that our method results in 97.7% rank-1 recognition rate in the case of neutral vs. all. In
the difficult scenario of neutral vs. expressions, the rank-1 recognition rate is 96.8%, which represents a
high performance, while in the simpler case of neutral vs. neutral the rate is 99.2%. As shown in these

CMC curves the recognition rates reaches quickly 100% (at rank 5).

A comparison of recognition performance of our method with several state-of-the-art results is presented
in Table 3.1. This time, in order to keep the comparisons fair, we kept all the 466 scans in the gallery.

Notice that our method achieved a 97% rank-1 recognition which is close to the highest published results
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TABLE 3.1: Comparison of rank-1 scores on the FRGCv2 dataset with the state-of-the-art results.

Method Rank-1 Recognition Rate (%)
(Spreeuwers, 2011) 99%
(Wang et al., 2010) 98.3%
(ter Haar and Velkamp, 2010) 97%
(Berretti et al., 2010b) 94.1%
(Queirolo et al., 2010) 98.4%
(Faltemier et al., 2008) 97.2%
(Kakadiaris et al., 2007) 97%
(Drira et al., 2013a) 97%

on this dataset (Faltemier et al., 2008, Spreeuwers, 2011, Queirolo et al., 2010). Since the scans in
FRGCv2 are all frontal, the ability of region-based algorithms, such as (Faltemier et al., 2008, Queirolo
et al., 2010), to deal with the missing parts is not tested in this dataset. For that end, one would need a
systematic evaluation on a dataset with the missing data issues, e.g. the GavabDB. The best recognition
score on FRGCv2 is reported by Spreeuwers (Spreeuwers, 2011) which uses an intrinsic coordinate system
based on the vertical symmetry plane through the nose. The missing data due to pose variation and

occlusion challenges will be a challenge there as well.
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FI1GURE 3.8: Left: Cumulative Matching Curves for the Neutral vs. Neutral, Neural vs. Small expressions
and Neutral vs. Large expressions on FRGC2.0. Right: ROC curves for the All vs. All and ROC III
evaluation protocols.

I. Verification Scenario: In order to evaluate the performance of the proposed approach in the verifi-
cation scenario, the Receiver Operating Characteristic (ROC) curves for the ROC III mask of FRGCv2
and 7all-versus-all” are plotted in the right part of Fig. 3.8. For comparison, Table 3.2 shows the verifica-
tion results at false acceptance rate (FAR) of 0.1 percent for several methods. For the standard protocol
testings, the ROC III mask of FRGC v2, we obtain the verification rates of around 97%, which is com-
parable to the best published results. In the all-versus-all experiment, our method provides 93.96% VR
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at 0.1% FAR, which is among the best rates in the table (Wang et al., 2010, Spreeuwers, 2011, Queirolo
et al., 2010).

TABLE 3.2: Comparison of verification rates at FAR=0.1% on the FRGCv2 dataset with state-of-the-art
results (the ROC III mask and the All vs. All scenario).

Method ROC III | All vs. All
(Kakadiaris et al., 2007) 97% -
(Faltemier et al., 2008) 94.8% 93.2%

(Berretti et al., 2010b) - 81.2%
(Queirolo et al., 2010) 96.6% 96.5%
(Spreeuwers, 2011) 94.6% 94.6%
(Wang et al., 2010) 98.4% 98.1%

(Drira et al., 2013a) | 97.1% 93.9%

Note that these approaches are applied to FRGCv2 only. Since scans in FRGCv2 are mostly frontal
and have high quality, many methods are able to provide good performance. It is, thus, important to
evaluate a method in other situations where the data quality is not as good. In the next two sections, we
will consider those situations with the GavabDB involving the pose variation and the Bosphorus dataset

involving the occlusion challenge.

3.3.3 3D Face Recognition under Large Pose Variations

In situations involving non-frontal 3D scans, some curves may be partially hidden due to self occlu-
sion. The use of these curves in face recognition can severely degrade the recognition performance and,

therefore, they should be identified and discarded.

I. Curve Quality Filter: We introduce here a quality filter that uses the continuity and the length of a
curve to detect such curves. To pass the quality filter, a curve should be one continuous piece and have a
certain minimum length, say of, 70mm. The discontinuity or the shortness of a curve results either from
missing data or large noise. We show two examples of this idea in Fig. 3.9 where we display the original
scans, the extracted curves, and then the action of the quality filter on these curves. Once the quality
filter is applied and the high-quality curves retained, we can perform face recognition procedure using
only the remaining curves. That is, the comparison is based only on curves that have passed the quality
filter. Let 8 denotes a facial curve, we define the boolean function quality: (quality(8) = 1) if 5 passes
the quality filter and (quality(8) = 0) otherwise. Recall that during the pre-processing step, there is a
provision for filling holes. Sometimes the missing parts are too large to be faithfully filled using linear
interpolation. For this reason, we need the quality filter that will isolate and remove curves associated

with those parts.
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~ Discarded curves —.Retained curves

FIGURE 3.9: Curve quality filter: examples of detection of broken and short curves (in red) and complete
curves (in blue). The first example show missing data due to bad reflection of the laser by the eyebrow.
The second example shows a profile scan with only half of the data available.

II. Experiments on the GavabDB dataset: Since GavabDB (Moreno and Sanchez, 2004) has many
noisy 3D face scans under large facial expressions, we will use that database to help evaluate our frame-
work. This database consists of the Minolta Vi-700 laser range scans from 61 subjects — 45 male and 16
female — all of them Caucasian. Each subject was scanned nine times from different angles and under
different facial expressions (six with the neutral expression and three with non-neutral expressions). The
neutral scans include several frontal scans — one scan while looking up (+35 degree), one scan while
looking down (-35 degree), one scan from the right side (+90 degree), and one from the left side (-90
degree). The non-neutral scans include cases of a smile, a laugh, and an arbitrary expression chosen

freely by the subject. Figure 3.10 shows the nine scans of one subject from the GavabDB.

FIGURE 3.10: Scans of one subject of the GavabDB dataset under different variations.

One of the two frontal scans with the neutral expression for each person is taken as a gallery model,
and the remaining are used as probes. Table 3.3 compares the results of our method with the previously
published results following the same protocol. As noted, our approach provides the highest recognition

rate for faces with non-neutral expressions (94.54%). This robustness comes from the use of radial, elastic
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TABLE 3.3: Recognition results comparison of the different methods on the GavabDB.

Method (N) (E) (N)+(E) | (LD) | (LU) (RS) (LS)
(Li et al., 2009) 96.6% | 93.3% 94.6% - - - -
(Moreno et al., 2005) | 90.1% | 77.9% - - - - -
(Mahoor and Abdel- - 72% 78% 85.3% | 88.6% - -
Mottaleb, 2009)

(ter Haar and - - - - - - -
Velkamp, 2010)

(Mousavi et al., 2008) - - 91% - - - -
(Drira et al., 2013a) | 100% | 94.5% | 95.9% 100% | 98.3% | 70.4% | 86.8%

curves since: (1) each curve represents a feature that characterizes local geometry and, (2) the elastic
matching is able to establish a correspondence with the correct alignment of anatomical facial features
across curves. Table 3.3 provides an exhaustive summary of results obtained using GavabDB; our method
outperforms the majority of other approaches in terms of the recognition rate. Note that there is no
prior result in the literature on 3D face recognition using sideway-scans from this database. Although our
method works well on common faces with a range of pose variations within 35 degrees, it can potentially
fail when a large part of the nose is missing, as it can cause an incorrect alignment between the probe
and the gallery. This situation occurs if the face is partially occluded by external objects such as glasses,

hair, etc. To solve this problem, we first restore the data missing due to occlusion.

3.3.4 3D Face Recognition under External occlusions

In this section we target the problem of occlusions by external parts like glasses, hands, hair, etc. We will

consider two components, (1) external occlusion detection and removal and (2) missing data recovery.

I. Occlusion Removal: The first problem we encounter in externally-occluded faces is the detection of
the external object parts. We accomplish this by comparing the given scan with a template scan, where a
template scan is developed using an average of training scans that are complete, frontal and have neutral
expressions. The basic matching procedure between a template and a given scan is recursive ICP, which
is implemented as follows. In each iteration, we match the current face scan with the template using ICP
and remove those points on the scan that are more than a certain threshold away from the corresponding
points on the template. This threshold has been determined using experimentation and is fixed for all
faces. In each iteration, additional points that are considered extraneous are incrementally removed and

the alignment (with the template) based on the remaining points is further refined.

Fig. 3.11 shows an example of this implementation. From left to right, each face shows an increasing
alignment of the test face with the template, with the aligned parts shown in magenta, and also an
increasing set of points labeled as extraneous, drawn in pink. The final result, the original scan minus

the extraneous parts, is shown in green at the end. In the case of faces with external occlusion, we first
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F1cURE 3.11: Gradual removal of occluding parts in a face scan using Recursive-ICP.

restore them and then apply the recognition procedure. That is, we detect and remove the occluded part,
and recover the missing part resulting in a full face that can be compared with a gallery face using the
metric ds. The recovery is performed using the tangent PCA analysis and Gaussian models, as described
in Section 3.4. In order to evaluate our approach, we perform this automatic procedure on the Bosphorus
database (Alyuz et al., 2008).

II. Completion of Partially-Obscured Curves: Earlier we have introduced a filtering step that finds
and removes curves with missing parts. Although this step is effective in handling some missing parts,
it may not be sufficient when parts of a face are missing due to external occlusions, such as glasses and
hair. In the case of external occlusions, the majority of radial curves could have hidden parts that should
be predicted before using these curves. This problem is more challenging than self-occlusion because,
in addition to the missing parts, we can also have parts of the occluding object(s) in the scan. In a
non-cooperative situation, where the acquisition is unconstrained, there is a high probability for this
kind of occlusion to occur. Once we detect points that belong to the face and points that belong to the
occluding object, we first remove the occluding object and use a statistical model in the shape space of
radial curves to complete the broken curves. This replaces the parts of face that have been occluded

using information from the visible part and the training data.

The core of this problem, in our representation of facial surfaces by curves, is to take a partial facial curve
and predict its completion. The sources of information available for this prediction are: (1) the current
(partially observed) curve and (2) several (complete) training curves at the same angle that are extracted
from full faces. The basic idea is to develop a sparse model for the curve from the training curves and use

that to complete the observed curve. To keep the model simple, we use the PCA of the training data, in
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an appropriate vector space, to form an orthogonal basis representing training shapes. Then, this basis
is used to estimate the coefficients of the observed curve and the coefficients help reconstruct the full
curve. Since the shape space of curve S is a nonlinear space, we use the tangent space T),(S), where
1 is the mean of the training shapes, to perform PCA. Let a denote the angular index of the observed
curve, and let ¢l, ¢2,...,q" be the SRVFs of the curves taken from the training faces at that angle. As
described earlier, we can compute the sample Karcher mean of their shapes {[¢’,] € S}, denoted by 1.
Then, using the geometry of S we can map these training shapes in the tangent space using the inverse

exponential map. We obtain v; o = exp;,!(g},), where

0

sin(g) (@2 ~cosO)ar), 6= cos ™ ((q1,43)) ,

expy, (q2) =

and where g5 is the optimal rotation and re-parameterization of g2 to be aligned with ¢, as discussed
earlier. A PCA of the tangent vectors {v;} leads to the principal basis vectors u1 o, 2,4, ..., UJjq, Where

J represents the number of significant basis elements.

Now returning to the problem of completing a partially-occluded curve, let us assume that this curve is
observed for parameter value ¢ in [0,7] C [0,1]. In other words, the SRVF of this curve ¢(t) is known
for t € [0, 7] and unknown for ¢t > 7. Then, we can estimate the coefficients of ¢ under the chosen basis

according to ¢jo = (¢, uja) = [y (q(t),uja(t)) dt, and estimate the SRVF of the full curve according to

J
Ga(t) =D _ cjatijalt) , t€0,1] .
j=1

We present three examples of this procedure in Fig. 3.12, with each face corrupted by an external
occlusion as shown in column (a). The detection and removal of occluded parts is performed as described
in the previous section, and the result of that step is shown in column (b). Finally, the curves passing

through the missing parts are restored and shown in (c).

In order to evaluate this reconstruction step, we have compared the restored surface (shown in the top
row of Fig. 3.12) with the complete neutral face of that class, as shown in Fig. 3.13. The small values
of both absolute deviation and signed deviation, between the restored face and the corresponding face in

the gallery, demonstrate the success of the restoration process.

ITI. Experiments on Bosphorus Dataset: The Bosphorus database is suitable for this evaluation as
it contains scans of 60 men and 45 women, 105 subjects in total, in various poses, expressions and in the
presence of external occlusions (eyeglasses, hand, hair). The majority of the subjects are aged between
25 and 35. The number of total face scans is 4652; at least 54 scans each are available for most of the
subjects, while there are only 31 scans each for 34 of them. The interesting part is that for each subject
there are four scans with occluded parts. These occlusions refer to (i) mouth occlusion by hand, (ii)

eyeglasses, (iii) occlusion of the face with hair, and (iv) occlusion of the left eye and forehead regions by
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Nose tip

_ Restored curves
- Kept curves

(a) Occluded face (b) Occlusion detection and removal (c) Restored and kept curves on the face

FIGURE 3.12: (a) Faces with external occlusion, (b) faces after the detection and removal of occluding
parts and (c) the estimation of the occluded parts using a statistical model on the shape spaces of curves.
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FIGURE 3.13: Illustration of a face with missing data (after occlusion removal) and its restoration. The
deviation between the restored face and the corresponding neutral face is also illustrated.

hands. Fig. 3.14 shows sample images from the Bosphorus 3D database illustrating a full scan on the

left and the remaining scans with typical occlusions.

We pursued the same evaluation protocol used in the previously published papers: a neutral scan for
each person is taken to form a gallery dataset of size 105 and the probe set contains 381 scans that have

occlusions. The training is performed using other sessions so that the training and test data are disjoint.
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F1GURE 3.14: Examples of faces from the Bosphorus database. The un-occluded face on the left and the
different types of occlusions are illustrated.

The rank-1 recognition rate is reported in Fig. 3.15 for different approaches depending upon the type
of occlusion. As these results show the process of restoring occluded parts significantly increases the
accuracy of recognition. The rank-1 recognition rate is 78.63% when we remove the occluded parts and
apply the recognition algorithm using the remaining parts, as described in Section 2.4. However, if we
perform restoration, the recognition rate is improved to 87.06%. Clearly, this improvement in performance
is due to the estimation of missing parts on curves. These parts, that include important shape data, were
not considered by the algorithm described earlier. Even if the part added with restoration introduces
some error, it still allows us to use the shapes of the partially observed curves. Furthermore, during

restoration, the shape of the partially observed curve is conserved as much as possible.
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FIGURE 3.15: Recognition results on the Bosphorus database and comparison with state-of-the-art ap-
proaches.

Examples of 3D faces recognized by our approach are shown in Fig. 3.12, along with different steps of
the algorithm. The faces in the two bottom rows are examples of incorrectly recognized faces by our
algorithm without restoration (as described earlier), but after the restoration step, they are correctly
recognized. (Alyuz et al., 2008) reported a 93.69% rank-1 recognition rate overall for this database using
the same protocol that we have described above. While this reported performance is very good, their
processing has some manual components. Actually, the authors partition the face manually and fuse the

scores for matching different parts of the face together. In order to compare with (Colombo et al., 2011),
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we reduce the probe dataset to 360 by discarding bad quality scans as (Colombo et al., 2011) did. Our
method outperforms their approach with an overall performance of 89.25%, although individually our
performance is worse in the case of occlusion by hair. It is difficult, in this case, to completely overcome
face occlusion. Therefore, during the restoration step, our algorithm tries to keep majority of parts. This

leads to a deformation in the shape of curves and, hence, affects the recognition accuracy.

3.4 Towards Efficient Face Recognition Solution

In this section, we explore two complementary ideas to make the recognition scenario more efficient. It
is well stated that, compared to 2D-face recognition approaches, the 3D-based approaches required more
computational time for several reasons. The most important one is the data representation itself, where
the data in 2D are images (ordered pixels), in the second case the data is 3D meshes without any order.
We target here the one-to-many matching scenario (identification scenario). To handle these issues, we
propose first (1) a tree-like organization of the facial surfaces in the Gallery, and (2) introduce a boosting
step to highlight and select the most relevant curves on the face. Thus, a gain on time will happen when
parsing the branches of the tree instead of an exhaustive comparison, and use only the relevant curves

to compare the probe face to the gallery face.

3.4.1 Hierarchical Gallery Organization

One of the main goals for studying shapes of faces is to conduct biometric identification where query is
often compared to a set of gallery shapes. This comparison can be made more efficient if we can organize
the gallery elements in form of a hierarchical database, i.e. a tree, where the comparisons are performed
only at the nodes of that tree. To construct such a shape tree we need to be able to cluster similar

shapes, and that is the problem we study next.

I. Clustering of 3D Faces: Consider the problem of clustering n faces (in M) into k clusters. A
general approach is to form clusters in such a way that they minimize total "within-cluster” variance.
Let a configuration F consists of clusters denoted by Fi, Fo,..., Fk, and let p;s be the mean shapes
in F;s and n;s be the sizes of F;s. There are several cost functions used for clustering, e.g the sum of
traces of covariances within clusters. However, the computation of means ;s of large shape clusters,
and therefore their variances, is computationally expensive, especially when they are updated at every
iteration. As a solution, one often uses a variation, called pairwise clustering (Hofmann and Buhmann,
1998), where the variance of a cluster is replaced by a scaled sum of distances (squared) between its
elements: .
QF)=> 2 Yo > dm(FL TN (3.1)

i=1 "V \FecF; b<a,FoeF,
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We seek configurations that minimize @, i.e., F* = argmin Q(F). Notice that the metric used is the
arithmetic mean ds. We will minimize the clustering cost using a Markov chain search process on the
configuration space. The basic idea is to start with a configuration of k clusters and reduce Q) by re-
arranging shapes among the clusters. The re-arrangement is performed in a stochastic fashion using two
kinds of moves. These moves are performed with probability proportional to the negative exponential
of the @-value of the resulting configuration. The two types of moves are following. (1) Move a
shape: Here we select a shape randomly and re-assign it to another cluster. Let ng) be the clustering
cost when a shape IV; is re-assigned to the cluster C; keeping all other clusters fixed. If N; is not a

singleton, i.e. not the only element in its cluster, then the transfer of N; to cluster C; is performed with
exp(-Q\"/T)

Sor exp(-QY/T)

in simulated annealing. If V; is a singleton, then moving it is not allowed in order to fix the number of

probability: Pp(j,4;T) =

1 =1,2,...,k. Here T plays a role similar to temperature

clusters at k. (2) Swap two shapes: Here we select two shapes randomly from two different clusters
and swap them. Let Q) and Q@ be the Q-values of the original configuration (before swapping) and

the new configuration (after swapping), respectively. Then, swapping is performed with probability:

Po(T) = eXP(*Q(Q)/T)
5(T) = 5% e )
approach. Although simulated annealing and the random nature of the search help in avoiding local

. In order to seek global optimization, we have adopted a simulated annealing

minima, the convergence to a global minimum is difficult to establish.

It is important to note that once the pairwise distances are computed, they are not computed again in the
iterations. Secondly, unlike k-mean clustering, the mean shapes are never calculated in this clustering.
The algorithms for computing Karcher mean and clustering can be applied repeatedly for organizing a
large database of human faces into a hierarchy that allows efficient searches during identification process.
As an illustration of this idea, we consider the 466 face scans corresponding of distinct subjects of
FRGC2.0 dataset. These shapes form the bottom layer of the hierarchy, called level D in Figure 3.16.
Then, we compute Karcher mean shapes (representative shapes) for each person to obtain shapes at level
C. These shapes are further clustered together and a Karcher mean is computed for each cluster. These
mean shapes form the level B of the hierarchy. Repeating this idea a few times, we reach the top of the
tree with only one shape. We obtain so the final tree shown in Figure 3.16. If we follow a path from top
to bottom of the tree, we see the shapes getting more particularized to groups and then to individuals

as illustrated in Figure 3.17.

I1. Hierarchical Shape Identification: Once the tree is formed, one can use this representation of
data to conduct biometric search in order to reduce time computation. Specially in identification scenario,
which needs a comparison of the query shape to the whole gallery dataset. In view of this structure, a
natural way is to start at the top, compare the query with the shapes at each level, and proceed down
the branch that leads to the closest shape. At any level of the tree, there is a number, say h, of possible
shapes and our goal is to find the shape that matches the query best.

ITI. Experiments on FRGC2.0: We have tested this idea on the FRGC2.0 dataset where the Gallery

subset is organized as describes in I and the query scans are matched against the faces in a single branch
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FI1GURE 3.16: The tree resulting on hierarchical clustering on the 466 earliest scans of FRGC2.0 dataset
(the Gallery).
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FIGURE 3.17: Paths from top to bottom in the tree show increasing shape resolutions

of the tree, according to the retrieval procedure described in II. The rank on recognition rate is 92.4%
compared to 97% without clustering (by performing exhaustive search along the gallery). The time

concuming is reduced from 52 minutes to 3 minutes in average which is 15 times less.
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3.4.2 Boosting Geometric Facial Features

In this part, we combine ideas from shape analysis using tools from differential geometry and feature
selection derived from Machine Learning to select and highlight salient 3D geometrical facial features.
Notice that we introduce in addition to the radial curves presented above, iso-level curves extracted on
the face with a reference point the nose tip and the Euclidean distance as the set function, as shown if
Figure 3.19. Our previous studies on iso-level curves on facial surfaces as complete biometrics (Ben Amor
et al., 2009) an on the nose (Drira et al., 2009a,b) as partial biometrics, demonstrated their relevance
to conduct shape statistics. However, their use assume that surface distances are relatively robust to
changes in facial expressions and, therefore, help generate features that are robust to facial expressions.
The assumption of preservation of surface distances under facial expressions is no more true when large
expressions are conveyed which result in stretching and shrinking of the facial surface. In addition, since
an open mouth affects the shape of some level curves, this method is not able to handle the problem of

missing data.

FIGURE 3.18: Radial and iso-level curves extracted on some faces fron FRGC2.0 dataset.

After preprocessing the 3D scans, we represent obtained facial surfaces by finite indexed collections
of circular and radial curves. The comparison of pairwise curves, extracted from faces, is based on
shape analysis of parameterized curves using differential geometry tools (as described in Chapter 2).
The extracted features are trained as weak classifiers and the most discriminative features are selected

optimally by adaptive boosting. Accordingly, it consists on the following steps:

e The Off-line training step, learns the most salient circular and radial curves from the sets of
extracted ones, in a supervised fashion. In face recognition, construct feature vectors by comparing
pairwise curves extracted from facial surfaces. Next, feed these examples, together with labels
indicating if they are inter-class or not. Thus, the adaptive boosting selects and learns alliteratively
the weak classifiers and adding them to a final strong classifier, with suitable weights. As a result

of this step, we keep the T-earliest selected features (with highest weights) for the testing step.

e The On-line test step, performs classification of a given test face. In the recognition problem, a
probe face is compared to the gallery faces using only individual scores computed based on selected

features using the ds metric.
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Here, we introduce the feature selection step to highlight (or localize) the most stable and most discrim-
inatory curves. To this end, we use the well-known machine learning algorithm AdaBoost introduced by
Freund and Schapire in (Freund and Schapire, 1995). Recall that, boosting is based on iterative selection
of weak classifiers by using a distribution of training samples. At each iteration, the best weak classifier
is provided and weighted by the quality of its classification. In practice, the individual level curves and
radial curves are used as weak classifiers. After M iterations, the most relevant T' (T' < M) facial curves
are returned by the algorithm. The set of selected curves returned by Adaboost is shown in Fig. 3.19.
The first row of the figure shows the locations of the subset of curves selected by Adaboost on different
sessions of the same person with different expressions, whereas, the second row gives curves locations on
different subjects. We notice that the boosting algorithm selects the level curves located on the nasal
region, which is stable under expressions and radial curves in the way that it avoid two parts, the first
one is the lower part of the face since its shape is affected by expressions, particularly when the mouth
is open. The second area corresponds to the eye/eyebrow regions. Shapes of radial curves passing throw
these regions change when conveying expressions. In contrast, the most stable area cover the nasal/fore-
head/cheeks regions. As expected and studied in our previous papers (Drira et al., 2009a,b), the use of

level curves on the nose is relevant to perform expression-robust partial face analysis.

FIGURE 3.19: The most discriminating radial and circular curves selected by Boosting for face recognition,
given on different faces.

This approach has been trained and tested on the FRGC2.0 dataset and reported 98.02% as rank-one

recognition rate using only a subset of of radial and iso-level curves.

TABLE 3.4: Rank-1/Computation cost (in sec) for different configurations.

Performance All curves Selected curves
Rank-1 RR || Time(s) || Rank-1 RR || Time(s)

Radial curves 88.65% 1.6 89.04% 0.48

Level curves 66.51% 1.04 85.65% 0.20

Fusion 91.81% 2.64 98.02% 0.68

Table 3.4 reports the rank-one recognition rates of the radial and the level curves taken individually as
well as their fusion. Also, it reports the recognition rates achieved using only the salient features. We
notice that the fusion of selected radial and level features achieved the highest performance (98.02%), we

can see also an important gain in the computational time (0.68 seconds) to match two facial surfaces.
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These ideas (a) hierarchical clustering of the gallery and (b) boosting the geometric curves are presented
disjoint. We expect that their use, in the same system, can improve the computational time in a one-to-

many matching scenario and keep high recognition performance.

3.5 Conclusion

In this chapter we have demonstrated the application of our Riemannian approach in statistical shape
analysis of facial surfaces with the final goal of face recognition. Several problems have been tackled using
the unified framework — (1) face comparisons under shape-preserving transformations, (2) shape matching
and comparison of 3D shapes robust to deformations caused by the expressions, (3) averaging facial shapes
to represent classes/clusters and its use in organizing hierarchically the Gallery for efficient one-to-many
matching (4) partially-obscured data completion then shape analysis using statistical models to recover
missing data, and (5) Combine ideas from differential geometry and feature selection to select salient
curves for more efficient recognition. We have presented results on the mostly used 3D Face datasets
(FRGC2.0, Gavab and Bosphorus) designed to develop and test solutions working under variations of

facial expression, pose variations and occlusions between gallery and probe scans.
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Chapter 4

3D Facial Expression Recognition

In this chapter’ we introduce two major contributions in the field of facial expression analysis and
recognition from static and dynamic 3D data. In particular, we show how to capture facial movements

using geometric shape analysis tools introduced in Chapter 2.

Hence, instead of the deformation-robust shape analysis, developed in Chapter 3 oriented to 3D face
recognition, we focus here on two relevant questions — How effectively capture the facial deformations
resulted from the facial expressions? and how establish facial deformation patterns for successful classifi-
cation? — To answer these questions, we adopt two approaches : (1) A Landmark-dependent approach is
first introduced in (Maalej et al., 2010, 2011) which uses 3D static scans. Herein, we propose a new facial
representation using Local Facial Patches extracted around the landmarks, suitable for expression
analysis; then (2) A Landmark-free approach (Drira et al., 2012, Ben Amor et al., 2014a) operating on
dynamic data is developed based on a Global Facial Representation of 4D data. In both approaches,
the issue of shape correspondence is a key point to achieve accurate measurements of the deformations.
These deformations which characterize the facial expressions, such as happy or surprise, are executed by
facial muscles and they are more prominent in 3D (geometry) than 2D (appearance or texture), which
motivates this choice to this shift in the very recent literature. In both approaches that we have intro-
duced, adapted Riemannian shape analysis frameworks are applied to derive statistical analysis of facial
shapes. The classification task is resolved using conventional Machine Learning techniques, as Random
Forest (RF), Support Vector Machine (SVM), Adaboost and Hidden Markov Model (HMM).

After introducing the problem, sections 4.2 and 4.2 describe our contributions in facial expression from

static and dynamic data, respectively.

!The content of this chapter is related to our published papers in the field of facial expression recognition, (Maalej et al.,
2011) and (Ben Amor et al., 2014a).
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4.1 Introduction

Over the last two decades, automatic recognition of facial expressions emerged as a field of active research,
with applications in several different areas, such as HMI (Human-Machine Interaction), psychology, com-
puter graphics, transport security (by detecting driver fatigue, for example), and so on. The importance
of facial expressions was first realized and investigated by psychologists, among others. In a seminal
work by Mehrabian et al. (Mehrabian and Wiener, 1967) the relative importance of verbal and nonverbal
messages in communicating feelings and attitude is described. In particular, they provided evidence that
face-to-face communication is governed by the 7%-38%-55% rule, that balances the relevance of verbal,
vocal and visual elements, respectively, in communications. Despite this rigid quantification has since
been refuted in later studies, it still provides an indication that the words and tone of the voice form only
a part of human communication. The non-verbal elements related to the body language (e.g., gestures,
posture, facial expressions) also play an important role. Starting from a different point of view, Ek-
man (Ekman, 1972) conducted the first systematic studies on facial expressions in the late 70s. Ekman
also showed that facial expressions can be coded through the movement of face points as described by a
set of action units (Ekman and Friesen, 1977). Through his experiments, it is demonstrated that there
are six prototypical facial expressions, representing anger, disqust, fear, happiness, sadness and surprise,
plus the neutral one that are universally recognized and remain consistent across different ethnicities
and cultures. The presence of these prototypical facial expressions is now widely accepted for scientific
analysis. These results, in turn, inspired many researchers to analyze facial expressions in video data,
by tracking facial features and measuring the amount of facial movements in video frames (Zeng et al.,
2009). This body of work demonstrates a collective knowledge that facial expressions are highly dynami-
cal processes, and looking at sequences of face instances can help to improve the recognition performance.
We further emphasize that, rather than being just a static or dynamic 2D image analysis, it is more nat-
ural to analyze expressions as spatio-temporal deformations of 3D faces, caused by the actions of facial
muscles. In this approach, the facial expressions can be studied comprehensively by analyzing temporal
dynamics of 3D face scans (3D plus time is often regarded as 4D data). From this perspective the relative
immunity of 3D scans to lighting conditions and pose variations give support for the use of 3D and 4D
data. Motivated by these considerations, there has been a progressive shift from 2D to 3D in performing
facial shape analysis for recognition and expression recognition. In particular, this latter research sub-
ject is gaining momentum thanks to the recent availability of public 3D datasets, like the Binghamton
University 3D Facial Expression database (BU-3DFE) (Yin et al., 2006a), and the Bosphorus 3D Face
Database (Savran et al., 2008). At the same time, advances in 3D imaging technology (Di3D, 2006,
3DMD, 2010) have permitted collections of large datasets that include temporal sequences of 3D scans
(i.e., 4D datasets), such as the Binghamton University 4D Facial Expression database (BU-4DFE) (Yin
et al., 2008), the 4D dataset constructed at University of Central Lancashire (HidD-ADSIP) (Matuszewski
et al., 2011, 2012), and the dynamic 3D FACS dataset (D3DFACS) for facial expression research (Cosker
et al., 2011), which also includes fully coded FACS. This trend has been strengthened further by the
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introduction of inexpensive acquisition devices, such as the consumer 3D cameras like Kinect or Asus
(Kinect, 2010, Point grey, 2010, Asus, 2010), that provide fast albeit low-resolution streams of 3D data
to a large number of users, thus opening new opportunities and challenges in 3D face recognition and

facial expression recognition (Berretti et al., 2012, Li et al., 2013).

4.2 Expression Classification from Static (3D) Faces

Facial expression recognition has been extensively studied over the past decades especially in 2D domain
(e.g., images and videos) resulting in a valuable enhancement. Existing approaches that address facial
expression recognition can be divided into three categories: (1) static vs. dynamic; (2) global vs. local;
(3) 2D vs. 3D. Most of the approaches are based on feature extraction/detection as a mean to represent
and understand facial expressions. Pantic and Rothkrantz (Pantic and Rothkrantz, 2000) and Samal
and Iyengar (Samal and Iyengar, 1992) presented a survey where they explored and compared different
approaches that were proposed, since the mid 1970s, for facial expression analysis from either static
facial images or image sequences. Whitehill and Omlin (Whitehill and Omlin, 2006) investigated on
the Local versus Global segmentation for facial expression recognition. In particular, their study is
based on the classification of action units (AUs), defined in the well-known Facial Action Coding System
(FACS) manual by Ekman and Friesen (Ekman and Friesen, 1978), and designating the elementary
muscle movements involved in the bio-mechanical of facial expressions. They reported, in their study on
face images, that the local expression analysis showed no consistent improvement in recognition accuracy

compared to the global analysis.

4.2.1 Related Work

As for 3D facial expression recognition, the first work related to this issue was presented by Wang et
al. (Wang et al., 2006b). They proposed a novel geometric feature based facial expression descriptor,
derived from an estimation of primitive surface feature distribution. A labeling scheme was associated
with their extracted features, and they constructed samples that have been used to train and test several
classifiers. They reported that the highest average recognition rate they obtained was 83%. They
evaluated their approach not only on frontal-view facial expressions of the BU-3DFE database, but they
also tested its robustness to non-frontal views. A second work was reported by Soyel and Demirel (Soyel
and Demirel, 2007) on the same database. They extracted six characteristic distances between eleven
facial landmarks, and using Neural Network architecture that analysis the calculated distances, they
classified the BU-3DFE facial scans into 7 facial expressions including neutral expression. The average
recognition rate they achieved was 91.3%. Mpiperis et al. (Mpiperis et al., 2008b) proposed a joint
3D face and facial expression recognition using bilinear model. They fitted both formulations, using
symmetric and asymmetric bilinear models to encode both identity and expression. They reported an

average recognition rate of 90.5%. They also reported that the facial expressions of disgust and surprise
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were well identified with an accuracy of 100%. Tang and Huang (Tang and Huang, 2008b) proposed
an automatic feature selection computed from the normalized Fuclidean distances between two picked

landmarks from 83 possible ones. Using regularized multi-class AdaBoost classification algorithm.

In this first approach, we further investigate the problem of 3D identity-independent facial expression
recognition. The main contributions of our approach are the following: (1) We propose a new process for
representing and extracting patches on the facial surface scan that cover multiple regions of the face; (2)
We apply a framework to derive 3D shape analysis to quantify similarity measure between corresponding
patches on different 3D facial scans. Thus, we combine a local geometric-based shape analysis approach

of 3D faces and several machine learning techniques to perform such classification.

4.2.2 Shape Analysis of Local Patches

Most of the earlier work in 3D shape analysis use shape descriptors such as curvature, crest lines, shape
index (e.g., ridge, saddle, rut, dome, etc.). These descriptors are defined based on the geometric and
topological properties of the 3D object, and are used as features to simplify the representation and thus
the comparison for 3D shape matching and recognition tasks. Despite their rigorous definition, such
features are computed based on numerical approximation that involves second derivatives and can be
sensitive to noisy data. In case of 3D facial range models, the facial surface labeling is a critical step to
describe the facial behavior or expression, and a robust facial surface representation is needed. In Samir
et al. (Samir et al., 2006) the authors proposed to represent facial surfaces by an indexed collections of
3D closed curves on faces. These curves are level curves of a surface distance function (i.e., geodesic
distance) defined to be the length of the shortest path between a fixed reference point (taken to be
the nose tip) and a point of the extracted curve along the facial surface. This being motivated by the
robustness of the geodesic distance to facial expressions and rigid motions. Using this approach they
were able to compare 3D shapes by comparing facial curves rather than comparing corresponding shape

descriptors.

In this approach, we intend to further investigate on local shapes of the facial surface. We are especially
interested in capturing deformations of local facial regions caused by facial expressions. Using a different
solution, we compute iso-level curves using the Euclidean distance function (which is sensitive to defor-
mations and thus can better capture differences related to variant expressions). To this end, we choose
to consider N reference points (landmarks) {r;}1<;<n (Figure 4.1 (a)) and associated sets of level curves
{c\ }1<x<n, (Figure 4.1 (b)). These curves are extracted over the patches centered at these points. Here
A stands for the value of the distance function between the reference point r; and the point belonging
to the curve cl)\, and Ao stands for the maximum value taken by A. Accompanying each facial model
there are 83 manually picked landmarks, these landmarks are practically similar to the MPEG-4 feature
points and are selected based on the facial anatomy structure. Given these points the feature region on

the face can be easily determined and extracted. We were interested in a subset of 68 landmarks laying
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@ Discarded landmarks provided by BU-3DFE
@ Retained landmarks provided by BU-3DFE
@ A ically added landmarks

FIGURE 4.1: (a) 3D annotated facial shape model (70 landmarks); (b) 3D closed curves extracted around
the landmarks; (c) 3D curve-based patches composed of 20 level curves with a size fixed by a radius
Ao = 20mm; (d) Extracted patches on the face.

within the face area, discarding those marked on the face border. Contrary to the MPEG-4 feature points
specification that annotates the cheeks center and bone, in BU-3DFE there were no landmarks associated
with the cheek regions. Thus, we add two extra landmarks at both cheeks, obtained by extracting the
middle point along the geodesic path between the mouth corner and the outside eye corner. We propose
to represent each facial scan by a number of patches centered on the considered points. Let r; be the
reference point and P, a given patch centered on this point and localized on the facial surface denoted
by S. Each patch will be represented by an indexed collection of level curves. To extract these curves,
we use the Euclidean distance function ||r; — p|| to characterize the length between r; and any point p on
S. Indeed, unlike the geodesic distance, the Euclidean distance is sensitive to deformations, and besides,
it permits to derive curve extraction in a fast and simple way. Using this function we defined the curves
as level sets of:

=ik ={peS|ln—pl=AcS Ae0 (4.1)

Each cl/\ is a closed curve, consisting of a collection of points situated at an equal distance A from r;. The

Fig. 4.1 resumes the scheme of patches extraction.

Once the patches are extracted, we aim at studying their shape and design a similarity measure between
corresponding ones on different scans under different expressions. This is motivated by the common belief
that people smile, or convey any other expression, the same way, or more appropriately certain regions
taking part in a specific expression undergo practically the same dynamical deformation process. We
expect that certain corresponding patches associated with the same given expression will be deformed in
a similar way, while those associated with two different expressions will deform differently. The following
sections describe the shape analysis of closed curves in R3, initially introduced in (Joshi et al., 2007),
and its extension to analyze shape of local patches on facial surfaces. We notice here that the shape

analysis approach applied for curves here is different to the one described in Chapter 2, because of the
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closure constraint. For this reason, we shall describe in details in the following sections the shape analysis

approach for closed curves and the extension to facial patches.

4.2.2.1 Shape Analysis of 3D Closed Curves

We start by considering a closed curve § in R?. While there are several ways to analyze shapes of
closed curves, an elastic analysis of the parametrized curves is particularly appropriate in 3D curves
analysis. This is because (1) such analysis uses a square-root velocity function representation which
allows us to compare local facial shapes in presence of elastic deformations, (2) this method uses a
square-root representation under which the elastic metric reduces to the standard L? metric and thus
simplifies the analysis, (3) under this metric the Riemannian distance between curves is invariant to the
re-parametrization. To analyze the shape of 3, we shall represent it mathematically using a square-root
representation of 3 (as described in Chapter 2) as follows ; for an interval I = [0,1], let 3 : I — R? be

a curve and define ¢ : I — R3 to be its square-root velocity function (SRVF), given by:
q(t) = B)/\IBW)] - (4.2)

Here ¢ is a parameter € I and ||.|| is the Euclidean norm in R®. We note that ¢(t) is a special function that
captures the shape of 8 and is particularly convenient for shape analysis, as we describe next. The classical
elastic metric for comparing shapes of curves becomes the L2-metric under the SRVF representation
(Srivastava et al., 2011). This point is very important as it simplifies the calculus of elastic metric to the
well-known calculus of functional analysis under the L>-metric. Also, the squared L?-norm of ¢, given by:
lgll? = for < q(t),q(t) > dt = [ |B()||dt , which is the length of 3. In order to restrict our shape analysis
to closed curves, we define the set: C = {g: S — R3| [ q(t)[|q(?)||dt = 0} C L?(S',R?). Notice that
the elements of C are allowed to have different lengths. Due to a non-linear (closure) constraint on its
elements, C is a non-linear manifold. We can make it a Riemannian manifold by using the metric: for

any u,v € Ty(C), we define:

(u, ) = /§ u(t). o(t) dt (4.3)

So far we have described a set of closed curves and have endowed it with a Riemannian structure. Next
we consider the issue of representing the shapes of these curves. It is easy to see that several elements of
C can represent curves with the same shape. For example, if we rotate a curve in R?, we get a different
SRVF but its shape remains unchanged. Another similar situation arises when a curve is re-parametrized;
a re-parameterization changes the SRVF of curve but not its shape. In order to handle this variability, we
define orbits of the rotation group SO(3) and the re-parameterization group I' as the equivalence classes
in C. Here, I is the set of all orientation-preserving diffeomorphisms of S! (to itself) and the elements

of T' are viewed as re-parameterization functions. For example, for a curve 8 : S! — R? and a function
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v :S! = S 4 €T, the curve o~ is a re-parameterization of 5. The corresponding SRVF changes
according to q(t) — /A (t)q(y(t)). We set the elements of the orbit:

[q] = {{/1(H)0q(())|O € SO@B), €T}, (4.4)

to be equivalent from the perspective of shape analysis. The set of such equivalence classes, denoted by
S =C/(SO(3) xT) is called the shape space of closed curves in R?. S inherits a Riemannian metric from

the larger space C due to the quotient structure.

The main ingredient in comparing and analysing shapes of curves is the construction of a geodesic
between any two elements of S, under the Riemannian metric given in Eq.(4.3). Given any two curves
(1 and B, represented by their SRVFs ¢; and g2, we want to compute a geodesic path between the orbits
[¢1] and [go] in the shape space S. This task is accomplished using a path-straightening approach which
was introduced in (Klassen and Srivastava, 2006). The basic idea here is to connect the two points [¢i]
and [gz] by an arbitrary initial path a and to iteratively update this path using the negative gradient
of an energy function E[a] = 3 [, (d(s),d(s))ds. The interesting part is that the gradient of E has
been derived analytically and can be used directly for updating . As shown in (Klassen and Srivastava,
2006), the critical points of E are actually geodesic paths in §. Thus, this gradient-based update leads
to a critical point of F which, in turn, is a geodesic path between the given points. In the remainder of
this section, we will use the notation ds(f1, f2) to denote the length of the geodesic in the shape space

S between the orbits ¢; and g2, to reduce the notation.

4.2.2.2 Shape Analysis of 3D Facial Patches

Now, we extend ideas developed in the previous section from analyzing shapes of curves to the shapes of
patches. As mentioned earlier, we are going to represent a number of [ patches of a facial surface S with
an indexed collection of the level curves of the ||r; — .|| function (Euclidean distance from the reference
point 7). That is, P <> {ch, A € [0,\o]} , where ¢} is the level set associated with ||r; — .|| = A. Through
this relation, each patch has been represented as an element of the set Sl In our framework, the
shapes of any two patches are compared by comparing their corresponding level curves. Given any two
patches Py and P», and their level curves {ci, A € [0, A\o]} and {c3, X € [0, \o]}, respectively, our idea is
to compare the patches curves c}\ and c?\, and to accumulate these differences over all A. More formally,

we define a distance dgo,», given by:

L
dgi00) (Pr, Py) = /0 ds(ck, )dA | (4.5)

In addition to the distance dgjo,xg(P1, P2), which is useful in biometry and other classification experi-

ments, we also have a geodesic path in & [0.20] hetween the two points represented by P, and P». This
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FIGURE 4.2: Examples of intra-class (same expression) geodesic paths with shape and mean curvature
mapping between corresponding patches.

geodesic corresponds to the optimal elastic deformations of facial curves and, thus, facial surfaces from one
to another. Figure 4.2 shows some examples of geodesic paths that are computed between corresponding
patches associated with shape models sharing the same expression, and termed intra-class geodesics. In
the first column we illustrate the source, which represents scan models of the same subject, but under
different expressions. The third column represents the targets as scan models of different subjects. As
for the middle column, it shows the geodesic paths. In each row we have both the shape and the mean
curvature mapping representations of the patches along the geodesic path from the source to the target.
The mean curvature representation is added to identify concave/convex areas on the source and target
patches and equally-spaced steps of geodesics. This figure shows that certain patches, belonging to the
same class of expression, are deformed in a similar way. In contrast, Figure 4.3 shows geodesic paths
between patches of different facial expressions. These geodesics are termed inter-class geodesics. Unlike

the intra-class geodesics shown in Figure 4.2, these patches deform in a different way.
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FIGURE 4.3: Examples of inter-class (different expressions) geodesic paths between source and target
patches.

4.2.3 Facial Expression Classification

In order to classify expressions, we build a feature vector for each facial scan. Given a candidate facial
scan of a person j, facial patches are extracted around facial landmarks. For a facial patch P?' a set of
level curves {c,\}Z are extracted centered on the i*" landmark. Similarly, a patch P, ref 18 extracted in
correspondence to landmarks of a reference scans ref. The length of the geodesic path between each level
curve and its corresponding curve on the reference scan are computed using a Riemannian framework for
shape analysis of 3D curves (see Sections 4.2.2.1 and 4.2.2.2). The shortest path between two patches
at landmark 4, one in a candidate scan and the other in the reference scan, is defined as the sum of
the distances between all pairs of corresponding curves in the two patches as indicated in Eq. (4.5).
The feature vector is then formed by the distances computed on all the patches and its dimension is
equal to the number of used landmarks N = 70 (i.e., 68 landmarks are used out of the 83 provided by
BU-3DFED and the two additional cheek points). The i*" element of this vector represents the length
of the geodesic path that separates the relative patch to the corresponding one on the reference face
scan. All feature vectors computed on the overall dataset will be labeled and used as input data to
machine learning algorithms such as Multi-boosting and SVM, where Multi-boosting is an extension of

the successful Adadoost technique for forming decision committees.
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4.2.4 Experimental Results

To investigate facial expression recognition, we have applied our proposed approach on a dataset that is
appropriate for this task. In this Section, we describe the experiments, obtained results and comparisons

with related work.

