
HAL Id: tel-00843589
https://theses.hal.science/tel-00843589v1

Submitted on 11 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phonemic variability and confusability in pronunciation
modeling for automatic speech recognition

Panagiota Karanasou

To cite this version:
Panagiota Karanasou. Phonemic variability and confusability in pronunciation modeling for auto-
matic speech recognition. Other [cs.OH]. Université Paris Sud - Paris XI, 2013. English. �NNT :
2013PA112087�. �tel-00843589�

https://theses.hal.science/tel-00843589v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-SUD

ÉCOLE DOCTORALE D’INFORMATIQUE DE PARIS-SUD (ED 427)

Laboratoire d’Informatique pour la Mécanique et les Sciences de
l’Ingénieur (LIMSI)

DISCIPLINE INFORMATIQUE

THÈSE DE DOCTORAT

soutenue le 11/06/2013

par

Penny KARANASOU

Phonemic variability and confusability
in pronunciation modeling

for automatic speech recognition

Directeur de thèse : Lori Lamel LIMSI-CNRS
Co-directeur de thèse : François Yvon LIMSI-CNRS, Université Paris-Sud

Composition du jury :

Président du jury : Anne Vilnat LIMSI-CNRS, Université Paris-Sud
Rapporteurs : Frédéric Béchet Université Aix Marseille

Eric Fosler-Lussier Ohio State University
Examinateurs : Lukas Burget Brno University of Technology

Denis Jouvet INRIA Nancy - Grand-Est

Résumé

“Variabilité et confusabilité phonémique pour les modèles de
prononciations au sein d’un système de reconnaissance automatique

de la parole”

Penny Karanasou

Étant donné que la reconnaissance automatique de la parole (ASR) implique de plus
en plus les utilisateurs finaux et élargit ses domaines d’applications, la recherche sur ASR
évolue progressivement vers l’étude de la parole plus spontanée et moins canonique (par
ex. le discours accentué). Cela crée un besoin croissant de mieux modéliser la variation
de prononciation, qui est souvent insuffisamment traitée par le lexique de base. En outre,
de nouveaux mots doivent être ajoutés dans le lexique, ce qui nécessite des moyens fi-
ables pour générer automatiquement des prononciations pour ces mots hors-vocabulaire
(OOVs). Dans la première partie de cette thèse, des approches inspirées de la traduction
automatique statistique sont analysées pour générer automatiquement des prononciations
pour des OOVs et pour enrichir le lexique de base avec des variantes de prononciation.
Cependant, ajouter plusieurs prononciations par mot au vocabulaire peut introduire des
homophones (ou quasi-homophones) et provoquer une augmentation de la confusabilité
du système. La confusabilité de prononciations est plus élevée si toutes les prononciations
sont équiprobables et peut potentiellement altérer la performance d’un système ASR. Une
nouvelle mesure de cette confusabilité est proposée pour analyser et étudier sa relation
avec la performance d’un système ASR. Jusqu’à ce point, des données audio ne sont pas
prises en compte lors de la construction du dictionnaire de prononciation. La prochaine
étape de cette thèse est de concevoir des techniques d’adaptation du dictionnaire perme-
ttant d’enrichir le lexique de base par rapport à un jeu de données particulier, tout en
gardant la confusabilité minimum. Cette adaptation est traditionnellement appliquée à
d’autres parties d’un système ASR (par ex. la modélisation acoustique). Un entraı̂nement
discriminant est utilisé pour entraı̂ner les poids d’un modèle de confusion phonémique
qui introduit des variantes de prononciation dans le système, contrebalançant ainsi le
problème de confusabilité phonémique. La fonction objectif à optimiser est choisie afin
de correspondre à la mesure de performance des différentes tâches étudiées: d’abord,
une tâche ASR, puis, une tâche de détection de mots-clés (KWS). Pour la tâche ASR,
une fonction objectif qui minimise le taux d’erreur au niveau des phonèmes est adoptée.
Pour les expériences menées sur la détection de mots-clés, une approximation de la “ROC
curve”, directement liée à la performance de la détection de mots-clés, est optimisée.

