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Introduction

A project is a set of partially sequenced activities that have to be executed

by limited resources within a speci�c time horizon. Project management is

a complex decision making process that consists of planning and scheduling

while respecting resource and precedence constraints. Deterministic project

management techniques are not longer applicable in situations in industry

where uncertainties are highly present e.g. helicopter maintenance center.

As alternative, proactive approaches are provided, and particularly robust

planning based on uncertainty modelling techniques like probability and fuzzy

sets.

Planning is a tactical process respecting temporal constraints and provid-

ing resources levels by de�ning activities time windows and decisions related

to resource allocation: overtime, temporal hiring, hiring, �ring and subcon-

tracting. For tactical project planning under uncertainty, as far as we know,

only few recent stochastic optimization papers and no fuzzy optimization pa-

pers exist in literature. Part of this thesis deals with tactical project planning

problem under uncertainties and provides new models and algorithms based

on both fuzzy and stochastic modelling techniques. We refer to these prob-

lems as the Fuzzy Rough Cut Capacity Problem (FRCCP) and the Stochastic

Rough Cut Capacity Planning (SRCCP). Motivated by the fuzzy approach

(see section 3.2.4), the FRCCP is studied more deeply.

Scheduling is the operational process that consists of determining in short

term the time window of each task respecting the limit of capacity and the

precedence constraints between tasks. For operational project planning under

uncertainty, many stochastic and fuzzy optimization papers exist in litera-

ture. For fuzzy project scheduling particularly, resources had been considered

within a deterministic way till we have provided recently a fuzzy modelling

of resources usage based on the possibilistic approach. Part of this thesis

explains in details the new modelling and provides algorithms to solve fuzzy

time-driven and resource-driven scheduling problems. We refer to these prob-

lems as the Fuzzy Resource Leveling problem (FRLP) and Fuzzy Resource

Constrained Project Scheduling Problem (FRCPSP).



6 Introduction

This thesis is organized as follows. In Chapter 1, we introduce the frame-

work of our study and explain our motivation and the originality of our con-

tribution. In Chapter 2, we explain the project planning problem with the

di�erence between tactical and operational level of planning while dealing with

capacity issues. In Chapter 3, we recall basics of possibilistic and stochastic

approaches, and show how they are used to deal with planning and scheduling

problems under uncertainties. Chapter 4 contains the modelling of Rough Cut

Capacity Problem (RCCP) under uncertainties and provides a generalization

of several algorithms to handle fuzzy and stochastic parameters; a simulated

annealing is provided and existing deterministic exact Branch- and -Price algo-

rithm and linear-programming-based heuristics are adapted to uncertainties.

In Chapter 5, a new fuzzy modelling approach is provided to deal with fuzzy

scheduling problem. A fuzzy greedy algorithm (parallel SGS) and a fuzzy

genetic algorithm are provided to deal with FRCPSP and FRLP problems,

respectively. Conclusions and perspectives of the thesis are provided at the

end.



Chapter 1

Context of study

Contents
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1.3 Case study: planning and scheduling in civil MROs . 15

1.4 Thesis contribution . . . . . . . . . . . . . . . . . . . . 18

1.1 Helimaintenance project

Helimaintenance is a project approved by the Aerospace Valley cluster in 2006.

It consists of establishing a center of civil helicopter maintenance and aims

at reaching the rank of European leader in maintenance, customisation and

compete with civil helicopter obsolescence [Thenaisie, 2005].

Civil helicopter is the unique mean of transport to carry out several im-

portant missions such as medical evacuation and rescue. Moreover, helicopter

maintenance is very costly (e.g. The PUMA helicopter Heavy maintenance

Visit (HMV) costs around 2 Million euros, equivalent to one third the cost

of possession). The development of civil helicopters maintenance is limited in

Europe, because actors are not able to invest in R&D. In fact, expensive and

sophisticated facilities are needed to make development, while, actors in this

domain have very small structures (6 to 10 employees in average), except for

a few centres in United Kingdom, Norway, and Spain.
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The objective of the Helimaintenance project is to make improvements in

the �eld and reduce the helicopter maintenance cost, particularly decreasing

the helicopters immobilization. To reach these objectives, two strategical

axes are considered: to establish a strong industrial organisation, and make a

research and development program in the �eld.

The Industrial organisation is created by the association of 12 local part-

ners of the Helimaintenance Industry; the project lead and �rst sponsor. The

structure is located in the aerodrome of Montauban near Toulouse in France

within the area of 4400m2 (the covered surface is equal to 1300m2) (see Fig-

ure 1.1).

Figure 1.1: Helimaintenance center geographic area.

The research and development program started in 2008 with a �rst project

called Helimaintenance R&D 1. This project is supported by the FUI (Ab-

breviation of the french government funds called "Fonds Unique Intermin-

istériel" given by the French state to �nance projects approved by French

clusters). Two industrials (C3EM, SEMIA) and three Research centres (ON-

ERA, EMAC, ISAE) are involved in this project. The objective is to develop

a complete integrated system (see Figure 1.2):

− Smart sensors are to be installed on critical components. These sensors

are to contain radio DATALOGGER to transmit data through wireless

network to an embedded calculator,

− The embedded calculator is to be manufactured to transmit, through

GPRS network, this data to a database on the ground to be exploited

by the centre,

− Real time software is to be developed for sensors and calculator control,

− An automatic embedded data driver is to be developed,
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− Software tools are to be developed to exploit data on the ground. They

are to be connected to Helimaintenance Industry production pilot tools,

− A Decision Support System (DSS) is to be developed and integrated

to Helimaintenance Industry production pilot tools to optimize the

industrial process,

− A web ASP computing platform with a database are to be developed

and connected to all computing tools.

CustomerN

FleetN

Exploitation
Customer1

Fleet1

Authorities

AD/CN

Supervision

Recommendations

MM. MPD

Manufacturers

Maintenance

Program
Maintenance 

execution

Hélimaintenance
center

Return of   
experiments

Planning and 
Scheduling

Exploitation
Failures

prediction

Exploitation

Suppliers

Spare parts

Purchasing

Delivering

Failures
detections

Prognostic
analysis

Observatory

Data acquisition    
Radio Frequency

Embedded 
calculator

Embedded data          
treatement devices

S
S

S

Radio transmission

GPRS
Sensors measures

Subcontractors

Specific
inspections

Subcontracting
Extra-inspection

Figure 1.2: Complete integrated logistics support; Project Hélimaintenance

R&D1.

The DMIA-ISAE laboratory is particularly involved in the industrial main-

tenance process optimisation. Among the complex tasks to study in this

topic, we cite the mastering of obsolescence and the anticipation of compo-

nent failure, in addition to the managerial aspect; activity planning, schedul-

ing and execution. We were engaged in the Helimaintenance R&D 1 to work

on the maintenance planning and scheduling optimization, which represents

the downstream part of the project. Our contribution to the Helimaintenance

R&D 1 consists of developing approaches and algorithms to be implemented

in a Decision Support System (DSS) to optimize the industrial activity. The

main objective is to reduce the maintenance cost by 30%, which is a key factor

for a successful development of the civil helicopters maintenance.
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1.2 Helicopter maintenance

Helicopters have some speci�cities compared to aircraft; particular �ight con-

ditions (vibrations, way of landing), frequent inspections of some equipments,

and limited volume that constraints the realization of maintenance (number

of operators concurrently working). Helicopter maintenance consists of carry-

ing out all the actions necessary to guarantee the required level of reliability,

safety and operational capacity of the aircraft. In Helicopter maintenance and

for civil and military domains, we distinguish between three levels of main-

tenance according to the inspections complexity and localisation [Fabricius,

2003]:

− Line maintenance: contains simple checks that do not need sophis-

ticated facilities, such as small checks before and after �ights, daily

and weekly inspections, some diagnosis tasks, small reparations, some

replacements, cleaning and conditioning,

− Light maintenance: contains visual inspections and several checks that

need speci�c facilities such as detailed check and diagnosis of compo-

nents and systems, high-level check and inspection and modi�cations,

− Heavy maintenance: contains great inspections such as Heavy Main-

tenance Visits (HMV) that needs sophisticated facilities for parts re-

moval, disassembly, and structural checks.

The o�-line inspections (Light and Heavy maintenance) are usually subcon-

tracted and carried out at Maintenance, Repair and Overhaul shops (MROs).

The most extensive and demanding check is the Heavy Maintenance Visit

(HMV). This visit is particularly detailed in this thesis, because the Heli-

maintenance project stakeholders decided to start the activity with HMVs on

one particular type, namely the PUMA helicopter. The result of our study

must be generic because it is expected that the activity will be extended to

cover all o�-line checks for a series of helicopters; PUMA, Superpuma, Ecureuil

and others. The HMV contains several maintenance tasks that a�ect all as-

pects (structure, avionics, mechanics) and can last up to several months. On

PUMA helicopters for example, HMV is generally carried out every twelve

years. Moreover, HMV contains planned maintenance tasks and also correc-

tive maintenance tasks since several failures are only discovered during the

execution. Precedence constraints exist between the tasks, due to technical

or accessibility considerations. Consequently, HMVs are managed in MROs
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like projects that share several resources. This will be explained in details in

section 1.3 and real data will be exposed.

Helicopter maintenance is a highly regulated domain, due to the potential

criticality of failures. Actors in this �eld must be continuously in relation with

the manufacturers and the local authorities i.e. a French MRO making in-

spections on PUMA helicopters regularly receives documents from Eurocopter

manufacturer and Direction Générale de l'Aviation Civile (DGAC) authority.

From a product point of view, various documents are delivered by the man-

ufacturer to explain how to exploit the helicopter and keep it safe. Among

them, theMaintenance Planning Document (MPD), established by the manu-

facturer on the basis of reliability studies, gives the periodicity of inspection of

the equipments (calendar limits and/or number of �ight hours and/or num-

ber of take-o�-landing �ight cycles). The MPD is periodically updated so

the maintenance tasks may change all along the aircraft life cycle. From a

process point of view, the Aircraft Maintenance Manual (AMM) that is deliv-

ered by the manufacturer describes how to perform the maintenance actions.

Regulations from authorities also constrain the maintenance activity: ratio

of permanent operators, number of hours per week, and operator skills. On

this basis, the aircraft owner establishes the maintenance program, that must

be approved by the authorities. The list of tasks to be performed during a

maintenance visit depends on the aircraft exploitation and equipment history,

while considering the limits set in the MPD. It also depends on decisions of

anticipating some tasks in order to balance the number of visits and their du-

rations (i.e., to balance aircraft exploitation and maintenance cost). Finally,

unexpected failures may force to anticipate a visit.

1.2.1 MROs and HMVs management

Maintenance, repair and Overhaul centres operate in a very regulated area.

The organisation has to be approved as PART145 by the regulatory authority

(EASA in Europe) [EASA, 2010]. Moreover, Each MRO department is or-

ganised di�erently with varying activities and structures. The global MROs

management is a very complex subject that is out of scope of this thesis; we

refer readers to [Fabricius, 2003, Kinnison, 2004]. Nowadays, MROs are man-

aged using computers. There are more than 200 commercial Computerized

Maintenance Management System (CMMS) tools dealing with aeronautical

maintenance planning and control [Fabricius, 2003]. In this thesis we will

focus on HMVs management. A HMV may be seen as a project involving

various resources; technicians, equipments, documents, and spare parts. Be-
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low, we provide an overview about these resources and how they are managed

within HMVs.

Depending on the type of helicopter to be inspected, the assigned work

team to a HMV is composed of at least one avionic, one mechanic, and one

structure specialist. Technicians and engineers need to hold the certi�ed li-

cence Part66 for each speci�c subsystem to inspect. Each licence is checked

every 5 years. Moreover, any licence is lost when it is not exploited for at

least 6 months each 2 years. In France, the number of weekly working hours

is 35 per person. Overtime is acceptable and equal at most to 25 hours per

person, but not for two successive weeks. On the other hand, it is required by

the regulatory authority that the external human resources must not exceed

the regular capacity.

Several tools, facilities and speci�c infrastructure are needed to make

HMVs (e.g. test bench, Non-destructive testing equipment). The set of neces-

sary equipments are listed in the AMM. To be operational, An MRO structure

and facilities must be approved Part145 or Part21 from EASA. These equip-

ments are expensive, consequently they are limited and thus they are to be

shared between projects (HMVs) in the operational level of planning.

More than 50 documents are used to exploit an helicopter and maintain its

airworthiness. The main documents used for HMVs are MPD, AMM and the

Minimum Equipment list (MEL). Based on these technical documents, job-

cards (the document that provides a technician with all the information needed

to execute an inspection) are prepared. The MEL contains information about

the criticity of components which is useful to take the decision of carrying

out or delay several checks. The MPD contains all maintenance tasks coming

from:

− the Maintenance Review Board Report (MRBR), and the Airworthi-

ness Limitations Section(ALS) documents (Certi�cation Maintenance

requirements(CMR) and Airworthiness Limitation Items(ALI)): docu-

ments provided by the manufacturers and approved by the authority.

They are delivered with the helicopter,

− the Service Bulletin(SB) and the Service Information Letter(SIL): up-

dates of the MRBR sent by the manufacturers to the Helicopter's users

and MROs,

− the Airworthiness Directives (AD/CN): updates sent by the authorities

containing mandatory modi�cations on helicopters.
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Spare parts must be approved as PART21. They can be expendable (con-

sumable), repairable and rotable. The MEL document contains the list of

equipments classi�ed according to their criticity into three categories: Go

(non critical whose failure does not have impact on the helicopter airworthi-

ness), Go if (critical, implicates a restriction of the airworthiness) and No Go

(very critical lead to the immobilisation of the helicopter). The type of a com-

ponent, its criticity and cost are the main information that are used to de�ne

the corresponding quantity to be stocked to reach a speci�c degree of security

[Masmoudi and Hait, 2011]. MacLeod and Petersen [1996] present di�erent

benchmark policies for spare parts management. Spare parts management is

out of scope of this thesis.

Dealing with uncertainties is the main issue in helicopter maintenance

planning and scheduling, the next subsection describes this problem.

1.2.2 Uncertainties in helicopter maintenance

At the tactical level of planning, we can identify three main sources of uncer-

tainty:

− Uncertainty in the release date: a customer enters into a contract for

a HMV with MRO several months in advance. According to the ex-

ploitation of the helicopter, the real start date may vary in order to

reach the limits speci�ed in the MPD. The release date is �xed only 6

to 8 weeks in advance,

− Uncertainty in activity work content: e.g. the corrective maintenance

part that is signi�cant in these projects is only known after the �rst

inspection tasks of the project,

− Uncertainty in procurement delays: though spare parts for planned

maintenance can be purchased on time, corrective maintenance induces

additional orders. Depending on whether these parts are available in

the inventory or should be purchased, or even must be manufactured,

the procurement delays may change radically.

At the operational level, we can identify three main sources of uncertainty:

− the regularly maintenance program updates: manufacturers and au-

thorities regularly send new documents (Service Bulletin (SB), Airwor-

thiness Directives (AD), etc...) to add, eliminate or modify some tasks

from the maintenance program document,
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− the variability of tasks durations: di�ers according to skills level of

the assigned operator. It di�ers also from one helicopter to another

according to the compactness, state, and mission use. Tasks starting

dates are consequently uncertain,

− the absence of operators: the unexpected lack of resources causes the

delay of several tasks and hence some tasks durations are increased.

To deal with uncertainties in our case, we propose a combined approach. First,

considering the non repetitive aspect of the problem (each helicopter has its

own history, the customers are numerous and the conditions of use are highly

di�erent), and the di�culty to predict the exploitation or establish statistics

on corrective tasks or tasks durations, we propose a fuzzy set modelling for

macro-tasks work contents to cope with uncertainty in tactical level of plan-

ning. Then uncertainty a�ecting the operational level is managed by a fuzzy

set modelling for tasks dates and durations.

1.2.3 State of the art about helicopter maintenance plan-

ning

Looking on the literature, we remark that almost the totality of research

in helicopter maintenance �eld are carried out in military domain. To the

best of our knowledge, only little work has been published on civil helicopter

maintenance [Glade, 2005, Djeridi, 2010], and none on planning and resource

management of the heavy inspections. Addressing civil customers involves a

great heterogeneity of helicopters. Indeed, the average number of helicopters

by civil owner is between two and three, and the conditions of use can radically

vary from one customer to another (sea, sand, mountain...). On the contrary,

in military domain, there are important homogeneous �eets, and the mis-

sions for which the helicopters are assigned are quite similar. Moreover, the

management process in Civil MROs is di�erent from the process in military

MROs. In fact, in military domain, the helicopters maintenance is managed

respecting planned and expected missions [Sgaslink, 1994]. This is similar to

the maintenance of machines in production industry that is managed respect-

ing the orders due dates [Nakajima, 1989]. On the contrary, in civil domain,

maintenance is carried out by an external maintenance center that is not con-

cerned by the exploitation, but maintains a highly multi-customers relation,

and considers each customer's helicopter as a unique project with its release

and due date that should be respected. This is similar to engineering-to-order
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(ETO) manufacturing [Hans, 2001] and heavy maintenance of (other) complex

systems e.g. boats [de Boer, 1998].

The application of global optimization approaches, as can be found in the

military domain for important homogeneous �eets and one single customer

[Hahn and Newman, 2008], is not necessarily pertinent for civil helicopter

maintenance. Moreover, according to our knowledge, the tactical planning

problem under uncertainty has never been studied, even in the military do-

main. On the contrary, for scheduling problem under uncertainty, the Theory

Of Constraints (TOC) technique has proven its e�ectiveness for military do-

main [Srinivasan et al., 2007, Mattioda, 2002] (see www.realization.com).

In this thesis, we consider a hierarchical approach instead of a global

(monolithic) approach. A new modelling of uncertainties and several algo-

rithms are provided to deal with non-deterministic planning and scheduling

for civil MROs.

1.3 Case study: planning and scheduling in civil

MROs

We are interested in PUMA Helicopter for which a HMV is composed of

18 macro-tasks, many of which do not need resources like purchasing and

subcontracting (see Figure 1.3 and Table 1.1).
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Figure 1.3: AOA network of a HMV project

The work contents to make macro-tasks are estimated on the basis of data

from the MPD. However, HMV's planners are aware that the deterministic

planning and scheduling they make are always incorrect. In fact, as explained

earlier, many uncertainties and perturbations are expected and are hard to
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Table 1.1: Example of a HMV project of PUMA helicopter.

Task Name Task Id Predecessors Duration Processing Resource

(weeks) time (hours) i=(1-2-3)

Waiting for the release date A - 8 0 0

First check B A 1 ∼60 1/3-1/3-1/3

Removal structure and mechanics C B 3 ∼160 1/2-0-1/2

Removal avionics D B 3 ∼120 1/4-1/2 -1/4

Supplying procedure for �nishing E C 14 0 0

Mechanical inspection I F C 5 ∼360 2/3- 1/3-0

Supplying to assembling G C 7 0 0

Supplying to structural inspection H C 2 0 0

Subcontracted structure-cleaning I C 1 0 0

Subcontracted avionic repairs J D 3 0 0

Structural inspection I K I 3 ∼160 1/4-0-3/4

Structural inspection II L H-K 1 ∼120 1/4-0-3/4

Subcontracted painting M L 1 0 0

Mechanical inspection II N F 1 ∼90 2/3-1/3-0

Assemble helicopter parts O G-J-M-N 1 ∼120 1/2-1/4-1/4

Finishing before �y test P E-O 1 ∼40 1/2-1/2-0

Test before delivering Q P 1 ∼40 1/2-1/2-0

Possible additional work R Q 2 ∼40 1/4-1/2-1/4

estimate and integrate into planning and scheduling. Table 1.1 contains data

of a HMV project with uncertain macro-tasks processing time. The three main

human resources categories needed to perform HMVs are: mechanic experts

(i = 1), avionic experts (i = 2) and structure experts (i = 3).

At the strategic level of planning, capacity limits (regular capacity, over-

time capacity, hired capacity and subcontracted capacity limits) are decided.

In tactical level, the macro-tasks workloads are assigned to periods. If the

quantity of workload exceeds the regular capacity, then we try to cover the

excess with the overtime capacity. If we still have an excess we apply hired

capacity and then subcontract what remains. Finally, in operational level,

macro-tasks are split into several tasks to be scheduled within a small hori-

zon. Below, we explain how to divide macro-tasks into small tasks within

helicopter maintenance activity.

In HMV, tasks are grouped by subsystems respecting the Air Transport

Association ATA100 classi�cation. For example, the mechanical inspection

(macro-tasks F and N in Table 1.1) is divided into macro-tasks to be executed

on several mechanical parts inspections (Some are presented in Table 1.2):

− the Main Rotor: The work is carried out by 1 expert during 35 to 70

hours,

− the Tail Rotor: The work is carried out by 1 expert during 17 to 35

hours,
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− the Main Gear Box: The work is carried out by 1 to 2 experts during

70 to 105 hours. It is often subcontracted to the manufacturer,

− the Propeller: The work is carried out by 1 expert during 70 to 105

hours,

− the Hydraulic System: The work is carried out by 1 to 2 experts during

18 to 35 hours,

Table 1.2: Mechanical tasks from a the HMV of PUMA helicopter.