I. Database Description and Experimental Setting: BU-3DFE is one of the very few publicly
available databases of annotated 3D facial expressions, collected by Yin et al. (Yin et al., 2006b) at
Binghamton University. It was designed for research on 3D human face and facial expression and to
develop a general understanding of the human behavior. Thus the BU-3DFE database is beneficial
for several fields and applications dealing with human computer interaction, security, communication,
psychology, etc. There are a total of 100 subjects in the database, 56 females and 44 males. A neutral scan
was captured for each subject, then they were asked to perform six expressions namely: Happiness (HA),
Anger (AN), Fear (FE), Disgust (DI), Sad (SA) and Surprise (SU). The expressions vary according to
four levels of intensity (low, middle, high and highest or 01-04). Thus, there are 25 3D facial expression
models per subject in the database. A set of 83 manually annotated facial landmarks is associated
to each model. These landmarks are used to define the regions of the face that undergo to specific
deformations due to single muscles movements when conveying facial expression (Ekman and Friesen,
1978). In Figure 4.4, we illustrate examples of the six universal facial expressions 3D models including

the highest intensity level.

OOFO0Y
A4

Happy Angry Fear Disgust Surprise

FIGURE 4.4: Examples of 3D facial expression models (first row 3D shape models, second row 3D textured
models) of the BU-3DFE database.

For the goal of performing identity-independent facial expression recognition, the experiments were con-
ducted on the BU-3DFE static database. A dataset captured from 60 subjects were used, half (30) of
them were female and the other half (30) were male, corresponding to the high and highest intensity
levels 3D expressive models (03-04). These data are assumed to be scaled to the true physical dimensions
of the captured human faces. Following a similar setup as in (Gong et al., 2009b), we randomly divided
the 60 subjects into two sets, the training set containing 54 subjects (648 samples), and the test set

containing 6 subjects (72 samples). To drive the classification experiments, we arbitrarily choose a set of
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six reference subjects with its six basic facial expressions. We point out that the selected reference scans

do not appear neither in the training nor in the testing set.

II. Discussions of the Results: Using the Waikato Environment for Knowledge Analysis (Weka)
(Hall et al., 2009), we applied the Multiboost algorithm with three weak classifiers, namely, Linear
Discriminant Analysis (LDA), Naive Bayes (NB), and Nearest Neighbor (NN), to the extracted features,
and we achieved average recognition rates of 98.81%, 98.76% and 98.07%, respectively. We applied the
SVM linear classifier as well, and we achieved an average recognition rate of 97.75%. We summarize the

resulting recognition rates in Table 4.1.

TABLE 4.1: Classification results using local shape analysis and several classifiers.

Classifier Multiboost-LDA | Multiboost-NB | Multiboost-NN | SVM-Linear
Recognition rate 98.81% 98.76% 98.07% 97.75%

We note that these rates are obtained by averaging the results of the 10 independent and arbitrarily run
experiments (10-fold cross validation) and their respective recognition rate obtained using the Multiboost-
LDA classifier. We note that different selections of the reference scans do not affect significantly the
recognition results and there is no large variations in recognition rates values. The reported results
represent the average over the six runned experiments. The Multiboost-LDA classifier achieves the
highest recognition rate and shows a better performance in terms of accuracy than the other classifiers.
This is mainly due to the capability of the LDA-based classifier to transform the features into a more
discriminative space and, consequently, result in a better linear separation between facial expression

classes.

The average confusion matrix relative to the the best performing classification using Multiboost-LDA is

given in Table 4.2.

TABLE 4.2: Average confusion matrix given by Multiboost-LDA classifier.

% AN DI FE HA SA SU
AN | 9792 | 1.11 0.14 0.14 0.69 0.0
DI 0.56 99.16 | 0.14 0.0 0.14 0.0
FE 0.14 0.14 | 99.72 0.0 0.0 0.0
HA | 0.56 0.14 0.0 98.60 | 0.56 0.14
SA 0.28 0.14 0.0 0.0 99.30 | 0.28
SU 0.14 0.56 0.0 0.0 1.11 | 98.19

In order to better understand and explain the results mentioned above, we apply the Multiboost algorithm
on feature vectors built from distances between patches for each class of expression. In this case, we
consider these features as weak classifiers. Then, we look at the early iterations of the Multiboost

algorithm and the selected patches in each iteration.
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Happy Angry Fear Disgust Sad Surprise

FI1GURE 4.5: Selected patches at the early few iterations of Multiboost classifier for the six facial expres-
sions (Angry, Disgust, Fear, Happy, Sadness, Surprise) with their associated weights.

Figure 4.5 illustrates for each class of expression the most relevant patches. Notice that, for example, for
the Happy expression the selected patches are localized in the lower part of the face, around the mouth
and the chin. As for the Surprise expression, we can see that most relevant patches are localized around
the eyebrows and the mouth region. It can be seen that patches selected for each expression lie on facial

muscles that contribute to this expression.

ITI. Comparison with Related Work: In Table 4.3 results of our approach are compared against
those reported in (Tang and Huang, 2008b), (Soyel and Demirel, 2007), and (Wang et al., 2006b), on the
same experimental setting (54-versus-6-subject partitions) of the BU-3DFE database. The differences
between approaches should be noted: Tang et al. (Tang and Huang, 2008b) performed automatic feature
selection using normalized Euclidean distances between 83 landmarks, Soyel et al. (Soyel and Demirel,
2007) calculated six distances using a distribution of 11 landmarks, while Wang et al. (Wang et al.,
2006b) derived curvature estimation by locally approximating the 3D surface with a smooth polynomial
function. In comparison, our approach capture the 3D shape information of local facial patches to derive
shape analysis. For assessing how the results of their statistical analysis will generalize to an independent
dataset, in (Wang et al., 2006b) a 20-fold cross-validation technique was used, while in (Tang and Huang,
2008b) and (Soyel and Demirel, 2007) the authors used 10-fold cross-validation to validate their approach.

TABLE 4.3: Comparison of this work with respect to previous work (Tang and Huang, 2008b), (Soyel
and Demirel, 2007) and (Wang et al., 2006b).

Method 10-fold Average Recognition Rate (%)|20-fold ARR (%)
(Wang et al., 2006b) — 83.6%
(Tang and Huang, 2008b) 95.1% —
(Tang and Huang, 2008b) 95.1% —
(Soyel and Demirel, 2007) 91.3% —
(Maalej et al., 2011) 98.81% 92.75%

IV. Impact of Head Pose Variation: In real world situations, frontal view facial scans may not be
always available. Thus, non-frontal view facial expression recognition is a challenging issue that needs to
be treated. We were interested in evaluating our approach on facial scan under large pose variations. By
rotating the 3D shape models in the y-direction, we generate facial scans under six different non-frontal

views corresponding to 15°, 30°, 45°, 60°, 75° and 90 ° rotation. We assume that shape information is
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unavailable for the occluded facial regions due to the face pose. For each view, we perform facial patches
extraction around the visible landmarks in the given scan. In cases where a landmark is occluded, or
where the landmark is visible, but the region nearby is partially occluded, we treat it as a missing data
problem for all faces sharing this view. In these cases, we are not able to compute the geodesic path
between corresponding patches. The corresponding entries in the distance matrix are blank and we fill
them using an imputation technique (Batista and Monard, 2003). In our experiments we employed the
mean imputation method, which consists of replacing the missing values by the means of values already
calculated in frontal-view scenario obtained from the training set. Let djjx = dglo.x (PZ-’“,P]’-’“) be the
geodesic distance between the k' patch belonging to subjects i and j (i # j). In case of frontal view

(fv), the set of instances Xz-f Y relative to the subject i need to be labeled and is given by:

dlll o dllk “ e d’LlN

xfv — :
i = dijl . dijk : dijN
dZJl o e dZJk “ e dZJN

where N is the number of attributes. In case of non-frontal view (nfv), if an attribute k is missing, we

replace the k** column vector in the distance matrix X! fo by the mean of geodesic distances computed
J
L dij .
in the frontal-view case, with respect to the k' attribute and given by: mkv = @, where J is the
total number of instances.
dill mgv dilN
fv .
X? V= dijl PN mi” : dijN
fv
di]l mk diL]N

To evaluate the robustness of our approach in a context of non-frontal views, we derive a view-independent
facial expression recognition. Error recognition rates are evaluated throughout different testing facial
views using the four classifiers trained only on frontal-view facial scans. Figure 4.6 shows the average
error rates of the four classification methods. The Multiboost-LDA shows the best performance for facial
expression classification on the chosen database. From the figure, it can be observed that the average
error rates increase with the rotation angle (values from 0 to 90 degrees of rotation are considered), and
the Multiboost-LDA is the best performing methods also in the case of pose variations. As shown in this
figure, recognition accuracy remains acceptable, even only 50% of data (half face) are available when we

rotate the 3D face by 45 degree in y-direction.

In this section we presented a novel approach for identity-independent facial expression recognition
from 3D facial shapes. Our idea was to describe the change in facial expression as a deformation in

the vicinity of facial patches in 3D shape scan. An automatic extraction of local curve based patches
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FIGURE 4.6: The average error rates of six expressions with different choice of views corresponding to
the best reference and using different classifiers.

within the 3D facial surfaces was proposed. These patches were used as local shape descriptors for facial
expression representation. A Riemannian framework was applied to compute the geodesic path between
corresponding patches. Qualitative (inter and intra-geodesic paths) and quantitative (geodesic distances)
measures of the geodesic path were explored to derive shape analysis. The geodesic distances between
patches were labeled with respect to the six prototypical expressions and used as samples to train and
test machine learning algorithms. Using Multiboost algorithm for multi-class classification, we achieved
a 98.81% average recognition rate for six prototypical facial expressions on the BU-3DFE database. We
demonstrated the robustness of the proposed method to pose variations. In fact, the obtained recognition

rate remain acceptable (over 93%) even half of the facial scan is missed.

The major limitation of the approach presented in this section is that the 68 landmarks we used to define
the facial patches were manually labeled. Several studies were interested detecting and tracking facial
feature points, as proposed in (Gupta et al., 2010), (Sun et al., 2010b), for automatic 3D facial expression
recognition. We will adopt a different approach (landmark-free) for the analysis of dynamic flows of facial

surfaces.

4.3 Expression Classification from 3D Dynamic (4D) Faces

In his study, Ekman also showed that facial expressions can be coded through the movement of face

points (temporal evolution of the face) as described by a set of action units (Ekman and Friesen, 1977).
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These results, in turn, inspired many researchers to analyze facial expressions in video data, by tracking
facial features and measuring the amount of facial movements in video frames (Zeng et al., 2009). This
body of work demonstrates a collective knowledge that facial expressions are highly dynamical processes,
and looking at sequences of face instances can help to improve the recognition performance. We further
emphasize that, rather than being just a static or dynamic 2D image analysis, it is more natural to analyze
expressions as spatio-temporal deformations of 3D faces, caused by the actions of facial muscles. In this
approach, the facial expressions can be studied comprehensively by analyzing temporal dynamics of 3D
face scans (3D plus time is often regarded as 4D data). From this perspective the relative immunity
of 3D scans to lighting conditions and pose variations give support for the use of 3D and 4D data.
Motivated by these considerations, there has been a progressive shift from 2D to 3D in performing facial
shape analysis for recognition (Chapter 3), and expression recognition as described in Section 4.2. In
particular, this latter research subject is gaining momentum thanks to the recent availability of public 3D
datasets, like the Binghamton University 3D Facial Expression database (BU-3DFE) (Yin et al., 2006a),
and the Bosphorus 3D Face Database (Savran et al., 2008).

At the same time, advances in 3D imaging technology (Di3D, 2006, 3DMD, 2010) have permitted col-
lections of large datasets that include temporal sequences of 3D scans (i.e., 4D datasets), such as the
Binghamton University 4D Facial Expression database (BU-4DFE) (Yin et al., 2008), the 4D dataset
constructed at University of Central Lancashire (Hi4dD-ADSIP) (Matuszewski et al., 2011, 2012), and
the dynamic 3D FACS dataset (D3DFACS) for facial expression research (Cosker et al., 2011), which
also includes fully coded FACS. This trend has been strengthened further by the introduction of inex-
pensive acquisition devices, such as the consumer 3D cameras like Kinect or Asus (Kinect, 2010, Point
grey, 2010, Asus, 2010), that provide fast albeit low-resolution streams of 3D data to a large number
of users, thus opening new opportunities and challenges in 3D face recognition and facial expression
recognition (Berretti et al., 2012, Li et al., 2013). Motivated by these facts, we focus in this section on
the problem of expression recognition from dynamic sequences of 3D facial scans. We propose a new
framework for temporal analysis of 3D faces that combines scalar fields modeling of face deformations
with effective classifiers. To motivate our solution and to relate it to the state of the art, next we provide
an overview of existing methods for 4D facial expression recognition (see also the recent work in (Sand-
bach et al., 2012b) for a comprehensive survey on this subject), then we give a general overview of our

approach.

4.3.1 Related Work

The use of 4D data for face analysis is still at the beginning, with just a few works performing face
recognition from sequences of 3D face scans (Li et al., 2013, Benedikt et al., 2008, 2010), and some works
focussing on facial expression recognition. In particular, the first approach addressing the problem of
facial expression recognition from dynamic sequences of 3D scans was proposed by Sun et al. (Sun et al.,

2010a, Sun and Yin, 2008). Their approach basically relies on the use of a generic deformable 3D model
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whose changes are tracked both in space and time in order to extract a spatio-temporal description of the
face. In the temporal analysis, a vertex flow tracking technique is applied to adapt the 3D deformable
model to each frame of a 3D face sequence, and the vertex flow estimation is derived by establishing point-
to-point correspondences between 3D meshes based on a conformal mapping approach. Correspondences
between vertices across the 3D dynamic facial sequences provide a set of motion trajectories (vertex flow)
of 3D face scans. Consequently, the vertex flow can be depicted on the adapted generic model (tracking
model) through the estimation of the displacement vector from the tracked points of the current frame to
the corresponding points of the first frame (assumed to have a neutral expression). A facial motion vector
is then obtained to describe the dynamics of facial expression across a 3D frame sequence. In the spatial
analysis, an automatic surface labelling approach is applied on the tracked locations of the depth models
in order to classify the 3D primitive surface features into eight basic categories. As a result, each depth
scan in the sequence can be represented by a spatio-temporal feature vector that describes both shape and
motion information and provides a robust facial surface representation. Once spatio-temporal features
are extracted, a two-dimensional Hidden Markov Model (HMM) is used for classification. In particular,
a spatial HMM and a temporal HMM were used to model the spatial and temporal relationships between
the extracted features. Exhaustive analysis was performed on the BU-4DFE database. The main limit
of this solution resides in the use of the 83 manually annotated landmarks of the BU-4DFE that are
not released for public use. The approach proposed by (Sandbach et al., 2011) exploits the dynamics of
3D facial movements to analyze expressions. This is obtained by first capturing motion between frames
using Free-Form Deformations and extracting motion features using a quad-tree decomposition of several
motion fields. GentleBoost classifiers are used in order to simultaneously select the best features to use
and perform the training using two classifiers for each expression: one for the onset temporal segment,
and the other for the offset segment. Then, HMMs are used for temporal modeling of the full expression
sequence, which is represented as the composition of four temporal segments, namely, neutral, onset,
apex, offset. These model a sequence with an initial neutral segment followed by the activation of the
expression, the maximum intensity of the expression, deactivation of the expression and closing of the
sequence again with a neutral expression. Experiments were reported for three prototypical expressions
(i.e., happy, angry and surprise) of the BU-4ADFE database. An extension of this work has been presented
in (Sandbach et al., 2012b), where results on the BU-4DFE database using the six universal facial
expressions are reported. In (Le et al., 2011) a level curve based approach is proposed to capture the
shape of 3D facial models. The level curves are parameterized using the arclength function. The Chamfer
distance is applied to measure the distances between the corresponding normalized segments, partitioned
from these level curves of two 3D facial shapes. These features are then used as spatio-temporal features
to train HMM, and since the training data were not sufficient for learning HMM, the authors proposed
to apply the universal background modeling to overcome the over-fitting problem. Results were reported
for the happy, sad and surprise sequences of the BU-4DFE database. Fang et al. (Fang et al., 2011)
propose a fully automatic 4D facial expression recognition approach with a particular emphasis on 4D
data registration and dense correspondence between 3D meshes along the temporal line. The variant of

the Local Binary Patterns (LBP) descriptor proposed in (Zhao and Pietikdinen, 2007), which computes
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LBP on three orthogonal planes is used as face descriptor along the sequence. Results are provided on the
BU-4DFE database for all expressions and for the subsets of expressions used in (Sandbach et al., 2011)
and (Le et al., 2011), showing improved results with respect to competing solutions. In (fan, 2012), the
same authors propose a similar methodology for facial expression recognition from dynamic sequences of
3D scans, with an extended analysis and comparison of different 4D registration algorithms, including
ICP and more sophisticated mesh matching algorithms, as Spin Images and MeshHOG. However, 12
manually annotated landmarks were used in this study. Recently, Reale et al. (Reale et al., 2013) have
proposed a new 4D spatio-temporal feature named Nebula for facial expressions and movement analysis
from a volume of 3D data. After fitting the volume data to a cubic polynomial, a histogram is built for
different facial regions using geometric features, as curvatures and polar angles. They have conducted
several recognition experiments on the BU-4DFE database for posing expressions, and on a new database
published in (Zhang et al., 2013) for spontaneous expressions. However, manual intervention is used to
detect the onset frame and just 15 frames from the onset one are used for classification, and these frames

correspond to the most intense expression.

From the discussion above, it becomes clear that solutions specifically tailored for 4D facial expres-
sion recognition from dynamic sequences are still preliminary, being semi-automatic, or are capable of

discriminating between only a subset of expressions.

4.3.2 Geometric Facial Deformation

The elastic Riemannian metric used in our methodology provides a physical interpretation of measur-
ing deformations between facial curves using a combination of stretching and bending. These elastic

deformations are captured by the Dense Scalar Fields used for expression classifications.
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preprocessing extraction transformation —‘ Mean Deformation + RE
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Mean
deformation

FIGURE 4.7: Overview of the proposed approach. Four main steps are shown: Sequence preprocessing and

extraction of the radial curves; Motion extraction and Mean deformation computation; Dimensionality

reduction with LDA; HMM- and Random-Forest-based classification. Note that both train and test
sequences can go through the upper and lower path in the block-diagram.
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Based on these premises, in this work we propose an automatic approach for facial expression recognition
that exploits the facial deformations extracted from 3D facial videos. An overview of the proposed
approach is given in Figure 4.7. In the preprocessing step, the 3D mesh in each frame is first aligned
to the previous one and then cropped. From the obtained subsequence, the 3D deformation is captured
based on a Dense Scalar Fields (DSFs) that represents the 3D deformation between two frames. Linear
Discriminant Analysis (LDA) is used to transform derived feature space to an optimal compact space
to better separate different expressions. Finally, the expression classification is performed in two ways:
(1) using the HMM models for temporal evolution; and (2) using mean deformation along a window
with Random Forest classifier. Experimental results show that the proposed approaches are capable of
improving the state of art performance on the BU-4DFE database. There are three main contributions

in this work,

% Novel Dense Scalar Fields (DSFs) defined on radial curves of 3D faces using Riemannian analysis
in shape spaces of curves. These scalar fields accurately capture deformations occurring between

3D faces represented as collections of radial curves;

% A new approach for facial expression recognition from 3D dynamic sequences, that combines the
high descriptiveness of DSFs extracted from successive 3D scans of a sequence with the discriminant

power of LDA features using HMM and multi-class Random Forest;

% An extensive experimental evaluation that compares the proposed solution with the state of the
art methods using a common dataset and testing protocols. Results show that our approach

outperforms the published state of the art results.

One basic idea to capture facial deformations across 3D video sequences is to track mesh vertices densely
along successive 3D frames. Since, as the resolution of the meshes varies across 3D video frames, es-
tablishing a dense matching on consecutive frames is necessary. For this purpose, (Sun and Yin, 2008)
proposed to adapt a generic model (a tracking model) to each 3D frame using a set of 83 predefined
facial landmarks to control the adaptation based on radial basis functions. The main limitation of this
approach is that the 83 landmarks are manually annotated in the first frame of each sequence. Moreover,
the adaptation decreases the accuracy of expression recognition when emotions are manifested by subtle
changes of the face. A second solution is presented by (Sandbach et al., 2012a, 2011), where the authors
used an existing non-rigid registration algorithm (FFD) (Rueckert et al., 1999a) based on B-splines in-
terpolation between a lattice of control points. In this case, dense matching is a preprocessing step used
to estimate a motion fields between 3D frames ¢ and ¢-1. The problem of quantifying subtle deformations
along the sequence still remains a challenging task, and the results presented in (Sandbach et al., 2011)
are limited to just three facial expressions: happy, angry and surprise. In order to capture and model
deformations of the face induced by different facial expressions, we propose to represent the facial surface
through a set of parameterized radial curves that originate from the tip of the nose. Approximating

the facial surface by an ordered set of radial curves, which locally captures its shape can be seen as a
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parameterization of the facial surface. Indeed, similar parameterizations of the face have shown their
effectiveness in facial biometrics (Drira et al., 2010a). The mathematical setup for the shape theory

offered here comes from Hilbert space analysis (refer to Chapter 2 for DSFs computation).

Neutral Happy Angry Surprise Fear Disgust
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FIGURE 4.8: Optimal deformations (represented by the DFSs) computed between a neural face (on the
left) and six apex (maximum expression) frames taken from the BU-4DFE database, each represent one
expression from the set (happy, angry,surprise, sad, fear and disgust).

In our experiments, we represent each face with 100 radial curves, and T=50 sampled points on each
curve, so that the DSFs between two 3D faces is expressed by a 5000-dimensional feature vector. In
Figure 4.8 examples of the deformation fields computed between a neutral face of a given subject and the
apex frames of the sequences of the six universal expressions of the same subject are shown. The values
of the scalar fields to be applied on the neutral face to convey the six different prototypical expressions
are reported using a color scale (blue to black). In particular, colors from green to black represent the
highest deformations, whereas the lower values of the dense scalar fields are represented in cyan/blue.
As it can be observed, for different expressions, the high deformations are located in different regions
of the face. For example, as intuitively expected, the corners of the mouth and the cheeks are mainly
deformed for happiness expression, whereas the eyebrows are also strongly deformed for the angry and

disgust expressions.

In order to highlight the benefits of the proposed DSFs against other methods for extracting dense
deformation features, we selected the Free-Form Deformation approach, which has been originally defined
in Rueckert et al. (Rueckert et al., 1999b) for medical images, and later on successfully applied to the
problem of 3D dynamic facial expression recognition by (Sandbach et al., 2012a, 2011). In particular,
FFD is a method for non-rigid registration based on B-spline interpolation between a lattice of control
points. In addition, we also compared our approach with respect to a baseline solution, which uses the
point-to-point Euclidean distance between frames of a sequence. Figure 4.9 reports the results for an
example case, where a frame of a happy sequence is deformed with respect to the first frame of the
sequence. The figure shows quite clearly as the DSFs proposed in this work is capable to capture the face

deformations with smooth variations that include, in the example, the mouth, the chin and the cheeks.
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FI1GURE 4.9: Capturing the facial deformations between a neutral face and an expressive face trough
three methods: (a) the Free Form-based Deformations (FFD); (b) the point-to-point Euclidean distances;
and (c) the DSFs deformations.

4.3.3 Expression Recognition using DSFs

Deformations due to facial expressions across 3D video sequences are characterized by subtle variations
induced mainly by the motion of facial points. These subtle changes are important to perform effective
expression recognition, but they are also difficult to be analyzed due to the face movements. To handle
this problem, as described in the previous section, we propose a curve-based parametrization of the face
that consists in representing the facial surface by a set of radial curves. According to this representation,
the problem of comparing two facial surfaces, a reference facial surface and a target one, is reduced to the
computation of the DSFs between them. In order to make possible to enter the expression recognition
system at any time and make the recognition process possible from any frame of a given video, we
consider subsequences of n frames. Thus, we chose the first n frames as the first subsequence. Then, we
chose n-consecutive frames starting from the second frame as the second subsequence. This process is
repeated by shifting the starting index of the sequence every one frame till the end of the sequence. In
order to classify the resulting subsequences, we propose two different feature extraction and classification

framework based on the DSFs:

% Mean Deformation-based features associated to Random Forest classifier. The first
frame of the subsequence is considered as a reference frame and the deformation is calculated from
each of the remaining frames to the first one using the DSFs. The average deformation of the n-1
resulting DSFs represents the feature vector in this classification scheme and is presented, after

dimensionality reduction, to multi-class Random Forest classifiers;

% 3D Motion features combined with HMM classifiers. The deformation between successive
frames in a subsequence are calculated using the DSFs and presented to an HMM classifier preceded

by LDA-based dimensionality reduction.

In the following, we shall describe the dynamic features derived from the DSFs.
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4.3.3.1 Mean Shape Deformation with the Random Forest Classifier

The idea here is to capture a mean deformation of the face in the sliding window on the 3D expression
sequence. In order to get this feature, the first frame of each subsequence is considered as the reference
one, and the dense deformation is computed from this frame to each of the remaining frames of the
subsequence. Let F..; denote the reference frame of a subsequence and F; the i-th successive frame in

the subsequence; the successive frame, for example, is denoted by Fj. The DSFs is calculated between

Fyer and Fj, for different values of i (¢ =1,...,n — 1), and the mean deformation is then given by:
1 n—1
SE = DSF(Fyet, F). 4.6
n—1 ; ( refs z) ( )
Figure 4.10 illustrates one subsequence for each expression with n = 6 frames. FEach expression is

illustrated in two rows: The upper row gives the reference frame of the subsequence and the n-1 successive
frames of the subsequences. Below, the corresponding Dense Scalar Fields computed for each frame are
shown. The mean deformation fields is reported on the right of each plot and represents the feature vector
for each subsequence. The feature vector for this subsequence is built based on the mean deformation
of the n-1 calculated deformations. Thus, each subsequence is represented by a feature vector of size
equal to the number of points on the face (i.e., the number of points used to sample the radial curves of
the face). In order to provide a visual representation of the scalar fields, an automatic labeling scheme
is applied: Warm colors (red, yellow) are associated with high DSF(F,..f, F;) values and correspond to
facial regions affected by high deformations. Cold colors are associated with regions of the face that
remain stable from one frame to another. Thus, this dense deformation fields summarize the temporal

changes of the facial surface when a particular facial expression is conveyed.

According to this representation, the deformation of each subsequence is captured by the mean DSF
defined in Eq. (4.6). The main motivation for using the mean deformation, instead of the maximum
deformation for instance, is related to its greater robustness to the noise. In the practice, the mean
deformation resulted more resistant to deformations due to, for example, inaccurate nose tip detection
or the presence of acquisition noise. In Figure 4.10, for each subsequence, the mean deformation fields
illustrate a smoothed pattern better than individual deformation fields in the same subsequence. Since
the dimensionality of the feature vector is high, we use LDA-based transformation to map the present
feature space to an optimal one that is relatively insensitive to different subjects, while preserving the
discriminating expression information. LDA defines the within-class matrix S,, and the between-class
matrix Sp. It transforms a n-dimensional feature to an optimized d-dimensional feature, where d < n.

In our experiments, the discriminating classes are the 6 expressions, thus the reduced dimension d is 5.

For the classification, we used the multi-class Random Forest algorithm. The algorithm was proposed
in (Breiman, 2001) and defined as a meta-learner comprised of many individual trees. It was designed

to operate quickly over large datasets and more importantly to be diverse by using random samples to
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FiGURE 4.10: Computation of dynamic shape deformation on different subsequences taken from the

BU-4DFE database. Each expression is illustrated by two rows: the upper one gives the reference frame

of the subsequence and the n-1 successive frames. The corresponding deformation fields computed for

each frame with respect to the reference one are illustrated in the lower row. The mean deformation fields
are given on the right of each lower row.
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build each tree in the forest. A tree achieves highly non-linear mappings by splitting the original problem
into smaller ones, solvable with simple predictors. Each node in the tree consists of a test, whose result
directs a data sample towards the left or the right child. During training, the tests are chosen in order
to group the training data in clusters where simple models achieve good predictions. Such models are
stored at the leaves, computed from the annotated data, which reached each leaf at train time. Once
trained, a Random Forest is capable to classify a new expression from an input feature vector by putting
it down each of the trees in the forest. Each tree gives a classification decision by voting for that class.

Then, the forest chooses the classification having the most votes (over all the trees in the forest).

4.3.3.2 Motion Extraction with the HMM Classifier

The DSFs, can also be applied for expression recognition according to a different classification scheme.
The deformations between successive frames in the subsequence are calculated using the DSFs. In
particular, the deformation between two successive 3D frames is obtained by computing the pairwise

Dense Scalar Fields DSF(F;_1, F;) of correspondent radial curves. Based on this measure, we are able

to quantify the motion of face points along radial curves and thus capture the changes in facial surface
frame #19 #20
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FIGURE 4.11: Examples of DSFs (deformations) between subsequent frames of 3D video sequences:
Happy and surprise expressions are shown, respectively, on the left and right.
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Figure 4.11 illustrates a direct application of the DSF(F;_1, F;) and its effectiveness in capturing defor-
mation between one facial surface to another belonging to two consecutive frames in a 3D video sequence.
This figure shows two subsequences extracted from videos in the BU-4DFE database (happy and surprise
expressions are shown on the left and on the right, respectively). For each sequence, the 2D image and
the 3D scans of some frames are shown in the upper row. In the lower row, the deformation scalar fields
DSF(F;_1, Fy) computed between consecutive frames (i.e., the current frame and the previous one) in
the subsequence is reported. In order to provide a visual representation of the scalar fields, an auto-
matic labeling scheme is applied that includes only two colors: The red color is associated with high
DSF(F;_1, F;) values and corresponds to facial regions affected by high deformations. The blue color is
associated with regions that remain more stable from one frame to another. As illustrated in Figure 4.11,
for different expressions, different regions are mainly deformed, showing the capability of the deformation
fields to capture relevant changes of the face due to the facial expression. In particular, each deformation
is expected to identify an expression, for example, as suggested by the intuition, the corners of the mouth

and the cheeks are mainly deformed for the happiness expression.

With the proposed approach, the feature extraction process starts by computing for each 3D frame in a
given video sequence the Dense Scalar Fields with respect to the previous one. In this way, we obtain
as many fields as the number of frames in the sequence (decreased by one), where each field contains as
many scalar values as the number of points composing the collection of radial curves representing the
facial surface. In practice, the size of DSF(F;_1, F;) is 1 x 5000, considering 5000 points on the face,
similarly to the feature vector used in the first scheme of classification (mean deformation-based). Since
the dimensionality of the resulting feature vector is high, also in this case we use LDA to project the
scalar values to a 5-dimensional feature space, which is sensitive to the deformations induced by different
expressions. The 5-dimensional feature vector extracted for the 3D frame at instant t of a sequence is
indicated as f! in the following. Once extracted, the feature vectors are used to train HMMs and to

learn deformations due to expressions along a temporal sequence of frames.

In our case, sequences of 3D frames constitute the temporal dynamics to be classified, and each prototypi-
cal expression is modeled by an HMM (a total of 6 HMMs \“*P" is required, with expr € {an, di, fe, ha, sa, su}).
Four states per HMM are used to represent the temporal behavior of each expression. This corresponds
to the idea that each sequence starts and ends with a neutral expression (state Si). The frames that
belong to the temporal intervals where the face changes from neutral to expressive and back from ex-
pressive to neutral are modeled by the onset (S2) and offset (S4) states, respectively. Finally, the frames
corresponding to the highest intensity of the expression are captured by the apex state (S3). This so-
lution has proved its effectiveness in clustering the expressive states of a sequence also in other works

(Sandbach et al., 2012a). Figure 4.12 exemplifies the structure of the HMMs used in our framework.

The training procedure of each HMM is summarized as follows:
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FIGURE 4.12: Structure of the HMMs modeling a 3D facial sequence. The four states model, respectively,
the neutral, onset, apexr and offset frames of the sequence. As shown, from each state it is possible to
remain in the state itself or move to the next one (this is known as Bakis or left-right HMM).

4 Feature vectors f! of the training sequences are first clustered to identify a codebook of symbols
using the standard LBG algorithm (Linde et al., 1980). This provides the required mapping be-
tween multidimensional feature vectors, taking values in a continuous domain, with the alphabet

of symbols emitted by the HMM states;

9+ Expression sequences are considered as observation sequences O = {O',0?,..., 0"}, where each

observation O! at time t is given by the feature vector f%;

% Each HMM A*P" is initialized with random values and the Baum-Welch algorithm (Rabiner, 1989)
is used to train the model using a set of training sequences. This estimates the model parameters,

while maximizing the conditional probability P(O|A*P").

Given a 3D sequence to be classified, it is processed, so that each feature vectors f! corresponds to
a test observation O = {O!' = f!,...,0T = fT}. Then, the test observation O is presented to the
six HMMs A®*P" that model different expressions, and the Viterbi algorithm is used to determine the
best path Q = {g",...,q"}, which corresponds to the state sequence giving a maximum of likelihood to
the observation sequence O. The likelihood along the best path, p®™" (O, Q|\*P") = p°PT (O|\*PT) is
considered as a good approximation of the true likelihood given by the more expensive forward procedure
(Rabiner, 1989), where all the possible paths are considered instead of the best one. Finally, the sequence
is classified as belonging to the class corresponding to the HMM whose log-likelihood along the best path

is the greatest one.

4.3.4 Experimental Results

The proposed framework for facial expression recognition from dynamic sequences of 3D face scans has
been experimented on the BU-4DFE database. Main characteristics of the database and results are

reported in the following sections.
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BU-4DFE Database: Description and Preprocessing

To investigate the usability and performance of 3D dynamic facial sequences for facial expression recog-
nition, a dynamic 3D facial expression database has been created at Binghamton University (Yin et al.,
2008). The Dimensional Imaging’s 3D dynamic capturing system (Di3D, 2006), has been used to cap-
ture a sequence of stereo images and produce the depth map of the face according to a passive stereo-
photogrammetry approach. The range maps are then combined to produce a temporally varying sequence
of high-resolution 3D images with an RMS accuracy of 0.2mm. At the same time, 2D texture videos
of the dynamic 3D models are also recorded. Each participant (subject) was requested to perform the
six prototypical expressions (i.e., angry, disqust, fear, happiness, sadness, and surprise) separately. Each
expression sequence contains neutral expressions in the beginning and the end, so that each expression
was performed gradually from neutral appearance, low intensity, high intensity, and back to low intensity
and neutral. Each 3D sequence captures one expression at a rate of 25 frames per second and each 3D se-
quence lasts approximately 4 seconds with about 35,000 vertices per scan (i.e., 3D frame). The database
consists of 101 subjects (58 female and 43 male, with an age range of 18-45 years old) including 606 3D
model sequences with 6 prototypical expressions and a variety of ethnic/racial ancestries (i.e., 28 Asian,
8 African-American, 3 Hispanic/Latino, and 62 Caucasian). More details on the BU-4DFE can be found
n (Yin et al., 2008). An example of a 3D dynamic facial sequence of a subject with “happy” expression
is shown in Figure 4.13, where 2D frames (not used in our solution) and 3D frames are reported. From
left to right, the frames illustrate the intensity of facial expression passing from neutral to onset, offset,

apexr and neutral again.
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F1GURE 4.13: Examples of 2D and 3D frames extracted from a dynamic 3D video sequence of the
BU-4DFE dataset.

It can be observed that the 3D frames present a near-frontal pose with some slight changes occurring
mainly in the azimuthal plane. The scans are affected by large outliers, mainly acquired in the hair, neck
and shoulders regions (see Figure 4.13). In order to remove these imperfections from each 3D frame the

preprocessing pipeline described in Chapter 3 is performed.
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Mean deformation-based Expression Classification

Following the experimental protocol proposed in (Sun and Yin, 2008), a large set of subsequences are
extracted from the original expression sequences using a sliding window. The subsequences have been
defined in (Sun and Yin, 2008) with a length of 6 frames with a sliding step of one frame from one
subsequence to the following one. For example, with this approach, a sequence of 100 frames originates
a set of 6 x 95 = 570 subsequences, each subsequence differing for one frame from the previous one.
Each sequence is labelled to be one of the six basic expressions, thus extracted subsequences have the
same label. This accounts for the fact that, in general, the subjects can enter the system not necessarily
starting with a neutral expression, but with an arbitrary expression. The classification of these short
sequences is regarded as an indication of the capability of the expression recognition framework to identify
individual expressions. According to this, we first compute for each subsequence the Mean Deformation,

which is then presented to multi-class Random Forest, as outlined in Sect. 4.3.3.

Thus, in the following we consider 40 trees and we report detailed results (confusion matrix) with this
number of trees in Tab. 4.4. We recall that the rates are obtained by averaging the results of the
10-independent runs (10-fold cross validation). It can be noted that the largest confusions are between
the disgust (Di) expression and the angry (An) and Fear (Fe) expressions. Interestingly, these three
expressions capture negative emotive states of the subjects, so that similar facial muscles can be activated.
The best classified expressions are happy (Ha) and Surprise (Su) with recognition accuracy of 95.47%
and 94.53%, respectively. The standard deviation from the average performance is also reported in the
table. The value of this statistical indicator suggests that small variations are observed between different
folds.

TABLE 4.4: Confusion matrix for Mean Deformation and Random Forest classifier (for 6-frames window).

%| An | Di Fe | Hao | Sa | Su
An| 93.11| 242 | 1.71 | 0.46 | 1.61 | 0.66
Di| 2.3 [92.46| 2.44 | 0.92 | 1.27 | 0.58
Fe| 1.89 | 1.75 {91.24| 1.5 | 1.76 | 1.83
Ha| 0.57 | 0.84 | 1.71 {95.47| 0.77 | 0.62
Sa| 1.7 | 1.52 | 2.01 | 1.09 [92.46| 1.19
Su| 0.71 | 0.85 | 1.84 | 0.72 | 1.33 |94.53
Average recognition rate =93.21+0.81%

I. Effect of the Subsequence Size: We have also conducted additional experiments when varying the
temporal size of the sliding window used to define the subsequences. In Figure 4.14, we report results for
a window size equal to 2, 5 and 6, and using the whole length of the sequence (on average this is about 100
frames). From the figure, it clearly emerges that the recognition rate of the six expressions increases when
increasing the temporal length of the window. This reveals the importance of the temporal dynamics and

shows that the spatio-temporal analysis outperforms a spatial analysis of the frames. By considering the
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whole sequences for the classification, the result reach 100%. In the work, we decided to report detailed

results when considering a window length of 6-frames to allow comparisons with previous studies.
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FIGURE 4.14: Effect of the temporal size of the sliding window on the results. The classification rates
increase when increasing the length of the temporal window.

I1. Effect of the Spatial Resolution of 3D Faces: In the proposed face representation, the DSFs
are computed for the points of a set of radial curves originating from the nose tip. Due to this, the
density of the scalar fields depend on the number of radial curves and the number of points per curve.
So, the resolution used for the number of curves and points per curve can affect the final effectiveness
of the representation. To investigated this aspect, we have conducted experiments when varying the
spatial resolution of the 3D faces (i.e., the number of radial curves and the number of points per curve).
Figure 4.15 expresses quantitatively the relationship between the expression classification accuracy (on
the BU-4DFE) and the number of radial curves and the number of points per curve. This can give an
indication of the expected decrease in the performance in the case the number of radial curves or points
per curve is decreased due to the presence of noise and spikes in the data. From these results, we can
also observe that the resolution in terms of number of curves has more importance than the resolution

in terms of points per curve.
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FIGURE 4.15: Effects of varying the 3D face resolution on the classification results.



Chapter 4. 8D Facial Expression Classification 91

HMDM-based Expression Classification

Following the same setup as in previous section (originally defined in (Sun and Yin, 2008)), for this
experiment we trained the HMMs on 6 frames subsequences constructed as discussed above. The 4-
state structure of the HMMs resulted adequate to model the subsequences. Also in this experiment, we
performed 10-folds cross validation on the overall set of subsequences derived from the 60 x 6 sequences
(31970 in total). The achieved results by classifying individual subsequences of the expression sequences
(frame-by-frame experiment) are reported in the confusion matrix of Tab. 4.5. Values in the table
have been obtained by using features of 6-frames subsequences as input to the 6 HMMs and using
the maximum emission probability criterion as decision rule. It is clear that the proposed approach is
capable to accurately classify individual frames by analyzing the corresponding subsequence of previous 5
frames. The average recognition rate is equal to 93.83%, slightly higher than the one displayed by Mean
Deformation plus Random Forest classification schema (though the standard deviation among different
folds shows a greater value in this case). It can also be noted that, compared to the previous classifier,
the same tendency of recognition rates is in general achieved. In fact, correct classification of angry is
high despite the difficulty of this expression analysis. This learning scheme achieved better recognition
than the first one for angry (An) expression. Actually, whereas the angry (An) expression is known
for its subtle motions, our classifier achieved 93.95% of correct classification, which demonstrates the
ability of the proposed DSFs to capture subtle deformations across the 3D sequences. These similar good

achievements are mainly the effect of the proposed deformation scalar fields.

TABLE 4.5: Confusion matrix for Motion extraction and HMM classifiers (for 6-frames window).

% | An | Di Fe | Ha | Sa | Su

An|93.95| 1.44 | 1.79 | 0.28 | 2.0 | 0.54
D] 3.10 |91.54| 3.40 | 0.54 | 1.27 | 0.15
Fe| 1.05 | 1.42 |94.55| 0.69 | 1.67 | 0.62
Ha| 0.51 | 0.93 | 1.65 [94.58| 1.93 | 0.40
Sa| 1.77 | 0.48 | 1.99 | 0.32 (94.84| 0.60
Su| 0.57 | 0.38 | 3.25 | 0.38 | 1.85 |93.57
Average recognition rate = 93.83+1.53%

4.3.5 Discussion and Comparative Evaluation

To the best of our knowledge, the works reporting results on expression recognition from dynamic se-
quences of 3D scans are those in (Le et al., 2011, Sun et al., 2010a, Sandbach et al., 2012b, fan, 2012), and
recently (Reale et al., 2013). These works have been evaluated on the BU-4DFE dataset, but the testing
protocols used in the experiments are sometimes different, so that a direct comparison of the results
reported in these papers is not immediate. In the following, we discuss these solutions with respect to
our proposal, also evidencing the different settings under which the expression recognition results are

obtained.
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TABLE 4.6: Comparison of this work to earlier studies. Protocol description: #subjects (S), #expressions
(E), Win size (Win). T: temporal only/S-T: spatio-temporal. Accuracy on sliding window/whole sequence
(or subsequence).

[Authors [Method [Features [Classification [Protocol [T/S-TRR (%) |
(Sun and Yin, 2008) MU-3D 12 Motion Units HMM 60 S, 6 E,|T 70.31, —
Win=6
(Sun and Yin, 2008) T-HMM Tracking model HMM 60 S, 6 E,T 80.04, —
Win=6
(Sun and Yin, 2008) P2D-HMM Curvature +|T-HMM + S-HMM|60 S, 6 E,|S-T 82.19, —
Tracking model Win=6
(Sun and Yin, 2008) R-2DHMM Curvature +|2D-HMM 60 S, 6 E,S-T 90.44, —
Tracking model Win=6
(Sandbach et al., 2011) 3D Motion-based |FFD 4+ Quad-tree |GentleBoost +|—, 3E, Win=4|T 73.61, 81.93
HMM
(Sandbach et al., 2012b) |3D Motion-based [FFD + Quad-tree |GentleBoost +|—, 6 E, vari-|T 64.6, —
HMM able Win
(Le et al., 2011) Level curve-based |pair- and segment-|HMM 60S,3E, — |[S-T —, 92.22
wise distances
(Fang et al., 2011, fan,|AFM Fitting LBP-TOP SVM-RBF 100 S,6 E, — |T —, 74.63
2012)
(Fang ot al., 2011, fan,|AFM Fitting LBD-TOP SVM-RBF 108,38, — [T 9671
2012)
(Reale et al., 2013) Spatio-temporal ”Nebula” Feature |SVM-RBF 100 S, 6 E,|S-T —, 76.10
volume Win=15
(Ben Amor et al., 2014a) |Geometric Motion|3D Motion Extrac-|LDA-HMM 60 S, 6 E,|T 93.83, —
Extraction tion Win=6
(Ben Amor et al., 2014a) |Geometric =~ Mean|Mean Deformation [LDA-Random For-[60 S, 6 E,|T 93.21, —
Deformation est Win=6

Table 4.6 summarizes approaches and results reported previously on the BU-4DFE dataset, compared to
those obtained in this work. The testing protocols used in the experiments are quite different especially
the number of verified expressions, all the six basic expressions in (Fang et al., 2011, Sun et al., 2010a, Sun
and Yin, 2008, fan, 2012), and (Reale et al., 2013) whereas (Le et al., 2011, Sandbach et al., 2011) reported
primary results on only three expressions. The number of subjects considered is 60, except in (Sandbach
et al., 2011) where the number of subjects is not specified. In general, sequences in which the required
expressions are acted accurately are selected, whereas in (Fang et al., 2011) and (fan, 2012) 507 sequences
out of the 606 total are used for all subjects. In our experiments, we conducted tests by following the same
setting proposed by the earliest and more complete evaluation described in (Sun and Yin, 2008). The
training and the testing sets were constructed by generating subsequences of 6-frames from all sequences
of 60 selected subjects. The process were repeated by shifting the starting index of the sequence every
one frame till the end of the sequence. We note that the proposed approaches outperforms state-of-the-
art solutions following similar experimental settings. The recognition rates reported in (Sun and Yin,
2008) and (Sun et al., 2010a) based on temporal analysis only was 80.04% and spatio-temporal analysis
was 90.44%. In both studies subsequences of constant window width including 6-frames (win = 6) is
defined for experiments. We emphasize that their approach is not completely automatic requiring 83
manually annotated landmarks on the first frame of the sequence to allow accurate model tracking. The
method proposed in (Sandbach et al., 2011) and (Sandbach et al., 2012b) is fully automatic with respect
to the processing of facial frames in the temporal sequences, but uses supervised learning to annotate

individual frames of the sequence in order to train a set of HMMs. Though performed off-line, supervised
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learning requires manual annotation and counting on a consistent number of training sequences that can
be a time consuming operation. In addition, a drawback of this solution is the computational cost
due to Free-Form Deformations based on B-spline interpolation between a lattice of control points for
nonrigid registration and motion capturing between frames. Preliminary tests were reported on three
expressions: (An), (Ha) and (Su). Authors motivated the choice of the happiness and anger expressions
with the fact that they are at either ends of the valence expression spectrum, whereas surprise was also
chosen as it is at one extreme of the arousal expression spectrum. However, these experiments were
carried out on a subset of subjects accurately selected as acting out the required expression. Verification
of the classification system was performed using a 10-fold cross-validation testing. On this subset of
expressions and subjects, an average expression recognition rate of 81.93% is reported. In (Sandbach
et al., 2012b), the same authors have reported 64.6% classification rate when in their evaluation they
consider all the six basic expressions. In (Le et al., 2011) a fully automatic method is also proposed,
that uses an unsupervised learning solution to train a set of HMMs (i.e., annotation of individual frames
is not required in this case). Expression recognition is performed on 60 subjects from the BU-4DFE
database for the expressions of happiness, sadness and surprise. The recognition accuracy averaged on
10 rounds of 10-fold cross-validation show an overall value of 92.22%, with the highest performance of
95% obtained for the happiness expression. However, the authors reported recognition results on whole
facial sequences, but this hinders the possibility of the methods to adhere to a real-time protocol. In fact,
reported recognition results depends on the preprocessing of whole sequences unlike our approach and the
one described in (Sun and Yin, 2008), which are able to provide recognition results when processing very
few 3D frames. In (Fang et al., 2011) and (fan, 2012), results are presented for expression recognition
accuracy on 100 subjects picked out from BU-4DFE database. However, 507 sequences are selected
manually according to the following criteria: (1) the 4D sequence should start by neutral expression,
and (2) sequences containing corrupted meshes are discarded. In addition, to achieve recognition rate of
75.82%, whole sequences should be analyzed. The authors reported highest recognition rates when only
(Ha), (An), and (Su) expressions (96.71%) or (Ha), (Sa) and (Su) (95.75%) are considered. The protocol
used in (Reale et al., 2013) is quite different from the others. First, the onset frame for each of the six
canonical expressions has been marked manually on each sequence of the BU-4DFE database. Then, a
fixed size window of 15 frames starting from the onset frame has been extracted from each expression of
100 subjects. So, although sequences from 100 subjects are used by this approach, it also uses a manual
intervention to detect the onset frame and just 15 frames from the onset one are used for the classification

(and these typically correspond to the most intense expression, including the apex frames).