Mots Clefs: modèles de prononciation, conversion graphème-phonème, confusabilité,
apprentissage discriminant, reconnaissance automatique de la parole, détection des mots-
clés

iii

Abstract

“Phonemic variability and confusability in pronunciation modeling
for automatic speech recognition”

Penny Karanasou

As Automatic Speech Recognition (ASR) makes its way to end users and widens its
domains and ranges of applications, research in ASR is progressively shifting towards
the study of more spontaneous and less canonical speech (for ex. accented speech). This
creates an increasing need to better model pronunciation variation, which is often in-
sufficiently covered by the baseline recognition lexicon. In addition, new word forms
need to be entered in the lexicon, which requires reliable means to automatically gen-
erate pronunciations for these out-of-vocabulary words (OOVs). In the first part of this
thesis, approaches inspired by statistical machine translation systems are investigated to
automatically generate pronunciations for OOVs and to enrich the baseline lexicon with
pronunciation variants. However, adding alternative pronunciations may introduce ho-
mophones (or close homophones), thereby increasing the confusability of the system.
Pronunciation confusability is higher when all pronunciations are equally likely and can
potentially harm the ASR performance. Next, a novel measure of this confusability is
proposed and its relation with the ASR performance is investigated. Until this point, no
speech data are taken into account during the construction of the pronunciation dictionary.
The next step of this thesis work is to devise dictionary adaptation techniques, enabling
to enrich an initial lexicon with respect to a particular dataset while at the same time
keeping confusability low. Note that such adaptation is traditionally performed for other
parts of an ASR system (i.e. acoustic modeling). Discriminative training is used to train
the weights of a phoneme confusion model that introduces alternative pronunciations in
the system, thus counterbalancing the phonemic confusability problem. The objective
function to optimize is chosen to match the performance measure for the various tasks
considered: first, an ASR task, then, a Keyword Spotting (KWS) task. For ASR, an ob-
jective that minimizes the phoneme error rate is adopted. For experiments conducted on
KWS, an approximation of the ROC curve, directly related to the KWS performance, is
maximized.

Keywords: pronunciation modeling, g2p conversion, confusability, discriminative train-
ing, speech recognition, keyword spotting

v

Acknowledgements

This thesis is for me the completion of four years of work but also of four enriching
years of life. I feel lucky to have many people to thank for what they offered me during
this period research-wise but also at a human level.

My first acknowledgements are due to my advisors, Lori Lamel and François Yvon.
Lori Lamel first gave me the opportunity to work on the topic of pronunciation modeling,
which was of great interest to me. She gave me a lot of freedom in exploiting diverse
research directions and finding my way through, with a lot of trust in my choices which
I appreciate. She also persuaded me of the importance of a strong experimental part of a
research project and that working with real-world data can add value even to a theoretical-
oriented work.

In a complementary way, François Yvon offered his valuable advice to my thesis in
a moment when I needed more guidance and helped me find a direction to my work that
was proven to correspond perfectly to my research interests. He is a great teacher, from
whom I learned a lot on machine learning and on conducting research in a very organized
and scientifically clear way. I am grateful to him for finding time to talk about any idea
or question I might have had, explaining me the most complicated things in the most
comprehensive way. But also for encouraging me when I needed that, always with a
smile.

Next, I would like to thank Eric Fosler-Lussier and Frédéric Béchet for reviewing
my thesis, as well as Anne Vilnat, Denis Jouvet and Lukas Burget for being members of
my defense committee. Special thanks to E. Fosler-Lussier and D. Jouvet that provided
detailed corrections and suggestions on my manuscript. To thank L. Burget, I start with
the scientific knowledge he passed on to me while collaborating during my internship in
the US, but also for his continuous interest in my work up until now making insightful
comments and giving precious directions. He is the one that convinced me that in research
there are no problems, but challenges. My gratitude to him goes a lot further though, since
he became a friend listening to me and providing caring advice.

I would like to thank particularly Dimitra Vergyri who gave me the opportunity to
spend some months in SRI International’s STAR laboratory. Thanks to her I felt welcome
from day one and I knew I had someone I could rely on being far from home. Meeting
Dimitra and Lukas, people with great human qualities, and working with them was a
great chance I had during this thesis. Thanks also to Murat Akbacak for introducing me
to keyword spotting during the first weeks of my visit to the STAR laboratory and to
Arindam Mandal for his help with the phoneme recognition experiments. I often think of
everybody in this lab with gratitude for helping me integrate and feel like home.