Part name Taks Id Id Pred. Experts Equipments Duration (days)

Main Rotor

Put o� Mu� 1 - 1 - ∼0.8
Put o� bearings 2 1 1 - ∼1.3
Put o� �exible components 3 - 1 - ∼0.15
Clean 4 2-3 1 Cleaning machine ∼1.3
Non-destructive test 5 4 1 Testing equipment ∼0.4
Assemble components 6 5 1 - ∼1.3
Check water-tightness 7 6 1 - ∼0.35
Touch up paint 8 7 1 - ∼0.15
Tight screws 9 8 1 - ∼0.55

Propeller

Put o� axial compressor 10 - 1 - ∼1.6
Put o� centrifugal compressor 11 10 1 - ∼1.7
Purchase 12 10 0 - ∼1.5
Put o� turbine 13 - 1 - ∼0.75
Clean 14 11-13 1 Cleaning machine ∼0.45
Non-destructive test 15 14 1 Testing equipment ∼0.35
Assemble components 16 12-15 1 - ∼2.6
Touch up paint 17 16 1 - ∼0.15
Tight screws 18 17 1 - ∼0.18
Test 19 18 1 Test Bench ∼0.18

Hydraulic Sys.

Evacuate oil 20 - 2 - ∼0.15
Put o� servos 21 20 2 - ∼0.75
Clean 22 21 1 Cleaning machine ∼0.35
Non-destructive test 23 22 1 Testing equipment ∼0.4
Assemble then remove joints 24 23 2 - ∼1.1
Test 25 24 1 Test Bench ∼0.15
Tight screws 26 25 2 - ∼0.15

Each part inspection can be considered as a small project containing sev-

eral tasks subject to precedence constraints. The MRO capacity (technicians

and equipments) is limited, thus resources are shared by all projects. Hence,

the problem is to schedule small projects respecting precedence constraints

and workshop resources constraints. We will have to transfer the work con-

tent of tasks into durations based on 35-hour working week and the assigned

operators.

To show the scheduling problem in MRO within a simple example, we will

consider one helicopter HMV and three parts to be checked which are the
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Main Rotor, the Propeller and the Hydraulic System gear (see Table 1.2).

We consider that our experts have the required quali�cations to inspect the

di�erent parts. In addition, we consider that MRO has 3 available operators,

1 test bench, 1 Non-destructive testing equipment, and 1 cleaning machine.

Uncertain work contents in the tactical plan and uncertain task durations

in the schedule are modelled with the fuzzy set and the possibilistic theory

based on the knowledge of experts because no rich statistical information

exists in the database. The resume of our contribution within this thesis is

shown in the next section.

1.4 Thesis contribution

Maintenance planning aims at organizing the activity of a maintenance cen-

ter. It deals with tasks to be performed on each aircraft, the workforce and

equipment organization, and spare parts logistics (purchasing and inventory

management). The challenge is to minimize aircraft down time, while main-

taining good productivity and inventory costs.

As already noted, minimizing the overall visit duration gives a competitive

advantage to the company. If the delivery date is not respected the company

must pay to customer a penalty equivalent to 4 hours operational pro�tability

per day e.g. 6 thousand euros/day for a PUMA Helicopter.

The MRO management is viewed as multi-project management, where

every project duration should be minimized while respecting capacity con-

straints. Strategic, tactical and operational levels of planning are to be stud-

ied within a hierarchical approach to deal with MRO management. This will

be the framework of our study, and especially tactical and operational levels

are considered.

At the tactical level of planning, orders are studied and then prices and de-

livery times are negotiated with customers. After a project has been accepted,

the macro-tasks are well speci�ed and integrated into the global tactical plan.

Moreover, resource capacities are �xed. At the operational level, macro-tasks

are detailed into elementary tasks, and resources are assigned to di�erent tasks

according to their capabilities. At the tactical and operational planning lev-

els, the capacity management problem is called Rough-Cut Capacity Planning

(RCCP) and Resource Constrained Project Scheduling Problem (RCPSP), re-

spectively. The di�erence between RCCP (tactical level) and RCPSP (opera-

tional level) is well clari�ed in [Gademann and Schutten, 2005]. To deal with

capacity management problem is an important issue in project management



1.4. Thesis contribution 19

and particularly in our application. In RCCP, the planning horizon is divided

into periods, contrary to RCPSP where the time horizon is continuous. In

RCCP the workload is de�ned in terms of macro-tasks work contents per re-

quired resources (e.g. a total of 150 hours of work content for avionicians)

in contrast to RCPSP where the tasks duration and the number of operators

assigned to the tasks are considered (e.g. the task must be performed by 2

avionics during 8 hours).

A signi�cant amount (more than 30%) of unplanned work is discovered

during inspections. Consequently, the initial preventive maintenance program

usually does not �t with reality. Hence, additional corrective maintenance

and purchasing spare parts are to be integrated into the initial tactical and

operational planning.

Hans et al. [2007] classi�ed multi-project organizations according to their

projects' variability and dependency. Following this reference, our problem

is considered with high variability (numerous uncertainties) and high depen-

dency (shared resources and external in�uence on spare parts supply).

Data analysis PerturbationsUpdates

Decision making

LowHigh

(Re)Planning (Re)Scheduling

Which
level?

Figure 1.4: Decisional Scheme for proactive-reactive planning and scheduling.

Civil MROs management under uncertainties is the research topic of this

thesis. Our contribution will be on planning and scheduling taking into ac-

count uncertainties. A proactive-reactive approach is envisaged within an

optimization framework (see �gure 1.4). Our contribution mainly focuses on

the proactive part using fuzzy set modelling and possibilistic approach. In

this regard, synthesis of a robust project planning at the tactical and opera-

tional levels, is provided with an original de�nition and modelling of the fuzzy

workload plans. The modelling and algorithms provided in this thesis for civil

MROs activity are generic and can be adapted to other domains.
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2.1 Project management

Project management is a management discipline that is receiving a contin-

uously growing amount of attention from many organisations in production

and service sectors. Project management is a complex task that deals with

the selection and initiation of projects, as well as their operation and control.

Complexity arises when considering several projects in parallel sharing the

same resources. This is called Multi-project management and it is charac-

terised by a high degree of complexity and dependency [Hans et al., 2007]. A

survey of existing literature on approaches for multi-project management and
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planning is proposed in [Wullink, 2005]. Wullink, like other authors [Gade-

mann and Schutten, 2005, Hans et al., 2007], adopted the hierarchical planning

framework de�ned in [de Boer, 1998]. This hierarchical approach is determin-

istic, like almost all approaches in literature, even though its author mentions

that, especially in project environments, uncertainties play an important role.

Wullink [2005] proposed a partial generalisation of this hierarchical model

to uncertainty consideration based on discrete stochastic scenarios. The de

Boer's framework is explained in this section. The aim of our study is to

extend several parts of this approach to uncertainty considerations based on

continuous fuzzy set modelling with the perspective to provide a complete

fuzzy hierarchical planning approach.

2.1.1 Hierarchical planning

Two approaches have been used in literature to address project management;

the monolithic approach and the hierarchical approach. The monolithic ap-

proach solves the problems as a whole. On the other hand, the hierarchical

approach partitions the global problem into series of sub-problems that are to

be solved sequentially. In order to break down project and production man-

agement into more manageable parts, a hierarchical planning framework has

been proposed in [de Boer, 1998] (Figure 2.1). This framework is suitable to

our problem that gathers production and project features. Hans et al. [2007]

adapt this hierarchical approach to discern the various planning functions with

respect to material coordination and technological planning in addition to ca-

pacity planning. The framework is divided into the three levels of Anthony's

classi�cation [Anthony, 1965]: strategic, tactical, and operational. Each level

has its own constraints, input data, planning horizon and review interval. In-

teractions between levels depend on the application environment [Hans et al.,

2007].

Strategic planning involves long-range decisions such as make or buy deci-

sions regarding to space, sta�ng levels, layouts, number of critical resources.

At strategic resource planning level, senior managers de�ne the strategic re-

source plan respecting a speci�c management vision within its overall goals

with regard to strategic issues such as the hiring and release of sta�, the ac-

ceptable level of under-utilisation, and the maximum amount of subcontract-

ing. Other input data may be a market competitiveness strategy, agreements

with external suppliers, and agreements with major customers, etc. The hori-

zon of such a plan may vary from one to several years and the review interval

should depend on the dynamics of the organisation's environment.
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Figure 2.1: Hierarchical planning framework ([de Boer, 1998])

Tactical planning involves medium-range decisions. At this level, the

rough-cut capacity planning (RCCP) method is applied to make adequate

decisions about due dates and milestones of projects, overtime work levels

and subcontracting. RCCP should be used during the negotiation and order-

acceptance stage of a new project. Project networks already available and

estimations of future resource availabilities are input for the RCCP. At the

RCCP-level, it is assumed that the amount of regular capacity for each re-

source is given. Regular capacity is capacity that is normally available to

the company and is to be distinguished from non-regular capacity, which is a

result of working overtime, hiring extra personnel, subcontracting, etc. Em-

ployment of non-regular capacity will result in an extra cost and is decided

at this level [Leus, 2003]. Two approaches to the RCCP-problem can be dis-

tinguished: resource-driven and time-driven planning [de Boer, 1998]. With

resource-driven planning, the availability of each resource is constrained and

the aim is to meet due dates as much as possible (the resource availability

problem). In time-driven planning, on the other hand, time limits on the

projects are given and the aim is to minimize the use of non-regular capacity

such as overtime work (resource levelling problem) [Shankar, 1996]. In prac-

tice, a combination of the two methods is already used [Kim et al., 2005a], but

for the operational level of planning which is, compared to the tactical level,

characterized by a lower degree of capacity �exibility. The tactical planning
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horizon may vary from half a year to one or two years, depending on expected

project durations.

Finally, operational planning involves short-range decisions. At this level,

to deal with resource considerations, de Boer [1998] uses in his approach,

as shown in Figure 2.1 the Resource constrained Project Scheduling Prob-

lem, although other models for project scheduling like the resource leveling

and the resource allocation can also be plugged in. After a project is ac-

cepted, more detailed information about resource and material requirements

becomes available from engineering, and process planning and a more detailed

activity network can be drawn. The RCPSP assumes given resource levels.

The work packages of the RCCP-level are broken down into smaller (possi-

bly precedence-related) activities with speci�c duration and resource usage,

based on engineering and detailed process planning information. These data

are used as input for RCPSP. The operational planning horizon may vary

from several weeks to several months.

Information is communicated to subsequent levels. Hence, constraints are

imposed on lower levels and downward compatibility of the planning frame-

work is ensured. Figure 2.1 shows feedback loops that ensure upward com-

patibility and reactivity of the planning.

2.1.2 Rough cut capacity planning survey

Deterministic planning approaches for the RCCP-problem have been proposed

by [de Boer, 1998, Hans, 2001], and [Gademann and Schutten, 2005]. All these

tactical planning approaches minimize the cost of using non-regular capacity.

de Boer [1998] proposes two heuristics; a constructive heuristics called In-

cremental Capacity Planning Algorithm (ICPA) and a Linear Programming

Based heuristic. Hans [2001] proposes an exact Branch and Price algorithm to

solve the problem modelled as a MILP. Gademann and Schutten [2005] pro-

pose several heuristics and distinguish three categories of solution approaches:

constructive heuristics, heuristics that start with infeasible solutions and con-

vert these to feasible solutions, and heuristics that improve feasible solutions.

Then they make an interesting comparison between their own heuristics, the

heuristics of de Boer and the exact technique of Hans.

To deal with a non deterministic RCCP-problem, Elmaghraby [2002] af-

�rms that the processing time of an activity is one of the most important

sources of variability. Wullink [2005] proposes a proactive approach based

on stochastic scenarios to model uncertain processing times and [Masmoudi

et al., 2011] proposed a proactive approach based on a continuous representa-
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tion of uncertain processing times using fuzzy sets and possibility approach.

Taking into account uncertainties in the RCCP problem may require partic-

ular objectives such as expected cost of non-regular capacity and robustness

of the plan. These criteria are studied in the aforementioned references. The

approach provided in [Masmoudi et al., 2011] is extended and explained in

details in chapter 4.

2.1.3 Project scheduling and resource leveling survey

Traditionally, scheduling theory has been concerned with allocation of re-

sources, over time, to tasks or activities [Parker, 1995]. On the area of schedul-

ing, rapid progress regarding models and methods has been made. Two tech-

niques of resource management, namely resource-constrained project schedul-

ing and resource leveling, are considered while dealing with renewable re-

sources e.g. available workers per day [Herroelen, 2007]. Resource-constrained

project scheduling explicitly takes into account constraints on resources and

aims at scheduling the activities subject to the precedence constraints and

the resource constraints in order to minimize the makespan (project dura-

tion). On the other hand, resource leveling takes into account the precedence

constraints between the activities, and aims at completing the project within

its due date with a resource usage which is as leveled as possible throughout

the project duration.

Resource-constrained project scheduling problem is one of the most at-

tractable classical problems in practice. It is clear that solving the RCPSP

has become a �ourishing research topic when observing the signi�cant number

of books that were published in this subject [Artigues et al., 2008]. Multiple

exact techniques and heuristics and a number of meta-heuristics have been

applied to solve the RCPSP problem [Herroelen, 2007]. This thesis does not

aim to provide a survey of all models, algorithms, extensions and applications

in this �eld because already many books deal with this issue in both deter-

ministic and non-deterministic situations [Leus, 2003, Slowinski and Hapke,

2000]. We are particularly interested in studying the parallel Schedule Gen-

eration Scheme (SGS) technique. Chapter 5 explains in details how it was

generalized to fuzzy parameters [Hapke and Slowinski, 1996, Masmoudi and

Haït, 2011a].

The Resource Leveling problem has been originally studied for �xed project

duration. Popular exact and heuristics methods were developed for determin-

istic situations. As an example of exact methods, Easa [1989] used integer

programming techniques and Ahuja [1976] presented exhaustive enumeration
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procedures, and as example of heuristics, Harris [1990] developed the popular

PACK model and Chan et al. [1996] proposed a model using genetic algo-

rithms. In the last decades, authors have begun to study non-deterministic

scheduling. On the contrary to RCPSP, few non-deterministic resource lev-

eling models have been developed [Leu et al., 1999]. Chapter 5 explains how

resource leveling techniques were generalized to fuzzy parameters based on a

genetic algorithm [Leu et al., 1999, Masmoudi and Haït, 2011b].

2.2 Solution techniques for project planning and

scheduling

Herroelen [2007] provides a remarkable academic book that surveys the ex-

isting techniques for project scheduling by means of illustrative examples.

This section provides a small overview and not a survey about techniques for

project planning and scheduling. However, references to interesting surveys

and papers are included for readers who want to get more information in this

�eld.

2.2.1 The PERT/CPM techniques

The Program Evaluation Review Technique (PERT) and the Critical Path

Method (CPM) were developed in the 50's, within di�erent contexts: the

CPM was developed for planning and control of DuPont engineering projects

and the PERT was developed for the management of the production cycle

of the Polaris missile. They share the same objectives such as de�ning the

project duration and the critical tasks [MacLeod and Petersen, 1996]. In this

thesis, we use the expression PERT/CPM technique to express that both tech-

niques are considered equivalent. The PERT/CPM technique is based on two

successive steps; a forward propagation to determine the earliest start and

�nish dates (and consequently the project duration and the free �oats), and

a backward propagation for the latest start and �nish dates (and the total

�oats). Originally, the activity times are �xed within the CPM technique

and probabilistic within the PERT technique [Ika, 2004]. Over the last few

decades, both CPM and PERT techniques have been generalized to fuzzy and

stochastic areas [Lootsma, 1989, Chanas et al., 2002] to deal with uncertainty

in project management. Particularly, Fuzzy PERT and CPM are to be con-

sidered to deal especially with fuzzy scheduling in chapter 5. On the contrary

to PERT/CPM technique that omits any consideration of resources, other
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techniques that deal with resources constraints are recalled in next section.

2.2.2 Time and resource driven techniques

The trade-o�s between lead time and due date on one hand, and resource

capacity levels on the other hand is always present when dealing with project

planning and scheduling within resource consideration. Hence, for both tacti-

cal and operational planning we distinguish two kins of problems: the resource

driven and the time driven [de Boer, 1998]. In resource driven planning and

scheduling, the resource availability levels are �xed, and the goal is to meet a

project due date e.g. minimize lateness, minimize the number of projects or

tasks that are late. In time driven planning and scheduling, due dates are con-

sidered as strict as deadlines, and the aim is to minimize the extra resources

usage e.g. minimize the costs of using non regular capacity [Mohring, 1984].

In this thesis, the resource driven technique is applied to the RCPSP problem

(see chapter 5), and the time-driven technique is applied to RCCP and RLP

(see chapter 4 and chapter 5), respectively.

2.2.3 Algorithms: exact and heuristics

Most of the planning and scheduling problems are NP-hard. Hence, exact

and approximate methods are considered (see Figure 2.2) depending on the

complexity of the projects to manage. In fact, to solve small projects, ex-

act methods can be applied, to obtain optimal solutions with guarantee of

optimality. On the contrary, to solve projects with several hundreds of activ-

ities, only approximate procedures (heuristics) are computationally feasible

and generate high quality solutions but without guaranty of optimality.

In the class of exact methods we �nd: branch and X family (B&Bound,

B&Cut and B&Price), constraint programming, dynamic programming, and

several algorithms developed in the arti�cial intelligence community like A∗.

Particularly, the Branch & Price technique was applied to tactical capacity

planning problems [Hans, 2001]. The Hans' B&P method is brie�y explained

in section 4.3.1 and generalized to fuzzy sets to deal with tactical capacity

planning problems under uncertainties.

Approximate algorithms are classi�ed into speci�c heuristics and meta-

heuristics.

Speci�c heuristics are provided to solve speci�c problems and/or instances

i.e. Parallel SGSs algorithms are provided to solve scheduling problems based

on priority rules [Kolish and Hartmann, 1999] and Linear-programming-based
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Figure 2.2: Classical optimization methods ([Talbi, 2009])

heuristics are provided to solve tactical capacity planning problems [Gade-

mann and Schutten, 2005]. These two heuristics are particularly considered

in this thesis and generalized to fuzzy sets to deal with scheduling and plan-

ning problems under uncertainties, respectively.

Meta-heuristics are generic and their application falls into a large number

of areas. Talbi [2009] provides a genealogy of the 24 meta-heuristics (and the

number is growing) that were developed from 1947 to 1996. Among them,

there are the Genetic Algorithm that is developed in 1962 [Holland, 1962] and

the Simulated Annealing that is developed in 1983 [Kirkpatrick et al., 1983].

In this thesis, these two meta-heuristics are explained and then adopted and

generalized to fuzzy sets to deal with Resource leveling and tactical capacity

planning problems under uncertainties, respectively.

2.2.4 Practical variants and extensions

The basic scheduling and planning models are too restrictive for many cur-

rent practical applications. Consequently, di�erent variants and extensions

of project planning and scheduling problems have been studied in literature
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[Shankar, 1996]. They can be divided into several branches; single project

or multi-project, single resource or multi-resource constrained, uni-objective

or multi-objective, uni-mode or multi-mode, time driven or resource driven,

allowing task preemption or not, resources are renewable and/or not, etc.

The consideration of a uni-objective or a multi-objective function is among

the most common extensions [Talbi, 2009]. The optimizing objective function

could be to minimize project duration, minimize (weighted) project tardiness

or lateness, minimize cost or maximize pro�t, smoothing resource usage, or

maximize robustness or �exibility or stability in case of a non-deterministic

problem. In addition, depending on the objective(s) we select, relevant struc-

tural constraints are to be included in the problem formulation i.e. while

minimizing the weighted tardiness of projects, an upper limit of the tardiness

is to be speci�ed and set as a constraint in addition to the objective function.

Demeulemeester and Herroelen [2002] provide a survey of extensions of

project scheduling problems and Hartmann and Briskorn [2010] provide a

survey of variants and extensions of the RCPSP problem in particular. Deter-

ministic and non-deterministic are among the common extensions, and project

planning and scheduling under uncertainty is becoming one of the subjects

that present a big interest in literature. Next chapter will deal with this topic

of research.
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3.1 Uncertainty and imprecision

Knowledge and perception are imperfect, due to the complexity of observed

process, and the lack of clear observation limits e.g. the limit between young
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and old can not be expressed precisely. The imperfection can be seen as

uncertainty, as imprecision or as both uncertainty and imprecision.

Dubois and Prade [1985] di�erentiate between imprecision and uncer-

tainty: imprecision concerns the content of the information and uncertainty

is relative to its truth. Imprecise information can not be expressed clearly i.e.

Alain is 40 to 45 years old. Uncertain information contains a doubt on its

validity i.e. Alain may be 45 years old. When we combine uncertainty with

imprecision we get such information: Alain may be 40 to 45 years old.

Each information, whatever its quality, should not be neglected. Hence,

di�erent techniques are provided in literature to take into account uncertain

and imprecise information. Next section contains a survey of these techniques

and a motivation to use fuzzy/possibilistic approach for our application.