According to this comparative analysis, the proposed framework compares favorably with state-of-the-art
solutions. It consists of two geometric deformation learning schemes with a common feature extraction
module (DSFs). This demonstrates the effectiveness of the novel mathematical representation called

Dense Scalar Fields (DSFs), under the two designed schemes.
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4.4 Conclusions

In this chapter, our interest was to effectively quantify the facial deformations to perform facial expression
classification. Two different methodologies have been presented — (1) a landmark-dependent approach
using 3D facial patches extracted around the landmarks and grounding on shape analysis of the patched
using iso-level closed curves representation; and (2) a landmark-free approach based on shape analysis
of open radial curves. While in the first approach, the use of static 3D data is explored, the geometric
deformations from dynamic data is investigated in the second approach. From a methodological point-
of-view, (1) proposed such representation using facial patches to cover important Action Units (AU)
on the face, then classify the expression according to similar AU movements. Here the correspondence
between facial patches is given explicitly by the correspondence between landmarks. In (2) an holistic
representation of the face through multiple radial elastic (open) curves handle with the problem of
correspondence and allow dense correspondence and tracking across the 3D video. Then two learning

schemes of the geometric deformations serve to perform expression recognition.
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Chapter 5

Facial Soft-biometrics Estimation

In this Chapter!, we explore the contribution of the 3D facial geometry to the task of recognizing facial
attributes, such as the gender and the age. There is a growing interest to soft biometrics recognition
as means of improving automated face recognition since they hold the promise of significantly reducing
recognition errors by filtering the number of entries in a database to be searched. For example, if the
user can somehow be identified as a middle-aged Asian female, the search can be restricted only to the
subjects with this profile enrolled in the database. There are other uses of automatic soft-biometrics
estimation ranging from Human-Machine Interaction (HMI) to customize interfaces or services regarding
the user’s age or gender. It includes also the commercial use when limiting underage alcohol buyer, for
instance, and suggest customized advertising. Most of the previous studies investigated the use of color
data to make solft-biometrics estimation, only a few work have explored the role of the geometry (or the
shape). In this chapter, we demonstrate the richness and the relevance of use 3D shape data to tackle
these problems. Using Morphology-inspired descriptions related to the human differences extracted using
our Riemannian framework presented in Chapter 2. To our knowledge, we conducted the first study on
age estimation (Xia et al., 2014c) and joint soft-biometrics estimation (Xia et al., 2014d)([J3-s]) from
3D faces. Our methodology to quantify the morphological divergences between age-groups or genders is

one of the most original points in this work.

5.1 Introduction

Gender, Ethnicity, and Age are natural recognizable attributes in human faces. In their daily life,
human beings are performing their estimation naturally and effectively, from the face. In anthropometry

studies? (Ziqing et al., 2010), it has also been revealed that significant facial morphology differences

!The content of this chapter is related to our published conference papers (Xia et al., 2013b) and (Xia et al., 2014c) and
submitted journal papers (Xia et al., 2014b)([J1-s]) and (Xia et al., 2014d)([J3-s]).
2refers to the measurement of the human individual.

96



Chapter 5. Facial Soft-biometrics 97

exist in different gender, ethnicity and age groups. In sexual dimorphism studies® (Vicki et al., 1993),
researchers have found that male faces usually possess more prominent features than female faces. Male’s
face usually has a more protuberant nose, eyebrows, more prominent chin and jaws. The forehead is
more backward sloping, and the distance between top-lip and nose-base is longer. Research presented in
(Ziqing et al., 2010) have also demonstrated that females are smaller in all the concerned anthropometric
measurements. When studying the ethnicity differences in face (Farkas LG, 2005), researchers found that
compared with the North America Whites, the Asian population usually have broader faces and noses,
farther apart eyes, and exhibit the greatest difference in the anatomical orbital regions (around eyes and
eyebrows). The clinical study reported in (Alphonse et al., 2013) have revealed that the Caucasians has
significantly lower fetal frontomaxillary facial angle (FMFA) measurements than Asians. In (Ziqing et al.,
2010), 16 anthropometric measurements have been recognized as significantly different between Asian
and Caucasian faces. In face aging studies (Rhodes, 2009, Ramanathan et al., 2009), researchers have
concluded that, the craniofacial growth is the main change in baby and adolescent faces, which results
in the re-sizing and redistribution of facial features. In this period, the bigger the size of the face, the
larger the estimated age. When the craniofacial growth stops at about 18 years old, the face contour and
texture changes become the dominant changes. In addition, young adults tend to have a more triangle
shaped face with a small amount of wrinkles. In contrast, older adults are usually associated with a

U-shaped face with significant wrinkles.

Besides the perception of these soft-biometrics® in the face, gender, ethnicity and age also interact
with each other in characterizing the face shape (Ziging et al., 2010). For example, according to the
anthropometric studies above, the shape of the nose is influenced by all the three attributes. Female
faces usually look smoother and younger than male faces, and the Asian faces usually look younger
than others (Yukio et al., 2003). In (Vignali et al., 2003), the authors have demonstrated both visually
and quantitatively that ethnicity and gender are correlated to some extend in 3D face. In (Gao and
Ai; 2009), the authors found that the gender classifier trained on a specific ethnicity could not perform

better generalization ability on other ethnicity.

5.2 Related Work

From the analysis above, it is clear that the face demonstrates significant cues to recognize gender,
ethnicity and age. They are also correlated with each other. In the literature of facial soft-biometrics
recognition, abundant works have been proposed for gender classification, ethnicity classification and age
estimation, taken separately. These works are done either with features from the 2D face texture (2D
texture-based), or features from the 3D face shape (3D shape-based), or features from both of the texture

and the shape of face (texture and shape-based). By definition, the face texture represents the reflection

Shttp://www.virtualffs.co.uk/
4A K. Jain defined Soft-biometrics as a set of traits providing information about an individual, though these traits are
not able to individually authenticate the subject because they lack in distinctiveness and permanence (Jain et al., 2004).
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and absorption effects of external illumination caused by the facial skin, while the 3D face shape define

the border which distinguishes the face and the environment.

In 2D-based gender classification, (Ylioinas et al., 2011) combine the Contrast Information (strength
of patterns) and the Local Binary Patterns (LBP). (Yang et al., 2011) combine Active Appearance
Models (AAM) and LBP with sequence selection algorithms. (Shan, 2012) selects discriminating LBP
features with Adaboost. (Kumar et al., 2008) use describable visual attributes in face as features. (Wang
et al., 2012) enhance the performance of LBP with one of its variants, named Local Circular Patterns
(LCP). (Makinen and Raisamo, 2008) compare different gender classification methods, and reveal that the
database, normalization, hair, and experimental settings account more for the results, than the classifiers.
(Gao and Ai, 2009), learn ethnicity-specific gender classifiers and achieve higher overall classification
results on a collection of 2D images. (Giovanna and Jean-Luc, 2012) perform ethnicity-specific gender
classification on the 2D FERET and TRECVID datasets. Unexpectedly, they found that the ethnicity
information is not helpful in gender classification. Using the 3D shape, (Liu and Palmer, 2003) extract
features from the height and orientation differences on symmetrical facial points. (Vignali et al., 2003)
use the 3D coordinates of 436 face landmark points as features. (Han et al., 2009) extract geometric
features with the volume and area information of faces. In (Hu et al., 2010), the authors divide each
face into four regions, and find that the upper part is the most discriminating for gender. Recently,
(Toderici et al., 2010) obtain features with the wavelets and the MDS (Multi Dimensional Scaling). In our
previous work conducted in (Ballihi et al., 2012¢), we propose to select salient geometrical facial features
(radial and iso-level facial curves) using adaptive Boosting. The gender classification, is performed by
a Nearest Neighbor classifier to Male and Female templates. (Gilani et al., 2013) automatically detect
the biologically significant facial landmarks and calculate the Euclidean and geodesic distances between
them as facial features. Combining shape and texture (texture and shape-based), (Lu et al., 2006b) fuse
the posterior probabilities generated from the range and intensity images using SVM (Support Vector
Machine). (Wu et al., 2007) combine shape and texture implicitly with needle maps recovered from
intensity images. (Huynh et al., 2012) fuse the Gradient-LBP from range image and the Uniform LBP

features from the gray image.

Compared to gender, ethnicity is less explored in face studies. In 2D texture-based works, the first work
was tested on the FERET dataset in (Srinivas et al., 1998), with a hybrid architecture of the Ensemble
Radial Basis Function (ERBF') networks and the decision trees. (Srinivas et al., 1998) classify ethnicity
with SVM on pixel intensity and Biologically Inspired Model (BIM) features. (Zhiguang and Haizhou,
2007) perform ethnicity classification with LBP features on images of a snapshot dataset and FERET
dataset. (Srinivas et al., 1998) classify 2D images into Asian and non-Asian groups with Multi-Scale LDA
classifiers. (Giovanna and Jean-Luc, 2012) perform gender-specific ethnicity classification with the 2D
FERET and TRECVID datasets. While, again unexpectedly, they found that the gender information is
not helpful in ethnicity classification. For the shape-based works, in (Srinivas et al., 1998), the authors
perform fuzzy ethnicity recognition of eastern and western groups on 3D FRGC2.0 dataset (Phillips et al.,
2005), with the Learned Visual Codebook (LVC) derived from histograms of Gabor features. (Toderici
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et al., 2010) extract features using the wavelets and the MDS on the Asian and White subsets of the 3D
FRGC2.0 dataset. The only texture and shape-based work is presented in (Lu et al., 2006b), where the
authors used the ensemble of 2D and 3D scans from the UND and MSU datasets, considering Asian and

non-Asian groups.

In age estimation literature, all existing approaches are 2D-based. As pointed in (Rhodes, 2009, Ra-
manathan et al., 2009), the mathematical cardioid strain model was first proposed for modeling face
aging in young ages. After this, face-appearance-based approaches and intrinsic/extrinsic-factor-aided
approaches make the two main branches of research in automatic age estimation. Considering that differ-
ent people have similar aging patterns in face, researchers have employed the Active Appearance Model
(AAM) (Lanitis et al., 2004, 2002, Wu et al., 2012), the manifold embedding parameters (Wu et al.,
2012, Guo et al., 2008a,b, Li et al., 2012), and the bio-inspired Features (BIF) (Guodong et al., 2009) for
revealing the public-level aging patterns. Beyond this, based on the observation that similar faces tend
to age similarly, (Lanitis et al., 2004, 2002) first cluster face images into groups according to their inner
similarity, and then perform age estimation within each group. These works confirm that the group-level
aging patterns exist and are useful in age estimation. Considering that different people aged differently,
(Xin et al., 2007, 2006) proposed the Aging-Pattern-Subspace (AGES) constructed from a temporal se-
quence of individual images, to study the individual-level aging patterns. Moreover, considering different
face components age differently, (Jinli et al., 2010) studies the component-level aging patterns with a
hierarchical And-Or Graph, and found that the forehead and eye regions are the most informative. The
intrinsic/extrinsic-factor-aided approaches study age estimation together with face appearance and the
intrinsic factors (permanent factors like gene, gender, ethnicity, identity, etc.), and the extrinsic factors
(temporary factors like lifestyle, health, sociality, expression, pose, illumination, etc.). Thinking that
faces age differently in different age range, age-specific approaches are adopted by (Lanitis et al., 2004,
Guo et al., 2008a,b), where age estimation is obtained by using a global age estimator first, then adjust-
ing the estimated age by a local estimator that operates within a specific age range. Considering that
different gender age differently, (Ramanathan et al., 2009, Guo et al., 2008b, Lakshmiprabha et al., 2011,
Kazuya et al., 2010) estimate age on male and female groups separately. (Lanitis et al., 2002) encodes
the individual lifestyle information in age estimation and demonstrate its importance in determining the
most appropriate aging function of the individual. (Kazuya et al., 2010) gives weights to different light-
ing conditions for illumination-robust age estimation. (Li et al., 2012) gives consideration of the feature
redundancy and uses feature selection to enhance age estimation. All of the previous work considering
the intrinsic/extrinsic factors have gained better age estimation performance in comparison of using face

appearance only.

From the analysis above, we notice that most of the work in literature deals with gender, ethnicity and age
recognition separately. The correlations among these soft-biometrics have attracted little consideration.
Only few works perform ethnicity-specific gender classification (Gao and Ai, 2009, Giovanna and Jean-
Luc, 2012), gender-specific ethnicity classification (Giovanna and Jean-Luc, 2012), and gender-specific age
estimation (Xia et al., 2014c, Ramanathan et al., 2009, Guo et al., 2008b, Lakshmiprabha et al., 2011,
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Kazuya et al., 2010). To the best of our knowledge, the age-specific gender or ethnicity recognition,
and ethnicity-specific age estimation has never been addressed in the literature. Also, no consensus
has been achieved regarding the correlation between gender and ethnicity. The experimental results in
(Giovanna and Jean-Luc, 2012) show gender and ethnicity are not helpful in each others’ recognition
tasks. While, the experimental results of (Gao and Ai, 2009) demonstrate that ethnicity-specific gender
classifiers achieve higher overall performances. Since both of these works are 2D texture image based, we
think that, in addition to their sensitivity to illumination and pose changes, the face images incorporate
distorted shape information. Thus, in this work, we propose to explore the use of the 3D shape of the
face to better study these attributes as well as their correlation. In (Yuxiao et al., 2010), the authors
have demonstrated that, with the 3D scans, human observers perform better on both gender recognition
and ethnicity recognition tasks than with 2D face images. In biological studies (Harold et al., 1995),
researchers also found that, when considering gender and ethnicity recognition tasks, the usage of 2D
face images is limited to full-face view, while the 3D scans are proved to be adaptable to angled views
(non-frontal poses). The proposed study gives a thorough study of the correlations among the three
attributes. In particular, we are going to study the following questions :(1) Can 3D face shape reveal
your gender, ethnicity and age? (2) Can the gender, ethnicity and age information be useful in each
others recognition task? (3) How much they are correlated in the facial shape? and (4) Are their

correlations useful in real-world like applications?

5.3 Methodology and Contributions

To address the over-mentioned questions, two consecutive steps are designed in our approach: the feature
extraction step and the classification/regression step. Within the first step, we first pre-process the 3D
scans to limit the facial region, and then extract four types of features from the 3D shape of the face. These
four descriptions reflect different perspectives of face perception. Withing the classification/regression
step, we feed the features to Random Forest for Gender or Ethnicity classification, and Age estimation.
To enhance the performance, we have also introduced two additional steps in our approach, the Feature
Selection and the Fusion. The feature selection method is used for highlighting the salient subset of
features which contains the information of gender, ethnicity and age. The Fusion method merges all
the information from the four types of features to account for the different perspectives. The main

contributions of this work could be summarized as follows:

% We propose four different and complementary facial descriptions based on shape analysis of facial
radial curves (Chapter 2), with which we demonstrate that the 3D shape of the face can reveal
our gender, ethnicity and age. Extensive evaluations on the challenging FRGC2.0 dataset (Phillips
et al., 2005) demonstrate the effectiveness of the proposed facial attributes recognition approach

and its robustness to facial expressions.
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3% We demonstrate that gender, ethnicity and age are correlated in the 3D face, and the correlations are
helpful in each others’ estimation. Our conclusion is significantly different with (Giovanna and Jean-
Luc, 2012), which claims that gender and ethnicity are not helpful for each other’s recognition. We

also discover that the correlation between ethnicity and age is the strongest among the correlations.
3 We demonstrate that the correlation of these soft-biometrics can be useful in real-world applications.

% This is the first work in the literature which gives a thorough study of the correlations among
Gender, Ethnicity and Age with 3D faces. It is also the first work which studies 3D face based age
estimation (Xia et al., 2014a).

In the following, we will describe our Morphology-inspired descriptions extracted based on our Rieman-

nian approach for 3D face analysis.

5.4 Geometrical Features Extraction

In this section, we describe four different morphological descriptions extracted from the 3D shape of the
face. These descriptions are densely extracted using shape analysis of 3D radial curves of the face. Based
on this representation, earlier studies on 3D face recognition (Drira et al., 2013b) and 4D expression
recognition (Ben Amor et al., 2014b) have been successfully conducted. Again, we demonstrate here how
this representation is convenient to quantify the morphological divergences of gender, ethnicity and age

groups.

5.4.1 Features Computation

In this section, different facial morphology descriptions will be presented. Each of them reflects face
morphological properties based on the 3D face geometry. Through the facial representation using mul-
tiple curves, one can define an efficient way to deform one shape into another (using geodesics) and
effectively quantify their divergence using the Dense Scalar Fields, introduced in Chapter 2. A possible
interpretation of the DSFs is the local deformations needed to go from one shape to another through
a dense and accurate correspondence between the shapes. We have demonstrated in Chapter 4 a first
use of the DSFs to capture geometric deformation across sequences of 3D faces. In this chapter, the use
of DSFs is different as it will be used to derive four morphological descriptions from static 3D faces, as

described in the following;:

% The 3D-Symmetry description (3D-sym.) shown in Figure 5.2 (a) 3D-sym. captures densely
the deformation between bilateral symmetrical curves (85 and 85 ). This description allows to

study the relationship between the bilateral symmetry and the 3D facial attributes, Age, Gender
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FIGURE 5.1: 3D-Symmetry description from pairwise radial curves. Illustration of the obtained direction
needed to deform S, to fit Sor—o (V4. —qsr_o|) and inversely (|Vg,. .—qg.l)- ¢o and gar—o denote SRVF
of bilateral symmetrical curves 8, and [2,_q, respectively extracted from an arbitrary face.

and Ethnicity. In Figure 5.1, we illustrate the DSFs computation between arbitrary symmetric
curves on the face. Its is clear from this figure that although the geodesics lengths connecting

do and gar—o and inversely, are same, the DSFs vectors |V, g0, .| and Vg, . —q.| are different

(IVau—=g2r—o| # Vaor—a—qal), in general.

% The 3D-Averageness description (3D-avg.) shown in Figure 5.2 (b) compute DSFs between
pairwise curves with the same angle index «, B;lg and BT extracted from the face and a template face,
respectively. The template T (presented in 5.2(b)) is defined as the middle point of geodesic path
from a representative male face to a representative female face. The 3D-Averageness description is
a way to explore the idea that different population groups deviate differently from a given mean
facial shape. Faces of different morphology could show different deformations to reach the template

face.

% The 3D-Spatial description (3D-spat.) shown in Figure 5.2 (c) captures the deformation of a
curve [, to the middle-up curve Sy, emanating from the nose tip and goes over the nose and the
forehead in S. As [y is the most rigid curve in the face, the 3D-Spatial description captures the

smooth intrinsic deformation from the most rigid part of the face.

¢ The 3D-Gradient description (3D-grad.) shown in Figure 5.2 (d) captures the differences

S

5+ Aq)- It captures the local deformations on the

between pairwise neighboring curves (,82 and [
face. This description is useful to detect wrinkles on the face , for example, by performing a kind

of 7derivation” across the indexed curves.
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(b) (d)

Template Face_»

FIGURE 5.2: Illustrations of different features on 3D shape of the face S. (a) 3D-Symmetry Description:
shape differences from each radial curve 35 to its symmetrical curve 85 __; (b) 3D-Averageness Descrip-
tion: shape differences from radial curve 35 in a preprocessed face to radial curve 87 in face template
(with same angle index «); (c) 3D-Spatial Description: shape differences from radial curve 85 to the
middle-up radial curve B3 in the forehead; (d) 3D-Gradient Description: shape differences from radial

curve 5 to its neighbor curve 85 .,

In each panel of Figure 5.2, the left part illustrates the extracted radial curves and the curve comparison
strategy, the right part shows the corresponding features as color-map on the face. On each point of
the face, the warmer the color, the lower the deformation magnitude and the higher the description
magnitude. For example, the most symmetrical part of the face is located around the symmetrical plane
(red colors), further away the symmetry plane, increasing asymmetry is observable on the face (colder
colors). It can be seen, from panel (a) in Figure 5.2 that the local asymmetry emerges around the eyes,
mouth, nose, chin, etc. Panel (b) shows clearly that faces shapes differences reside on these features
(vellow-green colors). The rest of the facial region shows similarities across the faces (warmer colors). In
panel (c), a smooth changing map shows the shape deviation from the upper profile. In panel (d), the

gradient highlights local changes (details) around the facial features (yellow-green colors).

5.4.2 Relationship with Facial Morphology

Our goal in this section is to show the relationship between the computed features and the face mor-
phology differences across age, ethnicity and gender groups. First, the 3D-sym. descriptor densely
characterizes the bilateral asymmetry of the face. Also, this description can be employed to distinguish
younger and older people, as the latter generally have less symmetric faces. The 3D-sym. description
offers an effective way to study the effect of facial bilateral symmetry on the studied attributes. Second,
the morphological differences between shapes can be densely captured using the 3D-avg. descriptor.
This description is very important to distinguish Male and Female faces, as stated in many previous stud-
ies (Ziqing et al., 2010, Vicki et al., 1993). In general, Male face has a more protuberant nose, eyebrows,
more prominent chin and jaws. The forehead is more backward sloping, and the distance between top-lip
and nose-base is longer. It has been shown that differences are observable between Asian and non-Asian
faces (Farkas LG, 2005). The Asian population usually has broader faces and noses, farther apart eyes,

and exhibit the greatest difference in the anatomical orbital regions (around the eye and eyebrow). It
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F1cURE 5.3: Examples of bilateral symmetry DSFs and averageness DSFs computed on two female faces

(top rows) and two male faces (bottom row). The color, the 3D shape and the representation using

radial curves are shown. Notice that in the color bars Max (warmer colors) mean maximum symmetry

or averagness. Inversely, the Min in color bars reflect maximum asymmetry or distinctiveness (colder
colors).

is also well known that the craniofacial growth is an important change in the baby and adolescent face,
which results in re-sizing and redistribution of facial features (Rhodes, 2009, Ramanathan et al., 2009).
By measuring the deformation from the face to a defined template face, the 3D-avg. descriptor is able
to capture the morphological differences, in term of features sizes, etc. Third, the 3D-grad. description
is useful to capture the smoothness of the human face. It has been demonstrated, in (Yukio et al., 2003)
for example, that female faces usually look smoother and younger than male faces, and the Asian faces
usually look younger than non-Asian faces. In addition, the 3D-grad. can be viewed as a gradient
operator over the face and can highlight the wrinkles. Finally, the 3D-spat. descriptor which measures,
over the face, the deviation to the most rigid part (the upper profile) and produce a smooth map of those
deviations. It reflects global shape changes on the static face. Shown in Figure 5.3 are four examples of
the 3D-Sym. and 3D-Avg. descriptions viewed from three different angles for better visibility. When the

first two rows illustrate examples of female faces (taken from FRGC2.0 dataset), in the last two rows are

given the descriptions for male faces.

The four descriptions allow to capture densely different morphological perspectives from the facial shapes.
Accordingly, we seek to know what clues are relevant to each of the studied facial attribute (gender,

ethnicity and age)? In Figure 5.4, we show the magnitude of the correlation between the facial features
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FI1GURE 5.4: Correlation between facial features and facial attributes on each point of the face. 3D-sym.
: Symmetry — 8D-ave. : Averageness — 3D-grad. : Gradient — 3D-spat. : Spatial.

and the facial attributes as color-map on each point of the face. The correlations are calculated with the
466 earliest scans of FRGC2.0 dataset. Formally, for all the 466 scans, the " feature of a face description
makes one dimensional vector D; = (d},d?,...,d5%), where d7 denotes the ‘" feature of the m'" face.
Then for a given facial attribute, the labels for 466 scans make a vector L, = (L1, Lo, ..., Lsgs), where
L,, denotes the attribute label of the m!* face. Then, the correlation between the #" feature of the
description and the studied attribute is given by the Pearson Correlation Coefficient between D; and L.
This coefficient is defined as the covariance of the two variables divided by the product of their standard
deviations. Formally, for two variables X and Y, the Pearson correlation coefficient pxy is defined as
pxy = cov(X,Y)/(oxoy), where cov denotes the covariance, o denotes the standard deviation. The
absolute value of Pearson Correlation Coefficient ranges from 0 to 1. The higher the value, the higher
the linear correlation between the two variables. In our case, the higher the correlation between a feature
and an attribute, the more informative is this feature for discriminating the concerned attribute. Each
column of Figure 5.4 shows the correlation between a face description and each facial attribute, each row
shows the correlation between each face description and a facial attribute. The higher the correlation

between a facial feature and an attribute, the colder the color on the corresponding facial point.

According to these results, we can confirm three things. First, the green and blue colors in the figure
show that the face features are considerably correlated with the facial attributes. With this, we confirm
that the 3D face shape is informative for Gender, Ethnicity and Age. Secondly, we confirm that the four
descriptions in our approach give different and complementary perspectives for perception of Gender,

Ethnicity an Age. For gender, the 3D-sym. description ’sees’ the inner eye corners, the conjecture area of
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the nose and the cheeks, and the chin-side regions. The 3D-avg. description ’looks’ at the eyebrows, the
eyes, the nose, the lips, and gives big attention to the cheek-sides and the chin. The 8D-grad. description
emphasizes the eyes and the dorsal nasals of the nose, while the 3D-spat. description also considers the
chin and the sides of the nostrils. For Ethnicity, the 3D-sym. description ’sees’ the nose regions and the
cheeks. The 8D-ave. description 'looks’ at the conjecture area of the nose and the cheek-sides, and the
chin region. The 3D-grad. description emphasizes the inner eye-corners and the dorsal nasals of the nose,
while the 8D-spat. description also emphasizes the chin and the area around the nostrils. For Age, the
3D-sym. description ’sees’ the whole forhead, the nose, the outer eye corners, and the the regions besides
the mouth corners. The 3D-ave. description mainly "looks’ at the center part of the forehead, the inner
eye corners, and the nose surrounding regions. The 3D-grad. description emphasizes the center part of
the forehead, the eye corners, the nose bridge, and the mouth corners, while the 3D-spat. description
emphasizes the center part of the forehead, the eye corners, and the nose bridge. Thus, according to
these observations, the four descriptions ’see’ different and complimentary clues of Gender, Ethnicity and
Age in the face. Thirdly, it confirms the relevance of the facial geometry to the Gender, Ethnicity and
Age. For Gender, the eyes, nose, cheek-sides, lips and the chin are particularly informative. In somehow,
it matches with the previous findings in sexual dimorphism (Vicki et al., 1993), which claim that males
have protuberant nose, eyebrows, chin and jaws than females, and the distance between top-lip and
nose-base is longer. For Ethnicity, the eyes, nose, cheek-sides and chin are more informative. This echoes
the findings in (Farkas LG, 2005, 17) which stated that the non-Asians have broader faces and noses,
farther apart eyes, and lower fetal front-maxillary facial angle (FMFA) measurements than Asians. For
both Gender and Ethnicity, the forehead gives little information. While for Age, the forehead, together
with the nose, the eye corners and the mouth corners, show the strongest hints. It naturally goes with
the knowledge that wrinkles usually are developed on the forehead, around the eyes, the nose and the

mouth regions.

5.5 Facial Soft-biometrics Recognition

In this section, we present the remaining steps in our facial attributes recognition method. First, we
perform the correlation-based Feature Selection on our descriptions. Then, we feed these selected features
to Random Forest for attribute recognition. We note that these two steps are common and useful steps

in many recognition tasks and contributions in these fields are out of the scope of this work.

5.5.1 Correlation-based Feature Selection

Feature subset selection is the process of identifying and removing as much irrelevant and redundant
information as possible (Hall, 1999). There are mainly two types of feature selection methods, the filter
methods which use heuristics based on general characteristics of the data to evaluate the merit of feature

subsets, and the wrapper methods which use an induction algorithm along with a statistical re-sampling
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technique such as cross-validation to estimate the final accuracy of feature subsets (Kohavi, 1995). We
choose a filter method for feature selection, named the Correlation-based-Feature-Selection (CFS) (Hall,
1999), because the filters operate independently of learning algorithm and are generally much faster
than wrappers. The chosen CFS filter comprises of two parts, a feature correlation measure using the
Pearson’s correlation coefficient, and a Best-First heuristic search algorithm which moves through the
search space by greedy hill-climbing augmented with a backtracking facility. In practice, we perform
feature selection for all the three facial attributes, the gender (labeled as male and female), the ethnicity
(labeled as Asian and non-Asian) and the age (labeled in two groups, more than 25 and less than 26).
After Feature selection, we retain a subset of 10 to 20% of the original features, for each description.

Thus, the feature selection procedure significantly reduces the size of the original features.

5.5.2 Random Forest Classification/Regression

Random Forest is an ensemble learning method that grows many decision trees t € {t1,...,tr} con-
sidering an attribute (Breiman, 2001). To estimate the attribute from a new instance represented as a
feature vector, each tree gives a decision result and the forest does the overall estimation. In growing
of each tree, two types of randomness are introduced. First, to make the training set, a number of N
instances are sampled randomly with replacement from the original data. Then at each node of the
tree, a constant number of m (m<<M) variables are randomly selected, and the best split on these m
variables is used to split the node. The process goes on until the resulted subsets of the node are totally
purified in the label. The performance of the forest depends on the correlation between any two trees,
and the strength of each individual tree. The forest error rate increases when the correlation decreases,
or the strength increases. Reducing m reduces both the correlation and the strength. Increasing it
increases both. Thus, an optimal m is needed for the trade-off between the correlation and the strength.
In Random Forest, the optimal value of m is found by using the oob-error rate (out-of-bag-error rate).
For making the overall decision, in classification work, the forest predicts the attribute with majority
voting. The classification mode of Random Forest is designed for instances with discrete class labels,
such as the Gender and Ethnicity labels. While in regression tasks, it takes the average of predictions.
The regression mode of Random Forest is designed for instances with continuous class labels, such as the
Age labels. Thus, in our work, we use Random Forest in classification mode for Gender and Ethnicity

recognition, and in regression mode for Age estimation.

5.6 Experiments

Our experiments are carried out on the Face Recognition Grand Challenge 2.0 dataset (Phillips et al.,
2005). The dataset contains 4007 3D near-frontal face scans of 466 participants, where 203 are female
and 263 are male, 102 are Asian and 354 are non-Asian. Their age ranges from 18 to 70, with 107 subjects
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under 26 years old and 359 subjects above 25. With the FRGC2.0, two types of experiments are carried

out:

% Expression-Dependent Experiment uses the 466 earliest scans from FRGC2.0 for training and
testing. The majority of the scans in this subset are neutral. This data subset leads to a possible

study of the facial attribute recognition when imposing a neutral expression.

%+ Expression-Independent Experiment involves the whole 4007 scans of FRGC2.0 (where more
than 40% of the scans are expressive). This makes possible to test the robustness of the approach

against facial expression variations.

We use the Leave-One-Person-Out (LOPO) cross-validation approach in all our experiments, where each
time the scans of one subject are used for testing, and the scans of the rest subjects are used for training.
Each subject is tested equally only once and the experiments are conducted in a subject-independent
fashion. Thus, there are altogether 466 folds in the cross-validation. There are two major reasons for
choosing this experimental setting, the first is its similarity to real-world applications, and the second is
it allows training with a maximum number of scans. To establish a comparative study with the previous

studies, we will report also the results using person-independent 10-fold cross-validation.

Gender Classification Experiments

Gender classification is to automatically label a query, a 3D face scan in our case, into Male and Female.
In the experiments, we first perform LOPO gender classification with Random Forest on the original
extracted features. Then, we perform correlation-based feature selection on the original features and carry
out the experiments with the selected features. After that, we perform the experiments in consideration
of ethnicity and age in the Ethnicity-specific and Age-specific settings, respectively. For Ethnicity-specific,
we separate the 466 subjects into Asian group (112 subjects) and non-Asian group (354 subjects) first,
and then perform the LOPO experiments on these subsets, separately. For Age-specific, we separate the
466 subjects into an older group (>26 years, 107 subjects) and younger group (<25 years, 359 subjects)
first, and then perform LOPO experiments on the younger and older groups, separately. We have also
done the experiments considering both ethnicity and age. In the Fth.& Age-specific setting, we perform

experiments within the scans of the same ethnicity and age groups, described above.

The Gender classification accuracy are shown as bar-plots in Figure 5.5. The y-axis shows the classi-
fication rate following the LOPO settings. The x-axis shows the different experiments. The left panel
corresponds to the Expression-Dependent experiments, the right one shows the results when tolerate fa-
cial expression variations (Expression-Independent experiments). With the 466 scans in the Expression-
Dependent experiments, the original features achieve > 85% gender classification rate for each description.

With the feature selection step, the results are improved by 2 —5%. Now, when considering the ethnicity
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FIGURE 5.5: Gender classification results under Expression-dependent and Expression-Independent set-

tings. Features, 8D-avg.: Averageness — 3D-sym.: Bilateral Symmetry — 8D-grad.: Gradient — 3D-

spat.: Spatial — Fusion: their fusion by concatenation. Features processing, Original features: No feature

selection applied — Selected features: Correlation-based features selection applied before classification.

Settings, Fthnicity-specific: Selected features within each ethnicity group — Age-specific: Selected fea-

tures within each age group — AgeéFEth-specific: Selected features within the same ethnicity and age
group.

information in the FEthnicity-specific classification setting, the results are improved, in general. These
results indicate that Asian and non-Asian show different gender patterns. When considering the
age information in the Age-specific protocol, a more significant improvement is shown. This result shows
that people of different age have different gender related patterns. In other worlds, human
beings’ gender patterns correlate to their age. When considering both Ethnicity-specific and Age-specific,
termed AgeédEth-specific, the accuracy is generally higher than the Feature Selection and quite compara-
ble to Ethnicity-specific and Age-specific. With these results, we also find that the fusion of the features
always outperforms the descriptions taken individually. The highest gender classification rates, 94.64%
and 94.21%, are achieved by the Fusion under the Age-specific and Ethnicity-specific settings, respec-
tively. These findings are furthermore confirmed in the Expression-Independent settings. As shown on
the right panel of Figure 5.5, for each description, the gender classification performance is always higher
when considering Ethnicity and Age information. The fusion of these features always outperforms each
individual description, and achieves an 93.13% accuracy in the Ethnicity-specific setting. These results
show also that the expression variations affect slightly the performances. Among the four descriptions,
generally, the 8D-avg. descriptor, which captures the shape difference to a given template face, achieves
the highest performance. This confirms the studies on sexual dimorphism (Vicki et al., 1993) which claim
that Male and Female faces present different morphological features, in their facial shapes. Also, the
3D-sym. descriptor, gives a confirmation on asymmetry differences related to the gender groups (Liu
and Palmer, 2003). In addition to these confirmations, this experiment shows the relationship between

the gender patterns to two influencing factors, the age and the ethnicity.
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Ethnicity Classification Experiments

Ethnicity classification consists on automatically label a query instance into corresponding ethnicity class
(Asian or non-Asian groups in the present study). Similarly to the experiments conducted in section
5.6 for Gender classification, an LOPO experiment is conducted using the original features, then the
selected features and a study on Gender-specific and Age-specific are conducted under the following

Expression-Dependent and Expression-Independent settings.
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(a) Expression-dependant ethnicity classification results (b) Expression-independant ethnicity classification results

FIGURE 5.6: Ethnicity classification results under Expression-dependent and Expression-Independent
settings. Features, 8D-avg.: Averageness — 3D-sym.: Bilateral Symmetry — 3D-grad.: Gradient — 3D-
spat.: Spatial — Fusion: their fusion by concatenation. Features processing, Original features: No feature
selection applied — Selected features: Correlation-based features selection applied before classification.
Settings, Gender-specific: Selected features within each gender group — Age-specific: Selected features
within each age group — AgeéGen-specific: Selected features within the same gender and age group.

The ethnicity classification results are shown in Figure 5.6. As shown in the left panel, under the
Expression-Dependent settings, the results from the original features are always higher than 85%. The
feature selection process improves the results with 2% —7% compared to the previous results. It shows the
capability of the feature selection method in ethnicity classification, as outlined in gender classification.
Under the Gender-specific and Age-specific settings, the results are slightly higher than the previous
result. This shows that the Male and the Female have different ethnicity related patterns. In
addition, it indicates that people of different age have different ethnicity related patterns. Here,
the highest ethnicity classification rates of 95.71% and 95.49% are achieved by the 3D-avg. description
and the fusion, respectively. Again, like in gender classification, the fusion of these features always
outperforms the individual description. These results are confirmed in the right panel of Figure 5.6 with
a higher accuracy of 96.6%. This demonstrates the robustness of the proposed approach against the
facial expressions in ethnicity classification. Roughly speaking, according to the results presented above,
Ethnicity (Asian and non-Asian) classification is influenced by gender and age factors. Here also, the
3D-avg. description achieves higher accuracy, compared to the remaining descriptions. It confirms the
findings of previous studies (Farkas LG, 2005)(Alphonse et al., 2013) that a significant morphological
differences exist between Asian and non-Asian faces. In addition, according to the results in Figure 5.6,

the bilateral asymmetry (3D-sym.) can play an important role in Ethnicity classification.
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Age Estimation Experiments

Given a query, estimating its Age consists of automatic label with an estimated age or an age group/range.
In the following, we use Random Forest in regression mode to estimate the exact age of a query instance.
Again, The LOPO experimental protocol is used for training and testing. Similarly to the previous
experiments for Gender and Ethnicity classifications, here again, we compare the results achieved with
the original features, results from the selected features and results reported under Gender-specific and
Ethnicity-specific settings. In feature selection, we use a different age group partition here than in Age-
specific experiments. The 466 subjects are divided into two age groups, one >= 23 years with 162
subjects, and another group < 22 years with 304 subjects. This partition can better balance the number
of scans in the two groups. It also goes with the idea that the craniofacial growth stops at the age of
about 20, and faces convey different aging morphology before and after this age. For Gender-specific
setting, the 466 subjects are separated into Male (263 subjects) and Female groups (203 subjects) first,
and then we experiment on each group separately. For FEthnicity-specific setting, we separate the 466
scans into Asian group (112 subjects) and Non-Asian group (354 subjects) first, and then do experiments
on them separately. The age estimation accuracy is typically measured by the mean absolute error
(MAE) and the cumulative score (CS). The MAE is defined as the average of the absolute errors between
the estimated age and the ground truth age, while the CS criteria, proposed firstly by (Xin et al., 2007)
in age estimation, shows the percentage of cases among the test set where the absolute age estimation

error is less than a threshold. In this work, the experimental results are shown as MAEs in Figure 5.7.
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FIGURE 5.7: Age estimation accuracy under Expression-dependent and Expression-independent settings.
Features, 3D-avg.: Averageness — 3D-sym.: Bilateral Symmetry — 8D-grad.: Gradient — 3D-spat.: Spa-
tial — Fusion: their fusion by concatenation. Features processing, Original features: No feature selection
applied — Selected features: Correlation-based features selection applied before classification. Settings,
Gender-specific: Selected features within each gender group — Ethnicity-specific: Selected features within
each age group — EthéIGen-specific: Selected features within the same gender and ethnicity group.

Under the Expression-Dependent settings, the MEAs for all the descriptions are always < 4 years. After
feature selection, the errors decrease which confirms again the usage of feature selection in our approach.
Again, the errors decreases when testing under the Ethnicity-specific and the Gender-specific protocols.

It means that different ethnicity have different aging patterns, and also, Male and Female
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people has different aging patterns. The overall effect of gender and ethnicity information in age
estimation is evaluated in the Gen.é Eth.-specific setting. The MAEs are even lower than the ones under
the Ethnicity-specific and Gender-specific settings. It demonstrates that the combination of gender
and ethnicity information gives the strongest improvement to age estimation performance.
The lowest MAEs are achieved in the Gen. & FEth.-specific setting, by 3D-spat. and Fusion with 3.08 and
3.12 years, respectively. Under the Expression-Independent experiments, same observations are shown
in the right panel of Fig 5.7, where arbitrary expressions could be conveyed by the participants. We
notice, despite the facial expression variations, which affect significantly the facial shape, our algorithm
still provides high accuracy. The Expression-Independent experiments have also confirmed that the
improvement of performance is the most significant when using the gender and ethnicity information
together. Also, the Fusion of the descriptions always shows better performance compared to separate
descriptions. It yields a 3.33 years MAE under the Gen&Eth-specific setting on the whole FRGC2.0

dataset.

TABLE 5.1: Mean Absolute Errors of the fusion for different age groups under Expression-dependent and
-independent settings.

] Fusion/Age group |< 20[(20,30]](30,40]| > 40 | All |

Expression-dependent

Original features 3.93] 2.29 | 7.03 |24.45|3.63
Selected features 3.99] 2.11 | 6.48 |24.50|3.45
Gender-specific 3.74] 2.07 | 6.25 |22.48|3.31
Ethnicity-specific 3.70| 2.05 | 6.18 |23.71]3.33

Gender and Ethnicity-specific |3.57| 1.88 | 6.23 |21.97(3.12

Expression-independent

Selected features 3.90| 2.34 | 6.69 |23.83]3.82
Gender-specific 3.78| 2.12 | 6.48 |21.25]3.51
Ethnicity-specific 3.48| 2.26 | 6.14 |23.17]3.65
Gender and Ethnicity-specific |3.44| 2.04 | 5.98 |20.26|3.33
| # of Subjects [185] 246 | 20 [ 15 [466]

To explore in details these results, we show in Table 5.1 the age estimation accuracy in each age group.
We find that, no matter in Expression-Dependent or Expression-Independent experiments, the MAEs
in this age group are always lower when considering Gender or Ethnicity information, than without
such consideration (with the selected features). When considering both Gender and Ethnicity in age
estimation, the MAEs in each age group almost reach the lowest (marked in bold). Thus, by giving
consideration to Gender and Ethnicity, we have successfully enhanced the age estimation performance
for all the age groups. In Table 5.1, we also find that our algorithm performs much better in younger age
groups, than in older age groups. Considering the number of training subjects as shown in the last row,
it is probably due to the fact that for older age groups, very limited scans are available in the training.

To the best of our knowledge, this is the first work which addresses the problem of age estimation from



Chapter 5. Facial Soft-biometrics 113

3D facial shapes. It is also the first work studying the correlations between the three attributes and

perform joint estimation, based on three-dimensional data.

Comparison to previous work

As shown in Table 5.2, for gender classification, the works closely related to ours (in term of evaluation
settings) are presented in (Toderici et al., 2010), (Ballihi et al., 2012c¢),(Gilani et al., 2013), and (Wang
and Kambhamettu, 2013), which are also tested on the FRGC2.0 dataset. Using all the 4007 scans
of FRGC2.0, we achieve 93.11% gender classification rate. Our result is 3% lower than (Gilani et al.,
2013) (96.12%). Their approach required accurate landmark detection to compute Surface and Euclidean
distances between them, used as features. Our result is comparable to the results reported in (Toderici
et al., 2010) (93.5%), and (Wang and Kambhamettu, 2013) (93.7%). For ethnicity classification, the
nearest works with ours are presented in (Cheng et al., 2009), and in (Toderici et al., 2010). Using all
the 4007 scans of FRGC2.0, we achieve 96.45% ethnicity classification rate. This result is much higher
than our previous results reported in (Cheng et al., 2009) (82.38%). Compared to the result reported
in (Toderici et al., 2010), our ethnicity classification rate is 2.4% lower. However, their result is based
on only the 3676 Asian and White scans of FRGC2.0. In contrast, we work with all the 4007 scans of

FRGC2.0, which encounters much more complicated ethnicity challenges.