3.2 Uncertainty modelling techniques

We must specify the kind of uncertainty we are interested in, otherwise the

models are numerous. For example, Dynamic and conditional Constrained-

Satisfaction problems are used when the problem structure (variables or/and

constraints) is uncertain, Bayesian Networks is used when variables are uncer-

tain (represented by a probability distribution), dependent (associated with

conditional probabilities) and non-time related, and Markov Chain Process

modelling and dynamic programming are used when variables (such as states

and decisions) are uncertain and time related [Bidot, 2005]. In this thesis, we

consider uncertainty in work contents of activities; and durations and consider

that activities are independent. Billaut et al. [2005] distinguish 4 modelling

approaches to model such uncertainties: stochastic, fuzzy, by interval and

by scenarios approaches. According to the experts' knowledge in helicopter

maintenance domain, continuous and non uniform distributions �t well with

the kind of uncertainty that we deal with. Consequently, only stochastic and

fuzzy modelling approaches are considered and studied in details below.

3.2.1 Probability and stochastic modelling

Probability theory is the best developed mathematically, and the most es-

tablished theory of uncertainty. In practice, there are two probability inter-

pretations, whose communities possess di�erent views about the fundamental

nature of probability:

− Bayesians assign to any statement a probability that represents the
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degree of belief in a statement, or an objective degree of rational belief.

− Frequentists consider probabilities when dealing with experiments that

are random and well-de�ned. The probability of a random event (out-

come of the experiment) denotes the relative frequency of occurrence

when repeating the experiment.

In probability theory, a distribution is a function that describes the probabil-

ity of a random variable taking certain values. We consider a random variable

X that can be instantiated to value v belonging to a discrete or continuous

domain S. In the discrete case, one can easily assign a probability to each

possible random variable (used by Bayesians). A probability distribution of a

random variable X is discrete and completely known when X is discrete and∑
v∈S Pr(X = v) = 1. In contrast, in the continuous case, a random variable

takes values from a continuum (continuous range of values) and probabilities

are nonzero only if they refer to �nite intervals (used by Frequentists). For-

mally, if X is a continuous random variable, then it has a probability density

function f(x), and therefore its probability to fall into a given interval, say

[A,B] is given by the integral Pr[A ≤ X ≤ B] =
∫ B
A
f(x)dx. Hence, the prob-

ability distribution is completely characterized by its cumulative distribution

function F (x). This latter gives the probability that the random variable is

not larger than a given value F (x) = Pr [X ≤ x] ∀x ∈ S.

p(x)

x
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p(x)

x

normal
p(x)

x

triangular
p(x)

x
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Figure 3.1: Some probability distributions.

There are many examples of continuous probability distributions: uniform,

triangular, normal, beta, and others (see �gure 3.1). Particularly, the beta

distribution is well supported by several techniques in project management

such as PERT and CPM techniques [Ika, 2004] because it is bounded, positive,

continuous, uni-modal, and multi-shaped.

The sum of two independent random variables is the convolution of each of

their density functions and the di�erence of two independent random variables

is the cross-correlation of their density functions. Golenko-Ginzburg [1988]

and MacCrimmon and Ryavec [1964] have de�ned mathematical operations

that can be performed on uncertain numbers modelled with beta distributions.
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Let A be an uncertain number represented with a beta distribution. The same

pro�le of A can be numerically represented by three expressions:

A = [aA, dA, αA, βA], A = [aA, dA,mA] or A = [aA, dA, EA, VA] (3.1)

where:

aA and dA are the minimum and the maximum estimation values. They are

the same for the di�erent expressions,

mA is the mode,

αA and βA are the parameters of the beta distribution that represents the

number A,

and EA and VA are the expectation and variance of the number A, respectively.

These di�erent parameters are formally related by the following expres-

sions:

mA = aA + (dA − aA)(αA − 1)/(αA + βA − 2) (3.2)

EA = aA + (dA − aA)αA/(αA + βA) (3.3)

VA = (dA − aA)2αAβA/[(αA + βA)2(αA + βA + 1)] (3.4)

Probabilities can be used to model imprecise macro-task processing times

or task's durations, but they require statistical data that does not system-

atically exist. In addition, probabilities are easy to interpret, but can not

represent full or partial ignorance [Bidot, 2005]. The stochastic approach

explicitly represents uncertainty in the form of probability distributions. In

project planning, a few works in literature have used probability distributions

within discrete modelling [Wullink, 2005] and continuous modelling [Giebels,

2000]. In scheduling, on the contrary, probability distributions are widely

used within discrete and continuous modelling. We refer readers to [Leus,

2003] where a state of the art about stochastic scheduling extensions such as

stochastic RCPSP, stochastic activity interruptions, stochastic multi-mode,

and stochastic discrete time/cost trade-o� problems, are provided.

3.2.2 Fuzzy sets and possibilistic approach

Zadeh [1965] has de�ned a fuzzy set Ã as a subset of a referential set X, whose

boundaries are gradual rather than abrupt. Thus, the membership function

µÃ of a fuzzy set assigns to each element x ∈ X its degree of membership

µÃ(x) taking values in [0,1].

To generalize some operations from classical logic to fuzzy sets, Zadeh

has given the possibility to represent a fuzzy pro�le by an in�nite family of

intervals called α-cuts. Hence, the fuzzy pro�le Ã can be de�ned as a set of
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intervals Aα = {x ∈ X/µÃ(x) ≥ α} with α ∈ [0, 1]. It became consequently

easy to utilize classical interval arithmetic and adapt it to fuzzy numbers.

Many pro�les are used in the literature to model fuzzy quantities (Fig-

ure 3.2). Particularly, the trapezoidal pro�le is well-supported by the possi-

bility approach [Dubois and Prade, 1988] that is presented below.

µÃ(x)

1

α

x
aA bA cA dA
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Figure 3.2: Some fuzzy pro�les.

Dubois and Prade [1988], and Chen and Hwang [1992] have de�ned math-

ematical operations that can be performed on trapezoidal fuzzy sets. Let

Ã(aA, bA, cA, dA) and B̃(aB, bB, cB, dB) be two independent trapezoidal fuzzy

numbers, then:

Ã⊕ B̃ = (aA + aB, bA + bB, cA + cB, dA + dB) (3.5)

Ã	 B̃ = (aA − dB, bA − cB, cA − bB, dA − aB) (3.6)

min(Ã, B̃) = (min(aA, aB),min(bA, bB),min(cA, cB),min(dA, dB)) (3.7)

max(Ã, B̃) = (max(aA, aB),max(bA, bB),max(cA, cB),max(dA, dB)) (3.8)

Ã ∪ B̃ = max
x∈X

(µÃ(x), µB̃(x)) (3.9)

Ã ∩ B̃ = min
x∈X

(µÃ(x), µB̃(x)) (3.10)

αÃ =

{
(αaA, αbA, αcA, αdA) if α > 0

(αdA, αcA, αbA, αaA) if α ≤ 0
(3.11)

Other operations like multiplication and division have also been studied. For

more details regarding fuzzy arithmetic, we refer readers to [Dubois and Prade,

1988].

In practice, di�erent interpretations of the membership functions µ can be

made:

− It is possible to represent an occurrence possibility with µ(X = v); i.e.,

the possibility that variable X is instantiated with value v.
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− We can express similarity degree with µ(Zeineb is young) that repre-

sents the truth of the information "zeineb is young". Young is repre-

sented by a fuzzy pro�le.

− It is also possible to express preferences with µ(X = v) that represents

the satisfaction degree when variable X is equal to value v.

The possibility theory is based on fuzzy subsets. It was introduced by [Zadeh,

1978] to provide a mean to take into account the uncertainties associated

with the occurrence of events. Since we have chosen a fuzzy model, we will

use the possibility theory to transpose uncertainty in data into uncertainty in

workload.

With a possibility function, we can represent both imprecision and uncer-

tainty. For example, we represent the fact that we do not know precisely and

with total certainty the purchasing duration; experts say that it is completely

possible that the needed components exist in stock. Otherwise the purchasing

takes generally 1 to 6 weeks, but can take 0 to 7 weeks in extreme cases,

covering di�erent scenarios such as the components exist somewhere in the

world, or are obsolete, and so must be manufactured. Figure 3.3 represents

such a possibility function.

µ(x)

1

x

10 6 7

Figure 3.3: Representation of purchasing duration

The classical concept of set is limited for representing vague knowledge,

and probability theory is not able to represent subjective uncertainty and

ignorance, however, fuzzy logic and the theory of possibility overcome these

di�culties. The main drawback of fuzzy representation is the subjective way

for interpreting results.

The possibility theory introduces both a possibility measure (denoted Π)

and a necessity measure (denoted N). Let P to be a set (fuzzy or not), and

Ã is a fuzzy set attached to a single valued variable x. The possibility of the

event "x ∈ P", denoted by Π(x ∈ P ), evaluates the extent to which the event

is "possibly" true. It is de�ned as the degree of intersection between Ã and
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P by the minimum operation:

Π(x ∈ P ) = sup
u

min(µÃ(u), µP (u)) (3.12)

The dual measure of necessity of the event "x ∈ P", denoted by N(x ∈ P ),

evaluates the extent to which the event is "necessarily true". It is de�ned as

the degree of the inclusion (Ã ⊂ P ) by the maximum operation:

N(x ∈ P ) = inf
u

max(1− µÃ(u), µP (u)) = 1− Π(x ∈ P c) (3.13)

where P c is the complementary of P (µP c(u) = 1− µP (u)).

Let τ be a variable in the fuzzy interval Ã and t be a real value. To

measure the truth of the event τ ≤ t, equivalent to τ ∈ (−∞; t], we need the

couple Π(τ ≤ t) and N(τ ≤ t) representing the fact that τ ≤ t is respectively

possibly true and necessarily true (see Figure 3.4). Thus:

1

aA bA cA dA
t

Π(τ ≤ t) µÃ
t

µ[Ã;+∞)

µ]Ã;+∞)

1

aA bA cA dA
t

N(τ ≤ t) µÃ

(1− µÃ)

t

Figure 3.4: Possibility and Necessity of τ ≤ t with τ ∈ Ã.

Π(τ ≤ t) = sup
u≤t

µÃ(u)µ[Ã;+∞)(t) = sup
u

min(µÃ(u), µ(−∞;t](u)) (3.14)

N(τ ≤ t) = 1− sup
u>t

µÃ(u) = µ]Ã;+∞)(t) = inf
u

max(1− µÃ(u), µ(−∞;t](u))

(3.15)

Let τ and σ be two variables in respectively fuzzy intervals Ã and B̃, and

t be a real value. Based on the aforementioned possibility theory, we de�ne a

useful measure corresponding to the truth of the event "t between τ and σ"
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by the couple Π(τ ≤ t ≤ σ) and N(τ ≤ t ≤ σ):

Π(τ ≤ t ≤ σ) = µ[Ã;B̃](t) = µ[Ã;+∞)∩(−∞;B̃](t)

= min(µ[Ã;+∞)(t), µ(−∞;B̃](t))

= min[sup
u

min(µÃ(u), µ(−∞;τ ](u)), sup
v

min(µB̃(v), µ[τ ;+∞)(v))]

(3.16)

and

N(τ ≤ t ≤ σ) = µ]Ã;B̃[(t) = µ]Ã;+∞)∩(−∞;B̃[(t)

= min(µ]Ã;+∞)(t), µ(−∞;B̃[(t))

= min[inf
u

max(1− µÃ(u), µ(−∞;τ ](u)),

inf
v

max(1− µB̃(v), µ[τ ;+∞)(v)))] (3.17)
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Figure 3.5: Necessity and possibility of t being between Ã and B̃.

Figure 3.5 presents the possibility and necessity membership functions

for an event t to be between fuzzy intervals Ã and B̃. These necessity and

possibility expressions are to be exploited in Section 5 to de�ne the necessity

and possibility of a task to be present between its starting and �nishing time.

Fuzzy sets can be used to model uncertain and imprecise informations e.g.

uncertain macro-task processing times and task's durations. A state of the

art about fuzzy planning and scheduling is provided in section 3.4.

3.2.3 Bridges between fuzzy sets and probability

For some industrial problems, part of the imprecise information is probabilistic

and the remainder is subjective. Hence, both probabilistic and possibilistic

approaches are to be involved, which makes the calculation hard, and the

global approach neither trivial nor unique [Baudrit et al., 2006]. Many au-

thors studied the propagation of heterogeneous uncertainty models. One of

the solutions provided in this �eld is the homogenization of probabilistic and
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possibilistic models throughout bridges from possibilistic to probabilistic and

vice-versa [Baudrit, 2005] e.g. the pignistic transformation from possibility to

probability and the inverse of the pignistic transformation from probability to

possibility [Dubois et al., 1993]. This research �eld is recent and still not well

developed. Moreover, information is lost while transforming probability dis-

tribution to possibility distribution, and gain of information is not allowable

in the other sense [Dubois and Prade, 2006]. Despite, the homogenization

technique has proven its e�ectiveness for many problems such as risk assess-

ment, but combination of possibilistic and probabilistic approaches are out of

our scope, because the uncertainty that we deal with can be completely cov-

ered with a unique modelling approach. Hence, motivated by the possibilistic

approach (see section 3.2.4), a complete new fuzzy modelling and solving tech-

niques are provided for tactical and operational planning problems. However,

in section 4.2.5 a new theoretical modelling of stochastic tactical planning

problem is provided, which can be applied to other applications where prob-

ability distributions of macro-tasks work contents are statistically available.

3.2.4 Motivation to use fuzzy/possibilistic approach

To model uncertainties in scheduling issues, both fuzzy sets and probability

are considered [Dubois et al., 1995, Hillier, 2002, Herroelen and Leus, 2005].

The study of uncertainty started probably in 1654 by Pascal et Fermat

with the development of modern concepts of probability theory [Tannery and

Henry, 1894]. Nevertheless, this theory cannot deal with subjective and impre-

cise knowledge. In fact, the application of probability theory needs statistical

data, which is not always available, to evaluate uncertainty. Moreover, within

probability theory, to express the lack of certitude in an event is equivalent

to determining the certitude in the contrary event, but sometimes, it is more

reliable to say that nothing is sure while no rich information is available.

The study of imprecision and subjective uncertainty came far later in 1965

when Zadeh [Zadeh, 1965] proposed Fuzzy set theory as alternative to prob-

ability theory. This new theory is also a generalization of classical set theory.

In fact, it is based on the idea that vague notions without clear limits such

as �old�, �near�, �short� can be modelled by a gradual number called �fuzzy

subsets�. The representation of vagueness and imprecisions became conse-

quently possible thanks to fuzzy logic. The possibility theory is then provided

by Zadeh [Zadeh, 1978] to deal with a non probabilistic uncertainty that is

modelled with fuzzy logic. This new theory treats uncertainty and imprecision

with the same formalism. This modelling is used in this thesis and the corre-
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sponding formalism is detailed in section 3.2.2. Many statisticians, based on

the work of Finetti [1992], are convinced that probability is su�cient to deal

with uncertainties and thus fuzzy logic is unnecessary. On the other hand,

Bart [1990] claims that probability is a sub-theory of fuzzy logic. Moreover,

[Zadeh, 1995], the creator of fuzzy logic and possibilistic approach, claims that

probability theory and fuzzy logic are complementary rather than competitive

and that possibility theory is the alternative to probability.

Fuzzy modelling is judged more appropriate when few and imprecise infor-

mation is available [Chen, 2000], which is the case in helicopter maintenance

domain [Masmoudi and Haït, 2010]. In fact, Probability requires statistical

data that do not systematically exist and cannot represent subjective un-

certainty and full or partial ignorance. However, fuzzy logic and theory of

possibility overcome these di�culties. Moreover, in many cases and due to

the central limit theorem, the assumption of Gaussian distribution is quite sat-

is�ed. In other cases, scientists used to take strong hypothesis and estimated

the real distribution equivalent or similar to a mastered probability distribu-

tion such as exponential, beta and normal, to be able to make simulations.

Otherwise, the probability formulations like convolution product become too

complex to apply. This fact is highly criticized as we add knowledge that is

not known [Bart, 1990]. Based on fuzzy set modelling, the possibility theory

o�ers an alternative to this problem by providing bounders to a set of possible

probability distributions instead of a crisp one. Moreover, with fuzzy mod-

elling and possibilistic approach, we respect exactly what experts know about

uncertainty; even small hypotheses are also taken to de�ne the entire fuzzy

pro�le. Nevertheless, fuzzy arithmetics are easy to manipulate whatever the

complexity of the pro�le considered. This fact makes the fuzzy/possibilistic

approach powerful enough to keep the attention of many authors in di�erent

research domains, and particularly in planning and scheduling (see section

3.4).

Many papers in literature deal with the comparison between fuzzy/possibilistic

and stochastic approaches [Dubois and Prade, 1993, Mauris, 2007, Nikolaidis

et al., 2004]. Though, using fuzzy logic or probability is still a subject with

high controversy.
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3.3 Planning and scheduling approaches under

uncertainties

Several techniques are provided in literature to deal with uncertainties in plan-

ning and scheduling. These techniques are classi�ed by [Mehta and Uzsoy,

1999] into 4 categories: reactive, predictive-reactive, robust, and knowledge

based approaches. Davenport and Beck [2000] suggested another classi�ca-

tion to 3 categories: proactive, reactive and proactive-reactive. Aloulou [2002]

and Marmier [2007] considered the Davenport approach more complete and

covering all possible approaches. In fact, reactive and predictive-reactive and

knowledge based approaches as explained in [Mehta and Uzsoy, 1999] are

equivalent to the reactive approach as explained by Davenport and Beck.

Then the robust approach as explained in [Mehta and Uzsoy, 1999] is equiva-

lent to the proactive approach as explained by Davenport and Beck. Finally,

proactive-reactive approaches are only considered in the Davenport and Beck

classi�cation. This latter de�nition is the one we will detail in this section.

3.3.1 Proactive approach

The proactive approach consists of anticipating perturbations before they re-

ally happen and count uncertainties while realising the initial planning or

scheduling. It aims at making predictive planning and scheduling more ro-

bust [Davenport and Beck, 2000]. The idea of a proactive approach is to

integrate a robust margin for uncertain activities (date, duration or process-

ing time) into the planning and scheduling to absorb uncertainties during the

execution. The critical chain/ bu�er management approach [Goldratt, 1997]

is the proactive approach that is the most used in industry. Modelling uncer-

tainties with probability and/or fuzzy sets while realizing the initial planning

are among the most used proactive techniques in literature [Bidot, 2005].

3.3.2 Reactive approach

Reactive approaches are applied during the execution [Davenport and Beck,

2000]. They are may be based on an initial predictive planning. The re-

activity is on the accounting of additional information or updates and their

integration into the planning or scheduling that can be within di�erent ways.

Based on [Mehta and Uzsoy, 1999], we distinguish between the totally reac-

tive approach that does not consider an initial predictive planning, and the

predictive-reactive approach that considers a deterministic initial planning
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without considering the variation and a reactive algorithm that provide a new

solution once a new perturbation occurs.

The performance of a totally reactive approach is relatively poor because

the planning is only known once realised. Hence, in several situations reactive

and proactive approaches are to be considered at the same time, thus, we talk

about proactive-reactive approach.

3.3.3 Proactive-reactive approach

Proactive-reactive approach consists of coupling reactive and proactive tech-

niques. Generally static planning and scheduling can not absorb all uncer-

tainties and perturbations, hence a dynamic approach coupling proactive and

reactive approaches is necessary [Davenport and Beck, 2000].

The global approach starts by providing a baseline schedule using a proac-

tive approach based on knowledge (objective or subjective) of uncertainty

and possible disruptions. When disruptions occurs during the execution, a

reactive procedure is called to modify the baseline in response to the corre-

sponding disruptions and produce a new so-called realized schedule [Aytug

et al., 2005]. The study of robustness and stability refers to the di�erence

between the baseline and the realized schedule. To get information about

the study of robustness and how we can provide a robust schedule, we refer

readers to [Herroelen and Leus, 2005, Leus, 2003].

The scenario based technique is considered as a proactive-reactive ap-

proach. It consists of establishing a �exible set of scenarios that cover all

possible perturbations. Flexibility can be considered in time or task sequence

[La, 2005] or also in resource assignment [�exibilité GOThA, 2002] and hence

a large panel of scenarios can be de�ned. According to which scenario occurs,

the corresponding on shelf schedule is executed [Aloulou, 2002]. To get a deep

study of robustness and �exibility we refer readers to [�exibilité GOThA,

2002].

3.4 State of the art about fuzzy planning and

scheduling

Herroelen and Leus [2005] proposed a review of methods that have been used

in literature for scheduling under uncertainty: Stochastic project, Stochas-

tic Gert-network, fuzzy project, robust(proactive), contingent, and sensitivity

analysis scheduling. Motivated by the fuzzy approach, we devote this section
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to the state of the art about fuzzy planning and scheduling.