Further Experiments

The previous experimental section demonstrates that gender, ethnicity and age information are corre-
lated, and their relationship are helpful in each others recognition task. Following this, two questions
rise up: (1) To how much extend are they correlated? and (2) How to benefit from their correlations in
real-world applications where the ground-truth is unavailable of the other attributes? We address these

questions in the following two subsections.

How much are Gender, Ethnicity and Age correlated 7 Recall that with feature selection, we have
obtained the salient subsets of features for Gender, Ethnicity and Age for each of the four descriptions.
Thus, we take these subsets as representations of the Gender, Ethnicity and Age information. With this,
we explore two ways to quantify their mutual correlation. The first way is to represent a feature subset
as a one-dimensional vector with which the optimal class separation is obtained. Then we measure the
correlation directly between such vectors. It will provide a single value for each two attributes, which
represents their correlation in the Decision Level. To this end, we first apply the Linear Discriminant
Analysis (LDA) on each subset. The LDA method is a supervised dimensionality reduction method which
projects the data into a subspace where optimal class separation could be obtained. The dimension of
the projected subspace equals to the number of classes minus one. In our case, for each of the three
attributes, we have always two classes (Male and Female for Gender, Asian and non-Asian for ethnicity,

< 23 years and > 22 years for Age). Thus, after LDA projection, for each description, we get one
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TABLE 5.2: Comparison with previous studies.

Gender Classification (Male / Female)

Method Dataset Auto Features Classifiers Setting Results Modality
(Ballihi et al., 2012c) 466 scans of| Yes Facial curves Adaboost 10-fold C'V 86.05% shape
FRGC2.0
(Toderici et al., 2010) 4007 scans of| Yes Wawvelets Polynomial-SVM 10-fold C'V 93.5% shape
FRGC2.0
(Xia et al., 2013c) 4007 scans ofl No |DSF+LBP features Random Forest LOPO 93.27% shape + texture
FRGC2.0
(Wang and Kambhamettu, 2013)|192 scans of HFB No 3D coordinates RBF-SVM 5-fold CV 94.8% shape + texture
4007 scans of| No 3D coordinates RBF-SVM 5-fold CV 93.7% shape + texture
FRGC2.0
(Xia et al., 2013b) 466 scans of| Yes DSF features Random Forest 10-fold CV 90.99% shape
FRGC2.0
4007 scans of| Yes DSF features Random Forest 10-fold C'V 88.12% shape
FRGC2.0
(Gilani et al., 2013) 466 scans of| Yes |landmark distances LDA classifier 10-fold CV 97.05% shape
FRGC2.0
4007 scans of| Yes |landmark distances LDA classifier 10-fold C'V 96.12% shape
FRGC2.0
(Lu et al., 2006b) 1240 scans in UND| No Grid elements SVM 10-fold C'V 91% shape + texture
and MSU
(Hu et al., 2010) 729 UND scans +| Yes Curvature RBF-SVM 5-fold CV 94.03% shape
216 private scans
(Wu et al., 2007) 260 needle maps of] No PGA features  |Posteriori Probabilities| 200 training / 60 testing (6 times) 93.6% shape + texture
UND
(Vignali et al., 2003) 120 3D scans No 3D coordinates LDA classifier LOPO 95% shape
(Liu and Palmer, 2003) 111 full 8D scans No Variance Ratio Linear classifier half training / half testing (100 times) 96.22% shape
(Han et al., 2009) 61 scans in GavabDB| No | Geometry features RBF-SVM 5-fold CV 82.56% shape
466 scans of| Yes DSF features Random Forest 10-fold CV 95.06% =+ 0.027 shape
Our work
FRGC2.0
4007 scans of| Yes DSF features Random Forest 10-fold C'V 93.11% + 0.035 shape
FRGC2.0
Ethnicity Classification (Asian / non-Asian)
Author Dataset Auto Features Classifiers Setting Results Modality
(Cheng et al., 2009) 4007 scans of|] No LVC features membership probability (no CV) 82.38% shape
FRGC2.0
(Lu et al., 2006b) 1240 scans in UND| No Grid elements SVM 10-fold CV 98% shape + texture
and MSU
(Toderici et al., 2010) 3676 scans of| Yes Wavelets Polynomial-SVM 10-fold C'V 99% shape
FRGC2.0
466 scans of| Yes DSF features Random Forest 10-fold CV 96.78% =+ 0.023 shape
Our work FRGCO.0
4007 scans of| Yes DSF features Random Forest 10-fold C'V 96.45% + 0.033 shape
FRGC2.0
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dimension vector for each attribute. In Figure 5.8, we show the distribution of the projected LDA
features for each attribute in each description, on the 466 earliest scans of FRGC2.0. Each row of the
subfigures shows the distributions of projected LDA features for a facial attribute, and each column of
subfigures show the distributions in a facial description. In Figure 5.8, clear separation of different classes
is shown for all the three attributes in all the descriptions. It confirms that the feature selection method
is able to keep the relevant information. And also, the figure shows the LDA projected features are able

to characterizing the three attributes.

3D-sym.

300

Ethnicity

*  Asian
Non-Asian

Pty i

Age

¥ >22years
<23 years

-0.2
300 400 0 100 200 300

FicUure 5.8: Distribution of the projected LDA features for gender, ethnicity and age for each face
description.

How to benefit from their correlation in real-world applications ?

In realistic applications, we do not have the ground truth of Gender, Ethnicity and Age of the testing
instances. While, benefited from the effective recognition performance in the previous section, we can use
the recognition results as the gender, ethnicity and age information in the experiments. Thus, instead
of using the ground truth, we enroll gender, ethnicity and age information with the predicted gender,
ethnicity and age labels given in the previous recognition tasks in the Feature Selection setting with the
Fusion description. The predicted information are termed with * as Gender*, Ethnicity® and Age*. The

recognition results are reported in Figure 5.9.

In Figure5.9 (a) and (b), the gender classification results are presented. In the Expression-dependent
experiments, except for the 3D-spat. description, the gender classification results are always higher
when considering ethnicity and age information, than without such consideration (in the Selected fea-
tures setting). In the Expression-independent experiments, except for the 3D-grad. description, the
gender classification results are always higher when considering ethnicity and age information. With the

Fusion description in the Ethnicity*-specific setting, we achieve 94.85% Gender classification rate in the
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FI1GURE 5.9: Experimental results using automatic recognition results of gender, ethnicity and age.
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(e) Expression-dependant age estimation results (MAE) (f) Expression-independant age estimation results (MAE)

Expression-dependent experiments, and 93.08% Gender classification rate in the Expression-independent
experiments. The experimental results of ethnicity classification are presented in Figure5.9 (c) and (d).
In both the Expression-dependent and the Expression-independent experiments, the results considering
Gender and Age information are comparable or slightly lower, than without such consideration (in the
Selected features setting). With the Fusion description, we achieve 94.42% Ethnicity classification rate
in the Age*-specific and the Gen* €/ Age*-specific settings in the Expression-dependent experiments, and
96.18% Ethnicity classification rate in the Gen*-specific settings in the Expression-independent exper-
iments. For Age estimation, the results are shown in Figure5.9 (e) and (f). Compared to the Feature
Selection setting, the MAEs are significantly reduced when considering Gender and Ethnicity infor-
mation in both the Expression-dependent and the the Expression-independent experiments. With the
Fusion description in the Gen* &Fth*-specific setting, we achieve an MAE of 3.13 years in the Expression-
dependent experiments, and 3.62 years MAE in the Expression-independent experiments. In summary of
these experiments, it is clear that, for Gender and Age recognition, we have obtained higher performance
with the automatically recognized information. For Ethnicity recognition, since the training scans are
reduced significantly and the classification rate reaches as high as 94.42% (Expression-dependent) and

96.18% (Expression-independent) when considering gender or age information, we still think that using
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the automatically recognized information of gender and age is a good strategy in real world application.

5.7 Conclusions

In this chapter, we have presented morphological characteristics that can be extracted using our shape
analysis framework of 3D faces. We have explored their relationship with the facial soft-biometrics (gen-
der, ethnicity and age). Again, we have demonstrated the effectiveness of the proposed computational
shape analysis framework and its capability to accurately register facial shapes and quantify their diver-
gence. The study presented here provides (1) the first age estimation approach based on the 3D shape
of the face®; (2) the first joint estimation of the three attributes using four morphological descriptions
and their fusion (Xia et al., 2014d) ([J3-s]). We utilize here disjoint ideas from computer vision — Shape
Analysis using differential geometry and Machine Learning techniques — and demonstrate the relevance

of the proposed approaches in facial attributes estimation.

®Qur paper (Xia et al., 2014a) won the best paper award in the area of IMAGE AND VIDEO UNDERSTANDING at
the International Conference on Computer Vision Theory and Applications, 2014.
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Chapter 6

Research Project and Perspectives

Throughout this habilitation, we have presented our contributions to the field of 3D shape analysis based
on Riemannian methods, with applications to classical problems in pattern recognition. The proposed
mathematical representations of 3D shapes which rely on multiple curves are elements of a shape space
defined as the invariants under the actions of transformation groups (quotient space). Due to the non-
linearity of the underlying manifolds, tools from differential geometry are used to provide geometric
interpretations such as the notion of geodesic (or its length) and its relevance to find the most efficient
way to deform one shape into another (or to define the shortest distance between shapes under rigid
and non-rigid transformations). The fundamental ingredient of 3D shape analysis is accurate and dense
correspondence between shapes before quantifying their difference. The definition of an elastic model
allows to achieve jointly accurate registration of 3D shapes and derive an elastic metric which account
for bending and stretching of the shapes. In addition, the notion of shooting vector (its norm or its
magnitude) along geodesic paths between shapes, captures effectively the deformations between them,
through accurate registration. Statistical computation on manifolds, such as the definition of a sample
mean of a set of shapes, a sample covariance and explicit statistical models on the tangent space of a
sample mean to model the shape class and the variability within the class are suitable for shapes clas-
sification and clustering and data completion. Through the multiple experiments conducted on publicly
available benchmarks such as FRGC, BU-3DFE, BU-4DFE, Bosphorus, etc., we have demonstrated the
interest of the proposed methodology. We have shown also the interest to combine ideas from differen-
tial geometry (extraction of Euclidean representations derived from geometric features) with Machine

Learning techniques to design efficient classifiers.

However, there are still several question marks and open research avenues from theoretical and practical
perspectives. The move to 4D data analyses is still at the beginning, hence, there is an outstanding
need to develop processing tools and computational algorithms to process these data and exploit the
temporal dimension. From a theoretical point-of-view, the move to analyze dynamic 3D sequences

induces fundamental questions such as (1) Which suitable mathematical representation of shapes and
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their dynamics (their animations)? (2) How to exploit the dynamics in the analyses? (3) How to compute
statistics on shapes (static representations) and animations (dynamic representations)? (4) How to make
the representation insensitive to temporal variations? (5) How to design classification and clustering
algorithms based on statistical models of representations and their animations? Responses to these
questions should bring solutions to make the analyses of shapes and of their motions insensitive (or

robust) to,

% rigid transformations (translation, scaling and rotation) in order to roughly register 3D frames
across and between the 3D sequences. Filter out these changes is required for comparing 3D static

frames and to define proper distances between frames and sequences;

% non-rigid transformations to finely register 3D frames across the sequences. It is important
to propose accurate vertex-level tracking approaches to accurately quantify the motion along the

sequences and achieve efficient way to deform one frame into another;

% temporal variations caused mainly by the difference in the execution rate and the starting and
ending points of the events (activity, emotion, gesture, etc.). Comparing two sequences translates
to measure distances between each frame in a rate-invariant fashion. The definition of such metric

allows accurately comparing, summarizing, and modeling 3D dynamic sequences;

% missing and noisy data caused by self-occlusions, pose variations and the 3D (depth) acquisition

techniques. Static frame representations should account for this data variability.

It is around these issues that my research project will be organized. Recent advances in 4D facial imaging
systems (e.g the Di4D! passive stereo photogrammetry technology) allow acquisition of high-resolution (in
both spatial and temporal dimensions) facial data. At the same time, the collection of new 4D datasets,
such as the Binghamton University 4D Facial Expression databases (Yin et al., 2008) (Zhang et al., 2013),
the 4D dataset constructed at University of Central Lancashire (HidD-ADSIP) (Matuszewski et al., 2011,
2012), and the dynamic 3D FACS dataset (D3DFACS) for facial expression research (Cosker et al., 2011),
open the doors to study the facial deformations and to develop inference strategies for 3D facial shapes
and animations. Several applications would benefit from these tools, for example understanding facial
expressions, in particular, spontaneous and subtle expressions (called also micro-expressions). Their
study requires high-resolution spatio-temporal acquisitions and accurate algorithms to track the facial
movements. These tools would also allow to quantify facial distortions from dynamic data, to improve
clinical diagnostics and decisions regarding the pathology (or diseases) affecting the face. Following this
line, it is required to propose mathematical representations of static shapes and derive special manifolds
for 3D frame (static) analysis. Before specify statistical models for full animations, it is necessary to
consider some choices for capturing variability in individual shapes. On the underlying representation

spaces, one seek to impose dynamical models that capture the variability in shape evolution. The main

lwww.didd.com
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difficulty here is the temporal variability of the observations. In fact, the animation data are
typically corrupted by variability in execution rates within a class of animation and, thus, causing major

problems in the inference process.

From a practical point-of-view, the 3D meshes used in earlier studies, often come from laser-rangefinder
scanners or Stereo Photogrammetry cameras of high-resolution which achieve accurate depth measure-
ments. Their use could be a serious limitation in the new research trends called face analysis in the wild,
as pointed out in recent studies (Wang et al., 2013)(Simonyan et al., 2013)(Sagonas et al., 2013)(Tai,
2014)(Asthana et al., 2014), and in spontaneous facial behavior analysis as pointed out in (Nicolaou et al.,
2011)(Bousmalis et al., 2013) and recently in the SFBA? and the FFER? workshops. With the intro-
duction of a new generation of cost-effective 3D sensors (IR Structured-Light or Time-of-Flight) (Zhang,
2012) capable of dynamic acquisitions, human behavior analysis from dynamic flows under unconstrained
conditions is become possible. For instance, the release of Microsoft’s Kinect sensors including their Soft-
ware Development Kit (SDK) have provided a commercially viable approach and hardware platform to
capture 3D data in real-time. However, these devices suffer from two major limitations regarding the
depth quality that they measure: (1) the low-resolution of depth images due to the large field-of-view of
the cameras, and (2) the low-accuracy of depth measurements which results in noisy data. To be able to
use these data, one should use appropriate methods and tools to tackle these important issues. Later, we
shall introduce our approach to overcome these limitations using subspace methods applied to dynamic
flows of 3D data. Our target applications here are face recognition in advertise conditions and analysis
of spontaneous emotions from dynamic 3D sequences. Another advantage of using the depth data is its
robustness to illumination and pose variations and the ability of the algorithms to track accurately the
facial landmarks (eye corners, nose tip, eyebrows, mouth, etc.) as well as the body joints or 3D skeletons
(Shotton et al., 2011). The availability of such sparse shape representations (registered landmarks)
could be explored as a first level of analyses of human dynamics (including the face movements). At a
second level, the dense shape representations (sequence of surfaces) would benefit of the results of

the previous level, in temporal alignment of sequences for example.

Regarding my experience in the field of face analysis using three-dimensional data and the challenges
still open (Phillips et al., 2009), it is natural to continue our investigation using dynamic facial data.
Modern face recognition approaches target successful person identification in realistic scenarios, where
uncooperative subjects are captured under unconstrained imaging conditions. With the introduction of
new 3D sensors capable of dynamic 3D acquisitions, the trend of face analysis from video data is now
emerging in 2D as well as in 3D (and sometimes in RGB-D, where RGB refers to the color or 2D and
D refers to the depth 3D, respectively). Motivated by these considerations, in this work we propose
an effective framework to address face recognition from 3D temporal sequences acquired in adverse
conditions, which include internal and external occlusions, pose and expression variations, and talking.

Due to the novelty of the proposed scenario, a new database has been collected using a single-view

*http://www.ee.oulu.fi/~gyzhao/ECCV_workshop/
Shttp://www.vap.aau.dk/ffer14/
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structured-light dynamic camera, which allows free movements of the acquired subjects (Figure 6.1), in
the field-of-view of the camera. The new database includes several 3D video records (panel A. of Figure
6.1) with freely pose variations, expressions (or talking), external occlusions (glasses, hand, scarf), and
full 3D models as shown in panel B. of the same Figure. Despite the over-mentioned limitations regarding
the noise and low-resolution data, adding the temporal dimension to 3D acquisitions is motivated by the
observation that the face is a deformable 3D surface changing over time, so that using the temporal

component can be useful to improve the recognition, especially under adverse acquisition conditions.

A. 4D sequences under variations B. Full 3D Face

FIGURE 6.1: The new 4D face dataset recently collected for unconstrained 4D face recognition. A.)
illusrtaes 3D sequences with expressions.

At least two alternatives could be explored to overcome these limitations and benefit from the available
dynamic data: (1) A super-resolution approach which consists on fusing several frames of the 3D
video to increase the 3D shape resolution then perform the analysis as proposed recently in (Berretti
et al., 2014); or (2) A subspace-based representation (Turaga et al., 2011) which permits to smooth
the effect of noisy data, at the same time showing robustness with respect to acquisition variations. In our
ongoing research, we adopt and elaborate more on the second solution in the context of two applications:

4D face recognition and analysis of spontaneous emotions from depth-consumer cameras,

% Unconstrained 4D Face Recognition — As stated earlier, a subspace-based modeling approach
is investigated, where the spatio-temporal 3D data is mapped on a finite-dimensional manifold.

Each 3D video fragment is considered as an element of a Grassmann manifold (the set of real
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k-dimensional linear subspaces). This formulation has interesting aspects. First, comparing two
subspaces is cheaper than comparing two 3D dynamic fragments; Second, it is more robust to noise
and missing data, which are common in realistic scenarios and data from depth sensors. Here, we
consider a holistic face descriptor based on shape normals, which do not require any manual/au-
tomatic Landmarking step. The facial motion is also modeled and exploited in the recognition
process. The 3D temporal sequences are divided into fragments each modeled as a linear subspace
in order to embody the shape and the motion of the facial surfaces. In virtue of the Rieman-
nian geometry of the Grassmann manifold, a formulation of the matching between 3D temporal
sequences is developed. The underlying representation allows to use differential geometry to de-
velop relevant tools to analyze dynamic 3D data. For example, the use of geodesics to interpolate
between subspaces could be an intuitive solution for domain adaptation (Gopalan et al., 2011)(Ni
et al., 2013) useful when the test distributions are different from the training distributions. Also,
under this representation, it is possible to perform unsupervised clustering over the manifold and
compute statistics from populations of dynamic fragments of the same pose, same person, same
emotions, same age, or same gender. The shape representation with normals is proposed due to
their invariance to location (translation) and resolution (scaling). One important issue to be ad-
dressed using this representation is the dense correspondence/tracking of normals across the 3D
video, under the variation of expression, pose, missing data, occlusions, etc. Preliminary promising
results® were obtained using the proposed framework applied on the new 4D face dataset and on

BU-4DFE dataset following the experimental settings of (Sun et al., 2010a).

% Analysis of Spontaneous Emotions from Depth-consumer Cameras — Human emotion
understanding (Zeng et al., 2009) from facial dynamics (expressions and head movements) and
the human body interactions/reactions (Kleinsmith and Bianchi-Berthouze, 2013) is a challenging
problem and presents increasing need in many applications. In this research work, we investigate
the use of dynamic depth data acquired using cost-effective sensors for emotion analysis. Most of
the existing approaches used the facial data to analyze facial expressions and perform classification
in discrete space of six universal facial expressions as defined by (Ekman and Friesen, 1978). The
datasets used to develop and test these approaches often consider posed (sometimes exaggerated)
expressions, i.e the participants are asked to perform one of the six universal expressions. The
use of these approaches in real-world applications is difficult, when the user conveys spontaneous
emotions involving in general the upper part of the body including his face and hand gestures. We
propose to explore the contribution of the upper-body part and its dynamics to perform emotion
classification. Again, we adopt the subspace representations of dynamic map-flows to capture
the history of the body motions used for emotion (or a group of emotion) detection. Regarding
the test datasets, it is very important that psychologists implement the data acquisition settings

and perform sequences segmentation. For these reasons, in our ongoing research, we try to use

4T. Alashkar, B. Ben Amor, S. Berretti and M. Daoudi, A Grassmannian Framework for Face Recognition of 3D Dynamic
Sequences with Challenging Conditions, accepted in Sixth Workshop on Non-Rigid Shape Analysis and Deformable Image
Alignment (NORDIA), 2014.
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datasets collected by specialized groups such as the challenging corpus described in (Mahmoud
et al., 2011). Recently, we have conducted negative/positive emotion classification on the above-

mentioned 3Dcam dataset®.

Automated analysis of human behavior through visual data has attracted a tremendous interest in the
computer vision community. This is due to its huge potential in a wide spectrum of areas, such as
human-machine interaction, psychology (Kleinsmith and Bianchi-Berthouze, 2013), surveillance security,
health-care and social assistance, and gaming. Beside the verbal communication, the visual data is one
of the most important cues in developing systems for understanding human behavior (Mehrabian and
Wiener, 1967), ranging from tracking daily activities to classifying emotional states, as well as detecting
abnormal and suspicious activities. In this future direction, our goal is to develop computational solutions
for human behavior analysis from dynamic depth data. In literature, a vast majority of the features that
are extracted to solve this problem often tend to be non-Euclidean manifolds. This means that traditional

ideas of comparison and classification need to be generalized to account for the geometry of the manifolds.

3% Human Motions as Trajectories on Manifolds — Earlier studies in such analyses used videos
produced by conventional cameras (Aggarwal and Ryoo, 2011)(Abdelkader et al., 2011)(Chaquet
et al., 2013)(Ke et al., 2013)(Veeraraghavan et al., 2009). They analyzed videos in order to exploit
visual cues related to the human ’form’ (or silhouette) in temporal evolution of images and to
capture its dynamics (e.g., using optical flows). However, real-life applications of this approach
encounter several difficulties, coming from self-occlusions, pose variations, and the complexity of
both imaging environments and activities themselves. Additionally, there are two major challenges
which also negatively affect video analysis, (i) the temporal variability caused by differences in
execution rates of the motions and periods of them, including arbitrary starting/ending observation
times, and (ii) the spatial variability due to interpersonal differences when exhibit similar motion.
These were difficult issues when dealing with videos from conventional cameras. The depth maps are
independent of human appearance (textures) and provide a more complete human 'form’ compared
to the silhouette information, explored in the past. They can also help in mitigating the issue of
pose variability due to availability of 3D registration methods and the existence of pose-independent
features. The relevant question in using depth maps is: How to exploit the depth information in an
efficient and robust way? Recently, several approaches have been published in action and activity
recognition from depth cameras (Li et al., 2010)(Wang et al., 2013)(Ellis et al., 2013)(Oreifej and
Liu, 2013)(Vemulapalli et al., 2014)(Devanne et al., 2014)(Slama et al., 2014). In [J2-s]%, we study
the problem of classifying actions of human subjects using depth movies generated by the Kinect
or other depth sensors. Representing human body as dynamical skeletons, we study the evolution

of their (skeletons’) shapes as trajectories on Kendall’s shape manifold (reviewed in Chapter 2).

L. Ballihi, A. Lablack, B Ben Amor, M. Bilasco, and M. Daoudi, Positive/Negative Emotion Detection from RGB-D
upper Body Images, accepted for publication in 1st International Workshop on Face and Facial Expression Recognition from
Real World Videos (FFER), 2014.

Sunder major revision with IEEE Trans. on Pattern Analysis and Machine Intelligence.
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The action data is typically corrupted by large variability in execution rates within and across
subjects and, thus, causing major problems in statistical analyses. To address that issue, we adopt
a recently-developed framework of (Su et al., 2013) to this problem domain. Here the execution
rate changes correspond to re-parameterizations of trajectories, and one uses a parameterization-
invariant metric for aligning, comparing, averaging, and modeling trajectories. The key idea is
to use a combination of transported square-root vector fields (T-SRVFs) of trajectories and the
standard Euclidean norm. Moreover, we have developed a suite of computational tools for this
application domain: smoothing and denoising skeletal trajectories using median filtering, up- and
down-sampling actions in time domain, simultaneous temporal-registration of multiple actions,
and extracting invertible Euclidean representations of actions. Due to invertibility these
Euclidean representations allow both discriminative and generative models for statistical analysis.
Action recognition from 3D skeletal data was an excellent application to illustrate our methodology,
however, in the future we intend to extend our study to other applications. We will emphasize on
facial expression classification from automatic detected 2D and 3D landmarks. The Fig. 2.4, in
Chapter 2 provides an example of geodesic path between sets of facial landmarks. We will consider
trajectories of shapes to study the facial behavior across time and study the application of our

mathematical framework.

% Statistical Models for (landmark-based) Shapes and Trajectories — As stated in the pre-
vious item, I shall emphasize in my future work on (3D landmark-based) shapes and their motion.
The specification of a shape manifold (Kendall’s space) and the corresponding metric enables to
compare arbitrary trajectories in terms of their shapes, in a rate-invariant way. Additional shape
tools, such as the computation of sample mean and sample covariance statistics, and the transfer
of deformations using parallel transports becomes straightforward. However, in classification we
often need to define statistical models that are tailored to the geometry of that underlying shape
space and to specify some probability models for shapes along trajectories. The definition of
probability models on shape manifolds and trajectory manifolds will be also explored to

perform sequential analysis.

Automated processing and analysis of 3D dynamic data will also open the door to the large-scale
recognition challenges in which it is important to consider different trade-offs with respect to algorithms
efficiency and recognition performance. This topic has received much attention in the computer vision
community in the last few years (Taigman et al., 2014), in particular in processing large datasets of
images and videos. Hence, there is an outstanding need for developing new computational strategies to
adapt the Riemannian methods to fit these requirements. In fact, when the local descriptions provide
rich information (high-dimensional features usually represented in Euclidean spaces) and are cheap to
compute, the Riemannian methods (involving non-linear spaces) are more costly and provide robustness
to several transformations. As presented previously, one possible future direction is to consider two data

analysis levels, (1) shape analysis of sparse representations (or landmarks) and (2) shape analysis of dense
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representations (or the complete shapes) to tackle the computational cost problem. In human behavior
analysis for example, one can exploit the landmark-based representations provided by the depth-consumer
cameras such as the skeletal data of the body joints or the 3D Active Shape Model (provided with the
Kinect SDK) of the face to derive efficient discriminative and generative models, as a first step. In a
second step, the recognition will be restricted to a subset of the large dataset, in which a more complete

3D shape representations are involved.

Applications

In summary, our focus goes to address human (including the face) behavior analysis and recognition in
real-world conditions. We explore the use of dynamic depth-flows acquired by cost-effective sensors and
high quality 3D sequences of meshes collected using more sophisticated scanners. Despite the temporal
dimension, the 3D sequences are independent of human appearance and provide a more complete hu-
man 'form’ (meshes, depth-maps, landmarks, etc.) compared to the 2D silhouette information, used in
the past (Abdelkader et al., 2011). The extracted representations often live on non-Euclidean spaces
(Kendall’s shape space, shape space of parametrized curves or surfaces, Matrix manifolds, etc.) which
required the use of tools from differential geometry to process shapes and their animations. Through the
geometric modeling, computing geodesics and interpolate between the shapes is an essential ingredient

for comparing, deforming and averaging these elements.

Many applications would be targeted with the developed tools and strategies, in the future. For example,
diagnostic, therapy and tracking of diseases like Autism. It is well established nowadays the important
role of motion-controlled gaming to improve autistic kid’s life by limiting their disables and attract
(force) them to communicate with others by sharing space, etc. The above-mentioned ideas could be
adapted to track the autism behavior evolution across weeks, months and perhaps years and can provide
quantitative statistics, to help doctors and families get clearer picture on the temporal evolution of the
children with autism. Other applications exploiting the hand gestures could be also addressed using
our recent developments. In fact, new ToF cameras like Softkinetic” cameras (or Creative Senz3D®
cameras) and their middle-ware tend to extract and track accurately skeletal data from hands which
makes possible the analyses of dynamic shapes as we have proposed in [J2-s]. This open a new avenue
to sign language interpretation using the depth data (or the skeletal data) that the cameras provide, for
example. We expect that the landmark-based representations automatically estimated and tracked by
the depth-cameras will play an important role in shape analysis. In fact, the explicit correspondence
between these sparse representations and the dense information (point clouds, meshes, surface patches,
etc.) could be exploited to design up-down shape analysis approach linking the shape manifolds of
sparse shape representation and the dense shape representations. Finally, our aim is to see our

methodologies implemented for those end-users applications!

"www.softkinetic.com/
8us.creative. com/p/web-cameras/creative-senz3d
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4-D Facial Expression Recognition by Learning
Geometric Deformations
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Abstract—In this paper, we present an automatic approach for
facial expression recognition from 3-D video sequences. In the
proposed solution, the 3-D faces are represented by collections
of radial curves and a Riemannian shape analysis is applied
to effectively quantify the deformations induced by the facial
expressions in a given subsequence of 3-D frames. This is
obtained from the dense scalar field, which denotes the shooting
directions of the geodesic paths constructed between pairs of
corresponding radial curves of two faces. As the resulting dense
scalar fields show a high dimensionality, Linear Discriminant
Analysis (LDA) transformation is applied to the dense feature
space. Two methods are then used for classification: 1) 3-D
motion extraction with temporal Hidden Markov model (HMM)
and 2) mean deformation capturing with random forest. While a
dynamic HMM on the features is trained in the first approach,
the second one computes mean deformations under a window
and applies multiclass random forest. Both of the proposed
classification schemes on the scalar fields showed comparable
results and outperformed earlier studies on facial expression
recognition from 3-D video sequences.

Index Terms—4-D data, expression recognition, Hidden
Markov model (HMM), random forest, Riemannian geometry,
temporal analysis.

1. INTRODUCTION

VER THE last few years, automatic recognition of facial

expressions emerged as a field of active research, with
applications in several different areas, such as human—-machine
interaction, psychology, computer graphics, transport security
(by detecting driver fatigue, for example), and so on.

The importance of facial expressions was first realized and
investigated by psychologists, among others. In a seminal
paper by Mehrabian and Wiener [1], the relative importance
of verbal and nonverbal messages in communicating feelings
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and attitude is described. In particular, they have provided
evidence that face-to-face communication is governed by the
7%-38%-55% rule that balances the relevance of verbal,
vocal, and visual elements, respectively, in communications.
Despite this rigid quantification has since been refuted in
later papers, it still provides an indication that the words and
tone of the voice form only a part of human communication.
The nonverbal elements related to the body language (e.g.,
gestures, postures, facial expressions) also play an important
role. Starting from a different point of view, Ekman [2]
conducted the first systematic studies on facial expressions
in the late 70s. Through his experiments, it is demonstrated
that there is an universal set of facial expressions representing
anger, disgust, fear, happiness, sadness, and surprise, plus
the neutral one, that are universally recognized and remain
consistent across different ethnicity and cultures. The presence
of these prototypical facial expressions is now widely accepted
for scientific analysis. Ekman and Friesen [3] also showed that
facial expressions can be coded through the movement of face
points as described by a set of action units.

These results, in turn, inspired many researchers to analyze
facial expressions in video data, by tracking facial features
and measuring the amount of facial movements in video
frames [4]. This section of paper demonstrates a collective
knowledge that facial expressions are highly dynamical pro-
cesses, and looking at sequences of face instances can help to
improve the recognition performance. We further emphasize
that, rather than being just a static or dynamic 2-D image
analysis, it is more natural to analyze expressions as spatio-
temporal deformations of 3-D faces, caused by the actions
of facial muscles. In this approach, the facial expressions
can be studied comprehensively by analyzing temporal dy-
namics of 3-D face scans (3-D plus time is often regarded
as 4-D data). From this perspective, the relative immunity
of 3-D scans to lighting conditions and pose variations give
support to the use of 3-D and 4-D data. Motivated by these
considerations, there has been a progressive shift from 2-D
to 3-D in performing facial shape analysis for recognition
[5-9], and expression recognition [10], [11]. In particular,
this latter research subject is gaining momentum thanks to the
recent availability of public 3-D datasets, like the Binghamton
University 3-D facial expression database (BU-3-DFE) [12],
and the Bosphorus 3-D face database [13]. At the same
time, advances in 3-D imaging technology have permitted
collections of large datasets that include temporal sequences

ights/index.html for more information.
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of 3-D scans (i.e., 4-D datasets), such as the Binghamton
University 4-D facial expression database (BU-4DFE) [14],
the 4-D dataset constructed at University of Central Lancashire
(Hi4D-ADSIP) [15], [16], and the dynamic 3-D FACS dataset
(D3DFACS) for facial expression research [17], which also
includes fully coded FACS. This trend has been strengthened
further by the introduction of inexpensive acquisition devices,
such as the consumer 3-D cameras like Kinect or Asus
that provide fast albeit low-resolution streams of 3-D data
to a large number of users, thus opening new opportunities
and challenges in 3-D face recognition and facial expression
recognition [18], [19].

Motivated by these facts, we focus in this paper on the
problem of expression recognition from dynamic sequences of
3-D facial scans. We propose a new framework for temporal
analysis of 3-D faces that combines scalar field modeling of
face deformations with effective classifiers. To motivate our
solution and to relate it to the state-of-the-art, we provide
an overview of existing methods for 4-D facial expression
recognition (see the recent paper in [20] for a comprehensive
survey on this subject), then we give a general overview of
our approach.

A. Related Work

The use of 4-D data for face analysis is still at the beginning,
with just a few papers performing face recognition from
sequences of 3-D face scans [19], [21], [22], and some papers
focussing on facial expression recognition.

In particular, the first approach addressing the problem
of facial expression recognition from dynamic sequences of
3-D scans was proposed by Sun et al. [23], [24]. Their
approach basically relies on the use of a generic deformable
3-D model whose changes are tracked both in space and time
in order to extract a spatio-temporal description of the face.
In the temporal analysis, a vertex flow tracking technique is
applied to adapt the 3-D deformable model to each frame of a
3-D face sequence. Correspondences between vertices across
the 3-D dynamic facial sequences provide a set of motion
trajectories (vertex flow) of 3-D face scans. As a result, each
depth scan in the sequence can be represented by a spatio-
temporal feature vector that describes both shape and motion
information and provides a robust facial surface representation.
Once spatio-temporal features are extracted, a 2-D Hidden
Markov Model (HMM) is used for classification. In particular,
a spatial HMM and a temporal HMM were used to model
the spatial and temporal relationships between the extracted
features. Exhaustive analysis was performed on the BU-4DFE
database. The main limit of this solution resides in the use of
83 manually annotated landmarks of the BU-4DFE that are
not released for public use.

The approach proposed by Sandbach et al. [25] exploits
the dynamics of 3-D facial movements to analyze expres-
sions. This is obtained by first capturing motion between
frames using free-form deformations (FFD) and extracting
motion features using a quad-tree decomposition of several
motion fields. GentleBoost classifiers are used in order to
simultaneously select the best features to use and perform
the training using two classifiers for each expression: one
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for the onset temporal segment, and the other for the offset
segment. Then, HMMs are used for temporal modeling of the
full expression sequence that is represented as the composition
of four temporal segments, such as neutral, onset, apex, and
offset. These model a sequence with an initial neutral segment
followed by the activation of the expression, the maximum
intensity of the expression, deactivation of the expression
and closing of the sequence again with a neutral expression.
Experiments were reported for three prototypical expressions
(i.e., happy, angry, and surprise) of the BU-4DFE database.
An extension of this paper has been presented in [20], where
results on the BU-4DFE database using the six universal facial
expressions are reported.

In [26], a level curve based approach is proposed by
Le et al. to capture the shape of 3-D facial models. The level
curves are parameterized using the arclength function. The
Chamfer distance is applied to measure the distances between
the corresponding normalized segments, partitioned from these
level curves of two 3-D facial shapes. These features are then
used as spatio-temporal features to train HMM, and since the
training data were not sufficient for learning HMM, the authors
proposed to apply the universal background modeling to over-
come the overfitting problem. Results were reported for the
happy, sad, and surprise sequences of the BU-4DFE database.

Fang et al. [27] propose a fully automatic 4-D facial
expression recognition approach with a particular emphasis on
4-D data registration and dense correspondence between 3-D
meshes along the temporal line. The variant of the local binary
patterns (LBP) descriptor proposed in [28], which computes
LBP on three orthogonal planes is used as face descriptor
along the sequence. Results are provided on the BU-4DFE
database for all expressions and for the subsets of expressions
used in [25] and [26], showing improved results with respect
to the competing solutions. Fang et al. [29] propose a similar
methodology for facial expression recognition from dynamic
sequences of 3-D scans, with an extended analysis and com-
parison of different 4-D registration algorithms, including
ICP and more sophisticated mesh matching algorithms, as
spin images and MeshHOG. However, 12 manually annotated
landmarks were used in this paper.

Recently, Reale et al. [30] have proposed a new 4-D
spatio-temporal feature named Nebula for facial expressions
and movement analysis from a volume of 3-D data. Af-
ter fitting the volume data to a cubic polynomial, a his-
togram is built for different facial regions using geometric
features, such as curvatures and polar angles. They have
conducted several recognition experiments on the BU-4DFE
database for posing expressions, and on a new database
published in [31] for spontaneous expressions. However,
the manual intervention is used to detect the onset frame
and just 15 frames from the onset one are used for clas-
sication, and these frames correspond to the most intense
expression.

From the discussion above, it becomes clear that the solu-
tions specifically tailored for 4-D facial expression recognition
from dynamic sequences are still preliminary, being semiauto-
matic, or are capable of discriminating between only a subset
of expressions.
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B. Our Method and Contributions

Due to the increasing importance of shape analysis of
objects in different applications, including 3-D faces, a variety
of mathematical representations and techniques have been
suggested, as described above [20], [24], [29]. The difficulty
in analyzing shapes of objects comes from the following facts.

1) Shape representations, metrics, and models should be
invariant to certain transformations that are termed shape
preserving. For instance, rigid motions and reparameter-
izations of facial surfaces do not change their shapes,
and any shape analysis of faces should be invariant to
these transformations.

Registration of points across objects is an important
ingredient in shape analysis. Specifically, in comparing
the shapes of faces, it makes sense that similar biological
parts are registered to each other across different faces.

2

Furthermore, it is important to use techniques that allow a
joint registration and comparisons of surfaces in a compre-
hensive framework, rather than in two separate steps. These
two issues, invariance and registration, are naturally handled
using Riemannian methods where one can choose metrics
that are invariant to certain transformations and form quotient
spaces (termed shape spaces) by forming equivalence classes
of objects that have the same shape. The elastic Riemannian
metric used in this paper provides a nice physical interpretation
of measuring deformations between facial curves using a com-
bination of stretching and bending. These elastic deformations
are captured by the dense scalar field (DSF) features used in
this paper for classifications. In summary, the main motivation
of using a Riemannian approach is to perform registration
that matches corresponding anatomical features, and obtain
deformation fields that are physically interpretable.

Based on these premises, in this paper we extend the ideas
presented in [32] to propose an automatic approach for facial
expression recognition that exploits the facial deformations
extracted from 3-D facial videos. An overview of the proposed
approach is given in Fig. 1. In the preprocessing step, the
3-D mesh in each frame is first aligned to the previous one
and then cropped. From the obtained subsequence, the 3-D
deformation is captured based on a DSF that represents the
3-D deformation between two frames. Linear Discriminant
Analysis (LDA) is used to transform derived feature space
to an optimal compact space to better separate different
expressions. Finally, the expression classification is performed

quence preprocessing and extraction of the radial curves; motion extraction and
and random forest-based classification. Note that both train and test sequences

in the following two ways: (1) Using the HMM models for
temporal evolution; and (2) using mean deformation along
a window with random forest classifier. Experimental results
show that the proposed approaches are capable of improving
the state-of-the-art performance on the BU-4DFE database.
There are three main contributions in this paper which are as
follows.

1) Novel DSFs defined on radial curves of 3-D faces using
Riemannian analysis in the shape spaces of curves.
These scalar fields accurately capture deformations oc-
curring between 3-D faces represented as collections of
radial curves.

A new approach for facial expression recognition from

3-D dynamic sequences that combines the high descrip-

tiveness of DSFs extracted from successive 3-D scans of

a sequence with the discriminant power of LDA features

using HMM and multiclass random forest.

3) An extensive experimental evaluation that compares the
proposed solution with the state of the art methods using
a common dataset and testing protocols. The results
show that our approach outperforms the published state-
of-the-art results.

2

The rest of the paper is organized as follows. In Section II,
we present a face representation model that captures facial
features relevant to categorizing expression variations in 3-D
dynamic sequences. In Section III, the dynamic shape de-
formation analysis using LDA and classification using HMM
and multiclass random forest are addressed. The main char-
acteristics of the BU-4DFE and the preprocessing operations
performed on the face scans are described in Section IV,
with the experimental results and the comparative evaluation
performed on the BU-4DFE database reported and discussed
in the same Section. Finally, conclusions and future research
directions are outlined in Section V.

II. GEOMETRIC FACIAL DEFORMATION

One basic idea to capture facial deformations across 3-D
video sequences is to track mesh vertices densely along
successive 3-D frames. Since, as the resolution of the meshes
varies across 3-D video frames, establishing a dense match-
ing on consecutive frames is necessary. For this purpose,
Sun et al. [23] proposed to adapt a generic model (a track-
ing model) to each 3-D frame using a set of 83 prede-
fined facial landmarks to control the adaptation based on
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radial basis functions. A second solution is presented by
Sandbach et al. [25], [33], where the authors used an existing
nonrigid registration algorithm (FFD) [34] based on B-splines
interpolation between a lattice of control points. In this case,
dense matching is a preprocessing step used to estimate a
motion vector field between 3-D frames, ¢ and ¢-1. The
problem of quantifying subtle deformations along the sequence
still remains a challenging task, and the results presented
in [25] are limited to just three facial expressions: happy,
angry, and surprise.

In order to capture and model deformations of the face in-
duced by different facial expressions, we propose to represent
the facial surface through a set of parameterized radial curves
that originate from the tip of the nose. Approximating the
facial surface by an ordered set of radial curves that locally
captures its shape can be seen as a parameterization of the
facial surface. Indeed, similar parameterizations of the face
have shown their effectiveness in facial biometrics [35]. The
mathematical setup for the shape theory offered here comes
from Hilbert space analysis. A facial surface is represented
by a collection of radial curves and a Riemannian frame-
work is used to study shapes of these curves. We start by
representing facial curves as absolute continuous maps from
B: 10, 1] — R? and our goal is to analyze shapes represented
by these maps. The problem in studying shapes using these
maps directly is that they change with reparameterizations
of curves. If y is a reparameterization function (typically a
diffeomorphism from [0, 1] to itself), then under the standard
IL? norm, the quantity ||f; — Bl # |1 o ¥ — B2 o ¥ |, which is
problematic. The solution comes from choosing a Riemannian
metric under which this inequality becomes equality and the
ensuing analysis simplifies. As described in [36], we represent
the facial curves using a new function ¢, called the square-
root velocity function (SRVF) [see (1)]. The advantage of
using SRVF representation is that under this representation
the elastic metric becomes the standard 1> metric and an
identical reparameterization of curves preserves the > norm
of between their SRVFs. The mapping from a curve 8 to g is
a bijection (up to a translation), and the space of all SRVFs
is the Hilbert space of all square-integrable maps of the type
q : [0, 1] — R3. This space under the natural I inner product
is actually a vector space and geodesics between points in this
space are straight lines.

With the proposed representation, a facial surface is approx-
imated by an indexed collection of radial curves f,, where the
index « denotes the angle formed by the curve with respect to a
reference radial curve. In particular, the reference radial curve
(i.e., the curve with a = 0) is chosen as oriented along the
vertical axis, while the other radial curves are separated from
each other by a fixed angle and are ordered in a clockwise
manner. As an example, Fig. 2(a) shows the radial curves
extracted for a sample face with happy expression. To extract
the radial curves, the nose tip is accurately detected and
each face scan is rotated to the upright position so as to
establish a direct correspondence between radial curves having
the same index in different face scans (the preprocessing
steps, including nose tip detection and pose normalization are
discussed in more detail in Section IV-A). In Fig. 2(b) and
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Fig. 2. Figure illustration. (a) Extracted radial curves. (b) and (c) Radial
curve on a neutral face and the correspondent curve on the same face
with happy expression, respecti m_x. (d) Two radial curves plotted together.
(e) Values of the magnitude of .\Mﬁ |z=0(k) computed between the curves in
(d) are reported for each point k of the curves. (f) Parallel vector field across
the geodesic between ¢ and g in the space of curves C.

(c), two radial curves at @ = 90° in the neutral and happy
scans of the same subject are shown. As emerged Fig. 2(d),
facial expressions can induce consistent variations in the shape
of corresponding curves. These variations change in strength
from expression to expression and for different parts of the
face. In order to capture these variations effectively, a DSF is
proposed that relies on a Riemannian analysis of facial shapes.
Considering a generic radial curve B of the face, it can
be parameterized as f: I — R with I = [0,1] and
mathematically represented through the square-root velocity
function (SRVF) [36], [37], denoted by ¢(t), according to

1)

This specific representation has the advantage of capturing
the shape of the curve and makes the calculus simpler. Let us
define the space of the SRVFs as C = {q : [ — R [|g| =
1} < L2 R%, with | - | indicating the L> norm. With
the L metric on its tangent space, C becomes a Riemannian
manifold. Basically, with this parametrization each radial curve
is represented on the manifold C by its SRVE. According
to this, given the SRVFs ¢; and ¢, of two radial curves,
the shortest path ¥* on the manifold C between ¢, and g»
(called geodesic path) is a critical point of the following energy
function:

1 .
EW) =5 \ [[¥()| *dx ()

where ¥ denotes a path on the manifold C between ¢; and ¢»,
7 is the parameter for traveling along the path ¥, v € Ty(C) is
the tangent vector field on the curve ¢ on C, and ||.|| denotes
the 1.2 norm on the tangent space.

Since the elements of C have a unit L? norm, C is a
hypersphere in the Hilbert space 1?1, R?). As a consequence,
the geodesic path between any two points ¢;, ¢» € C is simply
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given by the minor arc of the great circle connecting them on
this hypersphere, ¢ : [0, 1] — C. This is given by

1

VO3

(sin((1 — 1)0)g) + sin(07)q2) 3)

where 6 = de(q1,q2) = cos™'((q1, g2)). We point out that
sin(f) = 0 if the distance between the two curves is zero, in
other words ¢, = ¢». In this case, for each 7, ¥*(tr) = q| = q2.

The tangent vector field on this geodesic is then written
as NMN : [0,1] — Ty(C), and is obtained by the following
equation:

ayr -6 o
Mw%?i: D0)q1 — cos(OD)gs) - 4)

Knowing that on geodesic path, the covariant derivative of

its tangent vector field is equal to 0, Rmm‘ is parallel along the
geodesic ¥* and one can represent it with Qw |z=0 without any

loss of information. Accordingly, (4) becomes
a0
dr sin(6)

0 = (g2 — cos(0)q1) (0 7 0). (5)

A graphical interpretation of this mathematical represen-
tation is given in Fig. 2. In Fig. 2(a), we show a sample
face with happy expression and all the extracted radial curves.
In Fig. 2(b) and (c), two corresponding radial curves (i.e.,
radial curves at the same angle ) on a neutral and a happy
face of the same person are highlighted, respectively. These
curves are reported together in Fig. 2(d), where the amount of
deformation between them can be appreciated, although the
two curves lie at the same angle « and belong to the same
person. The amount of deformation between the two curves
is calculated using (5) and the plot of the magnitude of this
vector at each point of the curve is reported in Fig. 2(e) (i.e.,
50 points are used to sample each of the two radial curves
as reported on the x-axis, while the magnitude of the vector
field is reported on the y-axis). Finally, Fig. 2(f) illustrates the
idea to map the two radial curves on the hypersphere C in the
Hilbert space through their SRVFs ¢; and g», and shows the
geodesic path connecting these two points on the hypersphere.
The tangent vectors of this geodesic path represent a vector
field whose covariant derivative is zero. According to this,
Fw\\ﬂ. |.=0 becomes sufficient to represent this vector field with
the remaining vectors obtained by parallel transport of Q\m [z=0
along the geodesic ™.

Based on the above representation, we define a DSF capable
to capture deformations between two corresponding radial
curves Mw and um of two faces approximated by a collection
of radial curves.

Definition 1: DSF: Let x,(1) = _kﬂw_ﬁos be the values
of the magnitude computed for each point 7 of the curves m.w
and ¢2; let T be the number of sampled points per curve, and
|A] be the number of curves used per face. According to this,
we define the function f by

fiCxC— ®RYH,
\SVQWVHQ,_f::xM.:..va

Algorithm 1 Computation of the DSF

Input: Facial surfaces F' and F?; T, number of sample points
on a curve; Aa, angle between successive radial curves; |A|,
number of curves per face

Output: DSF(F', F?), the DSF between the two faces
procedure COMPUTEDSF(F!, F2, T, Aa, |A|)

n<0
while n < |A| do
a=n-Aax
for i < 1,2 do
extract the curve B,
compute the SRVF of mw”
i) = _Pu® —
m%&lg eC, t=1,....,T
end for
compute the distance between ¢ and ¢2:
0=de(q) ¢2) = ,_;ﬂ;mﬁ, 4z))
compute the deformation vector M, =0 Using
Eq. (5) as:
@ @2) = (Xa(1), Xa(2), . . ., xa(T)) € RY
Xq(t) = r_%:: @w — nom@EC |, t=1,...,T

end while
compute DSF(F', F?) as the magnitude
—o(k):
DSF(F', F?) = (f(qb: 40)- - - -+ [(@lp} 4a))
return DSF

end procedure

Assuming that {B}]a € A} and CWM,Q € A} be the collections
of radial curves associated with the two faces F! and F? and
let &_ and Qw be their SRVFs, the DSF vector is defined by

DSF(F', F?) = (f(40, 00)s - -+ f(@as 42 -+ F@f» GTa))-

The dimension of the DSF vector is |A| x T.

The steps to compute the proposed DSF are summarized in
Algorithm 1.

The first step to capture the deformation between two given
3-D faces F! and F? is to extract the radial curves originating
from the nose tip. Let F_( and mm denote the radial curves that
make an angle o with a reference radial curve on faces F'
and F2, respectively. The initial tangent vector to ¥*, called
also the shooting direction, is computed using (5). Then, we
consider the magnitude of this vector at each point ¢ of the
curve in order to construct the DSFs of the facial surface.
In this way, the DSF quantifies the local deformation between
points of radial curves g and um, respectively, of the faces F'
and F2. In practice, we represent each face with 100 radial
curves, and T=50 sampled points on each curve, so that the
DSFs between two 3-D faces is expressed by a 5000-D vector.

In Fig. 3, the examples of the deformation fields computed
between a neutral face of a given subject and the apex frames
of the sequences of the six prototypical expressions of the
same subject are shown. The values of the scalar field to
be applied on the neutral face to convey the six different
prototypical expressions are reported using a color scale. In
particular, colors from green to red represent the highest
deformations, whereas the lower values of the dense scalar
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Fig. 3. Deformation Scalar Fields computed between a neutral face of a given subject and the apex frames of the sequences of the six prototypical expressions
of the same subject. The neutral scan is shown on the left. Corresponding texture images are also illustrated with each DSFs colormap.
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Fig. 4. Effect of the nose tip placement inaccuracy on the shooting directions
of the geodesic paths (or the DSFs computation). The first row illustrates
DSFs when varying the nose tip position along the X-direction. The second
row shows DSFs when the variation is performed along the Y-direction.

field are represented in cyan/blue. As it can be observed,
for different expressions, the high deformations are located
in different regions of the face. For example, as intuitively
expected, the corners of the mouth and the cheeks are mainly
deformed for happiness expression, whereas the eyebrows are
also strongly deformed for the angry and disgust expressions.

A. Effect of the Nose Tip Localisation Inaccuracy on
the DSF Computation

In the following, we present a study on the effects that
possible inaccuracies in the detection of the nose tip can have
on the computation of the proposed DSF. In particular, we
consider the effects on the shooting directions of the geodesic
paths and the radial curves originating from the nose tip.

We have changed the nose tip coordinates in the X and
Y directions and have reported the DSFs compuation results
(using colormaps on the expressive faces) in Fig. 4. As
illustrated in this figure, a large localization error (> 4mm)
of the nose tip generates false deformations, which could
impact negatively the performance of the approach. In fact,
our method is based on learning such geometric deformations
to build HMMs or random forest classifiers. However, the left
side of the figure illustrates the fact that the DSFs computation
tolerates errors quite well, up to 4 mm.

B. DSF Compared to Other Features

In order to compare the proposed DSF feature against other
methods for extracting dense deformation features, we selected
the FFD approach, which has been originally defined in [38]
for medical images, and later on successfully applied to the
problem of 3-D dynamic facial expression recognition by
Sandbach et al. [25], [33]. In particular, FFD is a method for
nonrigid registration based on B-spline interpolation between
a lattice of control points. In addition, we also compared
our approach with respect to a baseline solution that uses
the point-to-point Euclidean distance between frames of a
sequence. Fig. 5 reports the results for an example case, where
a frame of a happy sequence is deformed with respect to the
first frame of the sequence. The figure shows quite clearly
as the DSF proposed in this paper is capable to capture the
face deformations with smooth variations that include the
mouth, the chin and the cheek, in the example. This result is
important to discriminate between different expressions whose
effects are not limited to the mouth region. Differently, the
variations captured by the other two solutions are much more
concentrated in the mouth region of the face.

III. EXPRESSION RECOGNITION USING DSFs

Deformations due to facial expressions across 3-D video se-
quences are characterized by subtle variations induced mainly
by the motion of facial points. These subtle changes are
important to perform effective expression recognition, but they
are also difficult to be analyzed due to the face movements.
To handle this problem, as described in Section II, we propose
a curve-based parametrization of the face that consists in
representing the facial surface by a set of radial curves.
According to this representation, the problem of comparing
two facial surfaces, a reference facial surface and a target one,
is reduced to the computation of the DSF between them.

In order to make possible to enter the expression recognition
system at any time and make the recognition process possible
from any frame of a given video, we consider subsequences
of n frames. Thus, we chose the first n frames as the first
subsequence. Then, we chose n-consecutive frames starting
from the second frame as the second subsequence. This pro-
cess is repeated by shifting the starting index of the sequence
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Fig. 5. Comparison of the different features extracted between two frames
taken from subject 001 for the happy expression. (a) Free form-based defor-
mations (FFD). (b) Point-to-point Euclidean distances (c) DSFs deformations.

every one frame till the end of the sequence. In order to
classify the resulting subsequences, we propose two differ-
ent feature extraction and classification framework based on
the DSF.

1) Mean Deformation-based Features Associated to Ran-
dom Forest Classifier: The first frame of the subsequence
is considered as a reference frame and the deformation
is calculated from each of the remaining frames to the
first one using the DSF. The average deformation of
the n-1 resulting DSFs represents the feature vector
in this classification scheme and is presented, after
dimensionality reduction, to multiclass random forest
classifiers.

2) 3-D Motion Features Combined With HMM Classifiers:
The deformation between successive frames in a subse-
quence are calculated using the DSFs and presented to
an HMM classifier preceded by LDA-based dimension-
ality reduction.

A. Mean Shape Deformation with Random Forest Classifier

The idea here is to capture a mean deformation of the face
in the sliding window on the 3-D expression sequence. In
order to get this feature, the first frame of each subsequence
is considered as the reference one, and the dense deformation
is computed from this frame to each of the remaining frames
of the subsequence. Let F,, denote the reference frame
of a subsequence and F; the ith successive frame in the
subsequence; the successive frame, for example, is denoted by
Fy. The DSF is calculated between F,; and F;, for different
values of i (i = 1, ,n — 1), and the mean deformation is
then given by

= M DSF(Fyey. ). ©)

Fig. 6 illustrates one subsequence for each expression with
6 frames. Each expression is illustrated in two rows:
The upper row gives the reference frame of the subsequence
and the n-1 successive frames of the subsequences. Below,
the corresponding DSFs computed for each frame are shown.
The mean deformation field is reported on the right of each
plot and represents the feature vector for each subsequence.
The feature vector for this subsequence is built based on the
mean deformation of the n-1 calculated deformations. Thus,
each subsequence is represented by a feature vector of size
equal to the number of points on the face (i.e., the number
of points used to sample the radial curves of the face). In
order to provide a visual representation of the scalar fields,
an automatic labeling scheme is applied; warm colors (red,
yellow) are associated with high DSF(F,, F;) values and
correspond to facial regions affected by high deformations, and
cold colors are associated with regions of the face that remain
stable from one frame to another. Thus, this dense deformation
field summarizes the temporal changes of the facial surface
when a particular facial expression is conveyed.

According to this representation, the deformation of each
subsequence is captured by the mean DSF defined in (6).
The main motivation for using the mean deformation, instead
of the maximum deformation for instance, is related to its
greater robustness to the noise. In the practice, the mean
deformation resulted more resistant to deformations due to,
for example, inaccurate nose tip detection or the presence
of acquisition noise. In Fig. 6, for each subsequence, the
mean deformation field illustrates a smoothed pattern better
than individual deformation fields in the same subsequence.
Since the dimensionality of the feature vector is high, we
use LDA-based transformation to map the present feature
space to an optimal one that is relatively insensitive to differ-
ent subjects, while preserving the discriminating expression
information. LDA defines the within-class matrix S, and
the between-class matrix S,. It transforms a n-D feature to
an optimized d-dimensional feature, where d < n. In our
experiments, the discriminating classes are the six expressions,
thus the reduced dimension d is five.

For the classification, we used the multiclass random forest
algorithm. The algorithm was proposed by Leo Breiman [39]
and defined as a meta-learner comprised of many individual
trees. It was designed to operate quickly over large datasets
and more importantly to be diverse by using random samples
to build each tree in the forest. A tree achieves highly nonlinear
mappings by splitting the original problem into smaller ones,
solvable with simple predictors. Each node in the tree consists
of a test, whose result directs a data sample toward the left or
the right child. During training, the tests are chosen in order
to group the training data in clusters where simple models
achieve good predictions. Such models are stored at the leaves,
computed from the annotated data, which reached each leaf
at train time. Once trained, a random forest is capable to
classify a new expression from an input feature vector by
putting it down each of the trees in the forest. Each tree gives
a classification decision by voting for that class. Then, the
forest chooses the classification having the most votes (over
all the trees in the forest).
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Fig. 6. Computation of dynamic shape deformation on different subsequences Skm: from the BU-4DFE n_mﬁswmm Each expression is illustrated by two rows.

frames. The

The upper one gives the reference frame of the and the n-1

deformation fields computed for each frame

with respect to the reference one are illustrated in the lower row. The mean deformation field is given on the right of each lower row.

B. 3-D Motion Extraction with HMM Classifier

The DSF features described in Section II can also be
applied for expression recognition according to a different
classification scheme. The deformations between successive
frames in the subsequence are calculated using the DSF. In
particular, the deformation between two successive 3-D frames
is obtained by computing the pairwise DSF DSF(F,_;, F;)
of correspondent radial curves. Based on this measure, we
are able to quantify the motion of face points along ra-
dial curves and thus capture the changes in facial surface
geometry.

Fig. 7 illustrates a direct application of the DSF(F,_, F)
and its effectiveness in capturing deformation between one

facial surface to another belonging to two consecutive frames
in a 3-D video sequence. This figure shows two subsequences
extracted from videos in the BU-4DFE database (happy and
surprise expressions are shown on the left and on the right,
respectively). For each sequence, the 2-D image and the 3-D
scans of some frames are shown in the upper row. In the lower
row, the deformation scalar field DSF(F,_, F;) computed
between consecutive frames (i.e., the current frame and the
previous one) in the subsequence is reported. In order to
provide a visual representation of the scalar field, an automatic
labeling scheme is applied that includes only two colors: The
red color is associated with high DSF(F;_;, F;) values and
corresponds to facial regions affected by high deformations.
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Fig. 7. Examples of DSF deformations between subsequent frames of 3-D video sequences: Happy and surprise expressions are shown, respectively, on the

left and right.

The blue color is associated with the regions that remain more
stable from one frame to another. As illustrated in Fig. 7, for
different expressions, different regions are mainly deformed,
showing the capability of the deformation fields to capture
relevant changes of the face due to the facial expression.
In particular, each deformation is expected to identify an
expression, for example, as suggested by the intuition, the
corners of the mouth and the cheeks are mainly deformed
for the happiness expression.

With the proposed approach, the feature extraction process
starts by computing for each 3-D frame in a given video
sequence the DSF with respect to the previous one. In this
way, we obtain as many fields as the number of frames in
the sequence (decreased by one), where each field contains
as many scalar values as the number of points composing the
collection of radial curves representing the facial surface. In
practice, the size of DSF(F,_;, F;) is 1 x 5000, considering
5000 points on the face, similarly to the feature vector used
in the first scheme of classification (mean deformation-based).
Since the dimensionality of the resulting feature vector is high,
also in this case we use LDA to project the scalar values to
a 5-D feature space, which is sensitive to the deformations
induced by different expressions. The 5-D feature vector
extracted for the 3-D frame at instant ¢ of a sequence is
indicated as f* in the following. Once extracted, the feature
vectors are used to train HMMs and to learn deformations due
to expressions along a temporal sequence of frames.

In our case, sequences of 3-D frames constitute the temporal
dynamics to be classified, and each prototypical expression is
modeled by an HMM (a total of six HMMs A" is required,
with expr € {an, di, fe, ha, sa, su}). Four states per HMM are
used to represent the temporal behavior of each expression.
This corresponds to the idea that each sequence starts and ends
with a neutral expression (state S;). The frames that belong to
the temporal intervals where the face changes from neutral to
expressive and back from expressive to neutral are modeled by
the onset (S,) and offset (S4) states, respectively. Finally, the
frames corresponding to the highest intensity of the expression
are captured by the apex state (S3). This solution has proved its
effectiveness in clustering the expressive states of a sequence
also in other papers [33]. Fig. 8 exemplifies the structure of
the HMMs used in our framework.

The training procedure of each HMM is summarized as
follows.

1) Feature vectors f' of the training sequences are first
clustered to identify a codebook of symbols using the

neutral onset apex offset

Fig. 8. Structure of the HMMs modeling a 3-D facial sequence. The four
states model neutral, onset, apex, and offset frames of the sequence. As shown,
from each state it is possible to remain in the state itself or move to the next
one (this is known as Bakis or left-right HMM).

standard LBG algorithm [40]. This provides the required
mapping between multidimensional feature vectors, tak-
ing values in a continuous domain, with the alphabet of
symbols emitted by the HMM states.

Expression sequences are considered as observation se-
quences O = {0', 0%, 0"}, where each observation
O" at time 7 is given by the feature vector f.

Each HMM A“7" is initialized with random values and
the Baum-Welch algorithm [41] is used to train the
model using a set of training sequences. This estimates
the model parameters, while maximizing the conditional
probability P(O[APT).

Given a 3-D sequence to be classified, it is processed as in
Section II, so that each feature vectors f' corresponds to a
test observation O = {0' = f!,..., OT = fT}. Then, the test
observation O is presented to the six HMMs A“”?" that model
different expressions, and the Viterbi algorithm is used to
determine the best path Q = {g', ..., 3"}, which corresponds
to the state sequence giving a maximum of likelihood to
the observation sequence O. The likelihood along the best
path, pP" (0, QIA“P") = PP (O|A“"") is considered as a
good approximation of the true likelihood given by the more
expensive forward procedure [41], where all the possible paths
are considered instead of the best one. Finally, the sequence is
classified as belonging to the class corresponding to the HMM
whose log-likelihood along the best path is the greatest one.

2

3

IV. EXPERIMENTAL RESULTS

The proposed framework for facial expression recognition
from dynamic sequences of 3-D face scans has been experi-
mented on the BU-4DFE database. Main characteristics of the
database and results are reported in the following sections.
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Fig. 9. Examples of 2-D and 3-D frames extracted from a dynamic 3-D
video sequence of the BU-4DFE dataset.
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A. BU-4DFE Database: Description and Preprocessing

To investigate the usability and performance of 3-D dynamic
facial sequences for facial expression recognition, a dynamic
3-D facial expression database has been created at Binghamton
University [14]. The dimensional imaging’s 3-D dynamic
capturing system [42], has been used to capture a sequence of
stereo images and produce the depth map of the face according
to a passive stereo-photogrammetry approach. The range maps
are then combined to produce a temporally varying sequence
of high-resolution 3-D images with an RMS accuracy of
0.2 mm. At the same time, 2-D texture videos of the dynamic
3-D models are also recorded. Each participant (subject) was
requested to perform the six prototypical expressions (i.e.,
angry, disgust, fear, happiness, sadness, and surprise) sepa-
rately. Each expression sequence contains neutral expressions
in the beginning and in the end, so that each expression was
performed gradually from neutral appearance, low intensity,
high intensity, and back to low intensity and neutral. Each
3-D sequence captures one expression at a rate of 25 frames/s
and each 3-D sequence lasts approximately four seconds with
about 35000 vertices per scan (i.e., 3-D frame). The database
consists of 101 subjects (58 female and 43 male, with an
age range of 18-45 years old) including 606 3-D model
sequences with six prototypical expressions and a variety of
ethnic/racial ancestries (i.e., 28 Asian, 8 African-American,
3 Hispanic/Latino, and 62 Caucasian). More details on the
BU-4DFE can be found in [14]. An example of a 3-D dynamic
facial sequence of a subject with happy expression is shown in
Fig. 9, where 2-D frames (not used in our solution) and 3-D
frames are reported. From left to right, the frames illustrate
the intensity of facial expression passing from neutral to onset,
offset, apex, and neutral again.

It can be observed that the 3-D frames present a near-
frontal pose with some slight changes occurring mainly in
the azimuthal plane. The scans are affected by large outliers,
mainly acquired in the hair, neck, and shoulders regions
(Fig. 9). In order to remove these imperfections from each
3-D frame, a preprocessing pipeline is performed. The main
steps of this pipeline are summarized as follows (Fig. 10).

1) Identify and fill the holes caused, in general, by self-
occlusions or open mouth. The holes are identified by
locating boundary edges, then triangulating them.
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Fig. 10. Outline of the preprocessing steps. A pipeline of four filters is
applied to each 3-D sequence. (a) Filling holes, if any. (b) Nose tip detection
(for the first frame) and tracking (for remaining frames). (c) Face cropping
using a sphere centered on the nose tip and of radius 90 mm. (d) Pose
normalization based on the ICP algorithm.
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Fig. 11. Registration results using the ICP algorithm when rotating around
the x-axis one of the 3-D preprocessed faces. The first row shows the initial
rotation applied on the yellow model (before the alignment) and the second
row shows the alignment output (after alignment).

2) Detect the nose tip on the face scan in the first frame
of the sequence. The nose tip is detected by analyzing
the peak point of the face scan in the depth direction.
The nose tip is then tracked on all the subsequent
frames when the search area is limited to a specific
neighborhood around the nose tip detected on the first
frame.

3) Crop the facial area using a sphere centered on the
detected nose tip with a constant radius set to 90 mm
based on some observations.

4) Normalize the pose of a given frame according to its pre-
vious frame using the Iterative Closest Point (ICP)-based
alignment. We point out that our implementation uses
the following parameters to perform the ICP algorithm:
a) match the nose tips of the faces first; b) number of
vertices considered to find the optimal tranformation=50;
and c) number of iterations=5. In addition to permit
effective alignment, this set of parameters allows also
an attractive computational cost.

In a real-world scenario of use, the head can move freely
and rotate, whereas in our experiments only near-frontal faces
are considered, as the BU-4DFE database does not contain
nonfrontal acquisitions. To account for the capability of our
approach to cope with non-frontal scans, we report in Fig. 11
some registration results when applying an artificial rotation
to one of the 3-D faces to be aligned. It is clear that the
registration method is able to handle with moderate pose
variations (up to about 30°/45°). Instead, the registration
method is not able to register a frontal face with a profile
face (right side of the figure).
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Fig. 12. 4-D expression recognition results using a random forest
when varying the number of trees.

In the proposed framework, after preprocessing and DSFs
computation across the 3-D sequences, we designed two
deformation learning and classification schemes. The first
scheme consists on averaging, within a sliding window, the
DSF computed on each frame with respect to the first frame
of the window. This produces dense deformations across the
ing windows that are learned using a multiclass random
forest algorithm (Section III-A). The second scheme consists
on a dynamic analysis through the 3-D sequences using
conventional temporal HMMs-modeling. Here, the 3-D motion
(deformation) is extracted and then learned for each class of
expression, as described in Section III-B. In both the cases, a
common experimental set up has been used. In particular, the
data of 60 subjects have been selected to perform recognition
experiments according to the evaluation protocol followed in
other papers [23], [26], [27]. The 60 subjects have been ran-
domly partitioned into ten sets, each containing six subjects,
and 10-fold cross validation has been used for training/test,
where at each round nine of the ten folds (54 subjects) are used
for the training, while the remaining fold (six subjects) is used
for the test. In the following, we report experimental evaluation
and comparative analysis with respect to the previous papers.

B. Mean Deformation-Based Expression Classification

Following the experimental protocol proposed in [23], a
large set of subsequences are extracted from the original ex-
pression sequences using a sliding window. The subsequences
have been defined in [23] with a length of six frames with
a sliding step of one frame from one subsequence to the
following one. For example, with this approach, a sequence of
100 frames originates a set of 6 x 95 = 570 subsequences, each
subsequence differing for one frame from the previous one.
Each sequence is labelled to be one of the six basic expres-
sions, thus extracted subsequences have the same label. This
accounts for the fact that, in general, the subjects can enter
the system not necessarily starting with a neutral expression,
but with an arbitrary expression. The classification of these
short sequences is regarded as an indication of the capability
of the expression recognition framework to identify individual
expressions. According to this, we first compute the Mean
Deformation for each subsequence, which is then presented to
multiclass random forest, as outlined in Section III.

The performance of random forest classifier varies with
the number of trees. Thus, we perform the experiments with
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TABLE 1
CONFUSION MATRIX FOR MEAN DEFORMATION AND RANDOM FOREST
CLASSIFIER (FOR 6-FRAMES WINDOW)
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92.46 | 2.44
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0.84 1.71
152 | 201
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‘Average recognition rate =93.21
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Fig. 13. Effect of the temporal size of the sliding window on the results.
The classification rates increase with the increase in the length of the temporal
window.

different numbers of trees and the results of this experimen-
tation is shown in Fig. 12. As illustrated in this figure, the
average recognition rate raises with the increasing number of
trees until 40, when the recognition rate reaches 93.21%, and
then becomes quite stable. Thus, in the following we consider
40 trees and report detailed results (confusion matrix) with this
number of trees in Table I. We recall that the rates are obtained
by averaging the results of the ten independent runs (10-fold
cross validation). It can be noted that the largest confusions are
between the disgust (Di) expression and the angry (An) and
Fear (Fe) expressions. Interestingly, these three expressions
capture negative emotive states of the subjects, so that similar
facial muscles can be activated. The best classified expressions
are happy (Ha) and surprise (Su) with recognition accuracy
of 95.47% and 94.53%, respectively. The standard deviation
from the average performance is also reported in the table. The
value of this statistical indicator suggests that small variations
are observed between different folds.

Effect of the Subsequence Size: We have also conducted
additional experiments when varying the temporal size of the
sliding window used to define the subsequences. In Fig. 13,
we report results for a window size equal to 2, 5, and 6, and
using the whole length of the sequence (on average this is
about 100 frames). From the figure, it clearly emerges that
the recognition rate of the six expressions increases with the
increase in the temporal length of the window. This reveals
the importance of the temporal dynamics and shows that
the spatio-temporal analysis outperforms a spatial analysis
of the frames. By considering the whole sequences for the
classification, the result reach 100%. In the paper, we decided
to report detailed results when considering a window length
of 6-frames to allow comparisons with previous papers.

Effect of the Spatial Resolution of 3-D Faces: In the
proposed face representation, the DSF is computed for the
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Fig. 14. Effects of varying the 3-D face resolution on the

points of a set of radial curves originating from the nose tip.
Due to this, the density of the scalar field depends on the
number of radial curves and the number of points per curve.
So, the resolution used for the number of curves and points per
curve can affect the final effectiveness of the representation.
To investigate this aspect, we have conducted experiments
when varying the spatial resolution of the 3-D faces (i.e., the
number of radial curves and the number of points per curve).
Fig. 14 expresses quantitatively the relationship between the
expression classification accuracy (on the BU-4DFE) and the
number of radial curves and the number of points per curve.
This can give an indication of the expected decrease in the
performance in the case the number of radial curves or points
per curve is decreased due to the presence of noise and spikes
in the data. From these results, we can also observe that the
resolution in terms of number of curves has more importance
than the resolution in terms of points per curve.

C. HMM-Based Expression Classification

Following the same setup as in Section IV-B (originally
defined in [23]), for this experiment we trained the HMMs
on six frames subsequences constructed as discussed above.
The 4-state structure of the HMMs resulted adequate to model
the subsequences. Also in this experiment, we performed
10-fold cross validation on the overall set of subsequences
derived from the 60 x 6 sequences (31970 in total). The
achieved results by classifying individual subsequences of
the expression sequences (frame-by-frame experiment) are
reported in the confusion matrix of Table II. The values in
the table have been obtained by using features of six frames
subsequences as input to the 6 HMMs and using the maximum
emission probability criterion as decision rule. It is clear that
the proposed approach is capable to classify individual frames
accurately by analyzing the corresponding subsequence of
previous five frames. The average recognition rate is equal
to 93.83%, slightly higher than the one displayed by mean
deformation plus random forest classification schema (though
the standard deviation among different folds shows a greater
value in this case). It can also be noted that, compared to the
previous classifier, the same tendency of recognition rates is
achieved generally. In fact, correct classification of angry is
high despite the difficulty of this expression analysis. This
learning scheme achieved better recognition than the first
one for angry (An) expression. Actually, whereas the angry
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TABLE II
CONFUSION MATRIX FOR MOTION EXTRACTION AND HMM CLASSIFIERS
(FOR 6-FRAMES WINDOW)

Su
0.54
0.15
0.62
0.40

93.57

TABLE IIT
CONFUSION MATRIX FOR FREE-FORM DEFORMATION (FFD) AND
HMM CLASSIFIERS (FOR 6-FRAMES WINDOW)

% [ An Fe | Ha | Sa Su
An_| 7845 572 | 197 | 649 | 2.86
Di | 863 6.65 | 282 | 418

Fe i 8023 | 1.99 | 631

Ha | 143 377 | 8612 | 531

Sa | 579 799 | 0.86 | 85.83

Su | 173 613 | 155 | 39

Average recognition rate = 81.9 * 2.35%

(An) expression is known for its subtle motions, our classifier
achieved 93.95% of correct classification, which demonstrates
the ability of the proposed DSF to capture subtle deformations
across the 3-D sequences. These similar good achievements
are mainly the effect of the proposed deformation scalar field.

Comparion With the FFD Feature: The proposed frame-
work can also fit with different deformation fields than the
proposed DSF. So, considering alternative features to densely
capture the deformation fields on the lattice of points of the
radial curves of the face can permit a direct comparison of our
DSF feature with different ones. In particular, we considered
the FFD [38] feature, which is a standard method for nonrigid
registration and has been successfully proved in the context of
expression recognition [25] (see also Section II-B). Table III
reports the confusion matrix obtained by posing FFD in our
classification framework, using the same setting as in the
experiments above (i.e., 100 radial curves, with 50 sampled
points each, and LDA reduction of the deformation field from
a 5000-D vector to a 5-D subspace). The overall result is
that the proposed DSF feature provides a finer discriminative
capability with respect to the FFD, thus resulting in a better
classification accuracy. This can be motivated by the nice
invariant properties of the proposed Riemannian framework
(as discussed in Section II).

D. Discussion and Comparative Evaluation

To the best of our knowledge, the papers reporting results
on expression recognition from dynamic sequences of 3-D
scans are those in [20], [24], [26], [29], and recently [30].
These papers have been evaluated on the BU-4DFE dataset,
but the testing protocols used in the experiments are sometimes
different, so that a direct comparison of the results reported
in these papers is not immediate. In the following, we discuss
these solutions with respect to our proposal, also evidencing
the different settings under which the expression recognition
results are obtained.
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TABLE IV
COMPARISON OF THIS PAPER TO EARLIER PAPERS. PROTOCOL DESCRIPTION: #SUBJECTS (S), #EXPRESSIONS (E), WIN SIZE (WIN).
T: TEMPORAL ONLY/S-T: SPATIO-TEMPORAL. ACCURACY ON SLIDING WINDOW/WHOLE SEQUENCE (OR SUBSEQUENCE)

Authors Method Features Classification Protocol T/S-T RR (%)
MU-3D 12 Motion Uni HMM S.
T-HMM g model HMM
P2D-HMM Curvature+Tracking model T-HMM+S-HMM
R-2DHMM g King model 2D-HMM
3D Motion-based d-tree On.:__amc?i:gz ,
3D Motion-based FFD+Quad-tree HMM | —, 6 E, variable Win
Level curve-based and segment-wise distances HMM 60 S, 3 E. —
LBP-TOP SVM-RBF
LBP-TOP SVM-RBF
Reale et al. [30] i} SVM-RBF 100 S, 6 m Win=15
This work LDA-HMM 60 S, 6 E, Win=6
This work LDA-Random Forest

Table IV summarizes approaches and results reported previ-
ously on the BU-4DFE dataset, compared to those obtained in
this paper. The testing protocols used in the experiments are
quite different especially the number of verified expressions,
all the six basic expressions in [23], [24], [27], [29], and [30]
whereas [25] and [26] reported primary results on only three
expressions. The number of subjects considered is 60, except

[25] where the number of subjects is not specified. In
general, sequences in which the required expressions are
acted accurately are selected, whereas in [27] and [29] 507
sequences out of the 606 total are used for all subjects. In
our experiments, we conducted tests by following the same
setting proposed by the earliest and more complete evaluation
described in [23]. The training and the testing sets were
constructed by generating subsequences of 6-frames from all
sequences of 60 selected subjects. The process were repeated
by shifting the starting index of the sequence every one frame
till the end of the sequence.

‘We note that the proposed approaches outperforms state-of-
the-art solutions following similar experimental settings. The
recognition rates reported in [23] and [24] based on temporal
analysis only was 80.04% and spatio-temporal analysis was
90.44%. In both papers, subsequences of constant window
width including 6-frames (win = 6) is defined for experiments.
We emphasize that their approach is not completely automatic
requiring 83 manually annotated landmarks on the first frame
of the sequence to allow accurate model tracking.

The method proposed in [25] and [20] is fully automatic
with respect to the processing of facial frames in the temporal
sequences, but uses supervised learning to annotate individual
frames of the sequence in order to train a set of HMMs.
Though performed offline, supervised learning requires
manual annotation and counting on a consistent number of
training sequences that can be a time consuming operation. In
addition, a drawback of this solution is the computational cost
due to free-form deformations based on B-spline interpolation
between a lattice of control points for nonrigid registration
and motion capturing between frames. Preliminary tests were
reported on three expressions: (An), (Ha), and (Su). The
Authors motivated the choice of the happiness and anger
expressions with the fact that they are at either ends of
the valence expression spectrum, whereas surprise was also
chosen as it is at one extreme of the arousal expression
spectrum. However, these experiments were carried out on

a subset of subjects accurately selected as acting out the
required expression. Verification of the classification system
was performed using a 10-fold cross-validation testing. On
this subset of expressions and subjects, an average expression
recognition rate of 81.93% is reported. Sandbach er al. [20]
have reported 64.6% classification rate when in their
evaluation by considering all the six basic expressions.

In [26], a fully automatic method is also proposed that uses
an unsupervised learning solution to train a set of HMMs
(i.e., annotation of individual frames is not required in this
case). Expression recognition is performed on 60 subjects
from the BU-4DFE database for the expressions of happiness,
sadness, and surprise. The recognition accuracy averaged on
ten rounds of 10-fold cross-validation show an overall value
of 92.22% with the highest performance of 95% obtained
for the happiness expression. However, the authors reported
recognition results on whole facial sequences, but this hinders
the possibility of the methods to adhere to a real-time pro-
tocol. In fact, the reported recognition results depends on the
preprocessing of whole sequences unlike our approach and the
one described in [23], which are able to provide recognition
results when processing very few 3-D frames.

In [27] and [29], results are presented for expression recog-
nition accuracy on 100 subjects picked out from BU-4DFE
database. However, 507 sequences are selected manually ac-
cording to the following criteria: 1) the 4-D sequence should
start by neutral expression and 2) sequences containing cor-
rupted meshes are discarded. In addition, to achieve recog-
nition rate of 75.82%, whole sequences should be analyzed.
The authors reported highest recognition rates when only (Ha),
(An), and (Su) expressions (96.71%) or (Ha), (Sa) and (Su)
(95.75%) are considered.

The protocol used in [30] is quite different from the others.
First, the onset frame for each of the six canonical expressions
has been marked manually on each sequence of the BU-4DFE
database. Then, a fixed size window of 15 frames starting from
the onset frame has been extracted from each expression of
100 subjects. So, although sequences from 100 subjects are
used by this approach, it also uses a manual intervention to
detect the onset frame and just 15 frames from the onset one
are used for the classification (and these typically correspond
to the most intense expression, including the apex frames).

According to this comparative analysis, the proposed frame-
work compares favorably with the state-of-the-art solutions. It
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consists of two geometric deformation learning schemes with
a common feature extraction module (DSF). This demonstrates
the effectiveness of the novel mathematical representation
called DSF, under the two designed schemes.

V. CONCLUSION

In this paper, we presented an automatic approach for
identity-independent facial expression recognition from 3-D
video sequences. Through a facial shapes representation by
collections of radial curves, a Riemannian shape analysis
was applied to quantify dense deformations and extract mo-
tion from successive 3-D frames. Two different classification
schema were performed, a HMM-based classifier and a mean
deformation-based classifier. An LDA-based transformation
was applied to decrease the dimensionality of the resulting
feature vectors. The proposed approach outperforms previous
ones; it is capable to accurately classify short sequences
containing very different 3-D frames with an average accuracy
of 93.83% using HMM-based classifier and 93.21% using
mean deformation-based classifier, following the state-of-the-
art settings on the BU-4DFE dataset. This emphasizes the ca-
pability of the proposed geometric shape deformation analysis
to capture subtle deformations in 4-D videos.

One limitation of the approach is the nose tip detection in
case of nonfrontal views and/or the presence of occlusions
(by glasses, hand, hair, and so on). The BU-4DFE database
contains frontal 3-D faces without occlusion, however, in real-
istic scenarios, more elaborated techniques should be applied
to detect the nose tip. As future perspectives of the presented
paper are, first, its extension to spatio-temporal analysis by
introducing a spatial (intraframe) analysis beside the temporal
analysis (interframe). Second, its adaptation to low resolution
3-D videos, outputs of the depth-consumer cameras like the
Kinect, is a distant goal mainly due the presence of large noise
and the low resolution of the acquired scans.
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3D Face Recognition under Expressions,
Occlusions, and Pose Variations

Hassen Drira, Boulbaba Ben Amor, Member, IEEE, Anuj Srivastava, Senior Member, IEEE,
Mohamed Daoudi, Senior Member, IEEE, and Rim Slama

Abstract—We propose a novel geometric framework for analyzing 3D faces, with the specific goals of comparing, matching, and
averaging their shapes. Here we represent facial surfaces by radial curves emanating from the nose tips and use elastic shape
analysis of these curves to develop a Riemannian framework for analyzing shapes of full facial surfaces. This representation, along
with the elastic Riemannian metric, seems natural for measuring facial deformations and is robust to challenges such as large facial
expressions (especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and
so on. This framework is shown to be promising from both—empirical and theoretical—perspectives. In terms of the empirical
evaluation, our results match or improve upon the state-of-the-art methods on three prominent databases: FRGCv2, GavabDB, and
Bosphorus, each posing a different type of challenge. From a theoretical perspective, this framework allows for formal statistical
inferences, such as the estimation of missing facial parts using PCA on tangent spaces and computing average shapes.

Index Terms—3D face recognition, shape analysis, biometrics, quality control, data restoration

1 INTRODUCTION

Ucm to the natural, nonintrusive, and high throughput
nature of face data acquisition, automatic face
recognition has many benefits when compared to other
biometrics. Accordingly, automated face recognition has
received growing attention within the computer vision
community over the past three decades. Among different
modalities available for face imaging, 3D scanning has a
major advantage over 2D color imaging in that nuisance
variables, such as illumination and small pose changes,
have a relatively smaller influence on the observations.
However, 3D scans often suffer from the problem of
missing parts due to self-occlusions or external occlusions
or some imperfections in the scanning technology.
Additionally, variations in face scans due to changes in
facial expressions can also degrade face recognition
performance. To be useful in real-world applications, a
3D face recognition approach should be able to handle
these challenges, i.e., it should recognize people despite
large facial expressions, occlusions, and large pose varia-
tions. Some examples of face scans highlighting these
issues are illustrated in Fig. 1.
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We note that most recent research on 3D face analysis
has been directed toward tackling changes in facial
expressions while only a relatively modest effort has been
spent on handling occlusions and missing parts. Although a
few approaches and corresponding results dealing with
missing parts have been presented, none, to our knowledge,
has been applied systematically to a full real database
containing scans with missing parts. In this paper, we
present a comprehensive Riemannian framework for
analyzing facial shapes, in the process dealing with large
expressions, occlusions, and missing parts. Additionally,
we provide some basic tools for statistical shape analysis of
facial surfaces. These tools help us to compute a typical or
average shape and measure the intraclass variability of
shapes, and will even lead to face atlases in the future.

1.1 Previous Work

The task of recognizing 3D face scans has been approached in
many ways, leading to varying levels of successes. We refer
the reader to one of many extensive surveys on the topic, for
example, see Bowyer et al. [3]. Below we summarize a
smaller subset that is more relevant to our paper.

1. Deformable template-based approaches. There have been
several approaches in recent years that rely on
deforming facial surfaces into one another, under
some chosen criteria, and use quantifications of these
deformations as metrics for face recognition. Among
these, the ones using nonlinear deformations facil-
itate local stretching, compression, and bending of
surfaces to match each other and are referred to as
elastic methods. For instance, Kakadiaris et al. [13]
utilize an annotated face model to study geometrical
variability across faces. The annotated face model is
deformed elastically to fit each face, thus matching
different anatomical areas such as the nose, eyes,

Published by the IEEE Computer Society
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Fig. 1. Different challenges of 3D face recognition: expressions, missing
data, and occlusions.

and mouth. In [25], Passalis et al. use automatic
landmarking to estimate the pose and to detect
occluded areas. The facial symmetry is used to
overcome the challenges of missing data here.
Similar approaches, but using manually annotated
models, are presented in [31] and [17]. For example,
Lu and Jain [17] use manual landmarks to develop a
thin-plate-spline-based matching of facial surfaces.
A strong limitation of these approaches is that the
extraction of fiducial landmarks needed during
learning is either manual or semi-automated, except
in [13], where it is fully automated.

2. Local regions/features approaches. Another common
framework especially for handling expression varia-
bility is based on matching only parts or regions
rather than matching full faces. Lee et al. [15] use
ratios of distances and angles between eight fiducial
points, followed by an SVM classifier. Similarly,
Gupta et al. [11] use euclidean/geodesic distances
between anthropometric fiducial points in conjunc-
tion with linear classifiers. As stated earlier, the
problem of automated detection of fiducial points is
nontrivial and hinders automation of these methods.
Gordon [10] argues that curvature descriptors have
the potential for higher accuracy in describing
surface features and are better suited to describing
the properties of faces in areas such as the cheeks,
forehead, and chin. These descriptors are also
invariant to viewing angles. Li et al. [16] design a
feature pooling and ranking scheme to collect
various types of low-level geometric features, such
as curvatures, and rank them according to their
sensitivity to facial expressions. Along similar lines,
Wang et al. [32] use a signed shape-difference map
between two aligned 3D faces as an intermediate
representation for shape comparison. McKeon and
Russ [19] use a region ensemble approach that is
based on Fisherfaces, i.e., face representations are
learned using Fisher’s discriminant analysis.

In [12], Huang et al. use a multiscale local binary
pattern for a 3D face jointly with shape index.
Similarly, Moorthy et al. [20] use Gabor features
around automatically detected fiducial points. To
avoid passing over deformable parts of faces
encompassing discriminative information, Faltemier
et al. [9] use 38 face regions that densely cover the
face, and fuse scores and decisions after performing
ICP on each region. A similar idea is proposed in
[29] that uses PCA-LDA for feature extraction,
treating the likelihood ratio as a matching score
and using the majority voting for face identification.

Queirolo et al. [26] use surface interpenetration
measure as a similarity measure to match two face
images. The authentication score is obtained by
combining the SIM values corresponding to the
matching of four different face regions: circular and
elliptical areas around the nose, forehead, and the
entire face region. In [1], Alyuz et al. use average
region models (ARMs) locally to handle the chal-
lenges of missing data and expression-related
deformations. They manually divide the facial area
into several meaningful components and the regis-
tration of faces is carried out by separate dense
alignments to the corresponding ARMs. A strong
limitation of this approach is the need for manual
segmentation of a face into parts that can then be
analyzed separately.

3. Surface distance-based approaches. There are several
papers that utilize distances between points on
facial surfaces to define features that are eventually
used in recognition. (Some papers call it geodesic
distance but, to distinguish it from our later use of
geodesics on shape spaces of curves and surfaces, we
shall call it surface distance.) These papers assume
that surface distances are relatively invariant to
small changes in facial expressions and therefore
help generate features that are robust to facial
expressions. Bronstein et al. [4] provide a limited
experimental illustration of this invariance by
comparing changes in surface distances with the
euclidean distances between corresponding points
on a canonical face surface. To handle the open
mouth problem, they first detect and remove the lip
region, and then compute the surface distance in the
presence of a hole corresponding to the removed
part [5]. The assumption of preservation of surface
distances under facial expressions motivates several
authors to define distance-based features for facial
recognition. Samir et al. [28] use the level curves of
the surface distance function (from the tip of the
nose) as features for face recognition. Since an open
mouth affects the shape of some level curves, this
method is not able to handle the problem of missing
data due to occlusion or pose variations. A similar
polar parameterization of the facial surface is
proposed in [24], where the authors study local
geometric attributes under this parameterization. To
deal with the open mouth problem, they modify the
parameterization by disconnecting the top and
bottom lips. The main limitation of this approach
is the need for detecting the lips, as proposed in [5].
Berretti et al. [2] use surface distances to define
facial stripes which, in turn, are used as nodes in a
graph-based recognition algorithm.

The main limitation of these approaches, apart from the
issues resulting from open mouths, is that they assume that
surface distances between facial points are preserved within
face classes. This is not valid in the case of large
expressions. Actually, face expressions result from the
stretching or the shrinking of underlying muscles and,
consequently, the facial skin is deformed in a nonisometric
manner. In other words, facial surfaces are also stretched or
compressed locally, beyond a simple bending of parts.
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Fig. 2. Significant changes in both euclidean and surface distances
under large facial expressions.

To demonstrate this assertion, we placed four markers
on a face and tracked the changes in the surface and
euclidean (straight line) distances between the markers
under large expressions. Fig. 2 shows some facial expres-
sions leading to a significant shrinking or stretching of
the skin surface and thus causing both euclidean and
surface distances between these points to change. In one
case, these distances decrease (from 113 to 103 mm for the
euclidean distance and from 115 to 106 mm for the surface
distance), while in the other two cases they increase. This
clearly shows that large expressions can cause stretching
and shrinking of facial surfaces, i.e., the facial deformation
is elastic in nature. Hence, the assumption of an isometric
deformation of the shape of the face is not strictly valid,
especially for large expressions. This also motivates the use
of elastic shape analysis in 3D face recognition.