Since the early 90s, fuzzy logic became a very promising mathematical ap-

proach to model production and project management problems characterized

by uncertainty and imprecision. Wong and Lai [2011] provide a non exhaustive

survey of 402 journal papers leading with 17 applications of fuzzy set theory in

production and operations management. Among the considered applications,

they �nd fuzzy scheduling with 8.44% , capacity planning with 30.27%, aggre-

gate planning with 9.18% and project management with 2.73% as percentage

of applications by application area. In this section, a non exhaustive overview

about fuzzy planning and scheduling is provided. We will distinguish between

production and project planning although they have some similarities.

3.4.1 Fuzzy Pert technique

The Critical Path Method is one of the project scheduling speci�cities. The

majority of the research on the project scheduling topic has been devoted

to fuzzy PERT [Gui�rida and Nagi, 1998]. As explained before, the PERT

technique is composed of two steps; the forward and the backward propaga-

tions. The generalization of the PERT technique to fuzzy parameters is a

complex task. The forward propagation is done using fuzzy arithmetic, lead-

ing to fuzzy earliest dates and a fuzzy end-of-project event. Unfortunately,

backward propagation is no longer applicable because uncertainty would be

taken into account twice. Chanas et al. [2002] study the criticality of tasks

within fuzzy project. Dubois et al. [2003] show that the boundaries of some

fuzzy parameters like the tasks' latest dates and �oats are reached in extreme

con�gurations. Fortin et al. [2005] justify the problem complexity and pro-

pose some algorithms to calculate the tasks' latest dates and �oats. These

parameters are considered in this thesis to deal with the scheduling problem.

3.4.2 Fuzzy planning problem

Applications of fuzzy logic to production planning are not widely used; a fuzzy

modelling of delivery dates and of the resource capacities has for instance been

suggested in [Watanabe, 1990], whereas imprecise operation durations and

preferences at tactical level of production are considered in [Inuiguchi et al.,

1994]. In [Fargier and Thierry, 2000], a fuzzy representation of imprecise or-

dered quantities is proposed. In [Grabot et al., 2005], a fuzzy MRP is provided

based on the formalism of possibility distributions described in [Dubois and

Prade, 1988]. Recently, fuzzy requirement plans have been expressed in terms
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of quantities by periods [Guillaume et al., 2011]. In tactical project planning,

Masmoudi et al. [2011] proposed simulated annealing to provide a robust so-

lution for a fuzzy capacity planning problem. This latter work is to be the

content of chapter 4.

3.4.3 Fuzzy scheduling problem

The study of a fuzzy model of resource-constrained project scheduling has

been initiated in [Hapke et al., 1994, Hapke and Slowinski, 1996]. Slowinski

and Hapke [2000] gather important work in fuzzy scheduling. Many techniques

were generalized to fuzzy parameters, particularly the parallel SGS technique,

and the resource levelling technique.

Leu et al. [1999] and Masmoudi and Haït [2011b] employ a genetic algo-

rithm and fuzzy set theory to develop a resource leveling model under uncer-

tainty. They consider a fuzzy pro�le to represent the uncertain activity dura-

tion. Leu et al. [1999] apply di�erent alpha-cuts (called acceptable risk levels)

on all activity durations and keep for each alpha-level the two deterministic

problems corresponding to all lower(optimistic) and all upper (pessimistic)

bounds. Then, for each deterministic problem, they apply deterministic CPM

techniques to get the margin of each activity and apply a deterministic GA-

based approach to solve the problem. Finally, for each alpha in [0, 1] they get

a solution for the two corresponding deterministic (pessimistic and optimistic)

problems. On the other hand [Masmoudi and Haït, 2011b] apply a general-

ization of the Pert technique per interval provided by [Dubois et al., 2005] to

fuzzy activities durations to get the fuzzy activities margins. Then based on

the fuzzy modelling of resource usage provided in [Masmoudi and Haït, 2010],

they proposed a fuzzy Genetic algorithm to solve the complete problem and

provide only one fuzzy solution instead of multiple deterministic solutions.

Hapke and Slowinski [1996] and Masmoudi and Haït [2011a] employ prior-

ity heuristic method and fuzzy sets to develop a resource-constrained project

scheduling problem under uncertainty. Hapke and Slowinski [1996] consider

the uncertainty in time parameters and apply alpha-cuts on the fuzzy Gantt

chart obtained by using a new parallel SGS that is based on the fuzzy Pert

technique provided in [Dubois and Prade, 1988]. They generate twice as

many deterministic workload plans as the number of alpha-cuts chosen in in-

terval [0, 1]. They correspond to the lower(optimistic) and upper(pessimistic)

bounds of each alpha-level activity durations. On the contrary, Masmoudi and

Haït [2011a] have recently provided completely fuzzy parallel SGS algorithm

in which uncertainty is considered in both time parameters and resource us-
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age. Based on a new modelling of fuzzy workload provided in [Masmoudi and

Haït, 2010], they provide only a couple of fuzzy workload plans instead of a

cumbersome result with multiple deterministic plans.

The work provided in [Masmoudi and Haït, 2011b,a] is to be the content

of chapter 5.
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4.1 Introduction

At the tactical level of planning, a project is viewed as a set of macro-tasks

with both precedence and resource constraints. A macro-task may require
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speci�c skills to be completed (e.g. mechanical skills). Rough cut capacity

planning, performed at the tactical level, aims at allocating the speci�c work-

force, on a periodic basis, in order to complete the macro-tasks within their

time windows (TW) with a minimum cost. The deterministic resource loading

problem is NP-hard. Integrating uncertainties increases the complexity of the

problem.

Two approaches can be considered simultaneously or separately to solve the

tactical planning problem: the time driven approach and the resource driven

approach. The former aims to minimize overcapacity cost (overtime, hiring

and subcontracting capacity cost) and the latter aims to minimize the cost

incurred by projects lateness. To deal with uncertainty, we will introduce a

robustness criterion. This concept, which is also called stability, has gained the

interest of several researchers in operational [Leus, 2003] and tactical [Wullink

et al., 2004] planning. Hans [2001] has proposed a Branch-and-Price technique

to solve the deterministic RCCP. In this chapter, the Hans' model will be

generalized to uncertain parameters to cope with fuzzy and stochastic multi-

project tactical planning problem.

A main issue of project planning for aircraft maintenance is to account

for uncertainties. Wullink et al. [2004] have extended the deterministic Hans'

model to develop a scenario-based approach based on a discretization of the

stochastic work content. They consider a time driven problem and also intro-

duce di�erent robustness objective functions. In this chapter1, we represent

uncertainties with fuzzy numbers and stochastic distributions. We have devel-

oped a simulated annealing algorithm to solve the non-deterministic RCCP

problem, where uncertainty is mainly re�ected into the objective function.

Moreover, contrary to Wullink et al., uncertainty is modelled with continuous

distributions. Next section outlines the fuzzy and stochastic modelling of the

RCCP problem under uncertainty, even though for the following computation

section, we consider only the fuzzy RCCP problem.

4.2 RCCP Problem under uncertainty

The Rough Cut Capacity Planning is applied at the negotiation stage with

customer. It consists of studying the impact of a project-acceptance on the

resource capacity and provide a feasible and competitive project delivery date.

Applying RCCP approach to uncertain projects results in a network of

1This chapter is based on joint work with Dr. Erwin Hans and partially reproduce the

content of the paper [Masmoudi et al., 2011]
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work packages with rough estimates of resource requirements (in man-hours

as explained in the previous section) and minimum durations. This afore-

mentioned de�nition of the RCCP result is shared by many authors [de Boer,

1998, Wullink, 2005, Masmoudi et al., 2011]. The minimum durations are a

result of technical constraints such as available working space and expected

precedence relations between activities at a lower level. A feasible tactical

plan respects all these technological restrictions in addition to the decided

projects' release and due dates.

Without loss of generality, a multiple project capacity planning problem

can be modelled as a single project capacity planning problem. This single

project contains all macro-tasks from all projects. A tactical planning (RCCP)

consists of allocating macro-tasks portions of work contents to time periods

(e.g. 50 hours in period 3, 100 hours in period 4) in order to determine the

required capacity and reliable projects release and due dates.

In this chapter, we deal with the RCCP problem in MROs domain and

the management of HMVs is particularly considered. The PUMA helicopter

HMV, for example, lasts about 6 months. Hence, the planning horizon for

a helicopter maintenance is set to 12 months in order to cover the overall

delay of a project. This situation can be compared to ETO manufacturing

environment [Hans, 2001]. The modelling of uncertain inputs for the RCCP

problem is provided in the next section. After that, a deterministic modelling

of the RCCP problem is provided and then generalized to fuzzy and stochastic

areas.

4.2.1 Uncertain project release date

Figure 4.1 presents an example of an equipment inspection date determina-

tion from helicopter exploitation assumptions, calendar limits and �ight hours

(top) or �ight cycle (bottom) limits, for example 30000 hours or 15000 cycles

by 10 years. From the update, �ight hours evolve in a range going from no

exploitation to the physical limits of the aircraft, through pessimistic and

optimistic exploitation values. Intersections of these lines with calendar and

�ight hours limits de�ne the four points aH , bH , cH and dH of the trapezoidal

fuzzy number H̃, inspection date according to �ight hours. It is the same for

�ight cycles.

For a single equipment, the fuzzy inspection date is the minimum between

fuzzy dates involved by �ight hours (H̃) and cycles limits (C̃):

min(H̃, C̃) = (min(aH , aC),min(bH , bC),min(cH , cC),min(dH , dC)) (4.1)
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Figure 4.1: Fuzzy inspection release date

The HMV fuzzy release date R̃d is the minimum between fuzzy inspection

dates of the critical equipments and the helicopter itself. The uncertainty in

this date decreases along the time, as information on helicopter utilization

increases.

The HMV starting and due dates are �xed 6 to 8 weeks ahead after a nego-

tiation between the MRO stakeholders and the customer (helicopter owner).

The deterministic starting date S is chosen among the possible values of the

fuzzy release date R̃d.

Deterministic project release and due dates are required to make the tacti-

cal planning. Hence, for projects with fuzzy release dates (not yet negotiated),

a degree of risk is considered by the MRO planner. This degree of risk is quan-

ti�ed by the possibility and necessity of the event "S ≥ R̃d".
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4.2.2 Uncertain macro-task work content

At tactical level, uncertainty in macro-task work content is mainly due to

additional tasks generated by unexpected corrective maintenance. These ad-

ditional tasks (work and delays) can represent one third to one half of the

total project workload. They generally appear during the structural inspec-

tion macro-tasks, but the whole project is impacted.

Procurement for corrective maintenance may introduce delays in planning.

As the equipments to be purchased are not known before inspection, we con-

sider di�erent scenarios: the equipment is available on site; or at a European

supplier; or at a foreign supplier; or it may be found after some research; or it

is obsolete and must be manufactured again. According to the information on

the helicopter (age of the aircraft, conditions of use, etc...), some scenarios can

be discarded from the beginning (e.g. new helicopter⇒ no obsolescence) and

others at the end of the major inspection macro-tasks and hence macro-tasks

workloads are re�ned.

Macro-tasks work contents are established by asking experts. Rommelfanger

[1990] proposes a 6-point fuzzy number to represent the expert knowledge.

In this work, however, we will still consider 4-point fuzzy numbers within a

trapezoidal pro�le.

Each macro-task work content is divided into portions that are allocated

to the time periods between the macro-task's starting and �nishing dates

[Masmoudi et al., 2011]. Let us consider a macro-task A with a fuzzy work

content P̃A = (120, 180, 240, 300) present between period 3 and period 5. One

third of the work content corresponds to resource type 1(υA1 = 1/3) and

two thirds correspond to resource type 2(υA2 = 2/3). We choose to carry

out the three quarters of the macro-task A at period 3(YA3 = 3/4) and the

other quarter at period 4(YA4 = 1/4). Table 4.1 shows the macro-task and its

di�erent work content portions.

Table 4.1: Fuzzy macro-task Resource portions

Macro-task Resource type Period 3 Period 4

A 1 (30,45,60,75) (10,15,20,25)

A 2 (60,90,120,150) (20,30,40,50)

Analogously, we can consider a stochastic distribution to model the macro-

task work content e.g. using a beta distribution we get P̃A = (120, 300, 2, 2)

with β = α = 2. To obtain the di�erent work content portions we apply
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classical mathematics (see Table 4.2).

Table 4.2: Stochastic macro-task Resource portions

Macro-task Resource type Period 3 Period 4

A 1 (30, 75, 2, 2) (10, 25, 2, 2)

A 2 (60, 150, 2, 2) (20, 50, 2, 2)

4.2.3 Deterministic RCCP

We consider a set of projects (index j ∈ 1, . . . , n) composed of macro-tasks

(b, j), b ∈ 1, . . . , nj, linked by precedence constraints. A project is constrained

by its release and due dates, and so are its macro-tasks. The work content

of macro-task (b, j) is denoted pbj and its minimum duration ωbj. To perform

a macro-task, several skills may be needed. A resource group (index i ∈
1, . . . , I) is associated to each skill. The fraction of macro-task work content

pbj performed by resource group i is denoted υbji, so that
∑

i υbji = 1 ∀b, j.
Finally, we consider a planning horizon discretized into T + 1 periods (index

t). Variable Ybjt represents the fraction of the work content of macro-task

(b, j) executed in period t.

In order to model the calendar and precedence constraints, Hans [2001]

uses the concept of order plan. We can transpose it to project planning. A

project plan ajπ speci�es for each macro-task (b, j) the periods in which it is

allowed to be performed. A project plan ajπ is a vector of 0-1 values abjtπ
(b = 1, . . . , nj, t = 0, . . . , T ) where abjtπ = 1 if macro-task (b, j) is allowed

to be performed in period t, 0 otherwise. A feasible project plan is a project

plan that respects release and due dates as well as precedence constraints.

Hence, to ensure consistency, variables Ybjt can be greater than 0 if and only

if abjtπ = 1. The vector Yj of variables Ybjt, b = 1, . . . , nj, t = 0, . . . , T is

called project schedule. A plan is de�ned as a set of elements Pbjt = pbj.Ybjt
that specify the amount of the work content (in hours) of macro-task (b, j)

executed in period t.

A tactical plan is de�ned by parameters Wit =
∑

j pjυjiYjt corresponding

to the total workload by resource group i (i ∈ 1, . . . , I) to be executed in

period t (t = 0, . . . , T ).

We present below the adaptation of Hans' model to our multi-project

RCCP problem. Hans used a Branch and Price technique, and so divided

the global RCCP problem into a master problem and pricing problem. We
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provide only the master problem to understand the approach, given that we

will use simulated annealing to solve the problem. To get more informations

about the Hans' model we refer readers to [Hans, 2001, Wullink, 2005].

Objective : Min(Cost) (4.2)

S.t.: ∑
π∈Πj

Xjπ = 1 ∀j (4.3)

Ybjt −
∑

π∈Πj
abjtπXjπ

ωbj
≤ 0 ∀b, j, t (4.4)

T∑
t=0

Ybjt = 1 ∀b, j, t (4.5)

∑
b,j

pbjυbjiYbjt ≤ κit1 +Oit +Hit + Sit ∀i, t (4.6)

Oit ≤ κit2 − κit1 ∀i, t (4.7)

Hit ≤ κit3 − κit2 ∀i, t (4.8)

all variables ≥ 0 (4.9)

Xjπ ∈ {0, 1} ∀j, π (4.10)

Where:

κi1t: regular capacity available on resource i in week t.

κi2t: regular and overtime capacity on resource i in week t.

κi3t: regular, overtime and hiring capacity on resource i in week t.

Oit: number of overtime hours on resource i in week t.

Hit: number of hired hours in week t.

Sit: number of subcontracted hours in week t.

The implicit objective function 4.2 is to be speci�ed in Section 4.2.4 and

Section 4.2.5 with uncertainty consideration based on fuzzy sets modelling and

probability modelling. Constraints 4.3 and 4.10 make sure that exactly one

project plan is selected for each project. Constraints 4.4 guarantee a minimum

duration (ωbj) for macro-task (b, j) and make sure that the project schedule

(Ybjt) and the project plan (
∑

π∈Πj
abjtπXjπ) are consistent. Constraint 4.5

make sure that all work is done. Constraints 4.6, 4.7 and 4.8 make sure that

capacity limits are respected. Constraint 4.6 will particularly be generalized

to fuzzy and stochastic processing time to integrate uncertainties into the

model.
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Uncertainty is considered for activities processing times as con�rmed in

[Elmaghraby, 2002]. Hence, we will provide a fuzzy modelling and a stochastic

modelling of the processing time instead of a crisp one (pbj → p̃bj). Fuzzy and

stochastic modelling are studied separately in what follows and corresponding

objective functions are de�ned to be integrated in a generalization of the

previous model to solve RCCP problem under uncertainties. We refer to

these problems as Fuzzy RCCP and Stochastic RCCP, respectively.

4.2.4 Fuzzy RCCP

The macro-task work content is an uncertain quantity vaguely de�ned by

experts; for example, the expert says that the macro-task (b, j) needs on

average 100 to 140 hours, but 80 to 160 hours is possible in extreme cases.

Therefore, the macro-task (b, j) works content is represented by a 4-points

fuzzy number (p̃bj = [80, 100, 140, 160]). The same de�nition is available for

all uncertain macro-tasks.

As processing times are to be modelled with fuzzy pro�les, a tactical plan

is de�ned by parameters W̃it =
∑

b,j p̃bjυbjiYbjt, corresponding to the total

workload by resource group i i ∈ 1, . . . , I) to be executed in period t (t =

0, . . . , T ) (Figure 4.2), while W̃it are fuzzy numbers calculated using fuzzy

mathematical operations explained in chapter 3 (W̃it = (aWit
, bWit

, cWit
, dWit

)).

Periods

Resource i

Period t− 1 Wit−1

Period t Wit

Period t+ 1 Wit+1

Figure 4.2: Partial fuzzy workload plan

Let Lit be the capacity limit of resource i at period t = 0, . . . , T . To

check if the fuzzy workload exceeds the capacity limit or not, we consider the

possibilistic approach. In fact, to measure the truth of event W̃it < Lit, we
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need the couple Π(W̃it < Lit) and N(W̃it < Lit). Thus:

Π(W̃it < Lit) = 1−N(Lit ≤ W̃it)

= sup
u<Lit

µW̃it
(u) = sup

u
min(µW̃it

(u), µ(−∞,Lit[(u)) (4.11)

N(W̃it < Lit) = 1− Π(Lit ≤ W̃it)

= 1− sup
u≥Lit

µW̃it
(u) = inf

u
max(1− µW̃it

(u), µ(−∞,Lit[(u)) (4.12)

1
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W̃it

)

Workload

1

aWit
bWit

cWit
dWit
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N(W̃it < Lit)

Figure 4.3: How to get a fuzzy load by period using the Necessity and possi-

bility measures.

Figure 4.3 shows the way to represent a fuzzy load by period using the

necessity and possibility measures. This representation is similar to the one

proposed by [Grabot et al., 2005] to model uncertainty in orders in MRP.

LetNit and Πit be the values of the workload membership function intersec-

tion with the capacity limits: ∀i, t Nit = N(W̃it < Lit) and Πit = Π(W̃it < Lit)

(∀i, t) with N and Π the possibility and necessity measures respectively. Ex-

pressions Nit and Πit are calculated as follows:

Nit =


0 ifLit < cWit

Lit−cWit
dWit−cWit

if Lit ∈ [cWit
, dWit

]

1 ifLit > dWit

(4.13)

Πit =


0 if Lit < aWit

Lit−aWit
bWit−aWit

if Lit ∈ [aWit
, bWit

]

1 if Lit > bWit

(4.14)

It is common in literature to use the term "credibility" that is in some way a

combination of the possibility and the necessity. Liu and Liu [2002] proposed
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the following simple expression Crit = 1
2
(Nit + Πit) (∀i, t). However, it is

possible to consider other expressions of Credibility like Crit = βNit + (1 −
β)Πit) (β ∈ [0, 1]) giving di�erent weights to possibility and necessity. The

possibility Πit, necessity Nit, and consequently Crit are to be minimized while

dealing with optimization of the capacity planning problem [Masmoudi et al.,

2011].

Once the representation of uncertainty is done, the model in Section 4.2.3

can be completed by one or more fuzzy objective functions to �nally obtain

a fuzzy RCCP model. In the following sections some fuzzy objectives are

provided and will be analysed on a real problem case in Section 4.4.2.

4.2.4.1 Fuzzy cost expectation

The non regular capacity (overtime, hiring and subcontracting) is fuzzy be-

cause it represents the di�erence between the fuzzy workload and the di�erent

capacity limits. The objective function to minimize the costs of the use of non

regular capacity is:

Ẽ =
I∑
i=1

T∑
t=0

(ςi1Õit + ςi2H̃it + ςi3S̃it)

where:

ςi1, ςi2, and ςi3 specify the costs of using one hour of non regular capacity

(overtime Õit, hiring H̃it, and subcontracting S̃it, respectively).

Defuzzi�cation is one of the easiest ways to solve the fuzzy problem within

a deterministic way. The defuzzi�cation is studied in the literature and Dubois

and Prade [1987] proposed a simple formula for trapezoidal pro�les. This lat-

ter is used to provide the following defuzzi�cation of the fuzzy cost expecta-

tion:

E =
I∑
i=1

T∑
t=0

l∑
m=1

qm(ςi1Oitm + ςi2Hitm + ςi3Sitm) (4.15)

Hence, the cost expectation is a weighted sum of the costs for the various work

content values (weights qm). For example, with trapezoidal fuzzy numbers,

we have l = 4. We use a credibility expression, and consider q1 = q2 = (1−β)
2

and q3 = q4 = β
2
with β > 1

2
to give more importance to the necessity pro�le.

4.2.4.2 Fuzzy robustness functions

Fuzzy tactical planning is a new concept that we develop in this thesis. There-

fore, no robustness functions are available in literature for FRCCP. Project
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scheduling deals partially with projects lateness; di�erence between project j

completion time (Cj) and due date (dj). In the fuzzy scheduling literature,

the robustness functions are called satisfaction grades. Some authors calculate

the satisfaction grade using an approach based on possibility measure [Song

and Petrovic, 2006] and others calculate it based on intersection area [Chen

and Hwang, 1992] (see �gure 4.4).

d j
~

µ(t)

SG1

1
C j
~

t

(a) Using possibility measure

d j
~

µ(t)

1
C j
~

tSG2

(b) Using area of intersection

Figure 4.4: Satisfaction Grade of completion time.

The two satisfaction grades are calculated respectively as follows:

SG1 = ΠC̃j
(d̃j) = sup

j
min(µC̃j(t), µd̃j(t)) (4.16)

SG2 = (areaC̃j ∩ d̃j)/(areaC̃j) (4.17)

For FRCCP problem, we propose to measure robustness as the eventual-

ity of a plan to exceed a capacity limit i.e. compare the fuzzy workload to

the available capacity. Inspired from the SG1, we provide a �rst robustness

expression:

R1 =

∑T
t=0

∑I
i=1

∑3
p=1 ςip(βNipt + (1− β)Πipt)

(T + 1)(
∑I

i=1

∑3
p=1 ςip)

(4.18)

Where Nipt and Πipt are the values of the workload membership function

intersection with the capacity limits κipt (p ∈ {1, 2, 3}): Nipt = N(W̃it < κipt)

and Πipt = Π(W̃it < κipt) (∀i, p, t) with N and Π respectively the possibility

and necessity measures (see Figure 4.5). The weighted sum βNipt+(1−β)Πipt

expresses the credibility of W̃it being under the limit κipt. Expressions Nipt

and Πipt are calculated as follows:



58 Chapter 4. New project planning under uncertainties

Nipt =


0 ifκipt < cWit

κipt−cWit
dWit−cWit

if κipt ∈ [cWit
, dWit

]

1 ifκipt > dWit

(4.19)

Πipt =


0 if κipt < aWit

κipt−aWit
bWit−aWit

if κipt ∈ [aWit
, bWit

]

1 if κipt > bWit

(4.20)

0 1

Si3t
Ni3t

0 1

Si2t
S ′i2t

Πi2t

0 1

Si1t

S ′i1t

Πit1 Regular capacity

Overtime

Hired capacity

Subcontracted
capacity

κi1t

κi2t

κi3t

aWit

bWit

cWit

dWit

Figure 4.5: Fuzzy distribution and robustness coe�cients

Inspired from SG2, a second fuzzy robustness function can be provided

based on intersection area. This function accounts for the necessary and po-

tential excess value of workload over the capacity limit, represented by surfaces

Sipt and S
′
ipt, whereas the previous one relies on necessity and possibility of

excess. Figure 4.5 shows the robustness coe�cients Nipt, Πipt, Sipt and S
′
ipt.

The second robustness objective function using intersection area is de�ned

as follows:

R2 =

∑T
t=0

∑I
i=1

∑3
p=1 ςip(

β
Sipt+1

+ 1−β
S′ipt+1

)

(T + 1)(
∑K

i=1

∑3
p=1 ςip)

(4.21)

The fuzzy workload W̃it at period t is equal to
∑

bj Ybjtυbjip̃bj. Let W̃it =

[aWit
, bWit

, cWit
, dWit

], the areas Sipt and S
′
ipt (see Figure 4.5) are calculated as

follows:

While dealing with RCCP problem, the planner is looking for a planning

that is robust for at least the �rst periods of the planning horizon and that

remains robust as long as possible. Hence, we reward early robustness more
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for t = 0→ T do

for i = 1→ I do

for p = 1→ 3 do

if dWit < κipt then

Sipt = 0

else if cWit
> κipt or cWit

= dWit
then

Sipt =
cWit

+dWit

2 − κipt
else

Sipt =
(dWit

−κipt)
2

2(dWit
−cWit

)

end if

if bWit
< κipt then

S′ipt = 0

else if aWit > κipt or aWit = bWit then

S′ipt =
aWit

+bWit

2 − κipt
else

S′ipt =
(bWit

−κipt)
2

2(bWit
−aWit

)

end if

end for

end for

end for

Figure 4.6: How to calculate S ′ipt and Sipt to get the robustness function R2

than late robustness [Wullink, 2005]. The aforementioned robustness functions

can be easily modi�ed to be time related. Nevertheless, this concept will not

be taken into account in this work.

The aforementioned robustness functions R1 and R2 are both non-linear.

Hence, it is di�cult to integrate into an LP-based algorithm like the B&Price

approach of Hans [2001], and the linear programming based heuristics of Gade-

mann and Schutten [2005]. On the other hand, within the simulated annealing

heuristic that will be provided later, these di�erent objective functions are ac-

cepted.

4.2.5 Stochastic RCCP

The macro-task work content is an uncertain quantity. We suppose that it

can be modelled with a probability distribution instead of fuzzy pro�le. But,

which distribution is appropriate? In project management, and particularly

when applying stochastic PERT/CPM techniques, the beta distribution is the

most frequently used because it is bounded, positive, continuous, uni-modal,

and multi-shaped. To get the probabilistic workload pro�le that is de�ned by

parameters W̃it, we should sum up the fractions (by period and by resource

type) of macro-tasks' workload probability distributions (see section 4.2.2).
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Analogously to the way presented for fuzzy load (see �gure 4.3), we propose

a way to model stochastic load through the rotation of the probability cumu-

lative function (see �gure 4.7).

Wit
~

1 1

F it
~

WorkloadWorkload

P ( F  < L   )
it it

~

Period t

Workload

dW it

aW it

dW it
aW it

dW it
aW it

Figure 4.7: How to get a stochastic load by period

Figure 4.8 shows the two possible models; Possibility vs probability distri-

butions. Hence, the aforementioned couple possibility (Π(t)) and necessity(N(t))

pro�les are changed by the cumulative probability distribution function (P (t)).

S

Period t Period t

Regular capacity

Overtime

Hired capacity

Subcontracted capacity

κi1t

κi2t

κi3t

a

b

Π(t)

c

d

N(t)

a

d

P (t)

Figure 4.8: Fuzzy vs stochastic workload distribution

4.2.5.1 Stochastic expectation and variance evaluation

In stochastic scheduling, authors analyse the expectation and the variance

as objectives to �nd optimal solutions [Subhash et al., 2010]. According to

our knowledge, this idea had never been used to solve stochastic planning

problems. The beta distribution is considered in this section to show the result
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of our study, however any other distribution can be used. Table 1.1 in section

1.3 shows a PUMA HMV project with macro-tasks work contents de�ned

with beta distributions. Let p̃bj = [abj, dbj, αbj, βbj] be the work content of the

macro-task (b, j) that is represented with a beta distribution. The expectation

and the variance are calculated as follows:

E(p̃bj) = abj + (dbj − abj)
αbj

αbj + βbj
(4.22)

V (p̃bj) = (dbj − abj)2 αbjβbj
(αbj + βbj)2(αbj + βbj + 1)

(4.23)

A Workload plan is de�ned by W̃it =
∑

bj p̃bjυbjiYbjt (∀ i, t). Hence, the

expectation is calculated as follows:

E(W̃it) = E(
∑
bj

p̃bjυbjiYbjt) =
∑
bj

E(p̃bj)υbjiYbjt

=
∑
bj

(abj + (dbj − abj)
αbj

αbj + βbj
)υbjiYbjt (4.24)

And the formulation of variance is as follows:

V (W̃it) = V (
∑
bj

p̃bjυbjiYbjt) =
∑
bj

V (p̃bj)υ
2
bjiY

2
bjt

=
∑
bj

(dbj − abj)2 αbjβbj
(αbj + βbj)2(αbj + βbj + 1)

υ2
bjiY

2
bjt (4.25)

Minimizing the variance or the expectation can be considered as objective

function. By di�erent ways, we can minimize an expression that combines the

variance and the expected value [Subhash et al., 2010]:

Obj = min(w1
∑
it

E(W̃it) + w2
∑
it

V (W̃it)) (4.26)

Obj = max(=
T −

∑
itE(W̃it)∑

it V (W̃it)
) (4.27)

4.2.5.2 Stochastic robustness evaluation

Let F̃it be the complementary cumulative function of the distribution W̃it.

Hence, a stochastic workload is the set of cumulative functions F̃it. The

robustness function can be de�ned as follows:

R =
1

K(T + 1)(
∑3

p=1 ςp)

T∑
t=0

K∑
i=1

3∑
p=1

ςpPipt (4.28)
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where Pipt = P (F̃it < κipt).

There are a lot of estimations to simplify formulations within beta distri-

bution for example [Browning and Yassine, 2010, Dimitri, 1988]. Nevertheless,

the use of continuous distributions is still computationally too heavy. In fact,

the use of convolution production to get cumulative pro�les (per period, per

resource type and per macro-task) is too complex and strongly in�uences the

running times. Hence, instead of studying continuous distributions, only the

couple expectation and variance can be considered [Subhash et al., 2010].

4.3 Solving RCCP algorithms

The RCCP problem is proven to be NP hard [Kis, 2005]. Hence, solving the

RCCP problem to optimality in the deterministic case may be unrealistic for

big instances [Hans, 2001]. Moreover, the problem is more complex while

dealing with uncertainties [Wullink, 2005]. Hence, several heuristics are pro-

vided in [de Boer, 1998, Gademann and Schutten, 2005]. Below, we provide a

generalization of existing algorithms: the exact Branch and Price provided in

[Hans, 2001] and one of the LP-based heuristics proposed in [Gademann and

Schutten, 2005]. Then, a new simulated annealing procedure is provided for

the non-deterministic RCCP problem.

4.3.1 Generalization of existing algorithms

Hans [2001] proposes an exact branch&Price algorithm to solve the RCCP

problem within the resource driven technique. Branch and price technique is

useful when coping with large-scale IP problems. It integrates Branch&Bound

and Column Generation methods. The ILP problem is �rst relaxed. Column

generation is done at each Branch&Bound tree node to solve the LP relaxation.

To check optimality, a sub-problem called pricing problem is solved to identify

columns to enter the basis. If such columns are found, the LP is re-optimized.

Branching occurs when no more columns are candidate to enter the basis and

the LP solution does not satisfy integrality conditions [Barnhart et al., 1998].

In [Hans, 2001], and according to the model shown in section 4.2.3 the

feasible project plans ajπ are the binary columns that are used as input for

the model. Binary variable Xjπ takes value 1 if project plan ajπ is selected

for project j, 0 otherwise. Hence the variables of the master problem are the

project plan selection variablesXjπ and the project schedule variables Yjt. The

determination of feasible project plans according to calendar and precedence

constraints is done in the sub-problem. The linear programming relaxation of
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this ILP is obtained by replacing (19) by Xjπ ≥ 0(∀j, π ∈ Πj). The optimiza-

tion of the given LP is done by performing column generation on a restricted

LP, in which for each project j, a subset Π̃j of feasible columns Πj is con-

sidered. The pricing algorithm generates other columns ajπ for project j and

adds them to Π̃j when possible. After optimizing the LP, the branch&Bound

is performed in conjunction with column generation to �nd an optimal solution

to the ILP.

de Boer [1998] provides several heuristics to deal with RCCP problem

and considers both time driven and resource driven techniques. Gademann

and Schutten [2005] provide several LP based heuristics and compare them

with the heuristics of de-Boer and the Hans' B&Price technique. Among the

heuristics provided in the aforementioned references, we will consider the one

denotedHfeas(basic) in [Gademann and Schutten, 2005]. This heuristic is a time

driven technique and generally provides very good results. It is based on a

steepest-descent step within the Simplex method for evaluating the neighbours

of a set S of time windows. An initial feasible set S is generated by a basic

primal heuristic denotedHbasic [Gademann and Schutten, 2005]. Next, we look

for neighbours and accept the �rst one that leads to an improved schedule.

The local search is continued until no more improvement is found.

4.3.2 Simulated Annealing

In this section, we provide a simulated annealing procedure to successively

modify project plans and project schedules in order to improve the objective

function. The aforementioned fuzzy objective functions are introduced into

the RCCP model. Simulated annealing [Kirkpatrick et al., 1983] is a useful fast

local search heuristic, frequently used for scheduling problems [van Laarhoven

et al., 1992]. We consider the original scheme of the SA. The initial solution,

with objective e1, is chosen at temperature T = Tinitial. Holding T constant,

the initial solution is perturbed and the change in objective ∆e is computed.

For a minimization problem, if the change in objective function is negative

then the new solution is accepted. Else, it is accepted with a probability given

by the Boltzmann factor exp − (∆e/T ). This process is repeated N times

to give good sampling statistics for the current temperature, and then the

temperature is decremented by (1− alpha)% and the entire process repeated

until the stop criterion T = Tstop.

Perturbation consists of choosing a new solution in the neighbourhood of

the current one. For the RCCP problem, we saw that a solution is de�ned by

a project plan ajπ and a project schedule Yj (see section 4.2.3). A neighbour
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is then either a solution with the same project plan and a modi�ed project

schedule, or a solution with a neighbour project plan and its associated project

schedule. Gademann and Schutten [2005] use a LP-based local search heuristic

to improve a feasible solution. An improved feasible plan is obtained by dual

LP information, solving the LP problem according to this plan then gives the

new schedule.

In our simulated annealing scheme, we propose to use both kinds of neigh-

bours. A feasible project plan ajπ is de�ned by the set of intervals [Sbj, Cbj]

(referred as Allowed To Work (ATW) in [Gademann and Schutten, 2005])

where Sbj is the starting interval of macro-task (b, j) and Cbj is its comple-

tion interval. In the following, ESj is the earliest start interval of macro-task

(b, j), succ(bj) are the successors of macro-task (b, j), and pred(bj) are its

predecessors. Variables Ybjt are used for the project schedule, heuristically

de�ned by spreading the work content over the allowed periods. We consider,

as objective functions, the expected cost and robustness expressions presented

in Section 4.2.5.1. The heuristic proceeds as follows:

• Step1: Initialize with a feasible set of ATW windows (Sbj = ESbj and

Cbj = min(Ssucc(bj)−1)) with a uniform spread of each activity workload

through its ATW.

• Step2: Local modi�cation 1: We randomly modify the project schedule

(see below).

• Step3: Local modi�cation 2: We randomly modify the project plan (see

below).

• Step4: Keep the best solution in memory. If some termination criterion

is met then stop, else go to Step2.

Step2 starts with choosing the period t that has the greater minimum

value of workload W̃it. Among all macro-tasks present in this period, we

select the macro-task (b, j) that has the maximum positive slack time. Then,

the fraction of the macro-task workload in period t (Ybjt) is spread uniformly

through [Sbj, t − 1] ∪ [t + 1, Cbj]. Note that a random selection of the period

and then a random selection of a macro-task provides better results while

computation time is not limited.

Step3 starts with randomly choosing the way to modify the ATWwindows

by increasing or decreasing either start or completion times by 1. Below, the

4 possible neighbourhoods are explained in detail.
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The �rst possible neighbourhood is to increase a starting time: we choose

the macro-task (b, j) having the minimum positive local slack time(Cbj−Sbj−
ωbj). Randomly choosing a macro-task with a positive local slack time pro-

vides better results and the combination between random and guided selection

is the best. Once the macro-task has been selected, we apply the following

modi�cations:

− YbjSbj is spread uniformly into Sbj + 1 and Cbj.

− Sbj is increased by 1.

− CPredbj is also increased by 1 if all successors start at least at Sbj.

The second possible neighbourhood is to decrease a completion time: we

choose the macro-task (b, j) having the minimum positive local slack time(Cbj−
Sbj−ωbj). To randomly choose a macro-task having a positive local slack time

provides better results and the combination between random and guided se-

lection is the best. Once the macro-task has been selected, we apply the

following modi�cations:

− YbjCbj is spread uniformly into Sbj and Cbj − 1.

− Cbjt is decreased by 1.

− SSucc(bj) is also decreased by 1 if all predecessors �nish at most at Cbj.

The third possible neighbourhood is to decrease a starting time: we choose

the macro-task j having the minimum positive free slack time(Sbj − SPredbj −
ωPredbj). To randomly choose a macro-task having a positive local free slack

time provides better results and the combination between random and guided

selection is the best. Once the macro-task has been selected, we apply the

following modi�cations:

− YPredbjCPredbj is spread uniformly into SPredbj and CPredbj − 1.

− Sbj is decreased by 1.

− CPredbj is also decreased by 1 if all successors start at least at Sbj.

− SSuccPredbj is decreased by 1 if all predecessors �nish at most at CPredbj .

This modi�cation is selected randomly.
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The fourth possible neighbourhood is to increase a completion time: we choose

the macro-task (b, j) having the minimum positive free slack time(SSucc(j) −
Sbj−ωbj). To randomly choose a macro-task having a positive local free slack

time provides better results and the combination between random and guided

selection is the best. Once the macro-task has been selected, we apply the

following modi�cations:

− YSuccbjSSuccbj is spread uniformly into SSucc(bj) + 1 and CSucc(j).

− Cbj is increased by 1.

− SSuccbj is also increased by 1 if all predecessors �nish no later than Cbj.

− CPredSuccbj is increased by 1 if all successors start at least at SSuccbj .

This modi�cation is selected randomly.

Contrary to the Branch&Price algorithm, Simulated Annealing accepts both

linear and non linear objective functions. The simulated Annealing parame-

ters are chosen in a generic way respecting the rule of acceptance ratio (ac-

cepted solutions/N for the �rst iteration) that should be greater than 95%.

The use of design of experiments is imaginable as further work to �x param-

eters while completion time is limited.

4.4 Computations and comparisons

Instances from the navy ships maintenance domain [Hans, 2001] are consid-

ered to validate our simulated annealing algorithm in comparison with the

algorithms provided by the Dutch team resumed in [Hans, 2001, Gademann

and Schutten, 2005, de Boer, 1998]. To be able to make comparisons, only

the expectation objective function that is linear is considered. Once simulated

annealing is validated with a linear objective, an application to the helicopter

maintenance domain is provided with di�erent objectives functions-linear and

non linear- such as expectation and robustness functions.

4.4.1 Validation of the simulated annealing procedure

To validate our SA, we consider several instances from navy ships maintenance

domain that we got from the Dutch group [Hans, 2001]. We consider projects

with 10, 20 and 50 macro-tasks, then we consider 1 to 3 projects in parallel.

Table 4.3 contains the result of simulation for simple projects. We use * when
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Table 4.3: Simulated annealing vs B&Price and LP-based heuristic

Instances Exact Heuristic SA

value time(sec) value time(sec) value time(sec)

P
ro
je
ct
s
w
it
h
1
0
m
a
cr
o
-t
a
sk
s

O
n
e
p
ro
je
ct rccp129 17403* 0.38 17403 0.32 17440 5285.51

rccp219 14648* 7.41 14891 0.43 14978 5781.95

rccp309 28409* 38,31 28857 0.77 28752 8264.92

rccp399 12402 > 1321.15 12414 1.41 12514 7167

rccp489 25606 > 403.71 25790 4.04 25710 12177.22

T
w
o
p
ro
je
ct
s rccp127en128 19704* 5.16 19704 1.27 20051 6684.09

rccp217en218 4742 > 3452.4 14540 3.95 14777 8459.07

rccp307en308 � � 14479 5.54 14929 8762.97

rccp397en398 � � 35184 10.75 37278 12973.1

rccp487en488 � � 35714 16.43 35642 14393

T
h
re
e
p
ro
je
ct
s rccp127en128en129 20342* 42.77 20342 2.19 21669 8675.56

rccp217en218en219 � � 13195 12.42 14111 10220.3

rccp307en308en309 � � 21708 21.73 24260 13231.25

rccp397en398en399 � � 25211 38.54 30034 15861.21

rccp487en488en489 � � 36644 55.56 32880 19599.91

P
ro
je
ct
s
w
it
h
2
0
m
a
cr
o
-t
a
sk
s

O
n
e
p
ro
je
ct rccp159 18829* 1.01 18829 0.6 18977 7763.02

rccp249 � � 18644 2.47 19105 10399.73

rccp339 � � 12414 3.46 12581 7071.51

rccp429 � � 26696 7.49 24771 12705.73

rccp519 � � 26580 10.62 21797 14479.98

T
w
o
p
ro
je
ct
s rccp157en158 15854 > 10142.76 15851 6.04 16387 13404.92

rccp247en248 � � 28747 18.87 30688 18314.84

rccp337en338 � � 32454 37.48 29587 22990.68

rccp427en428 � � 20036 84.59 13523 74883.09

rccp517en518 � � 20923 91.87 21576 25263.09

T
h
re
e
p
ro
je
ct
s rccp157en158en159 � � 15290 9.41 16014 18641.84

rccp247en248en249 � � 24038 50.57 26111 24843.32

rccp337en338en339 � � 24527 155.37 26544 30655.01

rccp427en428en429 � � 19265 243.23 22064 26957.45

rccp517en518en519 � � 12305 461.22 15201 33258.35

P
ro
je
ct
s
w
it
h
5
0
m
a
cr
o
-t
a
sk
s

O
n
e
p
ro
je
ct rccp189 26249 > 857.36 26248 15.17 26431 28584.52

rccp279 � � 12504 46.85 12571 20727.02

rccp369 � � 11909 70.45 11568 22349.19

rccp459 � � 15600 128.41 14519 23271.3

rccp549 � � 16152 177.24 17126 28530.14

T
w
o
p
ro
je
ct
s rccp187en188 17502 51.93 17888 30868.82

rccp277en278 � � 11804 556.35 13085 34785.2

rccp367en368 � � 12044 381.68 13237 39925.51

rccp457en458 � � 9039 1335.46 14416 53396.72

rccp547en548 � � 9545 2986.79 15084 52485.94

T
h
re
e
p
ro
je
ct
s rccp187en128en129 � � 22342 209.29 23495 71719.83

rccp277en278en279 � � 9088.42 2166.8 10007 51061

rccp367en368en369 � � 6809 3634.17 7857 57724.04

rccp457en458en459 � � 7422 3652.98 12161 65041

rccp547en548en549 � � 8004 3640.22 12910 70628.58

an optimal solution is found, and � when no competitive solution is achieved

even after an excessive computation time.