1.2 Overview of Our Approach

This paper presents a Riemannian framework for 3D facial
shape analysis. This framework is based on elastically

Probe image

matching and comparing radial curves emanating from the
tip of the nose and it handles several of the problems
described above. The main contributions of this paper are
as follows:

e It extracts, analyzes, and compares the shapes of
radial curves of facial surfaces.

e It develops an elastic shape analysis of 3D faces by
extending the elastic shape analysis of curves [30] to
3D facial surfaces.

e To handle occlusions, it introduces an occlusion
detection and removal step that is based on
recursive-ICP.

e To handle the missing data, it introduces a restora-
tion step that uses statistical estimation on shape
manifolds of curves. Specifically, it uses PCA on
tangent spaces of the shape manifold to model the
normal curves and uses that model to complete the
partially observed curves.

The different stages and components of our method are
laid out in Fig. 3. While some basic steps are common to all
application scenarios, there are also some specialized tools
suitable only for specific situations. The basic steps that are
common to all situations include 3D scan preprocessing
(nose tip localization, filling holes, smoothing, face crop-
ping), coarse and fine alignment, radial curve extraction,
quality filtering, and elastic shape analysis of curves
(Component IIT and quality module in Component II). This
basic setup is evaluated on the FRGCv2 dataset following
the standard protocol (see Section 4.2). It is also tested
on the GAVAB dataset where, for each subject, four
probe images out of nine have large pose variations (see
Section 4.3). Some steps are only useful where one
anticipates some data occlusion and missing data. These
steps include occlusion detection (Component I) and
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Fig. 3. Overview of the proposed method.
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Fig. 4. A smile (see middle) changes the shapes of the curves in the
lower part of a the face while the act of surprise changes shapes of
curves in the upper part of the face (see right).

missing data restoration (Component II). In these situations,
the full processing includes Components I+II+III to process
the given probes. This approach has been evaluated on a
subset of the Bosphorus dataset that involves occlusions (see
Section 4.4). In the last two experiments, except for the
manual detection of nose coordinates, the remaining
processing is automatic.

2 RADIAL, ELASTIC CURVES: MOTIVATION

An important contribution of this paper is its novel use of
radial facial curves studied using elastic shape analysis.

2.1 Motivation for Radial Curves
Why should one use the radial curves emanating from the
tip of the nose for representing facial shapes? First, why
curves and not other kinds of facial features? Recently, there
has been significant progress in the analysis of curves
shapes and the resulting algorithms are very sophisticated
and efficient [30], [33]. The changes in facial expressions
affect different regions of a facial surface differently. For
example, during a smile, the top half of the face is relatively
unchanged while the lip area changes a lot, and when a
person is surprised the effect is often the opposite. If chosen
appropriately, curves have the potential to capture regional
shapes and that is why their role becomes important. The
locality of shapes represented by facial curves is an
important reason for their selection. The next question is:
Which facial curves are suitable for recognizing people?
Curves on a surface can, in general, be defined either as the
level curves of a function or as the streamlines of a gradient
field. Ideally, one would like curves that maximally
separate interclass variability from the intraclass variability
(typically due to expression changes). The past usage of the
level curves (of the surface distance function) has the
limitation that each curve goes through different facial
regions and that makes it difficult to isolate local variability.
Actually, the previous work on shape analysis of facial
curves for 3D face recognition was mostly based on level
curves [27], [28].

In contrast, the radial curves with the nose tip as origin
have tremendous potential. This is because:

1. Thenose is in many ways the focal point of a face. It is
relatively easy and efficient to detect the nose tip
(compared to other facial parts) and to extract radial
curves, with the nose tip as the center, in a completely
automated fashion. It is much more difficult to
automatically extract other types of curves, for
example, those used by sketch artists (cheek con-
tours, forehead profiles, eye boundaries, etc.).

B1 B

4-- Nosetip

(a) Face with open
mouth

(b) Radial curves matching o) oSS g

mouth

Fig. 5. An example of matching radial curves extracted from two faces
belonging to the same person: a curve with an open mouth (on the left)
and a curve with a closed mouth (on the right). One needs a combination
of stretching and shrinking to match similar points (upper lips, lower
lips, etc.).

2. Different radial curves pass through different re-
gions and, hence, can be associated with different
facial expressions. For instance, differences in the
shapes of radial curves in the upper half of the face
can be loosely attributed to the interclass variability,
while those for curves passing through the lips and
cheeks can largely be due to changes in expressions.
This is illustrated in Fig. 4, which shows a neutral
face (left), a smiling face (middle), and a surprised
face (right). The main difference in the middle face,
relative to the left face, lies in the lower part of the
face, while for the right face the main differences lie
in the top half.

3. Radial curves have a more universal applicability.
The curves used in the past have worked well for
some specific tasks, for example, lip contours in
detecting certain expressions, but they have not been
as efficient for some other tasks, such as face
recognition. In contrast, radial curves capture the
full geometry and are applicable to a variety of
applications, including facial expression recognition.

4. In the case of the missing parts and partial occlusion,
at least some part of every radial curve is usually
available. It is rare to miss a full radial curve. In
contrast, it is more common to miss an eye due to
occlusion by glasses, the forehead due to hair, or
parts of cheeks due to a bad angle for laser
reflection. This issue is important in handling the
missing data via reconstruction, as will be described
later in this paper.

5. Natural face deformations are largely (although not
exactly) symmetric and, to a limited extent, are
radial around the nose. Based on these arguments,
we choose a novel geometrical representation of
facial surfaces using radial curves that start from the
nose tip.

2.2 Motivation for Elasticity

Consider the two parameterized curves shown in Fig. 5;
call them 3, and (3. Our task is to automatically match
points on these radial curves associated with two different
facial expressions. The expression on the left has the mouth
open, whereas the expression on the right has the mouth
closed. To compare their shapes, we need to register points
across those curves. One would like the correspondence to



2274 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.35, NO.9, SEPTEMBER 2013

Fig. 6. Extraction of radial curves: Images in the middle illustrate the
intersection between the face surface and planes to form two radial
curves. The collection of radial curves is illustrated in the rightmostimage.

be such that geometric features match across the curves as
well as possible. In other words, the lips should match the
lips and the chin should match the chin. Clearly, if we
force an arc-length parameterization and match points that
are at the same distance from the starting point, then the
resulting matching will not be optimal. The points A and B
on ; will not match the points A” and B’ on 3, as they are
not placed at the same distances along the curves. For
curves, the problem of optimal registration is actually the
same as that of optimal reparameterization. This means
that we need to find a reparameterization function ~(t)
such that the point (i(t) is registered with the point
Ba2(7(t)), for all ¢. The question is how to find an optimal
for an arbitrary 3, and (,? Keep in mind that the space of
all such s is infinite dimensional because it is a space
of functions.

As described in [30], this registration is accomplished by
solving an optimizing problem using the dynamic pro-
gramming algorithm, but with an objective function that is
developed from a Riemannian metric. The chosen metric,
termed an elastic metric, has a special property that the
same reparameterization of two curves does not change
the distance between them. This in turn enables us to fix
the parameterization of one curve arbitrarily and to
optimize over the parameterization of the other. This
optimization leads to a proper distance (geodesic distance)
and an optimal deformation (geodesic) between the shapes
of curves. In other words, it results in their elastic
comparisons. Please refer to [30] for details.

2.3 Automated Extraction of Radial Curves

Each facial surface is represented by an indexed collection
of radial curves that are defined and extracted as follows:
Let S be a facial surface obtained as an output of the
preprocessing step. The reference curve on S is chosen to
be the vertical curve after the face has been rotated to the
upright position. Then, a radial curve f, is obtained by
slicing the facial surface by a plane P, that has the nose tip
as its origin and makes an angle a with the plane containing
the reference curve. That is, the intersection of P, with S
gives the radial curve (3,. We repeat this step to extract
radial curves from S at equally separated angles, resulting
in a set of curves that are indexed by the angle a. Fig. 6
shows an example of this process.

If needed, we can approximately reconstruct S from
these radial curves according to S~ U8, = Ua{S N P,}.
In the later experiments, we have used 40 curves to
represent a surface. Using these curves, we will demon-
strate that the elastic framework is well suited to modeling

Fig. 7. Curves extraction on a probe face after its rigid alignment with a
gallery face. In (a), the nose region of the probe is missing and filled
using linear interpolation. The probe and gallery faces are from the same
class for (a) and (b), while they are from different classes for (c).

of deformations associated with changes in facial expres-
sions and for handling missing data.

In our experiments, the probe face is first rigidly aligned
to the gallery face using the ICP algorithm. In this step, it is
useful but not critical to accurately find the nose tip on the
probe face. As long as there is a sufficient number of distinct
regions available on the probe face, this alignment can be
performed. Next, after the alignment, the radial curves
on the probe model are extracted using the plane P, passing
through the nose tip of the gallery model at an angle o
with the vertical. This is an important point in that only the
nose tip of the gallery and a good alignment between the
gallery probe is needed to extract good-quality curves. Even
if some parts of the probe face are missing, including its
nose region, this process can still be performed. To
demonstrate this point, we take session #0405d222, from
the FRGCv2 dataset, in which some parts of the nose are
missing and are filled using a linear interpolation filter
(top row of Fig. 7). The leftmost panel shows the hole-
filled probe face, the next panel shows the gallery face, the
third panel shows its registration with the gallery face and
extracted curves on the gallery face. The last panel shows
the extracted curves for the probe face. As shown there, the
alignment of the gallery face with the probe face is good
despite a linear interpolation of the missing points. Then, we
use the gallery nose coordinates to extract radial curves on
the probe surface. The gallery face in this example belongs
to the same person under the same expression. In the second
row, we show an example where the two faces belong to the
same person but represent different expressions/poses.
Finally, in the last row we show a case where the probe and
the gallery faces belong to different people. Since the curve
extraction on the probe face is based on the gallery nose
coordinates, which belong to another person, the curves
may be shifted in this nose region. However, this small
inaccuracy in curve extraction is actually helpful since it
increases the interclass distances and improves the bio-
metric performance.
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~ Discarded curves  —~ Reained curves

Fig. 8. Curve quality filter: examples of detection of broken and short
curves (in red) and good curves (in blue).

2.4 Curve Quality Filter

In situations involving nonfrontal 3D scans, some curves
may be partially hidden due to self-occlusion. The use of
these curves in face recognition can severely degrade the
recognition performance and therefore they should be
identified and discarded. We introduce a quality filter that
uses the continuity and the length of a curve to detect such
curves. To pass the quality filter, a curve should be one
continuous piece and have a certain minimum length, say of
70 mm. The discontinuity or the shortness of a curve results
either from missing data or large noise.

We show two examples of this idea in Fig. 8, where we
display the original scans, the extracted curves, and then the
action of the quality filter on these curves. Once the quality
filter is applied and the high-quality curves retained, we can
perform face recognition procedure using only the remaining
curves. That is, the comparison is based only on curves that
have passed the quality filter. Let § denotes a facial curve; we
define the Boolean function quality: (quality(8) =1) if §
passes the quality filter and (quality(3) = 0) otherwise. Recall
that during the preprocessing step, there is a provision for
filling holes. Sometimes the missing parts are too large to be
faithfully filled using linear interpolation. For this reason, we
need the quality filter that will isolate and remove curves
associated with those parts.

3 SHAPE ANALYSIS OF FACIAL SURFACES

In this section, we will start by summarizing a recent work
in elastic shape analysis of curves and extend it to shape
analysis of facial surfaces.

3.1 Background on the Shapes of Curves

Let 3 : I — IR’ represent a parameterized curve on the face,
where I =[0,1]. To analyze the shape of (3, we shall
represent it mathematically using the square-root wvelocity
function (SRVF) [30], denoted by

) =L,

Nl

q(t) is a special function of § that simplifies computations
under the elastic metric. More precisely, as shown in [30],
an elastic metric for comparing shapes of curves becomes
the simple IL?-metric under the SRVF representation. (A

similar metric and representation for curves was also
developed by Younes et al. [33], but it only applies to
planar curves and not to facial curves.) This point is very
important as it simplifies the analysis of curves under the
elastic metric to the standard functional analysis. Further-
more, under the IL?-metric, the reparameterization group
acts by isometries on the manifold of ¢ functions, which is
not the case for the original curve 3. To elaborate on the last
point, let ¢ be the SRVF of a curve j3. Then, the SRVF of a
reparameterized curve 3o is given by /3(q o 7). Here v :
I — I is a reparameterization function and let I' be the set
of all such functions. Now, if ¢; and ¢, are SRVFs of two
curves (i and 3, respectively, then it is easy to show that
under the I norm, [lg — gall = [[vF(q1 ©7) = V(@2 0 V)ll,
for all veT, while |5 —f, Brovy) = (Bro9)| in
general. This is one more reason why SRVF is a better
representation of curves than 3 for shape analysis.

Define the preshape space of such curves: C ={q: I —
gl =1} < L*(I,1R?), where || - || implies the IL? norm.
With the IL? metric on its tangent spaces, C becomes a
Riemannian manifold. Also, since the elements of C have
a unit I> norm, C is a hypersphere in the Hilbert
space IL?(I,IR%). Furthermore, the geodesic path between
any two points ¢,q € C is given by the great circle,
¥ :[0,1] — C, where

_ 1
" sin(0)

Y(r) (sin((1 = 7)0)qu + sin(07)q2), ()
and the geodesic length is 0 = d.(q1, ¢2) = cos ' ((q1g2))-

To study shapes of curves, one should identify all
rotations and reparameterizations of a curve as an
equivalence class. Define the equivalent class of ¢ as

[q) = closure{\/3()0q(+(1))|0 € SO(3), v €T}.
The set of such equivalence classes, denoted by S={[¢]|¢ € C},
is called the shape space of open curves in IR®. As described in
[30], S is a metric space with the metric inherited from
thelarger space C. To obtain geodesics and geodesic distances
between elements of S, one needs to solve the optimization
problem:

(0'7) = argmin_do(q1,V/30(@o).  (2)

(07)€S0(3)xT
For a fixed O in SO(3), the optimization over I' is done
using the dynamic programming algorithm while, for a
fixed v € T, the optimization over SO(3) is performed using
SVD. By iterating between these two, we can reach a
solution for the joint optimization problem. Let

3t =7 (0 w( (1)

be the optimal element of [¢,] associated with the optimal
rotation O* and reparameterization * of the second curve;
then the geodesic distance between [¢] and [go] in S is
ds([q], [g2])=d.(q1, ¢3) and the geodesic is given by (1), with
@2 replaced by ¢5.

3.2 Shape Metric for Facial Surfaces

Now, we extend the framework from radial curves to full
facial surfaces. A facial surface S is represented by an
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Fig. 9. Examples of geodesics in the shape space. The top three rows
ustrate examples of interclass geodesics and the bottom three rows
illustrate intraclass geodesics.

indexed collection of radial curves, indexed by the
n uniform angles A={0,2 4 . or (U}, Thus, the
shape of a facial surface can _ummb _.m?.mmm:ﬁma as an
element of the set S". The indexing provides a correspon-
dence between curves across faces. For example, the curve
at an angle «a on a probe face is compared with the curve
at the same angle on a gallery face. Thus, the distance
between two facial surfaces is ds:S" x 8" — R, given
by ds(S',5%) = 13 4 d([g}],[¢3])- Here, g, denotes the
SRVF of the radial curve [, on the ith facial surface. The
distance ds is computed by the following algorithm.
Since we have deformations (geodesic paths) between
corresponding curves, we can combine these deformations
to obtain deformations between full facial surfaces. In fact,
these full deformations can be shown to be formal geodesic
paths between faces when represented as elements of S".
Shown in Fig. 9 are examples of some geodesic paths
between source and target faces. The three top rows
illustrate paths between faces of different subjects and are
termed interclass geodesics, whereas the remaining rows
illustrate paths between faces of the same person conveying
different expressions and are termed intraclass geodesics.
These geodesics provide a tangible benefit beyond the
current algorithms that provide some kind of a similarity
score for analyzing faces. In addition to their interpretation
as optimal deformations under the chosen metric, the
geodesics can also be used for computing the mean shape
and measuring the shape covariance of a set of faces, as
illustrated later. To demonstrate the quality of this
deformation, we compare it qualitatively for faces with
the deformation obtained using a linear interpolation
between registered points under an ICP registration of
points in Fig. 10. The three rows show, respectively, a

Fig. 10. Examples of geodesics in shape space (top row), preshape
space (middle row), and a linearly interpolated path after ICP alignment
(bottom row).

geodesic path in the shape space, the corresponding path in
the preshape space, and a path using ICP. Algorithm 1 is
used to calculate the geodesic path in the shape space. In
other words, the optimal matching (reparameterization)
between curves is established and thus anatomical points
are well matched across the two surfaces. The upper lips
match the upper lips, for instance, and this helps produce a
natural opening of the mouth, as illustrated in the top row
in Fig. 10. However, the optimal matching is not established
yet when the geodesic is calculated in the preshape space.
This results in an unnatural deformation along the geodesic
in the mouth area.

Algorithm 1. Elastic distance computation.

Input: Facial surfaces S; and Ss.
Output: The distance ds.
for i« 1to 2 do
for o < 0 to 2II do
Extract the curve j3;
if quality(5.) =1 a:& quality(82) = 1 then

OOB@SAS the optimal rotation and
re-parameterization alignment O}, and
74 using Eqn. 2.

set ¢2*(t) =
85?&8

VAL 0La (A (1))

=cos™' (g4, @27))-

Compute ds = 23 4 ds(q4, ¢2"), where n is
the number of valid pairs of curves.

end

3.3 Computation of the Mean Shape

As mentioned above, an important advantage of our
Riemannian approach over many past papers is its ability
to compute summary statistics of a set of faces. For
example, one can use the notion of Karcher mean [14] to
define an average face that can serve as a representative
face of a group of faces. To calculate a Karcher mean
of facial surfaces {S',...,S"} in S", we define an objective
function: V: 8" — R, V(S) = Mwl ds(S,5)*. The Karcher
mean is then defined by S = argminges'V(S). The algo-
rithm for computing the Karcher mean is a standard one,

DRIRA ET AL.: 3D FACE RECOGNITION UNDER EXPRESSIONS, OCCLUSIONS, AND POSE VARIATIONS 2277

©
&

Fig. 11. The Karcher mean of eight faces (left) is shown on the right.

see, for example, [8], and is not repeated here to save space.
This minimizer may not be unique and, in practice, one can
pick any one of those solutions as the mean face. This mean
has a nice geometrical interpretation: S is an element of S"
that has the smallest total (squared) deformation from all
given facial surfaces {S',...,S"}. An example of a Karcher
mean face for eight faces belonging to different people is
shown in Fig. 11.

3.4 Completion of Partially Obscured Curves
Earlier we introduced a filtering step that finds and
removes curves with missing parts. Although this step is
effective in handling some missing parts, it may not be
sufficient when parts of a face are missing due to external
occlusions, such as glasses and hair. In the case of external
occlusions, the majority of radial curves could have hidden
parts that should be predicted before using these curves.
This problem is more challenging than self-occlusion
because, in addition to the missing parts, we can also have
parts of the occluding object(s) in the scan. In a non-
cooperative situation, where the acquisition is uncon-
strained, there is a high probability for this kind of
occlusion to occur. Once we detect points that belong to
the face and points that belong to the occluding object, we
first remove the occluding object and use a statistical model
in the shape space of radial curves to complete the broken
curves. This replaces the parts of face that have been
occluded using information from the visible part and the
training data.

The core of this problem, in our representation of facial
surfaces by curves, is to take a partial facial curve and
predict its completion. The sources of information avail-
able for this prediction are as follows: 1) the current
(partially observed) curve and 2) several (complete)
training curves at the same angle that are extracted from
full faces. The basic idea is to develop a sparse model for
the curve from the training curves and use that to
complete the observed curve. To keep the model simple,
we use the PCA of the training data in an appropriate
vector space to form an orthogonal basis representing
training shapes. Then, this basis is used to estimate the
coefficients of the observed curve and the coefficients help
reconstruct the full curve. Since the shape space of curve &
is a nonlinear space, we use the tangent space T,(S),
where p is the mean of the training shapes, to perform
PCA. Let a denote the angular index of the observed
curve, and let ¢!, ¢,...,¢" be the SRVFs of the curves
taken from the training faces at that angle. As described
earlier, we can compute the sample Karcher mean of their
shapes {[¢\] € S}, denoted by p,. Then, using the

S Restorescurves
S eptcurves

Fig. 12. (a) Faces with external occlusion, (b) faces after the detection
and removal of occluding parts, and (c) the estimation of the occluded
parts using a statistical model on the shape spaces of curves.

geometry of S we can map these training shapes in the
tangent space using the inverse exponential map. We
obtain v;, = @ﬁﬂ@wv where

ex, (2) = s (65— cosO)). 0= cos” ()

and where ¢; is the optimal rotation and reparameterization
of ¢ to be aligned with ¢, as discussed earlier. A PCA of
the tangent vectors {v;} leads to the principal basis vectors
Uy Uy - -+ WS, Where J represents the number of
significant basis elements.

Now, returning to the problem of completing a partially
occluded curve, let us assume that this curve is observed for
parameter value ¢ in [0, 7] C [0,1]. In other words, the SRVF
of this curve ¢(t) is known for ¢ € [0, 7] and unknown for
t > 7. Then, we can estimate the coefficients of ¢ under the
chosen basis according to ¢jo = (¢, uja) & [§ (a(t), uja(t))dt,
and estimate the SRVF of the full curve according to

J
=3 cjaua(t) te0,1].

We present three examples of this procedure in Fig. 12,
with each face corrupted by an external occlusion as shown
in column (a). The detection and removal of occluded parts
is performed as described in the previous section, and the
result of that step is shown in column (b). Finally, the curves
passing through the missing parts are restored and shown
in column (c).

To evaluate this reconstruction step, we have compared
the restored surface (shown in the top row of Fig. 12)
with the complete neutral face of that class, as shown in
Fig. 13. The small values of both absolute deviation and
signed deviation between the restored face and the
corresponding face in the gallery demonstrate the success
of the restoration process.

In the remainder of this paper, we will apply this
comprehensive framework for 3D face recognition using a
variety of well-known and challenging datasets. These
databases have different characteristics and challenges, and
together they facilitate an exhaustive evaluation of a 3D face
recognition method.
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Signed deviation color map and distribution
between restored face and gallery face
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Absolute deviation color map and distribution
between restored face and gallery face

Face after Face after
occlusion removal curves restoration

Restoration Mesh
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Neutralface  Restoredface  Alignment
(Gallery)

Fig. 13. lllustration of a face with missing data (after occlusion removal)
and its restoration. The deviation between the restored face and the
corresponding neutral face is also illustrated.
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o Links between stages
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Acquisition —» Fillingholes = Cropping —# Smoothing

Fig. 14. The different steps of preprocessing: acquisition,
cropping, and smoothing.

ng holes,

4 EXPERIMENTAL RESULTS

In the following, we provide a comparative performance
analysis of our method with other state-of-the-art solutions,
using three datasets: the FRGC v2.0 dataset, the GavabDB,
and the Bosphorus dataset.

4.1 Data Preprocessing

Since the raw data contains a number of imperfections, such
as holes, spikes, and includes some undesired parts, such as
clothes, neck, ears, and hair, the data preprocessing step is
very important and nontrivial. As illustrated in Fig. 14, this
step includes the following items:

e The holefilling filter identifies and fills holes in
input meshes. The holes are created either because
of the absorption of the laser in dark areas, such as
eyebrows and mustaches, or self-occlusion or
open mouths. They are identified in the input
mesh by locating boundary edges, linking them
together into loops, and then triangulating the
resulting loops.

e A cropping filter cuts and returns parts of the mesh
inside a euclidean sphere of radius 75 mm centered
at the nose tip to discard as much hair as possible.
The nose tip is automatically detected for frontal
scans and manually annotated for scans with
occlusions and large pose variation.

= - Neutral vs. neutral
~O- Neutral vs. non-neutral
—— Neutral vs. all

Recognition rate (%)

Rank

Fig. 15. The CMC curves of our approach for the following scenario:
neutral versus neutral, neutral versus expressions, and neutral versus all.

e A smoothing filter reduces high-frequency compo-
nents (spikes) in the mesh, improves the shapes
of cells, and evenly distributes the vertices on a
facial mesh.
We have used functions provided in the VTK
(www.vtk.org) library to develop these filters.

4.2 Comparative Evaluation on the FRGCv2
Dataset

For the first evaluation, we use the FRGCv2 dataset in
which the scans have been manually clustered into three
categories: neutral expression, small expression, and large
expression. The gallery consists of the first scans for each
subject in the database, and the remaining scans make up
the probe faces. This dataset was automatically prepro-
cessed as described in the Section 4.1. Fig. 15 shows
cumulative matching curves (CMCs) of our method under
this protocol for the three cases: neutral versus neutral,
neutral versus nonneutral, and neutral versus all. Note
that this method results in 97.7 percent rank-1 recognition
rate in the case of neutral versus all. In the difficult
scenario of neutral versus expressions, the rank-1 recogni-
tion rate is 96.8 percent, which represents a high
performance, while in the simpler case of neutral versus
neutral the rate is 99.2 percent.

A comparison of recognition performance of our method
with several state-of-the-art results is presented in Table 1.
This time, to keep the comparisons fair, we kept all
466 scans in the gallery. Notice that our method achieved
a 97 percent rank-1 recognition, which is close to the highest
published results on this dataset [29], [26], [9]. Since the
scans in FRGCv2 are all frontal, the ability of region-based
algorithms such as [9], [26] to deal with the missing parts is
not tested in this dataset. For that end, one would need a
systematic evaluation on a dataset with the missing data
issues, for example, the GavabDB. The best recognition
score on FRGCv2 is reported by Spreeuwers [29], who use
an intrinsic coordinate system based on the vertical

TABLE 1
Comparison of Rank-1 Scores on the FRGCv2 Dataset with State-of-the-Art Results
[ Spreeuwers [29] | Wang et al. [32] | Haar etal. [31] | Berretti et al. [2] | Queirolo et al. [26] | Faltemier et al. [9] | Kakadiaris et al. [13] | Our approach |
[ 9% [ 98.2 [ 7% [ 941 [ 98.4% [ 97.2% [ 7% [ 97% |
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Fig. 16. The ROC curves of our approach for the following scenario: All
versus All and the ROC Il mask.

symmetry plane through the nose. The missing data due to
pose variation and occlusion challenges will be a challenge
there as well.

To evaluate the performance of the proposed approach
in the verification scenario, the receiver operating char-
acteristic (ROC) curves for the ROC III mask of FRGCv2
and “all-versus-all” are plotted in Fig. 16. For comparison,
Table 2 shows the verification results at false acceptance
rate (FAR) of 0.1 percent for several methods. For the
standard protocol testings, the ROC III mask of FRGC v2,
we obtain the verification rates of around 97 percent,
which is comparable to the best published results. In
the all-versus-all experiment, our method provides
93.96 percent VR at 0.1 percent FAR, which is among
the best rates in the table [26], [29], [32]. Note that these
approaches are applied to FRGCv2 only. Since scans in
FRGCv2 are mostly frontal and have high quality, many
methods are able to provide good performance. It is thus
important to evaluate a method in other situations where
the data quality is not as good. In the next two sections,
we will consider those situations with the GavabDB
involving the pose variation and the Bosphorus dataset
involving the occlusion challenge.

4.3 Evaluation on the GavabDB Dataset

Since GavabDB [21] has many noisy 3D face scans under
large facial expressions, we will use that database to help

o

¥ %@ ®®
30 6 60

Fig. 17. Examples of correct (top row) and incorrect matches (bottom
row). For each pair, the probe (on the _m3 and the ranked-first face from
the gallery (on the right) are reported.

evaluate our framework. This database consists of the
Minolta Vi-700 laser range scans from 61 subjects—45 males
and 16 females—all of them Caucasian. Each subject was
scanned nine times from different angles and under
different facial expressions (six with a neutral expression
and three with nonneutral expressions). The neutral scans
include several frontal scans—one scan while looking up
(+35 degrees), one scan while looking down (—35 degrees),
one scan from the right side (+-90 degrees), and one from
the left side (—0 degrees). The nonneutral scans include
cases of a smile, a laugh, and an arbitrary expression chosen
freely by the subject. We point out that in these experiments
the nose tips in profile faces have been annotated manually.

One of the two frontal scans with the neutral expression
for each person is taken as a gallery model, and the
remainder are used as probes. Table 3 compares the results
of our method with the previously published results
following the same protocol. As noted, our approach
provides the highest recognition rate for faces with non-
neutral expressions (94.54 percent). This robustness comes
from the use of radial, elastic curves since: 1) Each curve
represents a feature that characterizes local geometry and
2) the elastic matching is able to establish a correspondence
with the correct alignment of anatomical facial features
across curves.

Fig. 17 illustrates examples of correct and incorrect
matches for some probe faces. In each case we show a pair
of faces with the probe shown on the left and the top ranked
gallery face shown on the right. These pictures also exhibit
examples of the variability in facial expressions of the scans

TABLE 2
Comparison of Verification Rates at FAR = 0.1 Percent on the FRGCv2 Dataset with State-of-the-Art Results
(the ROC Il Mask and the All versus All Scenario)

Approaches | Kakadiaris et al. [13] | Faltemier et al. [9] | Berretti et al. [2] | Queirolo et al. [26] | Spreeuwers [29] | Wang et al. [32] | Our approach
Pp! P 3 Pp!

[ ROCIT | 7% I 91.5% I - I 96.6% I 916% 984% [ 97.14% W
[ Allvs. AlL_| - | 93.2% | 81.2% | 965% | 91.6% | 98.13% [ 9396% |
TABLE 3
Recognition Results Comparison of the Different Methods on the GavabDB

Lee et al. [16] | Moreno et al. [22] | Mahoor et al. [18] | Haar et al. [31] | Mousavi et al. [23] | ou d
Neutral 96.67% 90.16% - - - 100%
Expressive 93.33% 77.9% 72% - - 94.54%
Neutral+expressive 94.68% - 78% - 91% 95.9%
Rotated looking down - - 85.3% - - 100%
Rotated looking up - - 88.6% - - 98.36%
Overall - - - 98% 81.67% 96.99%
Scans from right side - - - - - 70.49%
Scans from left side - - - - - 86.89%
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Fig. 18. Gradual removal of occluding parts in a face scan using
recursive-ICP.

included in the probe dataset. As far as faces with the
neutral expressions are concerned, the recognition accuracy
naturally depends on their pose. The performance de-
creases for scans from the left or right sides because more
parts are occluded in those scans. However, for pose
variations up to 35 degrees, the performance is still high
(100 percent for looking up and 98.36 percent for looking
down). Fig. 17 (top row) shows examples of successful
matches for up and down looking faces and unsuccessful
matches for sideways scans.

Table 3 provides an exhaustive summary of results
obtained using GavabDB; our method outperforms the
majority of other approaches in terms of the recognition
rate. Note that there is no prior result in the literature on 3D
face recognition using sideway-scans from this database.
Although our method works well on common faces with a
range of pose variations within 35 degrees, it can poten-
tially fail when a large part of the nose is missing as it can
cause an incorrect alignment between the probe and the
gallery. This situation occurs if the face is partially
occluded by external objects such as glasses, hair, and so
on. To solve this problem, we first restore the data missing
due to occlusion.

4.4 3D Face Recognition on the Bosphorus
Dataset: Recognition Under External Occlusion
In this section, we will use components I (occlusion
detection and removal) and II (missing data restoration)
in the algorithm. The first problem we encounter in
externally occluded faces is the detection of the external
object parts. We accomplish this by comparing the given
scan with a template scan, where a template scan is
developed using an average of training scans that are
complete, frontal, and have neutral expressions. The basic
matching procedure between a template and a given scan is
recursive ICP, which is implemented as follows: In each
iteration, we match the current face scan with the template
using ICP and remove those points on the scan that are
more than a certain threshold away from the corresponding
points on the template. This threshold has been determined
using experimentation and is fixed for all faces. In each
iteration, additional points that are considered extraneous
are incrementally removed and the alignment (with the
template) based on the remaining points is further refined.

Fig. 19. Examples of faces from the Bosphorus database. The
unoccluded face on the left and the different types of occlusions are
illustrated.

Fig. 18 shows an example of this implementation. From left
to right, each face shows an increasing alignment of the test
face with the template, with the aligned parts shown in
magenta, and also an increasing set of points labeled as
extraneous, drawn in pink. The final result, the original
scan minus the extraneous parts, is shown in green at
the end.

In the case of faces with external occlusion, we first
restore them and then apply the recognition procedure.
That is, we detect and remove the occluded part and
recover the missing part, resulting in a full face that can
be compared with a gallery face using the metric ds. The
recovery is performed using the tangent PCA analysis and
Gaussian models, as described in Section 3.4. To evaluate
our approach, we perform this automatic procedure on
the Bosphorus database [1]. We point out that for this
dataset the nose tip coordinates are already provided. The
Bosphorus database is suitable for this evaluation as it
contains scans of 60 men and 45 women, 105 subjects in
total, in various poses, expressions, and in the presence of
external occlusions (eyeglasses, hand, hair). The majority
of the subjects are aged between 25 and 35. The number of
total face scans is 4,652; at least 54 scans each are available
for most of the subjects, while there are only 31 scans
each for 34 of them. The interesting part is that for each
subject there are four scans with occluded parts. These
occlusions refer to

1. mouth occlusion by hand,

2. eyeglasses,

3. occlusion of the face with hair, and

4. occlusion of the left eye and forehead regions by

hands.

Fig. 19 shows sample images from the Bosphorus 3D
database illustrating a full scan on the left and the
remaining scans with typical occlusions.

We pursued the same evaluation protocol used in the
previously published papers: A neutral scan for each
person is taken to form a gallery dataset of size 105 and
the probe set contains 381 scans that have occlusions. The
training is performed using other sessions so that the
training and test data are disjoint. The rank-1 recognition
rate is reported in Fig. 20 for different approaches
depending upon the type of occlusion. As these results
show, the process of restoring occluded parts significantly
increases the accuracy of recognition. The rank-1 recogni-
tion rate is 78.63 percent when we remove the occluded
parts and apply the recognition algorithm using the
remaining parts, as described in Section 2.4. However, if
we perform restoration, the recognition rate is improved to
87.06 percent. Clearly, this improvement in performance is
due to the estimation of missing parts on curves. These
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Rank-1 recognition Rate (%)

Eye Mouth Glasses Hair

All occlusions

Fig. 20. Recognition results on the Bosphorus database and comparison
with state-of-the-art approaches.

parts, which include important shape data, were not
considered by the algorithm described earlier. Even if the
part added with restoration introduces some error, it still
allows us to use the shapes of the partially observed curves.
Furthermore, during restoration, the shape of the partially
observed curve is conserved as much as possible.

Examples of 3D faces recognized by our approach are
shown in Fig. 12, along with different steps of the
algorithm. The faces in the two bottom rows are examples
of incorrectly recognized faces by our algorithm without
restoration (as described earlier), but after the restoration
step, they are correctly recognized. Aluz et al. [1] reported a
93.69 percent rank-1 recognition rate overall for this
database using the same protocol that we have described
above. While this reported performance is very good, their
processing has some manual components. Actually, the
authors partition the face manually and fuse the scores for
matching different parts of the face together. To compare
with Colombo et al. [6], we reduce the probe dataset to 360
by discarding bad quality scans, as Colombo et al. [6] did.
Our method outperforms their approach with an overall
performance of 89.25 percent, although individually our
performance is worse in the case of occlusion by hair. It is
difficult in this case to completely overcome face occlusion.
Therefore, during the restoration step, our algorithm tries to
keep the majority of parts. This leads to a deformation in the
shape of curves and hence affects the recognition accuracy.
We present some examples of unrecognized faces in the
case of occlusion by hair in Fig. 21. In this instance, the
removal of curves passing through occlusion is better than
restoring them, as illustrated in Fig. 20.

-~ 2 Restored curves

S Kepteurves

Fig. 21. Examples of nonrecognized faces. Each row illustrates, from left
to right, the occluded face, the result of occlusion removal, and the result
of restoration.

TABLE 4
Comparative Study of Time Implementations and
Recognition Accuracy on FRGCv2 of the
Proposed Approach with State of the Art

Approach preprocessing (5) Face match- | Comparison || Accuracy
ing (5) time(s) )

al. [32] 1.48 0.65 2.2 98.3%
25 1/11 150 25 99%
6.18 127 7.45 97%
7.52 24 9.92 97.2%
15 1/1000 15 97%
3 15 18 97%
- - - 94.1%
- 4 - 98.4%

5 DISCUSSION

To study the performance of the proposed approach in the
presence of different challenges, we have presented experi-
mental results using three well-known 3D face databases. We
have obtained competitive results relative to the state of the
art for 3D face recognition in the presence of large expres-
sions, nonfrontal views, and occlusions. As listed in Table 4,
our fully automatic results obtained on the FRGCv2 are near
the top. Table 4 also reports the computational time of our
approach and some state-of-the-nbsp;art methods on the
FRGCv2 dataset. For each approach, we report the time
needed for preprocessing and/or feature extraction in the
first column. In the second column, we report the time needed
to compare two faces. The third column is the sum of the two
previous computation times for each approach. In the last
column, we report the accuracy (recognition rate on FRGCv2)
of different approaches. Regarding computational efficiency,
parallel techniques can also be exploited to improve
performance of our approach since the computation of curve
distances, preprocessing, and so on, are independent tasks.

In the case of GavabDB and Bosphorus, the nose tip was
manually annotated for nonfrontal and occluded faces. In
the future, we hope to develop automatic nose tip detection
methods for nonfrontal views and for faces that have
undergone occlusion.

6 CONCLUSION

In this paper, we have presented a framework for a
statistical shape analysis of facial surfaces. We have also
presented results on 3D face recognition designed to handle
variations of facial expression, pose variations, and occlu-
sions between gallery and probe scans. This method has
several properties that make it appropriate for 3D face
recognition in noncooperative scenarios. First, to handle
pose variation and missing data, we have proposed a local
representation by using a curve representation of a 3D face
and a quality filter for selecting curves. Second, to handle
variations in facial expressions, we have proposed an elastic
shape analysis of 3D faces. Finally, in the presence of
occlusion, we have proposed to remove the occluded parts,
then to recover only the missing data on the 3D scan using
statistical shape models. That is, we have constructed a low-
dimensional shape subspace for each element of the indexed
collection of curves, and then represent a curve (with
missing data) as a linear combination of its basis elements.
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Abstract—We utilize ideas from two growing but disparate ideas
in computer vision—shape analysis using tools from differential
geometry and feature selection using hine learning—to select
and highlight salient geometrical facial features that contribute
most in 3-D face recognition and gender classification. First, a large
set of geometries curve features are extracted using level sets (cir-
cular curves) and streamlines (radial curves) of the Euclidean dis-
tance functions of the facial surface; together they approximate fa-
cial surfaces with arbitrarily high accuracy. Then, we use the well-
known Adaboost algorithm for feature selection from this large set
and derive a composite classifier that achieves high performance
with a minimal set of features. This greatly reduced set, consisting
of some level curves on the nose and some radial curves in the
forehead and cheeks regions, provides a very compact signature
of a 3-D face and a fast classification algorithm for face recogni-
tion and gender selection. It is also efficient in terms of data storage
and transmission costs. Experimental results, carried out using the
FRGCv2 dataset, yield a rank-1 face recognition rate of 98% and
a gender classification rate of 86% rate.

Index Terms—Face recognition, gender classification, geodesic
path, facial curves, machine learning, feature selection.

I. INTRODUCTION

INCE facial biometrics is natural, contact free, nonintru-

sive, and psychologically supported, it has emerged as a
popular modality in the biometrics community. Unfortunately,
the technology for 2-D image-based face recognition still faces
difficult challenges, such as pose variations, changes in lighting
conditions, occlusions, and facial expressions. Due to the ro-
bustness of 3-D observations to lighting conditions and pose
variations, face recognition using shapes of facial surfaces has
become a major research area in the last few years. Many of the
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state-of-the-art methods have focused on the variability caused
by facial deformations, e.g., those due to face expressions, and
have proposed methods that are robust to such shape variations.
At the same time, gender classification is emerging as an inter-
esting problem that can be a useful preprocessing step for face
recognition. Gender is similar to other soft biometric traits, such
as skin color, age, eyes colors, and so on, used by humans to
distinguish their peers. Most existing work on gender classifi-
cation uses 2-D-images to extract distinctive facial features like
hair density and inner morphology of the face, but 3-D shape has
not yet been used extensively for gender classification. Several
works in psychology have shown that gender has close relation-
ships both with 2-D information and 3-D shape [1], [2], and it
motivates the use of 3-D shapes for gender classification.

The development of a practical, high-performance system for
automatic face recognition and gender classification is an im-
portant issue in intelligent systems. In this work, we focus on a
feature selection technique from machine-learning that is fully
automatic and versatile enough for different applications like
face recognition and gender classification. The features comes
from different types of facial curves extracted from facial sur-
faces in an intrinsic fashion, and comparisons of these curve
features is based on latest advances in shape analysis of param-
eterized curves using tools from differential geometry. In the
process we also develop an effective approach for tackling fa-
cial expressions variation, an important focus of the face recog-
nition grand challenge. Our approach offers the advantage of
classifying either facial identity and/or gender, both indepen-
dent of the ethnicity. Specifically, the main contributions of this
paper include:

* A new geometric feature-selection approach for efficient
3-D face recognition that seeks most relevant characteris-
tics for recognition while handling the challenge of facial
expressions. In particular, we are interested in finding those
facial curves that are most suitable for 3-D face recogni-
tion.

* A new gender classification approach using the 3-D face
shape represented by collections of curves. In particular,
we are interested in finding those facial curves that are most
suitable for gender discrimination.

The rest of the paper is organized as follows. Section II
summarizes existing approaches on 3-D face recognition with
an emphasis on facial curve-based and facial feature-based
methods. 1t also presents some progress in 3-D imaging-based
gender classification. Section Il overviews the proposed
approach for both the target applications. In Section IV, we
present procedures for extracting facial curves. Section V

1556-6013/$31.00 © 2012 IEEE
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recalls the main ideas of the Riemannian geometric shape
analysis framework to compare and match facial curves. In
Section VI, we give formulations to the classification problem
and describes the use of the boosting procedure to achieve
the feature selection step, for each of the two applications.
Experimental evaluations and comparative studies to previous
approaches are given in Section VII. We conclude in the paper
with a discussion and summary in Section VIIL!

II. RELATED WORK

As the proposed approach combines curve-based face com-
parison with feature selection techniques, we mainly focus on
previous methods that primarily use /ocal facial feature-selec-
tion and holistic facial curves.

A. Feature Selection-Based 3-D Face Recognition

Several methods have been proposed to analyze the discrim-
inative power of different facial regions or features for face
recognition. Daniyal et al. [4] proposed an algorithm in which
a face is represented as a vector of distances between pairs of
facial landmarks. They selected the landmarks by exhaustive
search over possible combinations of used/unused landmarks,
comparing the recognition rates, and concluded that the best se-
lection corresponded to the landmarks located around the eyes
and the nose. In the 3-D face recognition approach used by Fal-
temier et al. [5], the nose tip and 28 small regions were selected
automatically for improving recognition. More recently, Wang
et al. [6] computed a signed shape difference map (SSDM)
between two aligned 3-D faces as a intermediate representa-
tion for the shape comparison. Based on the SSDMs, Haar-like,
Gabor, and Local Binary Pattern (LBP) were used to encode
both the local similarity and the change characteristics between
facial shapes. The most discriminative local features were se-
lected optimally by boosting. Using similar features, Li et al.
[7] proposed to design a feature pooling and ranking scheme
in order to collect various types of low-level geometric fea-
tures, such as curvatures, and ranked them according to their
sensitivities to facial expressions. They applied sparse represen-
tations to the collected low-level features and achieved good
results on the GAVAB database. In [8] Ocegueda et al. pro-
posed a Markov Random Field model for the analysis of lat-
tices (e.g., image or 3-D meshes) in terms of the discrimina-
tive information of their vertices. They observed that the nose
and the eyes are consistently marked as discriminative regions
of the face in a face recognition system. Li et al. [9] proposed
an expression-robust 3-D face recognition approach by learning
weighted sparse representation of encoded normal information,
which they called multiscale local normal patterns (MS-LNPs)
facial surface shape descriptor. They utilized the learned av-
erage quantitative weights related to different facial physical
components to enhancing the robustness of their system to ex-
pression variations.

B. Curve-Based Face Representation

The basic idea of these approaches is to represent a sur-
face using an indexed family of curves which provide an

IThis work was presented in part in the 4th Eurographics Workshop on 3-D
Object Retrieval, 2011 [3].
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approximate representation of the surface. Samir et al. [10],
for instance, used the level curves of the height function to
define facial curves. Since these curves are planar, they used
shape analysis of planar curves, taken from [11], to compare
and deform faces; nonlinear matching problem was not studied
here (that is, the mapping was fixed to be linear). The authors
proposed to compare facial surface by using two metrics:
Euclidean mean and geometric mean. However, there were no
discussion on how to obtain optimal curves. Later in [12], the
same authors used the level curves of the geodesic distance
function that resulted in 3-D curves. They used a nonelastic
metric and a path-straightening method to compute geodesics
between these curves. Here also, the matching was not studied
and the correspondence of curves and points across faces was
simply linear. In [13], Mpiperis et al. proposed a geodesic polar
parametrization of the facial surface. With this parametriza-
tion, the intrinsics attributes do not change under isometric
deformation when the mouth is closed. Otherwise, it violates
the isometry assumption and thus they adapt their geodesic
polar parametrization by disconnecting the lips. Through this
representation, they proposed an elastically deformable model
algorithm that establishes correspondence among a set of faces.
Then, they construct bilinear models that decouple the identity
and facial expression factors. The invariance to facial expres-
sions is obtained by fitting these models to unknown faces. The
main limitation of this approach is the need for a large set which
should also be annotated with respect to facial expressions.
In [14], Drira et al. explored the use of shapes of noses for
performing partial human biometrics. More recently, in [15],
the same authors proposed similar shape analysis approach this
time using radial curves. They model elastic deformations of
facial surfaces (including opening the mouth) as an optimal
reparametrization (or matching) problem that they solve using
the dynamic programming algorithm. This approach provided
promising results on GAVAB database even where the probe
pose is nonfrontal. In [16], Berretti et al. used the geodesic
distance on the face to extract iso-geodesic facial stripes. Equal
width iso-geodesic facial stripes were used as nodes of the
graph and edges between nodes were labeled with descriptors,
referred to as 3-D Weighted Walkthroughs (3DWWs), that
captured mutual relative spatial displacement between all the
pairs of points of the corresponding stripes. Face partitioning
into iso-geodesic stripes and 3DWWs together provided an
approximate representation of local morphology of faces that
exhibits smooth variations for changes induced by facial ex-
pressions. More recently Ballihi et al. [3] propose a new curve
selection approach for efficient 3-D face recognition.