The Hans' Branch and Price technique provides optimal solutions for very

simple instances. The LP-based heuristic of Gademan and Schutten is the
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most e�ective in terms of computation time.

Table 4.4: Simulated annealing vs LP-based heuristic for big instances

Instances Heuristic SA

value time(sec) value time(sec)

P
ro
je
ct
s
w
it
h
1
0
m
a
cr
o
-t
a
sk
s

O
n
e
p
ro
je
ct rccp485 14716 2.61 15151 8443.51

rccp486 45746 1.25 49297 13591.59

rccp487 40020 2.53 40304 10333.9

rccp488 23251 5.23 23279 11089.36

rccp489 25790 3.62 25582 12391.71

T
w
o
p
ro
je
ct
s rccp485en486 38073 23.23 42561 16973.39

rccp486en487 53926 17.86 57190 16969.39

rccp487en488 35714 16.67 35981 13908.99

rccp488en489 30628 14.14 25610 15772.75

rccp485en489 21494 17.87 22674 15824.02

T
h
re
e
p
ro
je
ct
s rccp485en486en487 37364 82.09 44368 20717.81

rccp486en487en488 40878 81.29 43629 21685.43

rccp487en488en489 36644 60.72 33764 19587.95

rccp485en487en489 32985 37.12 31456 18733.79

rccp486en488en489 35363 60.23 39135 22056

P
ro
je
ct
s
w
it
h
2
0
m
a
cr
o
-t
a
sk
s

O
n
e
p
ro
je
ct rccp515 19838 11.01 19988 13990

rccp516 13417 21.16 12105 11799.47

rccp517 22315 16.17 23007 17016.25

rccp518 26349 1497 25421 15600.49

rccp519 26580 9.49 21216 14554.27

T
w
o
p
ro
je
ct
s rccp515en516 13069 66.07 14829 19648.16

rccp516en517 19072 85.51 15446 25989.88

rccp517en518 20923 78.92 21770 25537.81

rccp518en519 20541 76.43 21107 23746.13

rccp515en519 16313 77.51 17689 20880.3

T
h
re
e
p
ro
je
ct
s rccp515en516en517 13449 215.76 12716 31918.06

rccp516en517en518 14720 158.37 15855 32444.7

rccp517en518en519 12305 345.93 14989 32252.93

rccp515en517en519 9849 435.4 13199 32465.18

rccp516en518en519 14034 209.61 15362 29198.99

P
ro
je
ct
s
w
it
h
5
0
m
a
cr
o
-t
a
sk
s

O
n
e
p
ro
je
ct rccp545 12649 193.53 12003 24234.91

rccp546 17250 268.43 18166 29267.98

rccp547 18176 256.66 18760 31529.23

rccp548 12146 198.86 12751 31271.65

rccp549 16152 151.86 16881 28399.91

T
w
o
p
ro
je
ct
s rccp546en547 14785 2433.39 18830 54733.52

rccp547en548 9545 3286.39 13592 52915.72

rccp548en549 7843 2520.86 11006 48358.46

rccp545en549 12676 2101.43 14059 49885.64

T
h
re
e
p
ro
je
ct
s rccp485en486en487 12594 3691.91 16741 76680

rccp486en487en488 13379 3637.55 13390 72963

rccp487en488en489 7979 3637.63 13773 74335.68

rccp485en487en489 9870 3656.83 13037 72795

rccp486en488en489 6774 3639.39 9381.1 68597

For the majority of the instances, the LP-based heuristic and the SA are

competitive in terms of solutions. For more complex instances, we exclude

exact techniques from comparison as they do not provide optimal solutions
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any more (see Table 4.4).

We notice a big di�erence in computation time between our SA algorithm

and the LP-based heuristic for simple and complex instances, which is due to

the use of di�erent computation methods as we use Matlab to model our SA

which is a matrix oriented language and Gademann and Schutten used Delphi

which is much more e�cient than Matlab in native computations. We expect

to signi�cantly reduce the computation time while converting our Matlab code

to Delphi code, and thus comparison will be more realistic with a competitive

computation time and objective values.

It is apparent that the simulated annealing is very competitive for many

instances. Moreover, we know that the more time the algorithm takes, the

better is the result. Hence, for very complex instances, the increase of SA

parameters is necessary to improve the convergence of the algorithm. Table 4.5

shows the result of simulation for several big instances considering di�erent

parameter values in comparison with the LP-based heuristic.

Table 4.5: Results using di�erent parameters; application to big instances

Instances SA(T=100,N=70,α =0.997) SA(T=150,N=100,α =0.998) Heuristic

value time(sec) value time(sec) value time(sec)

rccp546en547 18830 54733.52 13886 116786.74 14785 2433.39

rccp547en548 13592 52915.72 11835 119550.31 9545 3286.31

rccp545en546en547 16741 76680.57 10819 163302.51 12594 3691.91

rccp546en547en548 13390 72963 9834 111873.41 13379 3637.55

The study of SA algorithm parameters is beyond the scope of this thesis.

Nevertheless, the use of Design of experiments is expected to improve the

performance of the SA algorithm with the selection of best parameters values

[Pongcharoen et al., 2002] (to be studied in future work).

4.4.2 Computations; application to helicopter mainte-

nance

The simulated annealing is applied to the real HMV speci�ed in chapter 1

from the helicopter maintenance domain. For computation, we consider that

the regular capacity limit, the overtime capacity limit and the hiring capacity

limit are �xed in the strategic level of planning and equal to 20 (20 hours

per day equivalent to 100 hours per week). Hence, κi1t = 20, κi2t = 40

and κi3t = 60. All workload exceeding κi3t is subcontracted. The weighting

coe�cient β is chosen equal to 0.6. We consider ςi1 = 20, ςi1 = 50, ςi1 = 100
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the unit costs of respectively overtime, hiring and subcontracted hours. We

consider that the HMV due date was negotiated with the customer and �xed

to 32.

The SA parameters are alpha = 0.995, N = 3∗Number of macro−tasks,
Tinitial = 250, Tstop = 0.005. These parameters values are chosen respecting

the rule of acceptance ratio that should be greater than 0.95%.

The initial solution is obtained by applying Step 1 and the corresponding

fuzzy objective values are E = 33530, R1 = 90.7%, R2 = 87.5%. From

this initial solution, we successively optimize objectives E, R1 and R2. Just

one objective function is introduced into the algorithm and the others are

considered as secondary and calculated at the end. The simulated annealing

is performed 10 times for each objective to draw more reliable conclusions.

Table 4.6 shows the mean values of 10 computations for each objective.

Table 4.6: Study of the di�erent objective functions

Objective: E R1 R2

20592 90.2% 85.5%

Objective: R1 E R2

92.3% 28737 89.9%

Objective: R2 E R1

90.8% 31084 92.0%

It may be di�cult to interpret these results. But, we can notice that

optimizing robustness R1 does not lead to the best values of R2 and vice-

versa. In addition, we can notice that R1 is always better than R2 (not

only for the mean values, but also for separate simulations values) and that

computation time is similar for the optimization of R1 and R2, but there is

an increase of about 15% when optimizing E.

The numerical result justi�es that the study of robustness functions is

useful; by improving the robustness we improve the cost, but, on the contrary,

by improving the cost we may worsen the robustness.

Figure 4.9 shows the convergence of the SA algorithm and the di�erence

between the initial fuzzy workload plan and the result after the optimiza-

tion. The corresponding main objective for this �gure is E = 20475 and the

secondary objectives R1 and R2 are equal to 0.90 and 0.84, respectively.
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Figure 4.9: Result of the simulation: Fuzzy tactical workload plans and algo-

rithm convergence

4.5 Conclusions

This chapter explains how an RCCP problem under uncertainty can be mod-

elled using the fuzzy/possibilistic approach or the stochastic approach. Then,

existing deterministic algorithms are, easily and without adding complexity,

generalized to accommodate uncertainty. Some fuzzy and stochastic objec-

tives functions are de�ned and a Simulated Annealing algorithm is provided

to solve the Fuzzy and the Stochastic RCCP problem. For computation, we

were interested in the fuzzy approach that corresponds more to our case of

study. The Simulated Annealing algorithm is compared to the exact B&Price

technique of Hans [2001] and one of the linear programming based heuris-

tics of Gademann and Schutten [2005] using the expected value as objective

function. Then, a real application from the helicopter maintenance domain is

considered and a study of di�erent fuzzy objective functions is provided.
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Table 4.7: Real PUMA HMV project.

Macro-task Id Pred. Duration Processing times(fuzzy-stochastic) Resource

[a, b, c, d] [a, d, α, β] fraction

Waiting for the release date A - 8 0 0 0

First check B A 1 [60, 90, 120, 150] [60,150,3,4] 1/3-1/3-1/3

Removal structure and mechanics C B 3 [160, 180, 220, 260] [160,260,2,5] 1/2-0-1/2

Removal avionics D B 3 [120, 160, 200, 240] [120,240,2,3] 1/4-1/2 -1/4

Supplying procedure for �nishing E C 14 0 0 0

Mechanical inspection I F C 5 [360, 390, 420, 450] [360,450,3,4] 2/3- 1/3-0

Supplying to assembling G C 7 0 0 0

Supplying to structural inspection H C 2 0 0 0

Subcontracted structure-cleaning I C 1 0 0 0

Subcontracted avionic repairs J D 3 0 0 0

Structural inspection I K I 3 [160, 180, 260, 320] [160,320,3,4] 1/4-0-3/4

Structural inspection II L H-K 1 [120, 160, 180, 200] [120,200,3,4] 1/4-0-3/4

Subcontracted painting M L 1 0 0 0

Mechanical inspection II N F 1 [90, 120, 150,180] [90,180,2,3] 2/3-1/3-0

Assemble helicopter parts O G-J-M-N 1 [120, 180, 240, 280] [120,280,3,4] 1/2-1/4-1/4

Finishing before �y test P E-O 1 [40, 80, 120, 160] [40,160,2,5] 1/2-1/2-0

Test before delivering Q P 1 [40, 60, 80, 100] [40,100,3,4] 1/2-1/2-0

Possible additional work R Q 2 [80, 100, 120, 160] [80,160,3,4] 1/4-1/2-1/4
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5.1 Introduction

Project scheduling consists of generating a feasible schedule that respects

precedence and resource constraints, and achieves speci�c organizational ob-

jectives. The schedule should serve as a baseline for execution. Most of the

scheduling problems are known to be NP-Hard. Many uncertainties can af-

fect the scheduling problem and hence increase its complexity [Bidot, 2005].

In many cases, the real environment is imprecise or/and partially known. In

other areas, we do not know precisely whether some events will occur and,

if yes, for how much time. Elkhayari [2003] groups uncertainties into three

subsets: uncertainties in tasks, uncertainties in resources, and temporal un-

certainties. To deal with uncertainties in scheduling, several techniques are

provided in literature. Davenport and Beck [2000] classify these techniques

into three categories: proactive, reactive, and proactive-reactive approaches.

Proactive scheduling try to cope with uncertainty in creating a �exible (or

robust) schedule as a baseline schedule that does not necessarily need hight

modi�cations while perturbations occurs. On the other hand, reactive ap-

proach is based on the idea to revise and re-optimize the baseline schedule

when an unexpected event occurs. In project scheduling, Herroelen and Leus

[2005] distinguish between �ve main approaches to deal with scheduling un-

der uncertainty: reactive scheduling, stochastic project scheduling, stochastic

project networks, fuzzy project scheduling and proactive/robust scheduling.

Particularly, the fuzzy project scheduling, based on the assumption that task

durations rely on human estimations, is used while theory of probabilities is

not compatible with the decision-making situation e.g. lack of historical data

[Bonnal et al., 2004, Herroelen and Leus, 2005].

Resource management is a prerequisite to get a successful scheduling. Two

major techniques; resource constrained scheduling (RCS) and resource leveling

(RL), are employed for managing resources in a scheduling process [Kim et al.,

2005a]. As far as we know, the resource management issue is not studied in

the fuzzy scheduling �eld. In fact, only fuzzy dates and intervals are treated

and resource workload is always generated consequently by a deterministic

way [Hapke and Slowinski, 1996, Leu et al., 1999].

In this chapter, to manage resources within a fuzzy way, we propose to

keep uncertainty at all steps of the solving procedures. Hence, �rstly, we

exploit the fuzzy/possibilistic approach to model a new concept that we call

fuzzy workload. Secondly, based on this modelling concept, two techniques

RCS and RL are generalized to fuzzy parameters. We refer to these prob-

lems as the fuzzy resource leveling problem (FRLP) and the fuzzy Resource
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Constrained project Scheduling problem (FRCPSP). A genetic algorithm and

greedy algorithm are provided to solve FRLP and FRCPSP, respectively. We

apply these modelling and solving techniques to the instance of civil helicopter

Maintenance activity that were provided in chapter 1.

5.2 Fuzzy task modelling

The project dates and durations are represented by trapezoidal fuzzy num-

bers. Let S̃(aS, bS, cS, dS) be the fuzzy start date of a task T , and D̃(w, x, y, z)

its duration. Let F̃ (aF , bF , cF , dF ) be its �nish date with F̃ = S̃ + D̃. Let C

be the number of operators assigned to the task T . Once starting time and

�nishing time of all tasks are de�ned, in literature, several deterministic re-

source workload plans are established by applying alpha-cuts (see Figure 5.1).

1

aS bS cS dS
aF bF cF dF

x

α

Sαmin SαmaxF
α
min Fαmax

FS

Optimistic

Pessimistic

C

Sαmin Fαmin
x

C

Sαmax Fαmax
x

Figure 5.1: Alpha-cuts and deterministic workloads.

In this section, we provide a new technique to deal with fuzzy resource

planning. Instead of applying alpha-cuts on a fuzzy Gantt to get deterministic

resource plans, both Gantt and workload plan are considered fuzzy.

Inspired from last expressions in section 3.2.2, we can de�ne ]S̃; F̃ [ (re-

spectively, [S̃; F̃ ]), the domain where the task T presence is necessarily (re-

spectively, possibly) true. They represent the truth of the event "t between

the starting and the �nishing date of T". Associated membership functions,

µ]S̃;F̃ [(t) and µ[S̃;F̃ ](t) are respectively denoted N(t) and Π(t).

We can distinguish three di�erent con�gurations depending on the inter-

section degree between fuzzy start and �nish dates (see Figure 5.2): a con�gu-

ration without overlap (dS ≤ aF ), a con�guration with small overlap (dS > aF
and cS ≤ bF ) and a con�guration with large overlap (cS > bF ).
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With small overlap

1

x
S̃ F̃

Without overlap

1

x
S̃ F̃

With large overlap

1

x
S̃ F̃

Figure 5.2: Di�erent con�gurations: with and without overlap.

Each con�guration is studied separately within two modelling (symmetric

and non symmetric) distribution of the workload to be used in the scheduling

optimization algorithms. Building a relevant resource usage pro�le for a task

with fuzzy dates and durations is not straightforward. Most of the time, the

problem parameters are �xed in order to obtain a deterministic con�guration.

This leads to a scenario based approach [Hapke and Slowinski, 1996] where

various signi�cant scenarios may be compared in a decision process: lower and

upper bounds, most plausible con�guration, etc.

In this chapter we propose to build task resource usage pro�les in a way

that keeps track of uncertainty on start and �nish dates. Hence, the pro�le

re�ects the whole possible time interval while giving a plausible repartition of

workload according to the duration parameter value. To achieve this aim, the

resource usage pro�les are de�ned as projections onto the workload space of

the task presence distributions.

5.2.1 Con�guration without overlap

In the con�guration without overlap between the starting date S̃ and the

�nishing date F̃ (see Figure 5.3), we can identify the following intervals of

possibility and necessity:

[dS; aF ] : Π = 1 N = 1

[cS; dS] and [aF ; bF ] : Π = 1 N ≥ 0

[bS; cS] and [bF ; cF ] : Π = 1 N = 0

[aS; bS] and [cF ; dF ] : Π ≥ 0 N = 0

[0; aS] and [dF ; +∞[ : Π = 0 N = 0

Then we characterize the probability of task T presence as a distribution

P (t) situated between the possibility and the necessity pro�les: N(t) ≤ P (t) ≤
Π(t).

We propose a parametric piecewise linear distribution to represent the

probability of the presence of task (dashed lines on Figure 5.3).
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1

aS bS cS dS
λr
λl

aF bF cF dF
w x y z

Π(t) P (t) N(t)

t

(a) General distribution: Non symmetric

1

aS bS cS dS

µS̃
λ

aF bF cF dF

µF̃

w x y z

Π(t) Pλ(t) N(t)

t

(b) Particular distribution: Symmetric

Figure 5.3: Presence of a task: No overlap con�guration.

Both symmetric and non symmetric distributions are considered and will be

used to establish resource requirement. The symmetric distribution is a par-

ticular case, and thus the non symmetric distribution which is the general

one is represented by a compound function depending on di�erent intervals of

possibility and necessity:

P (t) =



λl
bS−aS

(t− aS) if t ∈ [aS; bS]

λl if t ∈ [bS; cS]
1

dS−cS
((1− λl)t+ λldS − cS) if t ∈ [cS; dS]

1 if t ∈ [dS; aF ]
1

bF−aF
((λr − 1)t+ bF − λraF ) if t ∈ [aF ; bF ]

λr if t ∈ [bF ; cF ]
−λr

dF−cF
(t− dF ) if t ∈ [cF ; dF ]

0 otherwise,

(5.1)

where parameters λl and λr, varying from 0 to 1, makes pro�le P (t) evolve

from N(t) (λl = λr = 0) to Π(t) (λl = λr = 1).

Suppose that the resource requirement of the task is r. Resource workload

then lies in [r.w, r.z], according to the task duration. Figure 5.4b presents the

resource pro�les LN(t) and LΠ(t), projections of the necessity and possibility

presence distributions.

We de�ne the "equivalent durations" DN and DΠ of the areas covered by

resource pro�les LN(t) and LΠ(t):

r.DN =

∫ +∞

0

LN(t)dt = r (bF − cS + aF − dS)/2 (5.2)

r.DΠ =

∫ +∞

0

LΠ(t)dt = r (dF − aS + cF − bS)/2 (5.3)

If DN and DΠ do not match with task extreme durations w and z, the

pro�les must be modi�ed so that resource workload belongs to [r.w, r.z]. If
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aS bS cS dS
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w z

Π(t) Pλ(t) N(t)
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aS bS cF dFcS dSaF bF t

LN(t) LΠ(t) (b)

Figure 5.4: Con�guration without overlap: presence distributions (a) and

resource pro�les (b).

DN < w or z < DΠ, the projection of probability presence distribution Pλ(t)

is used to de�ne a minimal or maximal value of λ. The link between task dura-

tion D and pro�le parameter λ, in case of symmetric distribution, is given by

the following formula that expresses the equivalence of resource requirement:

r.D =

∫ +∞

0

r.Pλ(t)dt =

∫ +∞

0

(λ.LΠ(t) + (1− λ)LN(t))dt

=λ.r.DΠ + (1− λ)r.DN

=λ.r (dF − aS + cF − bS)/2 + (1− λ)r (bF − cS + aF − dS)/2. (5.4)

In general case where distribution is non symmetric, the link between the task

duration and the pro�le is as follows:

r.D =

∫ +∞

0

r.P (t)dt

= r.λl(
dS − bS

2
+
cS − aS

2
) + r.λr(

cF − aF
2

+
dF − bF

2
)

+ r.(
aF − dS

2
+
bF − cS

2
) (5.5)

In case of symmetric distribution, the range of λ may be reduced from

[0, 1] to [λmin, λmax] if DN < w and z < DΠ. From the previous relations, we

can deduce:

If DN < w, λmin = (w −DN)/(DΠ −DN)

If z < DΠ, λmax = (z −DN)/(DΠ −DN).
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Figure 5.5: Resource pro�les: restriction to λmin and λmax in order to match

with extreme workloads.

Figure 5.5 shows an example of restricted extreme pro�les.

Let us consider the particular case of a task with a fuzzy duration, but

a deterministic starting date (aS = bS = cS = dS = s, Figure 5.6). If we

choose D = z, there is only one possible position for the task, between s

and dF . So the resource chart is �xed, rectangular shaped. One can remark

that in this case, the projection of the probability distribution is not able to

represent the resource consumption: even with λ = 1, the resource workload

would be underestimated (Figure 5.6). Indeed, the surface of pro�le LΠ(t) is

r.(cF − s+ dF − s)/2 = r.(y + z)/2, lower than r.z.

For any duration D so that (y+ z)/2 < D ≤ z, the area of resource pro�le

LΠ(t) is too small to represent the resource workload. To cope with this

problem, we modify the resource pro�le: in place of points (s, s, cF , dF ), the

new pro�le is de�ned by the points (s, s, c′F , dF ), where c′F = cF +max(0, 2D−
z− y). Hence, while D ≤ (y+ z)/2, the initial pro�le is used and λ ≤ 1, then

the new pro�le is used. When D = z, the rectangular pro�le is reached. A

similar modi�cation can be done for the minimal duration, when the area of

the projected necessity distribution is greater than r.w.

These modi�cations can be generalized to the case with fuzzy dates and

duration. Then the pro�les, if needed, are modi�ed on both sides. The ex-

tended maximal pro�le, de�ned by (aS, b
′
S, c
′
F , dF ), is used when DΠ < D ≤ z.

Values b′S and c′F are:

b′S = bS − 2(D −DΠ)
bS − aS

bS − aS + dF − cF
(5.6)

c′F = cF + 2(D −DΠ)
dF − cF

bS − aS + dF − cF
(5.7)
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ts dFs aF bF cF

(b)LN(t) LΠ(t)

Figure 5.6: Case of a deterministic start date: presence distributions and

maximal resource pro�le.

The reduced minimal pro�le, de�ned by (c′S, dS, aF , b
′
F ), is used when w ≤

D < DN . Values c
′
S and b′F are:

c′S = cS + 2(DN −D)
dS − cS

dS − cS + bF − aF
(5.8)

b′F = bF − 2(DN −D)
bF − aF

dS − cS + bF − aF
(5.9)

Figure 5.7 shows an example of modi�ed extreme pro�les.

r

aS b′S c′F dF t

r

c′S b′F
t

Figure 5.7: Resource pro�les: extension of maximal pro�le and reduction of

minimal pro�le in order to match with extreme workloads r.w and r.z.

5.2.2 Con�guration with small overlap

For the small overlap con�guration (as in the previous con�guration), the

general distribution is also represented by a compound function (dashed line
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on Figure 5.8):

P (t) =



λl
bS−aS

(t− aS) if t ∈ [aS; bS]

λl if t ∈ [bS; cS]
1

dS−cS
((1− λl)t+ λldS − cS) if t ∈ [cS;α]

1
bF−aF

((λr − 1)t+ bF − λraF ) if t ∈ [α; bF ]

λr if t ∈ [bF ; cF ]
−λr

dF−cF
(t− dF ) if t ∈ [cF ; dF ]

0 otherwise.

(5.10)

where the higher point (α, β) is calculated as follows:

α =
(bF − aF )(λldS − cS) + (dS − cS)(λraF − bF )

(bF − aF )(λl − 1) + (dS − cS)(λr − 1)
(5.11)

β =
(bF − λraF )(λl − 1) + (λldS − cS)(λr − 1)

(bF − aF )(λl − 1) + (dS − cS)(λr − 1)
(5.12)

And particularly while λl = λr = λ:

α = α0 =
ds.bf − af .cs

(bf − cs) + (ds − af )
(5.13)

β =
(bf − cs) + λ(ds − af )
(bf − cs) + (ds − af )

(5.14)

aS bS cS dS
aF bF cF dF

β
β0

α0

α
λr
λl

Π(t) P (t) N(t)

t

(a) Non symmetric

aS bS cS dS
aF bF cF dF

β
λ

tβ

Π(t) Pλ(t) N(t)

t

(b) Symmetric

Figure 5.8: Presence of a task: small overlap con�guration

The point (α0, β0) corresponds to the maximum value of the necessity

pro�le (peak). The value β varies in a range [β0, 1] and the value α varies in

a range [aF , dS] along with parameters λl and λr.

The areas of the projected necessity and possibility distributions are:

r.DN =

∫ +∞

0

r.N(t)dt = r. β0
bF − cS

2
= r

(bF − cS)2

2(dS − aF + bF − cS)
(5.15)
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r.DΠ =

∫ +∞

0

r.Π(t)dt = r.(dF − aS + cF − bS)/2 (5.16)

If r.DN is lower than the minimal workload r.w (respectively, r.DΠ greater

than the maximal workload r.z) we use the projection of the presence prob-

ability distribution and determine λmin (respectively, λmax). Given D so that

DN < D < DΠ,

r.D =

∫ +∞

0

r.Pλ(t)dt = λ.r.DΠ + (1− λ)r.DN . (5.17)

In general case where distribution is non symmetric, the link between the

task duration and the pro�le is given by the following formula:

r.D =

∫ +∞

0

r.P (t)dt

= r.λl(
cS + α

2
− aS + bS

2
) + r.λr(

dF + cF
2

− α + bF
2

) + r.β(
bF − cS

2
)

(5.18)

In case of symmetric distribution, when DN < w, λmin = (w−DN)/(DΠ−
DN) and when DΠ > z, λmax = (z −DN)/(DΠ −DN).

The extended maximal pro�le, de�ned by (aS, b
′
S, c
′
F , dF ), is used when DΠ <

D ≤ z. It is the same extended pro�le as the one of no overlap con�gurations.

The reduced minimal pro�le, de�ned by (c′S, dS, aF , b
′
F ), is used when w ≤

D < DN . Values c
′
S and b′F are:

c′S = θ.cS + (1− θ)dS (5.19)
b′F = θ.bF + (1− θ)aF (5.20)

where θ = (1− β0)/(1− β′) and

β′ =

√
r2D2 + 2(dS − aF )r.D − r.D

dS − aF
(5.21)

5.2.3 Con�guration with large overlap

For the large overlap con�guration (as in previous con�gurations), the general

distribution is also represented by a compound function (see Figure 5.9):

P (t) =



λl
bS−aS

(t− aS) if t ∈ [aS; bS]

λl if t ∈ [bS; bF ]
1

bF−cS
((λl − λr)t+ λrbF − λlcS) if t ∈ [bF ; cS]

λr if t ∈ [cS; cF ]
−λr

dF−cF
(t− dF ) if t ∈ [cF ; dF ]

0 otherwise.

(5.22)
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1

aS bS cS dS
aF bF cF dF

λr
λl

Π(t) P (t) N(t)

t

(a) Non symmetric

1

aS bS cS dS
aF bF cF dF

λ

Π(t) P (t) N(t)

t

(b) Symmetric

Figure 5.9: Presence of a task: Large overlap con�guration

The necessity presence distribution is N(t) = 0 ∀t. The areas of the

projected necessity and possibility distributions are:

r.DN =

∫ +∞

0

r.N(t)dt = 0 (5.23)

r.DΠ =

∫ +∞

0

r.Π(t)dt = r.(dF − aS + cF − bS)/2 (5.24)

If the minimal workload r.w is greater than zero (respectively, r.DΠ greater

than the maximal workload r.z) we use the projection of the presence prob-

ability distribution and determine λmin (respectively, λmax). Given D so that

0 < D < DΠ,

r.D =

∫ +∞

0

r.Pλ(t)dt = λ.r.DΠ (5.25)

In general case where distribution is non symmetric, the link between the

task duration and the pro�le, is given by the following formula:

r.D =

∫ +∞

0

r.P (t)dt = r.λl(
cS + bF

2
− aS + bS

2
) + r.λr(

dF + cF
2

− cS + bF
2

))

(5.26)

In case of symmetric distribution, when w > 0, λmin = w/DΠ and when

DΠ > z, λmax = z/DΠ.

The extended maximal pro�le, de�ned by (aS, b
′
S, c
′
F , dF ), is used when

DΠ < D ≤ z. It is the same extended pro�le as the one of no overlap

con�gurations. The minimal pro�le is never reduced.

In this section we have studied the resource workload for a fuzzy task

and provided symmetric and non symmetric fuzzy distribution for the three

possible con�gurations depending on the degree of intersection between the

starting and �nishing times. These modelling approaches will be useful to

solve fuzzy scheduling problem.
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5.2.4 Fuzzy tasks pre-emption

Pre-emption can be a way to add more �exibility to solve scheduling problem.

In case of deterministic projects, pre-emption is provided by cutting macro-

tasks into elementary work parts [de Boer, 1998]. Obviously, the elementary

duration value is unique in the deterministic case and is equal to 1. Thus,

any deterministic duration is a multiplication of 1. In the same way, any

trapezoidal fuzzy number Ã = [a, b, c, d] is equal to a unique linear combina-

tion of the elementary numbers Ĩ0=[1, 1, 1, 1], Ĩ1=[0, 1, 1, 1], Ĩ2=[0, 0, 1, 1] and

Ĩ3=[0, 0, 0, 1], listed from the most necessary to the less possible equal to 1

(see Figure. 5.10) [Masmoudi and Haït, 2011a]:

Ã = aĨ0 + (b− a)Ĩ1 + (c− b)Ĩ3 + (d− c)Ĩ4 (5.27)

µĨ0(x)

x

1

0 1

µĨ1(x)

x

1

0 1

µĨ2(x)

x

1

0 1

µĨ3(x)

x

1

0 1

Figure 5.10: Elementary trapezoidal fuzzy numbers ([Masmoudi and Haït,

2011a])

The decomposition formula (5.27) is applied to tasks fuzzy durations in an

AOA graph. The elementary arcs are assigned in the order of their possibility

to be equal to 1. Thus, the Ĩ0 are assigned �rst, then the Ĩ1, after that the Ĩ2

and �nally the Ĩ3 (see Figure 5.11).
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[0, 0, 1, 1]
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[0, 0, 1, 1]

[0, 0, 0, 1]

Figure 5.11: Fuzzy AOA network; before and after preemption.

For example, the duration of task (34) on the left graph (before pre-

emption) is equal to [1, 2, 3, 3]. According to the formula (5.27), we have
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3̃4 = Ĩ0 + Ĩ1 + Ĩ2. Thus, the task (34) can be replaced in the right graph (after

pre-emption) by (45), (56) and (56) with 4̃5 = Ĩ0, 5̃6 = Ĩ1 and 6̃7 = Ĩ2.

5.3 Fuzzy RL problem

In this section, �rstly, a model for deterministic resource leveling problem is

proposed. Then, a genetic algorithm that support this model is provided, and

�nally generalized to fuzzy parameters.

Many exact and heuristic techniques were developed to solve resource level-

ing problems [Zhao et al., 2006, Easa, 1989]. In multi-projects context, the Re-

source Leveling Problem can be de�ned as a set of tasks with precedence con-

straints and predetermined durations. A schedule is de�ned by a set of tasks

starting times. Let n be the total number of tasks and let N be the number of

projects to schedule and nj the number of tasks in project j (n =
∑N

j=1 nj). A

schedule is de�ned by the set S = (S11, S21, ..., Sn11, ..., Sij, ..., S1N , ..., SnPN)

where Sij is the starting time of task i from project j (Card(S) = n). The

lower and upper bounds of each value Sij are respectively the Earliest Start-

ing time (ESij) and the Latest Starting time (LSij) of task i from project

j. These parameters are de�ned by applying the Critical Path Method. The

objective of the resource leveling technique is to smooth resources utilization

which can be mathematically expressed as follows:

L : min
K∑
k=1

T∑
t=1

[
N∑
j=1

nj∑
i=1

rkijt − r∗k]2 (5.28)

where:

L: The resource leveling index indicates the sum of squared di�erences be-

tween period resource usage and average resource usage.

rkijt: The partial resource k demand of the activity i from the project j at

the period of time t.

D: The projects duration.

K: The number of resource types.

r∗k: average of resource k per period (r∗k = [
∑T

t=1

∑N
j=1

∑nj
i=1 rkit]/D)

5.3.1 Genetic Algorithm description

Since 1975, the Genetic Algorithm has proved its e�ectiveness for complex

problems like particularly the multi-projects and multi-objectives scheduling

problems [Kim et al., 2005b]. The Genetic Algorithm (GA) is particularly
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studied in this chapter. A GA is a search heuristic that follows the natu-

ral evolutionary process. The strength of GA is that it represents the main

computational intelligence approach that cope with big instances. The tech-

nique of GA is quite known, thus to get more complete information about the

Genetic Algorithm technique we refer readers to [Goldberg, 1989].

The genetic algorithm procedure followed in this chapter to cope with

resource leveling problem is presented below in pseudo-code form:

Apply Fuzzy CPM/PERT technique;

Parametrize the Genetic algorithm;

Generate initial population P0 of npop candidates;

Initialize generation counter t← 0;

while Stopping criteria not satisfied do

Evaluate the current population;

Select best candidates using Roulette wheel method;

The best mn candidates from selected candidates are

identically kept for Pt+1 and the other candidates are

reproduced based on Elitist method until the population

Pt+1 is completely generated,

Crossover mk candidates (from npop \ mn) randomly at one

or more random position(s),

Mutate md candidates (from npop \ mn) randomly, by

mutating gmut random genes per candidate,

Increment current population: Pt ← Pt+1,

Increment generation counter: t← t+ 1,

end while

Figure 5.12: A Genetic Algorithm procedure for resource leveling problem

The issue of applying Genetic Algorithm is to de�ne an appropriate form

of chromosome. In resource leveling problem, the well-appropriate form is

the one considering starting times of tasks as decision variables being coded

as genes values (see Figure 5.13). Thus, the sequence of the tasks in the

chromosome corresponds to the sequence of tasks project by project sorted by

their Id number. Each gene value is equal to a possible starting time of the

corresponding task. The starting time of each task Tij is chosen randomly in

its domain rate respecting precedence constraints.

The �tness function needed to evaluate chromosomes is chosen equally

to the resource leveling index L de�ned in 5.28. There was no need in our

algorithm to modify the equation to cope with the fact that GA is traditionally

designed to solve problems of seeking maximums.

The adopted selection technique is the roulette wheel method that we

combine with Elitist method [Goldberg, 1989] in order to improve selection
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T11 T21 ... Tn1 ... Tij ... T1N ... TnN

Project 1 ... Project N

S11 S21 ... Sn1 ... Sij ... S1N ... SnN

Task′s Id

Task′s starting time

Figure 5.13: Chromosome representation in Multi-project resource leveling

e�ciency. Thus, the probability of selection for a chromosome k is propor-

tional to the ratio fk/
∑npop

j=1 fj, where fk is the �tness value of the chromosome

k and npop is the population size. According to the Elitist method, the best

chromosomes of the current generation are kept and preserved into the next

generation.

The GA operators are uniform 1-point crossover and uniform mutation.

The crossover starts with randomly selecting a cut point and parent's chro-

mosomes. The right parts of the chromosomes are swapped and hence child

are generated (see Figure 5.14). Some children generated with this way do

T11 T21 T31 T12 T22 T32 T42 T13 T23 T33

Project 1 Project 2 Project 3

0 3 3 1 2 5 7 2 5 6Parent 1

1 2 3 2 5 6 9 3 7 9

Cut point

Parent 2

0 3 3 1 5 6 9 3 7 9Child 1

1 2 3 2 2 5 7 2 5 6Child 2

Figure 5.14: Uniform 1-point crossover

not satisfy precedence constraints. To deal with this situation, a reparation

technique is applied (see Figure 5.15).

T11 T21 T31 T12 T22 T32 T42 T13 T23 T33

Project 1 Project 2 Project 3

Parent 1 2 3 2 2 5 7 2 5 6

Child
1 2 3 2 3 5 8 2 5 6

Figure 5.15: Reparation after crossover

Let k be the one-cut-point value and the task Tij is the corresponding task
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of the gene k. All genes values of the successors of k must be checked to

deal with precedence constraints. Hence, the task k + 1 is the �rst task to be

checked if its part of the project j, else no reparation is needed. The formula

of reparation is the following:

Slj = max(Slj,maxp∈pred(Tlj)(Spj +Dpj))∀l ∈ [i+ 1, n] (5.29)

Where:

pred(Tlj): The set of predecessors of task Tlj.

Dpj: The duration of the task Tpj.

The mutation consists in randomly replacing at least one gene with a ran-

dom real value within the speci�ed range of the corresponding task's starting

time (see Figure 5.16).

T11 T21 T31 T12 T22 T32 T42 T13 T23 T33

Parent 1 2 3 2 3 5 8 2 5 6

Child
1 2 3 1 3 5 8 2 5 6

Figure 5.16: Uniform mutation

Let k be a selected gene to mutate and the task Tij is its correspondent

task. The new value of the gene is chosen randomly between the maximum

�nishing time of predecessor tasks (maxp∈pred(Tij)(Spj+Dpj)) and the minimum

starting time of successor tasks (minp∈succ(Tij)(Spj)) minus Dij the duration

of Tij.

5.3.2 Fuzzy GA for FRLP

Resource Leveling technique for Fuzzy Scheduling Problem is studied in some

recent papers [Zhao et al., 2006, Leu et al., 1999] where genetic algorithm is

adapted to projects with fuzzy time parameters. The idea in these papers is to

make a di�erent α-cuts on tasks durations to obtain pessimistic and optimistic

scenarios for each α-cut, and then apply deterministic Genetic Algorithm to

each scenario to �nd the corresponding best plan.

In this section, a new vision of fuzzy resource leveling is provided. The

Genetic Algorithm developed in section 5.3.1 copes well with deterministic

Mutli-projects and Multi resources scheduling problems. To be generalized to

fuzzy parameters, some useful hypothesis and extensions are suggested, where

the main idea is to run just one couple of fuzzy Genetic Algorithm instead of

numerous deterministic ones.
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A trapezoidal fuzzy number is numerically represented by 4 deterministic

values. Genetic algorithm becomes very heavy in computation when consider-

ing 4 numbers for each fuzzy decision variable. To deal with this problem only

one value is considered and then the encoding and decoding of each solution

(chromosome) is done according to the principle of linearity (see Figure 5.17)

which appears logical in our case.

x

1
S̃1 S̃2

es1 es2 es3 es4

ẼSij

ls1 ls2 ls3 ls4

L̃Sij

Figure 5.17: Linearity hypothesis

Let ẼSij= [es1, es2, es3, es4] the Earliest Starting time and L̃Sij= [ls1, ls2,

ls3, ls4] the Latest Starting time of task Tij. To generate a possible Starting

time S̃ij = [s1, s2, s3, s4], we choose randomly a value of s4 between es4 and ls4.

Let β = (s4− ls4)/(es4− ls4). Thus, S̃ij is simply calculated according to the

principle of linearity within si = βesi+(1−β)lsi ∀i ∈ {1, 2, 3}. In Figure 5.17

two examples of possible starting times are shown; S̃1 with β = 1/3 and S̃2

with β = 2/3.

Some algorithms in [Fortin et al., 2005] are provided to calculate fuzzy

latest starting times and fuzzy total �oats. However, no algorithms are pro-

vided in the same framework to calculate fuzzy latest �nishing times. As these

parameters are necessary for our study, the following formula is provided to

calculate them:

L̃F ij = min(L̃Sij + D̃ij,min(L̃Ssucc(ij)), D̃d(j)) (5.30)

where:

L̃F ij: The fuzzy Latest Finishing time of task Tij.

D̃dj: The fuzzy duedate of the project j.

As latest starting times are calculated within the consideration of extreme

con�guration as explained in [Dubois et al., 2003], the value of L̃Sij + D̃ij can

exceed the range domain of L̃F ij. In fact, the duration D̃ij of the task Tij
is not necessarily totally in the range of the extreme con�gurations provided

by the forward propagation. Thus, the formula (5.30) provides meaningful

computable results respecting precedence constraints. Considering the same

explanation, the �nishing time is calculated as follows:

F̃ij = min(S̃ij + D̃ij, L̃F ij) (5.31)
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Once starting and �nishing times are calculated for each task, the fuzzy work-

load is established as explained in section 5.2. Thus, for each solution (chro-

mosome), the corresponding fuzzy �tness L̃ is calculated as follows:

L̃ : min
K∑
k=1

T∑
t=1

[
N∑
j=1

nj∑
i=1

r̃kijt − r̃∗k]2 (5.32)

where:

r̃∗k = [
∑T

t=1

∑N
j=1

∑nj
i=1 r̃kit]/D̃

Many defuzzi�cation techniques are provided in literature [Fortemps, 1997,

Dubois and Prade, 1987] to cope with fuzzy rules particularly while using Ge-

netic Algorithm [Sanchez et al., 2009]. In this study, the considered defuzzi-

�cation technique is the mean value proposed by Dubois and Prade [1987].