C. Gender Classification

The human face presents a clear sexual dimorphism that
makes face gender classification an extremely efficient and
fast cognitive process [17]. Although a significant progress
has been made, the task of automated, robust face gender
classification is still a distant goal. 2-D Image-based methods
are inherently limited by variability in imaging factors such
as illumination and pose. An emerging solution is to use laser
scanners for capturing three-dimensional (3-D) observations of
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human faces, and use this data in performing face gender clas-
sification. Bruce et al. [1] performed an interesting experiment
in which they tested the human visual system that is accurate
at deciding whether faces are male or female, even when cues
from hairstyle, makeup, and facial hair are minimized. The
authors found that subjects were considerably less accurate
when asked to judge the sex of 3-D representations of faces
obtained by laser-scanning, compared photographs that were
taken with hair concealed and eyes closed. They proved that
the average male face differs from the average female face
by having a more protuberant nose/brow and more prominent
chin/jaw. The effects of manipulating the shapes of the noses
and chins of the laser-scanned heads were assessed and signifi-
cant effects of such manipulations on the apparent masculinity
or femininity of the heads were revealed. In O’Toole e al. [2],
the authors assumed that the sex of a face is perhaps its most
salient feature. They applied principal components analysis
(PCA) separately to the three-dimensional structure and gray
level image data from laser-scanned human heads. The results
showed that the three-dimensional head data supported more
accurate sex classification than the gray level image data,
across a range of PCA-compressed (dimensionality-reduced)
representations of the heads. Jing et al. [18] investigated gender
classification based on 2.5D facial surface normals (facial
needle-maps) which can be recovered from 2-D intensity
images using a non-Lambertian Shape-from-shading (SFS)
method. They described a weighted principal geodesic anal-
ysis (WPGA) method to extract features from facial surface
normals to increase the gender discriminating power in the
leading eigenvectors. They adopted a Bayesian method for
gender classification. Xiaoguang et al. [19] exploited the range
information of human faces for ethnicity identification using a
Support Vector Machine (SVM). An integration scheme is also
proposed for ethnicity and gender identifications by combining
the registered range and intensity images. Yuan et al. [20]
proposed a fusion-based gender classification method, based
on SVM, for 3-D frontal neutral expression facial. A method
for fusion of information from four regions (upper region of
the face, the lower region of the face, the nose and the left eye)
was proposed.

From the above discussion it is clear that a majority of current
methods on curve-based 3-D face recognition used a holistic
representation/parametrization of facial surfaces. In this paper,
we consider curves as geometric features that capture local fa-
cial shape and we propose to learn the most relevant curves
using adaptive boosting. Thus, we propose to represent a fa-
cial surface by two types of facial curves, radials and levels,
for 3-D face recognition and gender classification. This strategy
raises a few issues : (i) How to define curves on facial surfaces?,
(ii) How to compare shapes of facial curves?, and (iii) How
to select the most relevant curves for 3-D face recognition and
gender classification? To address these issues, our strategy in-
cludes the following steps:

1) A facial surface representation by collection of curves of
level sets (circular curves) and streamlines (radial curves)
of a distance function;

2) A geometric shape analysis framework based on Rie-
mannian geometry to compare pairwise facial curves;

3) A boosting method to highlight geometric features ac-
cording to the target application;

4) A through experimental evaluation that compares the pro-
posed solution with latest methods on a common data set
and common experimental settings.

As demonstrated later, the proposed approach achieves
highest performance for the face recognition task, with the ad-
ditional computational advantage of using a compact signature.
Furthermore, it is one of the first approaches to address the
gender classification problem using 3-D face images. To the
best of our knowledge no previous work has proposed a unique
framework for 3-D face recognition and gender classification.

III. OVERVIEW OF THE PROPOSED APPROACH

In this work, we combine ideas from shape analysis using
tools from differential geometry and feature selection derived
from machine learning to select and highlight salient 3-D geo-
metrical facial features. After preprocessing of 3-D scans, we
represent resulting facial surfaces by a finite indexed collec-
tions of circular and radial curves. The comparison of pairwise
curves, extracted from faces, is based on shape analysis of pa-
rameterized curves using differential geometry tools. According
to the target application, the extracted features are trained as
weak classifiers and the most discriminative features are se-
lected optimally by adaptive boosting. For the case of gender
recognition, the classification is formulated as a binary problem
(Male/Female classes) and we propose to use the inter- and in-
trapersonal comparisons formulation to achieve feature selec-
tion for face identification, which is basically a Multiclass clas-
sification problem. Fig. 1 overviews the proposed approach with
the target applications, face recognition and gender classifica-
tion. Accordingly, it consists on the following steps:

* The Offline training step, learns the most salient circular
and radial curves from the sets of extracted ones, according
to each application in a supervised fashion. In face recog-
nition, for instance, construct feature vectors by comparing
pairwise curves extracted from facial surfaces. Next, feed
these examples, together with labels indicating if they are
interclass or not. Thus, the adaptive boosting selects and
learns iteratively the weak classifiers and adding them to a
final strong classifier, with suitable weights. As a result of
this step, we keep the T'-earliest selected features for the
testing step.

* The Online test step, performs classification of a given test
face. In the identity recognition problem, a probe face is
compared to the gallery faces using only individual scores
computed based on selected features which are fused using
the arithmetic mean. In the gender recognition problem, a
test face is compared to computed templates of Male and
Female classes using curves selected for that purpose. The
templates are computed, once for all, within the training
stage.

IV. 3-D FACIAL CURVES EXTRACTION

Let .S be a facial surface denoting the output of a prepro-
cessing step that crops the mesh, fills holes, removes noise, and
prepares the mesh for curve extraction. We extract radial curves
emanating from a reference anchor point (the tip of the nose)
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Fig. 1. Overview of the proposed approach, including both stages of training and testing and both target

and circular curves having with the same point as the pole, using
simple procedures detailed in the following paragraphs.

A. Radial Curves
Let 37, denote the radial curve on S which makes an angle o

O
with a reference radial curve; the superscript » denotes that it is
a radial curve. The reference curve is chosen to be the vertical
curve once the face has been rotated to the upright position. In
practice, each radial curve /3], is obtained by slicing the facial
surface by a plane #, that has the nose tip as its origin and
makes an angle & with the plane containing the reference curve,
as shown in Fig. 3. That is, a curve /3, is obtained by slicing the
facial surface by I’, defined by the angle o with the vertical
plane and having as origin the nose tip. We repeat this step to
extract radial curves from the facial surface at equal angular
separation. Each curve is indexed by the angle .

To avoid pose variations problem, all probe faces are aligned
with the first face model (generic model) of FRGCv2 database.
This step is achieved by performing a coarse alignment by trans-
lating the probe face to a reference face, using their noses tips.
This coarse alignment step is followed by a fine alignment using
the ICP algorithm, as illustrated in Fig. 2. The process of curve
extraction then follows.

If needed, we can approximately reconstruct 5 from these ra-
dial curves according to S = U, 3, = U,{SNF,} asillustrated
in Fig. 3. This indexed collection of radial curves captures the
shape of a facial surface and forms the first mathematical repre-
sentation of that surface.

B. Circular Curves

Let (37 denote the circular curve on $ which makes a dis-
tance A from the reference point (nose tip). A similar procedure
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Fig. 2. Probe model pose normalization by registration with the first gallery
face of FRG('v2, a coarse alignment is performed by translating the probe
face according to the translation vector formed by the tips of the noses. A fine
registration is then achieved by the ICP algorithm.

is employed to extract these curves. The only difference is the
slicing function which is now a sphere A, having the reference
point as center and variable radius A. The intersection of a given
sphere and the facial surface defines equidistant points from the
reference point, in the surface. Fig. 4 illustrates results of such
extraction procedure. We note that any points ordering is needed
for both kind of curves since the slicing procedure kept edges
between points. However, a curve subsampling procedure is in-
troduced to achieve the same number of points for all curves
(100 points per curve here).

Similarly to radial curves, we can also approximately recon-
struct S from these circular curves according to § & Uy 3 =
Ux{S N My} as illustrated in Fig. 4, we describe the geometric
framework which allow matching and comparison of curves.
Fig. 5 gives some results of facial curves extraction on several
3-D faces.
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Fig. 3. Procedure for extraction of radial curves, a curve 37 is obtained by
slicing the facial surface by F,, defined by the angle « with the vertical plane
and having as origin the nose tip.

Collection of
Iso-level curves

S~ UGy

Preprocessed face |

Bx
Fig. 4. Procedure for extraction of circular curves, a curve ;3§ is obtained by
slicing the facial surface by $, defined by the radius A and having as center the
nose tip.

Fig. 5. Examples of facial representation by circular and radial curves. The
first row illustrates preprocessed faces of male subjects, the second row gives
preprocessed faces of females.

V. GEOMETRIC SHAPE ANALYSIS OF FACIAL CURVES

In the last few years, many approaches have been developed
to analyze shapes of 2-D curves. We can cite approaches based
on Fourier descriptors, moments or the median axis. More re-
cent works in this area consider a formal definition of shape
spaces as a Riemannian manifold of infinite dimension on which
they can use the classic tools for statistical analysis. The recent
results of Michor and Mumford [21], Klassen et al. [11], and
Yezzi and Mennucci [22] show the efficiency of this approach
for 2-D curves. Joshi et al. [23], [24] have recently proposed a
generalization of this work to the case of curves defined in R™.
‘We will adopt this work to our problem since our 3-D curves are
defined in R®.

We start by considering a curve 4 in R®. While there are
several ways to analyze shapes of curves, an elastic analysis

Fig. 6. Illustration of elastic metric. In order to compare the two curves in (a),
some combination of stretching and bending are needed. The elastic metric mea-
sures the amounts of these deformations. The optimal matching between the two
curves is illustrated in (b).

of the parametrized curves is particularly appropriate in our
application—face analysis under facial expression variations.
This is because (1) such analysis uses the square-root velocity
function representation which allows us to compare local facial
shapes in presence of elastic deformations, (2) this method uses
a square-root representation under which the elastic metric re-
duces to the standard L.? metric and thus simplifies the analysis,
(3) under this metric the Riemannian distance between curves is
invariant to the reparametrization. To analyze the shape of {3, we
shall represent it mathematically using a square-root representa-
tion of 3 as follows; for an interval 7 = [0,1], let 3: I — R®
be a curve and define ¢ : 7 — R* to be its square-root velocity
function (SRVF), given by:

1)

Here # is a parameter € I and |- | is the Euclidean norm in R3.
We note that ¢(#) is a special function that captures the shape
of 3 and is particularly convenient for shape analysis, as we
describe next. The classical elastic metric for comparing shapes
of curves becomes the L 2-metric under the SRVF representation
[24]. This point is very important as it simplifies the calculus of
elastic metric to the well-known calculus of functional analysis
under the I_2-metric. Also, the squared I 2-norm of ¢, given by:
llall® = [;{a(), a(#))dt = [||B(8)]|dt, is the length of 4. If
we set ||¢|| = 1, implying all curves are rescaled to unit length,
then translation and scaling variability have been removed by
this mathematical representation of curves.

Consider the two curves in Fig. 6(a), let us fix the
parametrization of the top curve to be arc-length, i.e., tra-
verse that curve with a constant speed equal to one. In order to
better match that curve with the bottom one, one should know
at what rate we are going to move along the bottom curve so
that points reached at the same time on two curves are as close
as possible under some geometric criterion. In other words,
peaks and valleys should be reached at the same time. Fig. 6(b)
illustrates the matching where point 1 on the top curve matches
to point 11 on the bottom curve. The part between the point 1
and 2 on the top curve shrinks on the curve 2. Therefore, the
point 2 matches the point 22 on the second curve. An elastic
metric is the measure of that shrinking.
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Fig. 7. (a) Intraclass geodesics between facial surfaces and their associated radial curves. (b) Interclass geodesics between facial surfaces and their associated

radial curves.

A. Radial Open Curves

The set of all unit-length curves in R* is given by C = {q :
I — R|lg|| = 1} C L%(I.R®). With the L?-metric on its
tangent spaces, C becomes a Riemannian manifold. Since the
elements of C have a unit L2 norm, C is a hypersphere in the
Hilbert space LL2(1, R®). In order to compare the shapes of two
radial curves, we can compute the distance between them in C
under the chosen metric. This distance is found to be the length
of the minor arc connecting the two elements in C. Since C is
a hypersphere, the formulas for the geodesic and the geodesic
length are already well known. The geodesic length between
any two points g1, g2 € C is given by:

delar.q2) = cos *({q1, @2)). 2)

and the geodesic path «v : [0, 1] — C, is given by:

afr) = % (sin((1 — 7)8)q1 + sin{f7)go) 3)
where 6 = d.(q1,q2).

It is easy to see that several elements of C can represent curves
with the same shape. For example, if we rotate a face in R?, and
thus its facial curves, we get different SRVFs for the curves but
their shapes remain unchanged. Another similar situation arises
when a curve is reparametrized; a reparameterization changes
the SRVF of curve but not its shape. In order to handle this vari-
ability, we define orbits of the rotation group S((3) and the
reparameterization group I as equivalence classes in C. Here, I"
is the set of all orientation-preserving diffeomorphisms of I (to
itself) and the elements of I' are viewed as reparameterization
functions. For example, for a curve 3, : T — R and a function
~ € T, the curve 3, o is a reparameterization of /3, . The cor-
responding SRVF changes according to ¢(#) — /5(#)g(v()).
We define the equivalent class containing ¢ as:

[q] = { VA Og(v(E)]O € SO), v €T},

The set of such equivalence class is called the shape space &
of elastic curves [23]. To obtain geodesics and geodesic dis-
tances between elements of S, one needs to solve the optimiza-
tion problem. The resulting shape space is the set of such equiv-
alence classes:

S=C/(80(3)xT) 4)

e

We denote by d (3., . 3a,) the geodesic distance between the
corresponding equivalence classes [¢1] and [¢2] in shape space

S. In Fig. 7 we show geodesic paths between radial curves and
the facial surfaces obtained by Delaunay triangulation of the
set of points of radial curves. In 7(a) we show a geodesic path
between two facial surfaces of the same person, while in 7(b)
we show the same for faces belonging to different persons.

B. Circular Closed Curves

We will use 35 to denote the circular closed curves. Using
SRVF representation as earlier, we can define the set of closed
curves in R by € = {¢ : I — R Jra@®la(®)ldt =0
1} C L2(I,R%)}. The quantity [, q(#)|¢(¢)|d# is the total dis-
placement in R® while moving from the origin of the curve until
the end. If it is zero, the corresponding curve is closed. Thus,
the set € represents the set of all closed curves in R*. It is called
a preshape space since curves with same shapes but different
orientations and reparameterizations can be represented by dif-
ferent elements of C.. To define a shape, its representation should
be independent of its rotation and reparameterization. This is ob-
tained mathematically by a removing the rotation group S 23)
and the reparameterization group I" from C. As described in
[23], [24], we define the orbits of the rotation group SO(3) and
the reparameterization group I" as equivalence classes in C. The
resulting shape space is:

8§ =C/(80(3) x T) (5)

To define geodesics on preshape and shape spaces we
need a Riemannian metric. For this purpose we inherit the
standard I2-metric of the large space L2(I,R®). For any
u,v € L2(J,R?), the standard L2 inner-product is given b;

{{u,v)) = ‘\NA\:QY:Q&&. 6)

The computation of geodesics and geodesic distances utilize the
intrinsic geometries of these spaces. While the detailed descrip-
tion of the geometries of  and S are given in [23], [24], we
briefly mention the tangent and normal spaces of C. It can be
shown that the set of all functions normal to C at a point ¢ are
given by:

¢
|g(?)

N (C) = span < q(1), g(0) + lg()e'li = 1,2,3

where {e', e?, €*} form an orthonormal basis of R*. Thus, the
tangent space at any point ¢ € C is given by:
} ®

e
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Fig. 8. (a) Intraclass geodesics between facial surfaces and their associated circular curves. (b) Interclass geodesics between facial surfaces and their associated

circular curves.

Now, an important tool in our framework is the construction
of a geodesic path between two elements of &, under the Rie-
mannian metric given by (6). Given two curves 35 and 35,
represented by their SRVF respectively ¢; and g2, we need to
find a geodesic path between the orbits [¢, ] and [¢-] in the space
8. We use in this context, a numerical method called the path-
straightening method [25] which connects the two points [¢;]
and [¢2] an arbitrary path v and then updates this path repeat-
edly in the negative direction of the gradient of energy given by:

Ela) = W \A}?v.g?vvgz )
It has been proven in [25] that the critical points of £ de-
fined by (9) are geodesic paths in S. We denote by d; (3 Bas)
the geodesic distance between the corresponding equivalence
classes [¢1] and [¢2] in S. In Fig. 8 we show geodesic paths be-
tween circular curves and the facial surfaces obtained by De-
launay triangulation of the set of points of circular curves. In
8(a) we show a geodesic path between two facial surfaces of
the same person, while in 8(b) we show the same for faces be-
longing to different persons.

C. Extension to Facial Surfaces Shape Analysis

In this section we extend our study from shapes of curves to
shapes of facial surfaces. We represent the surface of the facial
surface S by a collection of 3-D circular and radial curves,

N

SmalmpueUms, (10)

A=1 =1

where /3§ represents the circular curves, Ny is the cardinality
of the set of circular curves, {3}, represents the radial curve and
N, is the cardinality of the set of radial curves. Two shapes of
facial surfaces are compared by comparing their corresponding
facial curves. The distance between two facial surfaces S* and

52 could be defined by:

A 87 = 3 d (B A + Y e

N
o AN

=1

an

VI. BOOSTING FOR GEOMETRIC FEATURE SELECTION

Radial and circular curves capture locally the shape of the
faces. However, their comparison under different expressions
runs into trouble. In fact, their shapes are affected by changes

in facial expressions. For that purposes, we introduce a feature
selection step to identify (or localize) the most stable and most
discriminative curves. We propose to use the well known ma-
chine learning algorithm AdaBoost introduced by Freund and
Schapire in [26]. Recall that, boosting is based on iterative se-
lection of weak classifiers by using a distribution of training
samples. At each iteration, the best weak classifier is provided
and weighted by the quality of its classification. In practice, the
individual circular curves and radial curves are used as weak
classifiers. After M iterations, the most relevant T(T < M)
facial curves are returned by the algorithm.

A. Face Recognition

To train and test Adaboost classifier for this application, we
use the 3-D face models of FRGCv2 dataset. For each radial
and circular curve, we compute the A/l versus All (4007 x 4007)
similarity matrix. We then split the matrices as we keep the
Gallery versus Probe of size 466 x 3541 for the testing and uses
the remaining Probe versus Probe submatrices, of the size of
3541 x 3541, for the training. Thus, we separate the training and
the testing samples (the set of individual distances related to fa-
cial curves) and these disjoint sets serve as inputs to Adaboost,
as illustrated in Fig. 9.

From these areas of the matrices, we extract two kinds of
scores (i) the match scores (intrapersonal comparisons) and (ii)
the nonmatch scores (interpersonal comparison). Together these
scores form an input to the boosting algorithm. More formally,
we consider a set of pairs ?.». Yn)1<n< v corresponding to sim-
ilarity scores between radial or circular curves at the same level,
with & = » or &k = ¢. y,, can take two values: 0 in the case of
non-match score and 1 in the case of match score. For each cir-
cular or radial curve, the weak classifier determines the optimal
threshold classification function such that the minimum number
of samples are misclassified. Each weak classifier ;(x;
take a value of distance computed based on a radial or circular
curve, threshold it, and classify the comparison as positive (intr-
aclass) or negative (interclass), depending on the distance value
being under or over the threshold #.

) 1 if 28 < ¢ (intra—personal)
by («%) = 12
" A v A: otherwise. (inter—personal) a2

where, /1, denotes for the weak hypothesis given by A : X —
{0, 1}. The final strong classifier is defined by a set of a weak
classifiers weighted by a set of weights W = {wy, }1<n<n.
The pseudocode of AdaBoost algorithm is summarized in algo-
rithm 1.
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Fig. 9. All versus Probe distance matrices splitting; the Gallery versus Probe
distance matrix is kept for testing, as suggested in the FRGC evaluation protocol
and the remaining submatrices Probe versus Probe are used for training.

Algorithm 1 AdaBoost Algorithm

+ Input: A set of samples (5, y1) % y~) where

x¥ is the score of similarity of the circular or radial

curves k (1 < £ < Ag) and g, = {0, 1}.

Let m be the number of nonmatch score and { be the

number of match score.

Initialization of weights wy ,, = (1)/(2m), (1)/(2{) it

depends on the value of 35, wheren € 1...N.

Ao = Ny + N,

Fort=1,....M:

1- Normalize the weights w, ,, such that
Muwu_ Wy = 1.

2- For each curve (J; (feature), train a weak classifier
hj that uses a single curve. The error ¢; of classifier
h; is determined with the corresponding weight

W1y

3- Choose the classifier #; with the lowest error.

4- Update the weights w1, = w, 1=¢x  where
¢ = (€2)/(1 — e;) and e, = 0, if the sample ,, is
correctly classified by £ and 1 else.

The final hypothesis is a weighted linear combinations

of the 7" hypotheses where the weights are inversely

proportional to the training errors. The strong classifier
is given by:

H(z) = 1 il MWHH log )\Fﬂ\:?\.v > wMWHH log A.Pv ;

¥t

The set of selected curves returned by Adaboost is shown
in Fig. 10. The first row shows the locations of the selected
curves on different sessions of the same person with different
expressions, whereas, the second row gives curves location on
different subjects. We note that the boosting algorithm selects

Boosting for face recognition, given on different faces.

iso-curves located on the nasal region, which is stable under ex-
pressions and radial curves avoiding two parts. The first one is
the lower part of the face since its shape is affected by expres-
sions, particularly when the mouth is open. The second area cor-
responds to the eye/eyebrow regions. Shapes of radial curves
passing throw these regions change when conveying expres-
sions. In contrast, the most stable area cover the nasal/forehead
regions.

To demonstrate the usefulness of the curve selection step, dif-
ferent graphs in Fig. 11 plot the rate of False Acceptance versus
the rate of False Rejection for different configurations. These
curves are produced from the Probe versus Probe matrices (i.e.,
using the training set). As shown in Fig. 11(b), minimum er-
rors are given by fusing scores of selected radial and selected
circular curves. We note also that the selection performed on
radial curves only or circular curves only minimizes the errors
compared to the use of all radial curves or circular curves, re-
spectively.

The online testing step consists on comparing faces S* and 52
by the fusion of scores related to selected curves as following:

S d (32807

“ =1

1
N,

d(s', %) =

,mv (13)

A

where N, is the cardinality of the set of selected circular curves
and N, the cardinality of the set of selected radial curves.

B. Gender Classification

For 3-D face-based gender classification task, we first com-
pute Male and Female representative templates using the geo-
metric shape analysis framework for open and closed curves.
In fact, this framework allows us to compute intrinsic means
(Karcher mean) of curves that we extend to facial surfaces.
Then, within the training step, we compute intraclass (same
gender) and interclass (different gender) pairwise distances (for
each curve index) between sample faces and the templates. Fi-
nally, the most discriminative geometric features are selected
optimally by boosting as done in face recognition application.
For the testing step, distances to male and female templates
are computed (based only on selected features), and the nearest
neighbor algorithm denotes the class (Male/Female) member-
ship. Different steps are detailed in the following:
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Fig. 11. ROC curves produced from the training set (a) all radial and circular curves, (b) selected radial and selected level curves, (c) all radial curves, (d) selected

circular curves, () selected radial curves, and (f) all circular curves.

Male/Female G ic Templ Comp One ad-
vantage of the proposed geometrical framework for shape anal-
ysis of curves is to calculate some statistics as the “mean” of
facial curves and to extend it to facial surfaces, called Karcher
mean [24]. The Riemannian structure defined on a Riemannian
manifold enables us to perform such statistical analysis for com-
puting faces mean and variance. There are at least two ways of
defining a mean value for a random variable that takes values on
a nonlinear manifold. The first definition, called extrinsic mean,
involves embedding the manifold in a larger vector space, com-
puting the Euclidean mean in that space, and then projecting it
down to the manifold. The other definition, called the intrinsic
mean or the Karcher mean utilizes the intrinsic geometry of the
manifold to define and compute a mean on that manifold. It is
defined as follows: Let de ({3, ) denotes the length of the
geodesic path from curves in C. To calculate the Karcher mean
of facial curves {37, <} inC, we define the variance func-
tion:

ViC SRV =S de (35.65)° (14)
i=1

The Karcher mean is then defined by:

8% = arg min V(j1) (15)

e
The intrinsic mean may not be unique, i.e., there may be a set
of points in C for which the minimizer of V is obtained. J is
an element of C that can be seen as the smallest geodesic path
length from all given facial surfaces. We present a commonly

used algorithm for finding Karcher mean for a given set of fa-
cial surfaces (by using their curves). This approach, presented
in algorithm 2 uses the gradient of V, in the space 1},(C), to iter-
atively update the current mean p. The same pseudo-algorithm
will be obtained for radial curves defined in the shape space C.

Algorithm 2 Karcher Mean Algorithm

Set k = (). Choose some time increment < (1)/(n).
Choose a point 19 € C as an initial guess of the mean. (For
example, one could just take ;2o = S7.)

1- For each ¢ = 1,...,n choose the tangent vector
fi € T,,,,(C) which is tangent to the geodesic from
to S*. The vector g = >.'=7 f; is proportional to the
gradient at ju, of the function V.

2- Flow for time ¢ along the geodesic which starts at ¢,
and has velocity vector g. Call the point where you
end up ppqg.

3- Seth = k4 1 and go to step 1.

Male template facial surface is computed by averaging ten
males facial surfaces of different person as shown in Fig. 12.
Female template facial surface is computed by averaging ten
females facial surfaces of different person as shown in Fig. 13.

Geometric Feature Selection: To train and test the boosting
algorithm for this application, we use 20 previous 3-D faces of
the FRGCv1 dataset for training and 466 subjects of FRGCv2
for testing. Firstly, we selected a subset of faces of men and
women (ten from each class) from FRGCvl, to calculate
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Fig. 12. Different facial surfaces of different male persons taken from FRGCv1
and their Karcher mean. (a) Sample faces (from FRGCv1) used to compute the
template face. (b) Female template face (Karcher mean).

Fig. 13. Different facial surfaces of different female persons taken from
FRGCv! and their Karcher mean. (a) Sample faces (from FRGCvl) used to
compute the template face. (b) Female template face (Karcher mean).

TABLE I
INPUT FEATURE VECTORS OF BOOSTING ALGORITHM FOR GENDER
CLASSIFICATION

For each curve || Face malel Face femalel
7T oo™ 1} || {za.0)
T [ (w0 || f{aa 1)

the templates for both male and female classes denoted re-
spectively 2™l and 7male Then, we computed pairwise
distances (based on curves) between test images and both
of templates. Thus, we obtained a matrix containing feature
vectors (distance based on curves) which will be used to train
Ababoost algorithm, as illustrated in Table I. From this matrix,
we extract two kinds of scores (i) the match scores (intragender
comparisons) and (ii) the nonmatch scores (intergender com-
parison).

Both score lists represent the input of the boosting algorithm.
More formally, we consider a set of pairs (4% >§:vkm:m2
where #¥* is a similarity score between two curves at the
same level e, A and v, can take two values: 0 in the case of
non-match score and 1 in the case of match score. For each
curve fJ;, the weak learner determines the optimal threshold
classification function, such that the minimum number of sam-
ples are misclassified. A weak classifier %;(z%) thus consists
of a geometric feature {3; and a threshold ¢, such that:

1 if 2k < 8 (intra — gender)
hy(ah) = n oA © 16
() A 0 otherwise. (inter — gender) as

Fig. 15 shows the location of selected curves on different ses-
sions of some male faces whereas, Fig. 14 shows the location of
selected curves on different sessions of some female faces.

Fig. 14. The most discriminative radial and circular curves selected by
Boosting for gender classification, given on different female faces.

Fig. 15. The most discriminative radial and circular curves selected by
Boosting for gender classification, given on different male faces.

We note that the boosting algorithm selects circular curves
on the cheeks region, which is discriminative shape of 3-D face
for gender classification and radial curves avoiding two parts.
The most stable areas for gender classification cover the cheeks/
sellion regions.

Classification: As described in Table I, this time round, we
calculated different matrices of distances of all selected circular
and radial curves between template faces and the 466 test faces
of FRGCv2. The pseudocode of the proposed gender classifica-
tion algorithm is given in algorithm 3.

Algorithm 3 Gender Classification Algorithm

Input: A set of curves ¢; where ¢; is either circular

curves or radial curves. N* is the total number of
selected circular and Radial curves.

For each face request Sy, k = .
1- Calculate the geodesic distances:

466:

N

M&» 3,:: ! v and MU\\» Aﬂ:..: ! .Nﬂ»v

=) =0

The final decision D(I7.) for classification is given by:

= ﬁ o i Q.S:?,»S < Mwﬂ,_m» AH.,o.E_q » v
0 else
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Fig. 16. Cumulative Match Characteristic curve for selected radial and level
curves.

VII. EXPERIMENTAL RESULTS

In the following, we present conducted experiments and the
obtained results with the proposed methods. In particular, we
report 3-D face recognition performances on FRGCv2 [27] and
provide a comparative study with state-of-the-art. FRGCv2
dataset contains 4 007 3-D scans of 466 people, in which more
than 40% of the models are nonneutral. A standard evaluation
protocol for identification and verification biometric scenarios
supports this data set. Furthermore, we give gender classifica-
tion performances achieved by our approach, using the same
dataset. We note that the subjects in FRGCv2 dataset are 57%
male and 43% female.

A. 3-D Face Recognition Results

1) Identification: For testing on FRGCv2 dataset, only the
identification evaluation was carried out. In fact, as mentioned
in Section VI since our approach requires a training stage, it was
tested on a subset of this dataset following the FRGC evaluation
protocol for the identification scenario, as following. We kept,
for the test, the Gallery versus Probe (of size 466 x 3541) sim-
ilarity matrices. The remaining submatrices (i.e., Probe versus
Probe similarity scores) were used to train the feature selection
step by boosting algorithm. This means that disjointly similarity
vectors are used for the training and the test. Following these
settings, our approach achieved 98.02% as rank-1 recognition
rate and reached 99% in rank-5 as illustrated in the CMC plot
(Cumulative Match Characteristic) given is Fig. 16. We recall
that the approach used here is based on both radial and circular
facial curves selection.

As shown in Table II, the selected curves provides better
recognition rate that using radial or circular individually. We
point out that the most relevant circular curves are located on
the nasal region, which means that the nasal shape significantly
contribute to face recognition. This is due to the fact that its
shape is stable to facial expressions. We note also that the use
combining all the curves by using (13) provides the best recog-
nition rate.

TABLE I
RANK-1/COMPUTATION COST (IN SECONDS) FOR DIFFERENT CONFIGURATIONS
Performance All - Mo&am«m&
Rank-1 || Time(s) || Rank-1 || Time(s)
Radial 88.65% 1.6 89.04% || 048
circular 66.51% 1.04 85.65% 0.20
Fusion based on Eq. 13 [|9181% || 264 [/ 98.02% || 0.68

In addition to performance improvement, the curve selection
results on a more compact biometric signature which reduce the
time-processing of one-to-one face matching.

2) Comparative Study With State-of-the-Art: Following the
FRGC standard protocol for the identification scenario, the
Table IIT shows identification results of previous approaches
(curve-based, feature selection-based, and others) by keeping
the earliest scan of the 466 subjects in the gallery and the
remaining for testing. We note that experiments reported in
[28] and [16] follow a modified protocol by keeping the earliest
neutral scan in the gallery and the remaining as test images. It
is clear that the proposed method outperforms the majority of
state-of-the-art methods. Only the approach proposed recently
by Wang et al. [6], based on boosting of descriptors (Haar-like,
Gabor, and Local Binary Pattern (LBP)) computed on the
Shape Difference Map between faces, achieved a better result
98.3% which means that ten more faces are recognized by this
approach.

As shown in Table III, the proposed approach outperforms
the state-of-the-art except the work of [6].

B. Gender Classification

The proposed gender classification of 3-D face scans has
been experimented using the FRGCv2 database. This was
motivated by the fact that this dataset contains the largest
number of subjects compared to existing 3-D face datasets as
Bosphorus, BU-3DFE, etc. To evaluate the proposed approach,
we have considered 466 3-D images related to the 466 sub-
jects of FRGCv2 data set. Thus, if several sessions exist in
the dataset, we select the earliest (neutral or nonneutral) one
for our experiment. We use also few 3-D images taken from
FRGCv1 to compute male and female templates, as described
in Section VI. The difficulty encountered to compare our
approach to related work, is there is no standard protocol to
compare gender classification results, unlike FRGC standard
protocol for 3-D face recognition. Most of previous approaches
[34], [18], [20] reported classification results on a subset taken
from FRGCv1 dataset.

1) Classification Results: We conducted experiments by
first computing Male {7} and Female {12!} templates
using sample 3-D scans taken from FRGCvl. Then, compar-
isons between those templates {7 7femalel and the 466
test images (of FRGCv2) based on their circular and radial
curves were computed to build the feature vectors. Finally, two
experiments, detailed below, were carried out:

« Experiment 1. Curve selection-based. To select the most
relevant combination of curves using Adaboost algorithm,
we first use 10 male 3-D face models and 10 female models
from FRGCv1 to compute the male and female templates.
Then, we compute pairwise curve distances between the
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TABLE IIT
COMPARISON WITH STATE-OF-THE-ART APPROACHES ON FRGCV2 (RANK-1 RECOGNITION RATE)

A. Curve-based representation B. Feature selection-based Others
Methods | ter Haar | Berretti™) Drira | Faltemier | Kakadiaris Huang | Mian™ | Cook
1291 1151 1301 141 132] 128] 133]
Rank-1 97% 94.1% - 972% | 972% 97% 983% | 972% | 91.9% [92.9%
[ Our ] 98.02% |
) "E-N-S" means the earliest neutral scan in the gallery and the remaining as probes.
TABLE 1V

EXPERIMENTAL COMPARISON OF GENDER CLASSIFICATION METHODS USING
DIFFERENT TYPES OF SELECTED CURVES

Curve selection-based 3
circular | Radial | circular and
curves | curves | radial curves

[ Gender Classification Rate [ 79.40% [ 80.69% | 84.12% |

Methods

TABLE V
EXPERIMENTAL COMPARISON OF GENDER CLASSIFICATIONS METHODS USING
DIFFERENT MACHINE LEARNING TECHNIQUES

Classifier decision-based
AdaBoost™ [ SVM™ [ Neural™
Network

[ Gender Classification Rate [ 86.05% | 83.91% [ 83.05% |

) Results for 10-fold cross-validation.

Methods

same sample models and the templates, in order to build
feature vectors, used for the training step. Now, given new
test face from the 466 3-D models of FRGCv2, we com-
pute the pairwise distances to the templates then make the
decision as result of the nearest neighbor algorithm. Fol-
lowing this setting, our approach achieved 84.12% as av-
erage gender classification rate. We note that, in this exper-
iment, after feature selection step, accumulated distances
from selected curves only are used and classification is
achieved by nearest neighbor classification. As reported in
Table IV, we note also that using the combination of se-
lected circular curves and selected radial curves achieved
better performances compared to selected circular curves
or selected radial curves, taken individually.

« Experiment 2. Classifier decision-based. In order to eval-
uate the boosting classifier results, we have conducted, fol-
lowing the same setting, experiments using two machine
learning methods, SVM and Neural Network. Instead of
feature selection step, we consider the final classifier de-
cision. For example, we consider the binary decision of
the strong classifier of Adaboost. Table V summarizes the
obtained results. Training and testing steps are carried out
using a 10-fold cross-validation experiment. According to
this, the 466 subjects are split into disjoint subsets for
training and test. Using 10-fold cross validation, training is
repeated 10 times, with each of the 10 subsets used exactly
once as the test data. Finally, the results from the ten steps
are averaged to produce a single estimation of the perfor-
mance of the classifier for the experiment. In this way, all
observations are used for both training and test, and each
observation is used for test exactly once.

Fig. 17. Different female 3-D faces misclassified by our approach. The first
row gives 3-D data, the second gives the corresponding texture of 3-D data.

i

Fig. 18. Different female 3-D faces misclassified by our approach. The first
row shows 3-D data; the second row shows the corresponding texture of 3-D
data

2) Comparative Study With State-of-the-Art: Table VI shows
gender classification results compared to previous approaches
tested on different subsets. In [35] the authors used a subset of
FRGCv1, six female subjects and four male subjects, while in
[19] a subset of FRGCv1 is used with only 28 female subjects
and 80 male subjects. However they used more than one ses-
sion of each subject. Note that this ad-hoc division does not
guarantee that all subjects will have a neutral expression, some
FRGCV?2 subjects are scanned with arbitrary facial expression.

The analysis of some misclassified examples given by
Figs. 17 and 18 shows that there are two major reasons of this
misclassification. The first one is the bad quality of 3-D scans,
such as some occlusions in relevant regions which affected the
shape of curves. The second reason lies in the fact that only
based on the shape information, there is some confusion (even
for a person), to recognize correctly the gender of the person.
One solution of this problem and for improving the proposed
approach is to introduce the texture information, which contains
complementary (as hair density, etc.) in order to consolidate
the classifier decision.

Fig. 19 shows some faces with selected iso-level and radial
curves for both applications face recognition and gender classi-
fication, the blue curves are selected for 3-D face gender clas-
sification, the red curves are selected for 3-D face recognition
while the black curves are the common selected curves for both
classifications.
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TABLE VI
GENDER CLASSIFICATION RESULTS, COMPARISON TO STATE-OF-THE-ART RESULTS

Number of Subjects

Approach 7 Dataset 7

| All Subjects | Female Subjects | Male Subjects

“ Classification rate

35 FRGCv1 10 6 4 69.7%
19 FRGCv1 376 139 237 85.4%
20 FRGCvl 108 28 80 94.3%
Our FRGCv2 466 202 264 86.05%/84.12%

~ Selected Curves for 3D face Gender Classification
~— Selected Curves for 3D face Recognition

lected Curves for both
Fig. 19. Examples of selected circular and radial curves for different appli-
cations. The first row shows different sessions for different male persons; the
second shows different sessions for different female persons.

VIII. CONCLUSION

In this paper, by combining tools from Riemannian geometry
and the well-known Adaboost algorithm, we have proposed
to select the most discriminative curves for facial recognition
and gender classification. The experiments, carried out on
FRGCv2 including neutral and nonneutral images, demonstrate
the effectiveness of the proposed approach. Based only on 17
curves, including 12 radial curves and 5 circular curves, our
fully automatic approach achieved rank-1 recognition rate of
98.02%. For gender classification, 19 curves with 12 radial and
7 circular, were selected and achieved a classification rate of
86.05%. The algorithm computation time was on the order of
0.68 second (for recognition rate) and 0.76 second (for gender
classification) to compare two faces with selected curves in-
stead of 2.64 second with all curves. The boosting selects those
curves passing through stable regions on the face for different
applications. This approach is efficient in terms of computation
time, data storage and transmission costs.

The proposed approach can be extended in different directions
in order to improve the performances and to address other im-
portant classification tasks. For example, the texture information
could be associated to shape information to consolidate the clas-
sifier decision. In fact, texture channel provides additional infor-
mations which could be complementary to the shape. Addition-
ally, more facial attributes recognition, such as ethnicity and age
estimation could be addressed using the same framework.
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In this paper we address the problem of 3D facial expression recog
shape analysis of facial surfaces coupled with machine learning techniques for expression classification.
A computation of the length of the geodesic path between corresponding patches, using a Riemannian
framework, in a shape space provides a quantitative information about their similarities. These measures
are then used as inputs to several classification methods. The experimental results demonstrate the
effectiveness of the proposed approach. Using multiboosting and support vector machines (SVM) classifiers,
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prototypical facial expressions on BU-3DFE database. A comparative study using the same experimental
setting shows that the suggested approach outperforms previous work.
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1. Introduction

In recent years, 3D facial expression recognition has received
growing attention. It has become an active research topic in
computer vision and pattern recognition community, impacting
important applications in fields related to human-machine inter-
action (e.g., interactive computer games) and psychological
research. Increasing attention has been given to 3D acquisition
systems due to the natural fascination induced by 3D objects
visualization and rendering. In addition 3D data have advantages
over the 2D data, in that 3D facial data have high resolution and
convey valuable information that overcomes the problem of pose/
lighting variations and the detail concealment of low resolution
acquisition.

In this paper we present a novel approach for 3D identity-
independent facial expression recognition based on a local shape
analysis. Unlike the identity recognition task that has been the
subject of many papers, only few works have addressed 3D facial
expression recognition. This could be explained through the
challenge imposed by the demanding security and surveillance
requirements. Besides, there has long been a shortage of publicly
available 3D facial expression databases that serve the research-
ers exploring 3D information to understand human behaviors
and emotions. The main task is to classify the facial expression of

* Corresponding author at: LIFL (UMR CNRS 8022), University of Lille 1, France.
E-mail address: boulbaba.benamor@telecom-lille1.eu (B.B. Amor).
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a given 3D model, into one of the six prototypical expressions,
namely Happiness, Anger, Fear, Disgust, Sadness and Surprise. It is
stated that these expressions are universal among human ethni-
city as described in [1,2].

The remainder of this paper is organized as follows. First, a
brief overview of related work is presented in Section 2. In Section
3 we describe the BU-3DFE database designed to explore 3D
information and improve facial expression recognition. In Section
4, we summarize the shape analysis framework applied earlier
for 3D curves matching by Joshi et al. [3], and discuss its use
to perform 3D patches analysis. This framework is further
expounded in Section 5, so as to define methods for shapes
analysis and matching. In Section 6 a description of the feature
vector and used classifiers is given. In Section 7, experiments and
results of our approach are reported, and the average recognition
rate over 97% is achieved using machine-learning algorithms for
the recognition of facial expressions such as multiboosting and
SVM. Finally, discussion and conclusion are given in Section 8.

2. Related work

Facial expression recognition has been extensively studied
over the past decades especially in 2D domain (e.g., images and
videos) resulting in a valuable enhancement. Existing approaches
that address facial expression recognition can be divided into
three categories: (1) static versus dynamic; (2) global versus local;
(3) 2D versus 3D. Most of the approaches are based on feature
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extraction/detection as a mean to represent and understand facial
expressions. Pantic and Rothkrantz [4] and Samal and lyengar [5]
presented a survey where they explored and compared different
approaches that were proposed, since the mid 1970s,for facial
expression analysis from either static facial images or image
sequences. Whitehill and Omlin [6] investigated on the Local
versus Global segmentation for facial expression recognition. In
particular, their study is based on the classification of action units
(AUs), defined in the well-known Facial Action Coding System
(FACS) manual by Ekman and Friesen [7], and designating the
elementary muscle movements involved in the bio-mechanical of
facial expressions. They reported, in their study on face images,
that the local expression analysis showed no consistent improve-
ment in recognition accuracy compared to the global analysis. As
for 3D facial expression recognition, the first work related to this
issue was presented by Wang et al. [8]. They proposed a novel
geometric feature based facial expression descriptor, derived from
an estimation of primitive surface feature distribution.

A labeling scheme was associated with their extracted fea-
tures, and they constructed samples that have been used to train
and test several classifiers. They reported that the highest average
recognition rate they obtained was 83%. They evaluated their
approach not only on frontal view facial expressions of the
BU-3DFE database, but they also tested its robustness to non-
frontal views. A second work was reported by Soyel and
Demirel [9] on the same database. They extracted six character-
istic distances between 11 facial landmarks, using Neural Net-
work architecture that analysis the calculated distances, they
classified the BU-3DFE facial scans into seven facial expressions
including neutral expression. The average recognition rate they
achieved was 91.3%. Mpiperis et al. [10] proposed a joint 3D face
and facial expression recognition using bilinear model. They fitted
both formulations, using symmetric and asymmetric bilinear
models to encode both identity and expression. They reported
an average recognition rate of 90.5%. They also reported that the
facial expressions of disgust and surprise were well identified
with an accuracy of 100%. Tang and Huang [11] proposed an
automatic feature selection computed from the normalized Eucli-
dean distances between two picked landmarks from 83 possible
ones. Using regularized multi-class Adaboost classification algo-
rithm, they reported an average recognition rate of 95.1%, and
they mentioned that the surprise expression was recognized with
an accuracy of 99.2%.

In this paper, we further investigate the problem of 3D
identity-independent facial expression recognition. The main
contributions of our approach are the following: (1) We propose
a new process for representing and extracting patches on the
facial surface scan that cover multiple regions of the face and (2)
we apply a framework to derive 3D shape analysis to quantify
similarity measure between corresponding patches on different
3D facial scans. Thus, we combine a local geometric-based shape
analysis approach of 3D faces and several machine-learning
techniques to perform such classification.