Hence, Let L̃ = [aL, bL, cL, dL] be a fuzzy value, and L̄ its mean value, thus L̄

= (aL + bL + cL + dL)/4. Moreover D̃ is always projected to the maximum

value of the projects duration.

Section 5.5 contains an application of the fuzzy genetic algorithm to the

helicopter maintenance activity.

5.4 Fuzzy RCPS problem

The Schedule Generation Schemes (SGS) are the core of many heuristics for

the RCPSP. The so-called serial SGS performs activity incrementation and

the parallel SGS performs time incrementation [Kolish and Hartmann, 1999].

In both procedures, tasks are ranked in some order and scheduled according to

resources availabilities. Hapke and Slowinski [1996] have proposed a parallel

scheduling procedure for fuzzy projects. It is based on fuzzy priority rules and

fuzzy time incrementation. The parallel procedure that we propose mainly

di�ers from the latter on the resource availability test.

5.4.1 Fuzzy priority rules

Priority heuristics using crisp or fuzzy time parameters were found e�cient by

many researchers either for one project or multi-project scheduling [Kolish and

Hartmann, 1999, Browning and Yassine, 2010, Hapke and Slowinski, 1996].

It is useful to perform parallel scheduling with a set of rules instead of one

as the computational complexity is generally low [Hapke and Slowinski, 1993].

Some rules that appears to be good in minimizing makespan are presented in
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Table 5.1.

Table 5.1: Priority rules giving good results in makespan minimisation
Rule Name Formula

EST Early Start Time1 min(Ẽsj )

LIS Least Immediate Succesors1 min(|Sj |)
EFT Early Finish Time1 min(Ẽfj )

MIS Most Immediate Succesors1 max(|Sj |)
LST Late Start Time123 min(L̃sj)

MTS Most Total Successors23 max(|Sj |)
LFT Late Finish Time123 min(L̃fj )

GRD Greatest Resource Demand1 p̃j
∑K

k=1 rjk
MINSLK Minimum slack123 min(f̃j)

SASP Shortest Activity from Shortest Project3 min(p̃jl)

MAXSLK Maximum slack3 max(f̃j)

LALP Longest Activity from Longest Project3 max(p̃jl)

SPT Shortest Processing Time123 min(p̃j)

GRPW Greatest Rank Positional Weight123 max(p̃j +
∑

i∈Sj p̃i)

LPT Longuest Processing Time13 min(p̃j)

LRPW Least Rank Positional Weight1 min(p̃j +
∑

i∈Sj p̃i)

Where:
1: used by [Hapke and Slowinski, 1996] for a Fuzzy RCPSP,
2: used by [Kolish and Hartmann, 1999] for Deterministic RCPSP,
3: used by [Browning and Yassine, 2010] for Multi-projects RCPSP (RCMPSP),

p̃j: duration,

L̃fj : last �nishing,

Ẽf
j : Earliest �nishing,

L̃sj : last starting,

Ẽs
j : Earliest starting,

f̃j: margin,

rjk: is the requirement for resource Rk,

Sj: direct successors,

Sj: total successors.

Many other interesting rules could be used, like the Minimum Worst Case

Slack (MINWCS), the Minimum Total Work Content(MINTWC) and some

dynamic and combined rules that are presented in [Browning and Yassine,

2010].
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5.4.2 Parallel and serial tasks

If tasks were independent, the sum of their resource pro�les would give the

overall workloads. However, when considering a precedence constraint be-

tween two tasks, their workload pro�les may not overlap because the con-

straint expresses the fact that the two tasks can not be performed simultane-

ously.

Let us consider two tasks A and B so that A precedes B. Their resource

consumptions are denoted rA and rB. We assume that the starting date of B is

equal to the �nish date of A (e.g. in case of forward earliest dates calculation).

This means that between the start date of A and the �nish date of B, an

activity will occur successively induced by A then B. So between the necessity

peaks of A and B, we can a�rm that an activity will necessarily occur, induced

by A or B. This necessary presence of A or B is projected onto the resource

load space using the minimal resource requirement min(rA, rB), associated to

the pseudo task A ∨B starting at S̃A and �nishing at F̃B (Figure 5.19).

The projected necessity and possibility load pro�les of the sequence A→ B

are de�ned as follow:

LN(A→B)(t) = max(rA.NA(t), rB.NB(t),min(rA, rB).NA∨B(t)) (5.33)

LΠ(A→B)(t) = max(rA.ΠA(t), rB.ΠB(t)) (5.34)

The probability workload pro�le is more complex to de�ne. A constructive

way can be provided; �rstly the distribution of A is de�ned and then the dis-

tribution of B is deduced respecting resources and precedence constraints. Let

us consider A without predecessors. Hence, we can assign to A its symmetric

distribution while λlA = λrA = λA. For B we apply the following checks:

if rBλB > max(rB , rA)− rAλrA then

λlB = (max(rB , rA)− rAλrA)/rB
else if rBλB < min(rB , rA).N(A ∨B)− rAλrA then

λlB = (min(rB , rA).N(A ∨B)− rAλrA)/rB
else

λlB = λB
end if

λrB = f(λlB , DB)

Figure 5.18: Workload modelling for two directly successive tasks

Where DB is the duration of B, f is a function deduced from 5.5, 5.18, and

5.26, and λB is the parameter value of task B distribution while considering

λlB = λrB.
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Once probabilistic distributions of A and B are de�ned respecting resource

and precedence constraints, the sum of the two distributions corresponds to

the total probabilistic workload:

LP (A→B)(t) = rA.PA(t) + rB.PB(t) (5.35)

Figure 5.19 shows the workload while rA = 2, and rB = 1. The integration of

these pro�les, considering updates made by the formula (5.35), gives the total

workload.

The aforementioned approach can be easily generalized to multi-tasks

within the frame of a fuzzy scheduling technique such as Parallel SGS ex-

plained in the following section.

2

t

PA(t)

1

t
PB(t)

1

t
N(A ∨B)
Π(A ∨B)

1

2

t

LΠ(A→B)(t)
LP (A→B)(t)
LN(A→B)(t)

Figure 5.19: Fuzzy continuous workload plan for two successive tasks.

5.4.3 Fuzzy Greedy Algorithm: parallel SGS

Hapke and Slowinski [1996] provide a generalization of parallel SGS to fuzzy

area. They use weak and strong fuzzy inequalities to compare fuzzy numbers

and provide a direct tasks sequence respecting both resources and precedence

constraints. They establish the workload by applying alpha-cuts as mentioned

before.

Let n (index j = 1..n) be the number of tasks to schedule. Within a

loop, we calculate each task's j distribution parameters (λlj then λ
r
j) task by
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task within a new parallel SGS technique based on the new fuzzy workload

modelling provided in this chapter:

Choose a priority rule;

Initialize Ẽsj; the earliest starting time of task j (∀j),
using the CPM technique;

Initialize t̃ = t̃0; the begin of the scheduling horizon (e.g.

t̃ = 0);

Initialize the total resources availabilities at all

scheduling periods;

repeat

Compose the set Av(t̃) of available tasks at t̃

for each j from Av(t̃), in the order of the priority list

do

calculate the corresponding symmetric probabilistic

distribution Pj
if the symmetric probabilistic distribution Pj does not

fit period by period the resources availabilities then

calculate a new Pj with a asymmetric shape

considering the minimum possible value of the left

parameter (λlj)

if the configuration Pj fits the resource

availabilities then

schedule j with corresponding starting and finishing

dates,

integrate the distribution Pj into the workload

plan and update the total resources availabilities,

update the earliest starting time of all successors

of j,

end if

end if

end for

if all tasks from Av(t̃) are scheduled then

t̃ = max(t̃, l̃(t̃))

else

t̃ = max(t̃, at + 1)

end if

until all tasks are scheduled

Figure 5.20: Fuzzy Parallel SGS technique for resource leveling problem

Where:

Av(t̃) is the set of tasks whose defuzzi�cation value of Earliest Starting time

Es are less or equal to the defuzzi�cation value of t̃ (Esj ≤ t, ∀j ∈ Av(t̃)).

l̃(t̃) is the least value among the earliest starting times of tasks from A(t̃) and

the �nishing times of tasks from S(t̃).



5.4. Fuzzy RCPS problem 95

A(t̃) is the set of tasks that are not yet scheduled and whose immediate pre-

decessors have been completed by t̃.

S(t̃) is the set of tasks present in t̃; a task j is considered present in t̃ when

Sj ≤ t ≤ Fj (Sj and Fj are the defuzzi�cations of starting and �nishing time

of j, respectively.

The aforementioned algorithm is to be run as much time as the priority

rules number; we talk about multi priority rule method [Boctor, 1990]. Better

procedures based on Parallel SGS and called multi pass methods [Kolish and

Hartmann, 1999] can be studied, but this is out of scope of this thesis.

Comparing to the algorithm provided by Hapke and Slowinski [1996], the

structure of the fuzzy parallel SGS that is shown in Figure 5.20 is the same.

However, there are two major di�erences: First, the possibility to schedule a

task is checked according to the resource requirement and resource availability

which are deterministic in the Hapke and Slowinski's algorithm and fuzzy in

our algorithm. Second, to generalize the parallel SGS dynamic time progres-

sion [Kolish and Hartmann, 1999] to fuzzy consideration, Hapke and Slowinski

[1996] consider weak and strong inequalities to compare fuzzy dates and make

the adequate incrementation. In our approach, the same progression technique

is considered. However, according to our fuzzy workload consideration, an ad-

ditional speci�c time progressing technique is proposed for a situation where

a task is available for scheduling but still not yet scheduling for a resource

availability problem.

Consequently, our algorithm presents several advantages in comparison

to the Hapke and Slowinski's algorithm: First, with the use of alpha-cuts,

in Hapke and Slowinski's approach, only few possible deterministic scenarios

are generated, because it is impossible to apply all alpha-cuts on di�erent

tasks for combinatory explosion reason. On the other hand, working with

fuzzy charge distribution, in our algorithm, all possible scenarios are covered.

Second, the full solution, in Hapke and Slowinski's approach, is a sort of

an accumulation of many pessimistic and optimistic work load plans, and

a 3D representation is needed to show di�erent scenarios which is judged

by Slowinski "too cumbersome". On the other hand, the full solution, in

our approach, is represented by few workload plans; the optimistic and the

pessimistic and the mean that is particularly considered in Figure 5.20, which

is more understandable by the stakeholders (planners).
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5.5 Computations; application for helicopter main-

tenance

We consider the scheduling application provided in chapter 1 with activity

durations modelled with fuzzy sets (see Table 5.2).

The earliest plan without consideration of resources constraints is shown

in Figure 5.21.
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Figure 5.21: Earliest workload plan; without resource consideration
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Table 5.2: Real mechanical tasks from a PUMA HMV.
Part name Taks Id Id Pred. Experts Equipments Duration (days)

Main Rotor

Put o� Mu� 1 - 1 - [0.5, 0.7, 1, 1.5]

Put o� bearings 2 1 1 - [1, 1.2, 1.4, 1.6]

Put o� �exible components 3 - 1 - [0.1, 0.13, 0.17, 0.2]

Clean 4 2-3 1 Cleaning machine [1, 1.2, 1.4, 1.5]

Non-destructive test 5 4 1 Testing equipment [0.2, 1.3, 0.5, 0.6]

Assemble components 6 5 1 - [1, 1.2, 1.4, 1.5]

Check water-tightness 7 6 1 - [0.2, 0.3, 0.4, 0.5]

Touch up painting 8 7 1 - [0.1, 0.13, 0.17, 0.2]

Tight screws 9 8 1 - [0.3, 0.5, 0.6, 0.7]

Propeller

Put o� axial compressor 10 - 1 - [1.2, 1.5, 1.8, 2]

Put o� centrifugal compressor 11 10 1 - [1.5, 1.6, 1.8, 2]

Purchase 12 10 0 - [0, 1, 2, 4]

Put o� turbine 13 - 1 - [0.5, 0.7, 0.8, 1]

Clean 14 11-13 1 Cleaning machine [0.2, 0.4, 0.5, 0.6]

Non-destructive test 15 14 1 Testing equipment [0.2, 0.3, 0.4, 0.5]

Assemble components 16 12-15 1 - [2, 2.2, 2.8, 3.2]

Touch up painting 17 16 1 - [0.1, 0.13, 0.16, 0.2]

Tight screws 18 17 1 - [0.12, 0.17, 0.2, 0.3]

Test 19 18 1 Test Bench [0.12, 0.17, 0.2, 0.23]

Hydraulic System

Evacuate oil 20 - 2 - [0.1, 0.13, 0.16, 0.2]

Put o� servos 21 20 2 - [0.6, 0.7, 0.8, 1]

Clean 22 21 1 Cleaning machine [0.2, 0.3, 0.4, 0.6]

Non-destructive test 23 22 1 Testing equipment [0.2, 0.3, 0.4, 0.6]

Assemble then remove joints 24 23 2 - [0.8, 1, 1.2, 1.4]

Test 25 24 1 Test Bench [0.1, 0.13, 0.16, 0.2]

Tight screws 26 25 2 - [0.1, 0.13, 0.16, 0.2]



98 Chapter 5. New project scheduling under uncertainties

The result of the SGS and the GA are shown in Figure 5.22, and Fig-

ure 5.23, respectively; and Figure 5.24 shows the convergence of the GA. To

get these results, we considered 3 Mechanics as capacity limit for the parallel

SGS, and 10 days as the due date of all tasks for the Genetic Algorithm.
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Figure 5.22: The workload plan; result of the Parallel SGS (rule LRPW)

The result of each of these algorithms is a sequence of fuzzy tasks, that is

robust according to the objective function that can be minimizing the resource

usage per periods or minimizing the projects makespans.
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We can check the optimal scheduling for di�erent decisions on the capacity

limits (per resource and per period) and the projects due dates, using the

resource driven (parallel SGS) and the time-driven (RL) techniques. These

two techniques can be used iteratively and repetitively within a close loop

until we get a good compromise which minimizes the cost and satis�es the

customers. The iterative use of the two techniques is out of scope of this

thesis.

5.6 Algorithm validation

The new modelling concept we have provided for fuzzy project scheduling is

completely di�erent to what already exists in literature, but, the algorithms

we have provided are basically a generalization to fuzzy area of existing deter-

ministic algorithms such as the parallel SGS of Kolish and Hartmann [1999]

and the GA for RLP of Leu et al. [2000]. Hence, we have just added a layer

of speci�c treatments to support the fuzzy modelling of uncertain data (see

�gure 5.25).

Fuzzy algorithms

Deterministic algorithms

Parallel SGS
Kolish and Hartmann (1999)

Parameters

Procedure

GA
Leu et al. (2000)

Parameters

Procedure

Fuzzy Layer

Deterministic
results

Fuzzy
results

Deterministic
data

Fuzzy
data

Figure 5.25: From deterministic to fuzzy scheduling algorithms

Drira et al. [2011] have made a GA algorithm for a speci�c application in

a fuzzy area. To assess the performance of their algorithm, they compare it

to existing algorithms with deterministic data, because all existing algorithms
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in the literature that deal with the same application case are deterministic.

The question is: suppose the algorithm is proved good for deterministic area,

is it automatically good too for fuzzy area, and vice versa?

To apply our algorithms to deterministic area in order to check their per-

formances, �rst we should eliminate the fuzzy layer, otherwise non necessary

additional treatments are considered. By doing that, we are back to exactly

the initial deterministic algorithms. Notice that more computation time is

expected because we are using Matlab tool that is matrix oriented language

(see section 4.4). We conclude that, the deterministic validation technique as

presented by Drira et al. [2011] can not be carried out for our fuzzy scheduling

algorithms, because the modelling approaches of data that we have provided

are completely new and the algorithms, on the contrary, are just a generaliza-

tion of existing ones to fuzzy data.

5.7 Conclusion

In this chapter, we have presented a fuzzy model for project scheduling prob-

lems. A method to establish a resource workload is proposed for the opera-

tional level of planning. The provided model is applied to the helicopter main-

tenance domain. Based on this modelling approach, we provided a Genetic

Algorithm to solve Fuzzy Resource Levelling Problem [Masmoudi and Haït,

2011b], and a Parallel SGS to solve Fuzzy RCSPS problem [Masmoudi and

Haït, 2011a]. These two techniques (resource leveling and resource scheduling)

can be applied simultaneously within a decisional loop handling projects due

dates and production capacity simultaneously i.e. we can increase/decrease

a project due date and apply resource leveling technique or increase/decrease

the production capacity and apply Resource scheduling technique [Kim et al.,

2005a]. Unfortunately, being limited by the lack of real data from MROs, the

industrial validation of our modelling approach and the algorithms are still

not yet accomplished.





Conclusion and Further research

This thesis deals with project management under uncertainties. It is a study

within the framework of an R&D project, called Hélimaintenance R&D1,

that consists of developing a complete logistical support to improve helicopter

maintenance.

A considerable gain is expected while optimizing the MRO activity. How-

ever, to the best of our knowledge, this subject is under developed until now.

This thesis explains the complexity of this activity. It is particularly focused

on the planning and scheduling problem, taking into account the speci�cities

of the helicopter maintenance domain. The main question this thesis answers

to is how to optimize the helicopter maintenance and deal with uncertainties

inherent to the activity within a proactive approach.

This thesis starts with an introduction to the context of our study and

then a survey of signi�cant subjects that are related to our work, in particular

existing uncertainty modelling approaches such as the fuzzy/possibilistic the-

ory, and existing models and algorithms for operational and tactical planning.

Next, two di�erent approaches are proposed to model uncertainty for tactical

and operational levels of planning. Based on these modelling approaches, sev-

eral algorithms (Simulated Annealing, Genetic Algorithm and Parallel SGS)

are developed to solve the Fuzzy Rough Cut Capacity Problem (FRCCP),

the Fuzzy Resource Leveling Problem (FRLP) and the Fuzzy Resource Con-

straint Project Scheduling Problem (RCPSP), respectively. It is also expected

to generalize other problems and algorithms to fuzzy consideration within the

use of these modelling approaches.

This thesis is a contribution to the development of a Decision Support

System (DSS) for the management of a civil MRO. However, a lot of work still

need to be carried out in order to get an operational DSS e.g. the spare part

management. Moreover, the interaction between di�erent levels of planning

within a reactive proactive decisional scheme is to be carried out after the

validation of the provided modelling approaches and algorithms. Finally, we

will have to deal with the development problem of interaction between the DSS

and the other components of the complete integrated system (see Section 1.1).
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Once all that problems are solved, we will get an original framework that

permits to improve the process by taking into account di�erent data updates

(Return of experiments and result of prognostics), providing (re-)planning and

(re-)scheduling (optimization algorithms), and thus minimizing the activity

cost.
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Tactical and operational planning under uncertainties:

application to helicopter maintenance

Abstract: This thesis is a study within the framework of the Helimaintenance

project; a European project approved by the French aerospace valley cluster that

aims to establish a center for civil helicopter maintenance which is also able to make

R& D projects in the �eld.

Maintenance has attracted more and more interest in the aerospace industry,

especially for critical systems. In particular, aircraft maintenance cost becomes an

important issue. Managing aircraft maintenance center is a complex activity that

can be viewed as multi-project management, where each visit on an aircraft is a

project that should be carried out with the minimum cost-duration. According to

experts in the �eld, the highest di�culty comes from uncertainties that disturb the

activity and cause continuous perturbations in the planning at high and low levels.

According to our knowledges the problem of tactical planning for civil aero-

nautical maintenance center has never been studied. Moreover, in contrary to the

scheduling project problem, the uncertainties in tactical project planning problem

has not been well studied in literature.

Our work consists of integrating uncertainties into both tactical and operational

multi-resources, multi-projects planning and dealing with Rough Cut Capacity Plan-

ning, Resource Leveling Problem and Resource Constraint Project Scheduling Prob-

lem under uncertainties.

This thesis provides a modelling of the periodic workload on tactical level con-

sidering uncertainties in macro-tasks processing times, and a modelling of the con-

tinuous workload on operational level considering uncertainties in tasks durations.

Uncertainty is modelled within a fuzzy/possibilistic approach instead of a stochas-

tic approach since very limited data is available in our case of study. Three types

of problems are referred in this study which are the Fuzzy Rough Cut Capacity

Problem (FRCCP), the Fuzzy Resource Leveling Problem (FRLP) and the Fuzzy

Resource Constraint Project Scheduling Problem (RCPSP).

Moreover, a genetic algorithm and a greedy algorithm (Parallel SGS) are pro-

vided to solve the FRLP and FRCPSP problems, respectively. A simulated Anneal-

ing is provided to solve the FRCCP problem.

Keywords: Project management, helicopters maintenance, planning, schedul-

ing, uncertainty, probability, fuzzy sets, possibility, genetic algorithm, simulated

annealing, parallel SGS, RCCP, RCPSP, RLP,
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