3. Database description

BU-3DFE is one of the very few publicly available databases
of annotated 3D facial expressions, collected by Yin et al. [12]
at Binghamton University. It was designed for research on 3D
human face and facial expression and to develop a general
understanding of the human behavior. Thus the BU-3DFE data-
base is beneficial for several fields and applications dealing with
human computer interaction, security, communication, psychol-
ogy, etc. There are a total of 100 subjects in the database, 56
females and 44 males. A neutral scan was captured for each
subject, then they were asked to perform six expressions namely:
Happiness (HA), Anger (AN), Fear (FE), Disgust (DI), Sad (SA) and
Surprise (SU). The expressions vary according to four levels of
intensity (low, middle, high and highest or 01-04). Thus, there are
25 3D facial expression models per subject in the database. A set
of 83 manually annotated facial landmarks is associated to each
model. These landmarks are used to define the regions of the face
that undergo specific deformations due to single muscles move-
ments when conveying facial expression [7]. In Fig. 1, we illustrate
examples of the six universal facial expressions 3D models including
the highest intensity level.

4. 3D facial patches-based representation

Most of the earlier work in 3D shape analysis use shape
descriptors such as curvature, crest lines, shape index (e.g., ridge,
saddle, rut, dome, etc.). These descriptors are defined based on the
geometric and topological properties of the 3D object, and
are used as features to simplify the representation and thus the

Disgust Surprise

Fig. 1. Examples of 3D facial expression models (first row 3D shape models, second row 3D textured models) of the BU-3DFE database.
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comparison for 3D shape matching and recognition tasks. Despite
their rigorous definition, such features are computed based on
numerical approximation that involves second derivatives and
can be sensitive to noisy data. In case of 3D facial range models,
the facial surface labeling is a critical step to describe the facial
behavior or expression, and a robust facial surface representation
is needed. In Samir et al. [13] the authors proposed to represent
facial surfaces by an indexed collections of 3D closed curves on
faces. These curves are level curves of a surface distance function
(i.e., geodesic distance) defined to be the length of the shortest
path between a fixed reference point (taken to be the nose tip)
and a point of the extracted curve along the facial surface. This
being motivated by the robustness of the geodesic distance to
facial expressions and rigid motions. Using this approach they
were able to compare 3D shapes by comparing facial curves
rather than comparing corresponding shape descriptors.

In our work we intend to further investigate on local shapes of
the facial surface. We are especially interested in capturing
deformations of local facial regions caused by facial expressions.
Using a different solution, we compute curves using the Euclidean
distance which is sensitive to deformations and thus can better
capture differences related to variant expressions. To this end,
we choose to consider N reference points (landmarks) {r;}; < <y
(Fig. 2(a)) and associated sets of level curves {c}; . ;  ;, (Fig. 2(b)).
These curves are extracted over the patches centered at these points.
Here / stands for the value of the distance function between the
reference point r; and the point belonging to the curve &. and 2o
stands for the maximum value taken by /. Accompanying each facial
model there are 83 manually picked landmarks, these landmarks are
practically similar to the MPEG-4 feature points and are selected
based on the facial anatomy structure. Given these points the feature
region on the face can be easily determined and extracted. We were
interested in a subset of 68 landmarks laying within the face area,
discarding those marked on the face border. Contrary to the MPEG-4
feature points specification that annotates the cheeks center and
bone, in BU-3DFE there were no landmarks associated with the cheek
regions. Thus, we add two extra landmarks at both cheeks, obtained
by extracting the middle point along the geodesic path between the
mouth corner and the outside eye corner.

We propose to represent each facial scan by a number of
patches centered on the considered points. Let r; be the reference
point and P, a given patch centered on this point and localized on
the facial surface denoted by S. Each patch will be represented by
an indexed collection of level curves. To extract these curves, we

@ Discarded landmarks provided by BU-3DFE
@ Retained landmarks provided by BU-3DFE

a b

use the Euclidean distance function lir—pl to characterize the
length between r; and any point p on S. Using this function we
defined the curves as level sets of

ch=(peSlin—pl=2cS, 7%e0,o] 1

Each ¢! is a closed curve, consisting of a collection of points
situated at an equal distance 4 from r. Fig. 2 resumes the scheme
of patches extraction.

5. Framework for 3D shape analysis

Once the patches are extracted, we aim at studying their shape
and design a similarity measure between corresponding ones
on different scans under different expressions. This is motivated
by the common belief that people smile, or convey any other
expression, the same way, or more appropriately certain regions
taking part in a specific expression undergo practically the same
dynamical deformation process. We expect that certain corre-
sponding patches associated with the same given expression will
be deformed in a similar way, while those associated with two
different expressions will deform differently. The following sec-
tions describe the shape analysis of closed curves in R?, initially
introduced by Joshi et al. [3], and its extension to analyze shape of
local patches on facial surfaces.

5.1. 3D curve shape analysis

We start by considering a closed curve f8 in R>. While there are
several ways to analyze shapes of closed curves, an elastic
analysis of the parametrized curves is particularly appropriate
in 3D curves analysis. This is because (1) such analysis uses a
square-root velocity function representation which allows us to
compare local facial shapes in presence of elastic deformations,
(2) this method uses a square-root representation under which
the elastic metric reduces to the standard L?> metric and thus
simplifies the analysis, (3) under this metric the Riemannian
distance between curves is invariant to the re-parametrization.
To analyze the shape of f3, we shall represent it mathematically
using a square-root representation of f§ as follows; for an interval
1=[0,1], let §: [—R> be a curve and define q : [—R> to be its

d

Fig. 2. (a) 3D annotated facial shape model (70 landmarks); (b) 3D closed curves extracted around the landmarks; (c) 3D curve-based patches composed of 20 level curves

with a size fixed by a radius =20 mm; (d) extracted patches on the face.
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square-root velocity function (SRVF), given by:

B

q(t)= - .
BN

2)

Here t is a parameter e and IL.Il is the Euclidean norm in R>.
We note that q(t) is a special function that captures the shape of
and is particularly convenient for shape analysis, as we describe
next. The classical elastic metric for comparing shapes of curves
becomes the [2-metric under the SRVF representation [14]. This
point is very important as it simplifies the calculus of elastic
metric to the well-known calculus of functional analysis under
the 12-metric. Also, the squared 12-norm of g, given by:
Ig1% = fo1 <q(t)q(t) > dt = [ 1Bl dt, which is the length of f.
In order to restrict our shape analysis to closed curves, we define
the set: C={q:S'—R’| [;:q(0)lg()ldt =0} c L*(S",R?). Notice
that the elements of C are allowed to have different lengths. Due
to a non-linear (closure) constraint on its elements, C is a non-
linear manifold. We can make it a Riemannian manifold by using
the metric: for any u,v e Ty(C), we define:

s = [ uovo) d. @

So far we have described a set of closed curves and have
endowed it with a Riemannian structure. Next we consider
the issue of representing the shapes of these curves. It is easy to
see that several elements of C can represent curves with the same
shape. For example, if we rotate a curve in R>, we get a different
SRVF but its shape remains unchanged. Another similar situation
arises when a curve is re-parametrized; a re-parameterization
changes the SRVF of curve but not its shape. In order to handle
this variability, we define orbits of the rotation group SO(3) and
the re-parameterization group I" as the equivalence classes in C.
Here, I' is the set of all orientation-preserving diffeomorphisms of
S' (to itself) and the elements of I" are viewed as re-parameter-
ization functions. For example, for a curve f:S'>R® and a
function y: S'>S', y eI, the curve By is a re-parameterization
of B. The corresponding SRVF changes according to q(t)— /7(t)
q(y(t)). We set the elements of the orbit:

(1= {V7©0a®)0S0B)y < T}, “@

to be equivalent from the perspective of shape analysis. The
set of such equivalence classes, denoted by S=C/(SO(3) x I') is
called the shape space of closed curves in R*. S inherits a Rieman-
nian metric from the larger space C due to the quotient structure.

The main ingredient in comparing and analysing shapes of
curves is the construction of a geodesic between any two
elements of S, under the Riemannian metric given in Eq. (3).
Given any two curves f§; and f3,, represented by their SRVFs q;
and g, we want to compute a geodesic path between the orbits
[g1] and [q2] in the shape space S. This task is accomplished using
a path-straightening approach which was introduced in [15]. The
basic idea here is to connect the two points [q;] and [g] by an
arbitrary initial path o and to iteratively update this path using
the negative gradient of an energy function E[o]=4];<d(s),
&(s)» ds. The interesting part is that the gradient of E has been
derived analytically and can be used directly for updating o. As
shown in [15], the critical points of E are actually geodesic paths
in S. Thus, this gradient-based update leads to a critical point of E
which, in turn, is a geodesic path between the given points. In the
remainder of the paper, we will use the notation ds(f,,f,) to
denote the length of the geodesic in the shape space S between
the orbits q; and g, to reduce the notation.

5.2. 3D patches shape analysis

Now, we extend ideas developed in the previous section from
analyzing shapes of curves to the shapes of patches. As mentioned
earlier, we are going to represent a number of [ patches of a facial
surface S with an indexed collection of the level curves of the lir,—.
function (Euclidean distance from the reference point r;). That is,
Pi{cl,ie[0,4]}, where c! is the level set associated with

r—.Il = A. Through this relation, each patch has been represented
as an element of the set 517, In our framework, the shapes of any
two patches are compared by comparing their corresponding level
curves. Given any two patches P; and P,, and their level curves
{c!,/.€[0,40]} and {c2,7 € [0, 0]}, respectively, our idea is to compare
the patches curves c! and ¢, and to accumulate these differences
over all Z. More formally, we define a distance d ., given by:

L
050 (P1.P2) = \o. ds(c}.c?) di. 5)

In addition to the distance dgo.(P1,P2), which is useful in
biometry and other classification experiments, we also have a
geodesic path in S1%! between the two points represented by P;
and P,. This geodesic corresponds to the optimal elastic deforma-
tions of facial curves and, thus, facial surfaces from one to
another. Fig. 3 shows some examples of geodesic paths that are
computed between corresponding patches associated with shape
models sharing the same expression, and termed intra-class
geodesics. In the first column we illustrate the source, which
represents scan models of the same subject, but under different
expressions. The third column represents the targets as scan
models of different subjects. As for the middle column, it shows
the geodesic paths. In each row we have both the shape and the
mean curvature mapping representations of the patches along
the geodesic path from the source to the target. The mean
curvature representation is added to identify concave/convex
areas on the source and target patches and equally spaced steps
of geodesics. This figure shows that certain patches, belonging to
the same class of expression, are deformed in a similar way. In
contrast, Fig. 4 shows geodesic paths between patches of different
facial expressions. These geodesics are termed inter-class geode-
sics. Unlike the intra-class geodesics shown in Fig. 3, these patches
deform in a different way.

6. Feature vector generation for classification

In order to classify expressions, we build a feature vector for
each facial scan. Given a candidate facial scan of a person j, facial
patches are extracted around facial landmarks. For a facial patch
Pi, a set of level curves 5_\.' are extracted centered on the ith
landmark. Similarly, a patch Pl is extracted in correspondence to
landmarks of a reference scans ref. The length of the geodesic path
between each level curve and its corresponding curve on the
reference scan is computed using a Riemannian framework
for shape analysis of 3D curves (see Sections 5.1 and 5.2). The
shortest path between two patches at landmark i, one in a
candidate scan and the other in the reference scan, is defined as
the sum of the distances between all pairs of corresponding
curves in the two patches as indicated in Eq. (5). The feature
vector is then formed by the distances computed on all the
patches and its dimension is equal to the number of used land-
marks N=70 (i.e., 68 landmarks are used out of the 83 provided
by BU-3DFED and the two additional cheek points). The ith
element of this vector represents the length of the geodesic
path that separates the relative patch to the corresponding
one on the reference face scan. All feature vectors computed on
the overall dataset will be labeled and used as input data to
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Fig. 3. Examples of intra-class (same expression) geodesic paths with shape and mean curvature mapping between corresponding patches.

machine-learning algorithms such as multiboosting and SVM,
where multiboosting is an extension of the successful Adaboost
technique for forming decision committees.

7. Recognition experiments

To investigate facial expression recognition, we have applied
our proposed approach on a dataset that is appropriate for this
task. In this section, we describe the experiments, obtained
results and comparisons with related work.

7.1. Experimental setting

For the goal of performing identity-independent facial expression
recognition, the experiments were conducted on the BU-3DFE static

database. A dataset captured from 60 subjects were used, half (30) of
them were female and the other half (30) were male, corresponding
to the high and highest intensity levels 3D expressive models (03—
04). These data are assumed to be scaled to the true physical
dimensions of the captured human faces. Following a similar setup
as in [16], we randomly divided the 60 subjects into two sets, the
training set containing 54 subjects (648 samples), and the test set
containing six subjects (72 samples).

To drive the classification experiments, we arbitrarily choose a
set of six reference subjects with its six basic facial expressions. We
point out that the selected reference scans do not appear neither in
the training nor in the testing set. These references, shown in Fig. 5,
with their relative expressive scans corresponding to the highest
intensity level, are taken to play the role of representative models
for each of the six classes of expressions. For each reference
subject, we derive a facial expression recognition experience.
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Fig. 5. Different facial expression average recognition rates obtained using different reference subjects (using multiboost-LDA).

7.2. Discussion of the results

Several facial expression recognition experiments were con-
ducted with changing at each time the reference. Fig. 5 illustrates
the selected references (neutral scan). Using the Waikato Environ-
ment for Knowledge Analysis (Weka) [17], we applied the multi-
boost algorithm with three weak classifiers, namely, Linear
Discriminant Analysis (LDA), Naive Bayes (NB), and Nearest
Neighbor (NN), to the extracted features, and we achieved
average recognition rates of 98.81%, 98.76% and 98.07%, respec-
tively. We applied the SVM linear classifier as well, and we
achieved an average recognition rate of 97.75%. We summarize
the resulting recognition rates in Table 1.

We note that these rates are obtained by averaging the results
of the 10 independent and arbitrarily run experiments (10-fold

Table 1
Classification results using local shape analysis and several classifiers.

Classifier i LDA  Multi NB Multil NN SVM-Linear

Recognition 98.81% 98.76% 98.07% 97.75%
rate

cross-validation) and their respective recognition rate obtained
using the multiboost-LDA classifier. We note that different selec-
tions of the reference scans do not affect significantly the
recognition results and there is no large variations in recognition
rates values. The reported results represent the average over the
six runned experiments. The multiboost-LDA classifier achieves
the highest recognition rate and shows a better performance in
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terms of accuracy than the other classifiers. This is mainly due to
the capability of the LDA-based classifier to transform the
features into a more discriminative space and, consequently,
result in a better linear separation between facial expression
classes.

The average confusion matrix relative to the best performing
classification using multiboost-LDA is given in Table 2.

In order to better understand and explain the results men-
tioned above, we apply the multiboost algorithm on feature
vectors built from distances between patches for each class of
expression. In this case, we consider these features as weak
classifiers. Then, we look at the early iterations of the multiboost
algorithm and the selected patches in each iteration.

Fig. 6 illustrates for each class of expression the most relevant
patches. Notice that, for example, for the Happy expression
the selected patches are localized in the lower part of the face,
around the mouth and the chin. As for the Surprise expression, we
can see that most relevant patches are localized around the
eyebrows and the mouth region. It can be seen that patches
selected for each expression lie on facial muscles that contribute
to this expression.

7.3. Comparison with related work

In Table 3 results of our approach are compared against those
reported in [11,9,8], on the same experimental setting (54 versus
6 subject partitions) of the BU-3DFE database. The differences
between approaches should be noted: Tang et al. [11] performed
automatic feature selection using normalized Euclidean distances
between 83 landmarks, Soyel et al. [9] calculated six distances
using a distribution of 11 landmarks, while Wang et al. [8]
derived curvature estimation by locally approximating the 3D
surface with a smooth polynomial function. In comparison, our
approach capture the 3D shape information of local facial patches
to derive shape analysis. For assessing how the results of their
statistical analysis will generalize to an independent dataset,
in [8] a 20-fold cross-validation technique was used, while

Table 2
Average confusion matrix given by multiboost-LDA classifier.

% AN DI FE HA SA N
AN 97.92 111 0.14 0.14 0.69 0.0
DI 0.56 99.16 0.14 0.0 0.14 0.0
FE 0.14 0.14 99.72 0.0 0.0 0.0
HA 0.56 0.14 0.0 98.60 0.56 0.14
SA 0.28 0.14 0.0 0.0 99.30 0.28
N 0.14 0.56 0.0 0.0 11 98.19

in [11,9] the authors used 10-fold cross-validation to validate
their approach.

7.4. Non-frontal view facial expression recognition

In real world situations, frontal view facial scans may not be
always available. Thus, non-frontal view facial expression recog-
nition is a challenging issue that needs to be treated. We were
interested in evaluating our approach on facial scan under
large pose variations. By rotating the 3D shape models in the
y-direction, we generate facial scans under six different non-
frontal views corresponding to 15°, 30", 45°, 60", 75° and 90°
rotation. We assume that shape information is unavailable for the
occluded facial regions due to the face pose. For each view, we
perform facial patches extraction around the visible landmarks in
the given scan. In cases where a landmark is occluded, or where
the landmark is visible, but the region nearby is partially
occluded, we treat it as a missing data problem for all faces
sharing this view. In these cases, we are not able to compute the
geodesic path between corresponding patches. The corresponding
entries in the distance matrix are blank and we fill them using an
imputation technique [18]. In our experiments we employed the
mean imputation method, which consists of replacing the missing
values by the means of values already calculated in frontal view
scenario obtained from the training set. Let dy = dgo.q (P¥,P¥) be
the geodesic distance between the kth patch belonging to subjects
iand j (i #j). In case of frontal view (fv), the set of instances X{
relative to the subject i need to be labeled and is given by:

&:_ Q:k Q:Z
XM= | dp ... di
T

where N is the number of attributes. In case of non-frontal view
(nfv), if an attribute k is missing, we replace the kth column vector
in the distance matrix XV by the mean of geodesic distances
computed in the frontal view case, with respect to the kth
attribute and given by: S_QH M“ul_;\\. where ] is the total

Table 3
Comparison of this work with respect to previous work [11,9,8].

Cross-validation This work Tang et al. [11] Soyel et al. [9] Wang et al. [8]

10-fold 98.81% 95.1% 91.3% -
20-fold 92.75% - - 83.6%

Happy Angry Fear

Disgust Surprise

Fig. 6. Selected patches at the early few iterations of multiboost classifier for the six facial expressions (Angry, Disgust, Fear, Happy, Sadness, Surprise) with their

associated weights.
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To evaluate the robustness of our approach in a context of non-
frontal views, we derive a view-independent facial expression
recognition. Error recognition rates are evaluated throughout
different testing facial views using the four classifiers trained
only on frontal view facial scans. Fig. 7 shows the average error
rates of the four classification methods. The multiboost-LDA
shows the best performance for facial expression classification
on the chosen database. From the figure, it can be observed that
the average error rates increase with the rotation angle (values
from 0° to 90° of rotation are considered), and the multiboost-LDA
is the best performing methods also in the case of pose variations.
As shown in this figure, recognition accuracy remains acceptable,
even only 50% of data (half face) are available when we rotate the
3D face by 45° in y-direction.
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Fig. 7. The average error rates of six expressions with different choices of views
corresponding to the best reference and using different classifiers.
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7.5. Sensitivity to landmarks mis-localization

It is known that the automatic 3D facial feature points detection
is a challenging problem. The most difficult task remains the
localization of points around the eyebrow regions, which appear
to play an important role in the expression of emotions. The effect of
the mis-localization of the landmarks has been addressed in a
specific experiment. We considered the eyebrow regions in that
the points in these regions are expected to be the most difficult
to detect automatically. In these regions, we added noise to the
landmarks provided with the BU-3DFED. In particular, we added
noise to the position of the landmarks by moving them randomly in
a region with a radius of 10 mm, as illustrated Fig. 8 by blue circles.
Then we performed expression recognition experiments with such
noisy landmarks. The results are reported in Fig. 8. It can be noted
that with the multiboost-LDA algorithm the lower decrease in the
recognition rate is observed, and even with a recognition rate equal
to 85.64% the result still outperforms the one reported in Wang
et al [8].

8. Conclusions

In this paper we presented a novel approach for identity-
independent facial expression recognition from 3D facial shapes.
Our idea was to describe the change in facial expression as a
deformation in the vicinity of facial patches in 3D shape scan. An
automatic extraction of local curve-based patches within the 3D
facial surfaces was proposed. These patches were used as local
shape descriptors for facial expression representation. A Rieman-
nian framework was applied to compute the geodesic path
between corresponding patches. Qualitative (inter- and intrageo-
desic paths) and quantitative (geodesic distances) measures of the
geodesic path were explored to derive shape analysis. The
geodesic distances between patches were labeled with respect
to the six prototypical expressions and used as samples to train
and test machine-learning algorithms. Using multiboost algo-
rithm for multi-class classification, we achieved a 98.81% average
recognition rate for six prototypical facial expressions on the
BU-3DFE database. We demonstrated the robustness of the
proposed method to pose variations. In fact, the obtained recogni-
tion rate remains acceptable (over 93%) even half of the facial
scan is missed.

. Multiboost-LDA
Multiboost-NB

Multiboost-NN

Fig. 8. Recognition experiment performed adding noise to the eyebrow landmarks (random displacement). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Abstract

In this paper we explore the use of shapes of noses for
performing partial human biometrics. The basic idea is to
represent nasal surfaces using indexed collections of iso-
curves, and to analyze shapes of noses by comparing their
corresponding curves. We extend past work in Riemannian
analysis of shapes of closed curves in R® to obtain a simi-
lar Riemannian analysis for nasal surfaces. In particular,
we obtain algorithms for computing geodesics, computing
statistical means, and stochastic clustering. We demonstrate
these ideas in two application contexts : authentication and
identification. We evaluate performances on a large data-
base involving 2000 scans from FRGC v2 database, and
present a hierarchical organization of nose databases to al-
low for efficient searches.

1. Introduction

Human biometrics has become an area of tremendous
importance and potential. Although its growth in recent
years have been motivated by security applications, one can
safely expect an exponential growth in a general use of bio-
metrics in our increasingly digital society. By human bio-
metrics we mean the use of physiological characteristics, of
human body parts and their appearances, to identify indi-
vidual human beings in the course of their daily activities.
The appearances of body parts, especially in imaged data,
have a large variability and are influenced by their shapes,
colors, illumination environment, presence of other parts,
and so on. Therefore, the biometrics researchers have fo-
cused on body parts and images that try to minimize this
variability within class (subjects) and maximize it across
classes. Although several modalities, such as fingerprints,
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face images, iris, and gait, have been tried, none of them by
itself may lead to a generic solution for a large population.
Instead, an emerging consensus to develop a suite of dif-
ferent features (characteristics) and modalities, where each
feature provides certain a partial information, such that their
joint analysis may succeed for large populations. This has
led to the notion of partial biometrics — the contribution of
an individual feature/modality in identifying human beings.

The use of shapes of facial parts is an important example
of this idea. Since 2D (visible light) images of faces are
greatly susceptible to variations in the imaging environ-
ments (camera pose, illumination patterns, etc.), the resear-
chers have argued for the need to use 3D face data, typically
collected by laser scanners, for studying shapes of peoples’
faces and using this data for biometrics. The output from la-
ser scanners are minimally dependent on external environ-
mental factors and provide faithful measurements of shapes
of facial parts. Perhaps the only major remaining variabi-
lity that is manifested within the same class, i.e. within the
measurements of the same person, is the one introduced by
changes in facial expressions. Facial expressions, such as
smile, fear, and anger, etc, are prime indicators of the emo-
tional state of a person. While they are important in esti-
mating the mood of a person, for example in developing
intelligent ambient systems, they have a lesser role in bio-
metric applications. In fact, changes in facial expressions
change the shapes of facial parts to some extent. We argue
that this variability has become one of the most important
issue in 3D face recognition as described in [2] and [9]. The
other important challenge relates to data collection and im-
perfections introduced in that process. It is difficult to obtain
pristine, continuous facial surfaces, or meshes representing
such surfaces, with the current laser technology. One typi-
cally gets holes in the scanned data in locations of eyes,
lips, and outside regions. These factors lead to a decrease
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in biometric performance. To handle these issues — shape
variability due to facial expressions and presence of holes
(missing data), we advocate the use of facial parts indivi-
dually, especially for partial biometrics. The use of facial
parts for biometrics is not new. For example, [16] and [3]
have studied the use of human ear for recognition. The main
advantage of using the ear, just like the nose [4], is that its
shape does not change with facial expressions. Similarly,
Faltemier et al. [5] have studied several different regions on
a facial surface and have compared their contributions. We
are not aware of any past work in an elastic (Riemannian)
analysis of facial parts.

At the outset, the shape of the nose seems like a bad
choice of feature for biometrics. The shapes of noses seem
very similar to a human observer but we will support this
choice using real data and automated techniques for shape
analysis. We reiterate that this framework may not be suf-
ficient for identifying human subjects across a vast popula-
tion, but we argue for its role in shortlisting possible hy-
potheses so that a reduced hypothesis set can be evalua-
ted using a more elaborate, multi-modal biometric system.
The stability of nose data collection, the efficiency of nasal
shape analysis, and the invariance of nasal shape to changes
in facial expressions make it an important partial biometric.

Our approach for analyzing shapes of nasal surfaces
is Riemannian. That is, we define a differentiable mani-
fold, with a suitable Riemannian metric, whose elements
represent individual noses. Our choice of representation is
based on similar ideas followed previously for full faces —
use a collection of iso-curves to represent a surface and to
compare surfaces by comparing their corresponding curves
[1, 14]. Our goals here are several : (i) Firstly, we want to
evaluate the choice of (shape of) nose as a partial metric on
a reasonably large database (involving 2000 scans), (ii) Se-
condly, we want to use Riemannian geometry to organize
the database containing noses of a large population into a
hierarchical (tree) so that efficient searches can be perfor-
med. Towards this end, we will explore the use of geodesic
distances and Karcher means for clustering and averaging
nasal surfaces.

The rest of this paper is organized as follows. In Section
2 we summarize some past work on comparing shapes of
closed curves in R? using an elastic metric, and apply this
idea to analyze shapes of nasal surfaces. Also, we apply the
classical Karcher mean computation to compute average of
nasal surfaces. In Section 3, we study the use of geodesic
distances in two biometric scenarios — identification and au-
thentification. These experiments are based on comparing
each query shape to each gallery shape. In the Section 4, we
seek to make the database search more efficient, O(log(n))
rather than n, by deriving a hierarchical database of gallery
shapes.

2. Riemannian Framework

Our approach is to analyze shapes of nasal surfaces using
shapes of iso-curves. In other words, we divide each surface
into an indexed collection of simple, closed curves in R3
and the geometry of a surface is then studied using the geo-
metries of the associated curves. Since these curves, called
nasal curves, have been defined as level curves of an intrin-
sic distance function on the surface, their geometries in turn
are invariant to the rigid transformation (rotation and trans-
lation) of the original surface. At least theoretically, these
curves jointly contain all the information about the surface
and one can go back-and-forth between the surface and the
curves without any ambiguity. In practice, however, some
information is lost when one works with a finite subset of
these curves rather than the full continum.

In recent years, there have been several papers for stu-
dying shapes of continuous curves, the earlier papers were
mainly concerned with curves in R? [11, 12]. In this paper,
we will follow the theory laid out by Joshi et al. [7, 8] for
elastic shape analysis of continuous, closed curves in R™.

2.1. Nasal Curves

Let N be a nasal surface, output of our preprocessing
step (removing spikes, filling holes, and cropping nasal re-
gion) illustrated in Figure 1. Although, in practice, N is a
triangulated mesh, we start the discussion by assuming that
it is a continuous surface. Let D : N — R* be a conti-
nuous geodesic map on N. Let ¢, denote the level set of
D, also called a nasal curve, for the value A\ € D(N), i.e.
cx = {p € N|D(p) = GD(r,p) = A} C N where r de-
notes the reference point (in our case the tip of the nose)
and GD(r, p) is the length of the shortest path from r to p
on the mesh. We can reconstruct N from these level curves
according to N = Uyc, (see figure 1).

Onginal 30 scan Cropped face sutace

A

Acquistton device Surtace proprocessing. Nasal level curves
(Wling holes. removing spikes efc)

FIGURE 1. Automatic data preproce
tion

ng and nasal curves extrac-

We start by considering a closed curve 3 in R®. Since
it is a closed curve, it is natural to parametrize it using
B : S! — R3. Note that the parametrization is not assu-
med to be arc-length; we allow a larger class of parame-
trizations for improved analysis. To analyze the shape of
3, we shall represent it mathematically using a square-root

2051



velocity function (SRVF), denoted by ¢(t), according to :
q(t) = 5 The classical elastic metric for comparing

shapes of curves becomes the L?-metric under this repre-
sentation [7]. This point is very important as it simplifies
calculus of elastic metric to the well-known oneunder the
IL2-metric. In order to restrict our shape analysis to closed
curves, we define the set :

C={q:S" =R | qt)llg(t)|dt =0} c L*S"R?).
51

1)
Here L2(S', R?) denotes the set of all functions from S* to
RR? that are square integrable. The quantity [, q(t)|q(t)||dt
denotes the total displacement in R® as one traverses along
the curve from start to end. Setting it equal to zero is equi-
valent to having a closed curve. Therefore, C is the set of all
closed curves in R3, each represented by its SRVF. Notice
that the elements of C are allowed to have different lengths.
Due to a non-linear (closure) constraint on its elements, C is
a non-linear manifold. We can make it a Riemannian mani-
fold by using the metric : for any u,v € T,(C), we define :

(u,0) = \@, {u(0), o(0)) dt @

We have used the same notation for the Riemannian metric
on C and the Euclidean metric in R? hoping that the diffe-
rence is made clear by the context.

So far we have described a set of closed curves and have
endowed it with a Riemannian structure. Next we consider
the issue of representing the shapes of these curves. It is
easy to see that several elements of C can represent curves
with the same shape. For example, if we rotate a curve in
R?, we get a different SRVF but its shape remains unchan-
ged. Another similar situation arises when a curve is re-
parametrized ; a re-parameterization changes the SRVF of
curve but not its shape. In order to handle this variability,
we define orbits of the rotation group SO(3) and the re-
parameterization group I' as the equivalence classes in C.
Here, T' is the set of all orientation-preserving diffeomor-
phisms of S (to itself) and the elements of ' are viewed
as re-parameterization functions. For example, for a curve
B :S'" — R? and a function y : S' — S', v € T, the
curve 8(7) isa _.w.ﬁw_.meS_.me:os of 3. ‘;m ooﬁwéo:&:m
SRVF changes according to ¢(t) — +/3(t)g(y(t)). We set
the elements of the set :

ql = {V37()0q(v(¥))|0 € SO(3), v €T},

to be equivalent from the perspective of shape analysis.
The set of such equivalence classes, denoted by S =
C/(SO(3) x T') is called the shape space of closed curves
in R3. S inherits a Riemannian metric from the larger space
C due to the quotient structure.

€600000

FIGURE 2. Examples of geodesics between curves

The main ingredient in comparing and analysing shapes
of curves is the construction of a geodesic between any two
elements of S, under the Riemannian metric given in Eqn.
2. Given any two curves 31 and (35, represented by their
SRVFs ¢; and g2, we want to compute a geodesic path bet-
ween the orbits [¢1] and [g] in the shape space S. This task
is accomplished using a path straightening approach which
was introduced in [10]. The basic idea here is to connect
the two points [¢1] and [g2] by an arbitrary initial path «
and to iteratively update this path :&:m :a :wmm:é gra-
dient of an energy function E[a] = & [ (a(s),a(s)) ds.
The interesting part is that the m_,m&m_: of £ rmw wmws deri-
ved analytically and can be used directly for updating . As
shown in [10], the critical points of £ are actually geodesic
paths in S. Thus, this gradient-based update leads to a criti-
cal point of E which, in turn, is a geodesic path between the
given points. Figure 2 shows two different surfaces of two
different subjects and some examples of geodesic paths bet-
ween level curves. The first and the last curves are the ones
extracted from the two surfaces, and the intermediate curves
denote equally-spaced points on the corresponding geode-
sic . These curves have been scaled to the same length
to improve display of geodesics. We will use the notation
d([q1], [g2]) to denote the geodesic distance, or the length of
the geodesic in S, between representations of the two curves

B and fs.

2.2. Nasal Surfaces

Now we extend the framework from curves to surfaces.
As mentioned earlier, we are going to represent a nose re-
gion surface S with an indexed collection of the level curves
of the D function. That is, N > {cx, A € [0, Ao]}, where
¢y is the level set associated with the distance D equal to .
Through this relation, each nasal surface has been represen-
ted as an element of the set C/%*, In our framework, the
shapes of any two noses are compared by comparing their
corresponding nasal curves. Given any two nasal surfaces
N' and N2, and their associated curves {c{, A € [0, \o]}
and {c3,\ € [0, \o]}, respectively, our idea is to compare
the curves c} and ¢, and to accumulate these distances over
all \. For that, we define two possible metrics :

— Arithmetic mean : d, : CI%%] x Cl0A] — Ry,

given by d, (N1, N?) = Hc yo Ld(ch. c3).

— Geometric mean : d, : Cl0] xm o.y.._ — R>, given

by dy(N',N?) = :y (e}, )/ 2o,
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One advantage of a deformation-based comparisons of
shapes of surfaces is that one has the actual deformations
in addition to distances. (Also, the distances have important
physical interpretations associated with them.) In particular,
we have a geodesic path in C10*) between the two surfaces
N and N2. This geodesic corresponds to the optimal elas-
tic deformations of nasal curves and, thus, nasal surfaces
from one to other. Shown in Figure 3 are examples of such
geodesic paths — The first row involves nose regions of same
subject but different scans, while the other rows show geo-
desics between nose regions that belong to different people.

se00c00ee
000000000
500000000
500000006
000000008

FIGURE 3. Geodesic paths between source and target noses. First
two rows : intra-class paths, source and target with different ex-
sions. Last three rows : inter-class paths.

2.3. Mean Nasal Shape

We can now to use our framework to calculate some sta-
tictics as the “mean” of surfaces. The Riemannian struc-
ture defined on the manifold of nose surfaces C1-*! enables
us to perform such statistical analysis for computing noses
mean and variance. The Karcher mean utilizes the intrinsic
geometry of the manifold to define and compute a mean on
that manifold. It is defined as follows : Let ds(N?, N7) de-
note the length of the geodesic from N* to N7 in Cl0-%ol,
In this particular case dy came from d,. To calculate the
Karcher mean of nose surfaces {N', ..., N} in C[%%0], we
define the variance function :

V:clodl SR V(N Mug N,NH)2 (3

The Karcher mean is then defined by :

N = V(N 4
arg | nin  VIN) @

The intrinsic mean Emu\ not be unique, i.e. there may be a
set of points in C[%-*0] for which the minimizer of V is obtai-
ned. To interpret geometrically, N is an element of C[0],
that has the smallest total deformation from all given nose
surfaces.

‘We present a commonly used algorithm for finding Kar-
cher mean for a given set of nose surfaces. This approach,
presented in Algorithm 1, uses the gradient of V to iterati-
vely update the current mean .

Algorithm 1 Karcher Mean Algorithm

Set k = 0. Choose some time increment ¢ < -~ a . Choose a point Ng €
m‘_o;& as an initial guess of the mean. (For example, one could just take

Np =S1)
1-Foreachi = 1

,n choose the tangent vector f; € Ty, (C Aol
which is tangent to the geodesic from Ny to N°. The vector g =
S2i=T fi is proportional to the gradient at N of the function V.

2- Flow for time € along the geodesic which starts at N, and has velocity
vector g. Call the point where you end up er. .

3-Setk = k + 1 and go to step 1.

Since this is a gradient approach, it only ensures a local
minimizer of the variance function V. Several examples of
using the Karcher mean to compute average faces are shown
in Figures 4.

Sessions of subjects Karcher means

ceeeeccee
@@@@@@@@@@

eeteeteeend

FIGURE 4. Examples of shapes and their karcher means.

What is the motivation for using statistical means of
hapes in a biometric application ? There are many possi-
bilities. For example, one can develop a hierarchical orga-
nization of a population, where people (or observations) are
first clustered into small groups and these clusters are re-
placed by their representatives, in this case Karcher means.
Then, at the next higher level, one can cluster these means
again and find their representative, and so on.

3. Application to Human Biometrics

In this section we present some experimental results in
two different biometric scenario. These experiments use a
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FIGURE 5. Verification Rate at FAR=0.1% using (1 to k) curves

large subset, the first 2000 scans, of FRGC v2 dataset [13].
In order to produce results for both identification and au-
thentication scenarios and to explore effect of the presence
of facial expressions on performance, a distance matrix bet-
ween a gallery and a query datasets is computed. The gal-
lery contains 2000 sessions for 209 different subjects. The
query set is identical to the gallery. The effectiveness of d,
and d, in biometric applications generally increases with
the number of curves used. But the question is how to
choose the curves which can give best results ? Indeed, in
the nasal region, there are some areas like nasal cavities
which exhibit undesired variability. Therefore, curves pas-
sing through these cavities could be eliminated from the ex-
periment. This hypothesis will be tested and discussed in
the following experiments. The results of identification and
authentication scenarios will be presented separately.

Authentication Scenario : The first experiment involves
authentication where the performance is measured using
the verification rate (VR) for a given false acceptance rate
(FAR) and with a receiver operating characteristic (ROC)
curve that shows the trade-off between the verification and
the false accept rates.

Figure 5 (right) shows a plot of VR at FAR = 0.1%, com-
puted using both the geometric and arithmetic means. The
location of these curves on a nose are shown in the left. The
best verification rate is obtained using the first seven curves
and the geometric mean metric ; it is approximately 65.34%.
As shown in the Figure 5, the verification rate increases with
the number of used curves until & = 7 curves are used and
then it decreases. The curves which decrease the recognition
rates pass through the nasal cavities. Moreover, we notice
that the verification rates using the geometric mean d,, are
much better than those using the arithmetic mean d,. So we
choose this metric for further experiments. Figure 6 shows
the ROC curves for experiments involving different number
k of curves. For k < 7, the ROC curves using 1 — k curves
are higher for larger k. For k > 7, this trend is reversed. So,
using a larger number of curves improves the authentication

performance until the seventh curve and , after that, results
get worse.

Aocane

FIGURE 6. ROC curves using 1 to k curves

Identification Scenario : The second type of experiment
is for identification for which the performance is quoted as
a rank-one recognition rate. In this experiment the gallery
set consists of neutral faces of 209 subjects. Figure 7 shows

B

FIGURE 7. Rank one recognition rates using 1 to k curves

the rank-one recognition rates obtained using both geome-
tric and arithmetic mean in the right and the locations of
these curves on a nose in the left. We make the following
remarks. First, we notice that the best recognition rate is ob-
tained when using the arithmetic mean metric d,. Actually,
we obtain 76.1% using this metric using only seven curves.
Second, we see that the recognition rate initially increases
with the number of curves, reaches a peak and then starts
decreasing, for both the metrics. The later curves which de-
crease the recognition rates are curves 8,9 and 10 and, as we
see in the Figure 7 (left), these curves pass through the nasal
cavities. Clearly, shapes of this region (made up of cavities)
are not reliable and can be excluded from the analysis.

To summarize, our method allows us to compare the
shapes of nose regions. By carefully selecting the set of
stable curves, we are able to increase identification and ve-
rification rates. However, the identification scenario costs a
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lot in terms of time computation. In our case, to retrieve a
shape in a dataset of 209 nasal surfaces, we need about 4
minutes. A hierarchical database organization can be per-
formed in order to accelerate the identification process. We
study an approach to cluster the gallery dataset using our
framework.

4. Hierarchical Gallery Organization

One of the main goals for studying shapes of nose re-
gion is to conduct biometric searches where query is often
compared to a set of gallery shapes. This comparison can be
made more efficient if we can organize the gallery elements
in form of a hierarchical database, i.e. a tree, where the com-
parisons are performed only at the nodes. To construct such
a shape tree we need to be able to cluster similar shapes,
and that is the problem we study next.

4.1. Clustering Algorithm

Consider the problem of clustering n noses (in Cl%*])
into k clusters. A general approach is to form clusters in
such a way that they minimize total “within-cluster” va-
riance [15]. Let a configuration C' consists of clusters de-
noted by C;,Cy,...,C, and let ;s be the mean shapes
in C;s and n;s be the sizes of C;s. There are several cost
functions used for clustering, e.g the sum of traces of cova-
riances within clusters. However, the computation of means
;8 of large shape clusters, and therefore their variances, is
computationally expensive, especially when they are upda-
ted at every iteration. As a solution, one often uses a varia-
tion, called pairwise clustering [6], where the variance of a
cluster is replaced by a scaled sum of distances (squared)
between its elements :

CIOE S (DO DR GO O ) FNC

Ne€eCi b<a,NeC;

We seek configurations that minimize @, ie., C* =
argmin Q(C). Notice that the metric used is the arithmetic
mean d,. We will minimize the clustering cost using a Mar-
kov chain search process on the configuration space. The
basic idea is to start with a configuration of & clusters and
reduce () by re-arranging shapes amongst the clusters. The
re-arrangement is performed in a stochastic fashion using
two kinds of moves. These moves are performed with pro-
bability proportional to the negative exponential of the (-
value of the resulting configuration. The two types of moves
are following. (1) Move a shape : Here we select a shape
randomly and re-assign it to another cluster. Let QM: be
the clustering cost when a shape N; is re-assigned to the
cluster C; keeping all other clusters fixed. If N; is not a
singleton, i.e. not the only element in its cluster, then the
transfer of N to cluster C; is performed with probability :

. exp(—=Q\"/T)

Py (5,6T) = T em(—Q méﬁw&c\d
plays a role similar to temperature in simulated annealing.
If N is a singleton, then moving it is not allowed in order to
fix the number of clusters at k. (2) Swap two shapes : Here
we select two shapes randomly from two different clusters
and swap them. Let Q1) and Q) be the Q-values of the
original configuration (before swapping) and the new confi-
guration (after swapping), respectively. Then, swapping is

performed with probability : Ps(T) = %ﬁv\ﬁdwj

In order to seek global optimization, we have adopted a
simulated annealing approach. Although simulated annea-
ling and the random nature of the search help in avoiding
local minima, the convergence to a global minimum is dif-
ficult to establish. The main steps of the algorithm is given
by Algorithm 2.

i=1,2,...,k Here T'

Algorithm 2 Stochastic Clustering Algorithm
For n shapes and k cluster: ze by randomly distributing n shapes
among k clusters. Set a high initial temperature 7".
1- Compute pairwise geodesic distances between all n shapes. This re-
quires n(n — 1)/2 geodesic computations.
2- With equal probabilities pick one of the two moves :
— Move a shape : Pick a shape N; randomly. If it is not a singleton in

its cluster, then compute Ow: foralli = 1,2,..., k. Compute the
probability Pys(j,é;T) forall i = 1,...,k and re-assign Nj to a
cluster chosen according to the probability Ppy.

— Swap two shapes : Select two clusters randomly, and select a shape
from each. Compute the probability Pg(7") and swap the two shapes
according to that probability.

3- Update the temperature using 7" = T'/3 and return to Step 2.

4- We have used 8 = 1.0001.

It is important to note that once the pairwise distances
are computed, they are not computed again in the iterations.
Secondly, unlike k-mean clustering, the mean shapes are
never calculated in this clustering.

The algorithms for computing Karcher mean and cluste-
ring can be applied repeatedly for organizing a large data-
base of human noses into a hierarchy that allows efficient
searches during identification process. As an illustration of
this idea, we consider 500 nose scans corresponding to 50
distinct subjects. These noses form the bottom layer of the
hierarchy, called level E in Figure 8.Then, we compute Kar-
cher mean shapes (representative shapes) for each person to
obtain shapes at level D. These shapes are further clustered
together and a Karcher mean is computed for each cluster.
These mean shapes form the level C of the hierarchy. Re-
peating this idea a few times, we reach the top of the tree
whith only one shape. We obtain so the final tree shown in
Figure 8.If we follow a path from top to bottom of the tree,
we see the shapes getting more particularized to groups and
then to individuals as illustrated in Figure 8.
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FIGURE 8. Paths from top to buttom in the tree show increasing
shape resolutions

4.2. Hierarchical Shape Retrieval

Once the tree is formed, one can use this representation
of data to conduct biometric search in order to reduce com-
putation time, especially in identification scenario, which
needs a comparison of the query shape to the whole gallery
dataset. In view of this structure, a natural way is to start
at the top, compare the query with the shapes at each level,
and proceed down the branch that leads to the closest shape.
At any level of the tree, there is a number, say h, of pos-
sible shapes and our goal is to find the shape that matches
the query best. Figure 9 illustrates 2 examples of retrieval
using the hirarchical organization of the dataset. For Q1 for
example, the query nasal shape (at the top) is first compa-
red to the shapes of level B. As it is closer to shape By, we
proceed down the corresponding branch. There, the query
proceeds down the branch of the shape C', as this shape is
the closest one in this level to the query. The decision of
the retrieval is given after comparison with shapes at level
D. In this case the query is matched to the shape Dsy. Ac-
tually, the shape D5 is the mean shape of nasal shapes of the
same person of the query. Notice that nasal shapes of each
person at level E are represented by their mean at level D.
The last match decides in which cluster the query belongs.
According to our tree, time computation for shape retrieval
is approximately 3-10 times faster than exhaustive compari-
son as given by table 1 for 11 examples of queries. Results
on a larger experimental set will be presented in the final
versions.

5. Conclusions

In this paper, we have proposed a geometric analysis of
3D nasal shapes for the use in partial human biometrics.

TABLE 1. Average time computation and retrieval results

Query Exhaustive | Hierarchical | Result
Qi,ic[l.9]75s 16.05 s correct
Q10> Q11 75s 16.5s incorrect

The main tool presented in this paper is the construction
of geodesic paths between arbitrary two nasal surfaces. The
length of a geodesic between any two nasal surfaces is com-
puted as the geodesic length between a set of their nasal
curves. In particular, we have presented results for compu-
ting geodesics, computing statistical means and stochastic
clustering to perform hierarchical clustering.We have de-
monstrated these ideas in two application contexts : the au-
thentication and the identifiation biometric scenarios using
nasal shapes on a large dataset involving 2000 scans, and
hierarchical organization of noses gallery to allow efficient
searches.
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