Among the people that helped me in my work, I first refer to Jean-Luc Gauvain, the
head of the Spoken Language Processing group of the LIMSI-CNRS laboratory, for his
help on decoding and for welcoming me in the team. I am also indebted to Aurélien Max
for introducing me to paraphases and the “pivot” method the first year of my thesis. And
to Thomas Lavergne for our long discussions on CRF models and on programming in
C++ (among other things related or not to research) and for a great collaboration when

vii

working with him as a TA. But also for telling me to relax when I needed to do so, and
for his convincing power on people to go for a drink after work (even if it did not always
work with me).

In LIMSI I found an environment where doing research of high quality was combined
with a lot of coffees, “pots” and laughters. First, I thank Thiago Fraga da Silva with
whom I shared the same office from my first day in the lab. He was proven to be the best
officemate I could have had, helping me, supporting me, sharing a wall with postcards
with me and becoming a friend. I remember our discussions in the lab or in a bank in
Paris. My thoughts go also to Nadi Tomeh for making people around him smile. I was
always happy to pass by his office and find him there. Thanks also to Nadege Thorez for
animating every discussion she participated in, and together with Ilya Oparin being able
to talk seriously, but also joke, about almost every topic. I cannot forget to mention Josep
M. Crego, with whom I felt soon at ease and could talk with in a trustful way. Artem
Sokolov for his knowledges and curiosity to learn more in so many fields, and for helping
me with C++ and OpenFst programming issues not leaving from my office until a solution
was found. Hai Son Le for observing when I needed a boost of optimism and offering it
to me. And Clement Chastagnol for our interesting discussions.

I also think of Alexander Allauzen for his “bon humeur”, Guillaume Wisniewski for
teaching me new greek cooking recipes, Hélène Maynard for her positive energy, Hervé
Bredin for sharing some Voodoo donuts with me in Portland and Ioana Vasilescu for
giving me some vitamins the last weeks of my thesis. Thanks also to Claude Barras for
kindly responding to my questions on how a basic speech recognition system works the
first months of my thesis. Other people I appreciate and would like to mention are Martine
Adda-Garnier, Gilles Adda, Philippe Boula de Mareüil and Laurence Devillers.

From the new people that enriched our group the last year, I would like to mention
Billy Hartmann who always had very interesting research ideas to share and who soon be-
came the usual afternoon-break companion of Thiago and me. Thanks to Nicolas Pécheux
for disassembling my laptop with me (and then reassembling it) and for being a warm
person, passionate about his research and many other things. And to Benjamin Marie
for announcing the lunch time. Finally to everyone else we shared good moments with,
hoping I have not forgotten to mention them.

A part of this section must be dedicated to my friends outside the lab, including friend-
ships that started in Greece and were preserved over the years, but also new friends I
made along the way. From the people that have been there for quite a while, I thank Elli
Katsarou for our frequent skype sessions and for being a caring person I can count on.
Angeliki Koulouri and Alkistis Katsivali for our mutual visits all over Europe. Kostas
Kaskavelis because our conversations have always been a source of inspiration. Giorgos
Pierrakos for keeping still in touch despite the distance and for his valuable help with my
resume. From my visit to the US, among some interesting people I met I would like to
mention Gjergji Zyba, who took me under his protection as if I was his little sister. From
the friends I made in Paris, I am grateful to Maro Kalantzopoulou for being there when
I needed it the most and for bringing some family moments in my life in Paris. I would
also like to thank Zoi Kaoudi, Asterios Katsifodimos and Despoina Trivela for discover-
ing “bistronomie” together and for our long specialist-style discussions about everything

viii

in life. And for spending together with Jesús Camacho-Rodrı́guez a lot of moments of
carefree laughters. Yannis Katsis is added to the group for making the “gallette de roi” our
personal new year’s custom and for always calling me in our birthday. While Christina
Zikou was always making me discover new places in Paris. Thanks also to Julien Hochart
for reminding me the value of free time and free choices in life. And finally to Aurélien,
who accompanied me in a big part of this thesis with all the love he could give.

I want to close my acknowledgements thanking my family, knowing that I cannot
thank them enough. My brother, who is a solid presence in my life, whether in Paris, in
Greece or further geographically. He has always known to give wise advice supporting
and protecting me and always believing in me. My father, for making us his first priority
in life, for his love and support and for reminding me that even after the darkest night
there comes a new dawn. This thesis is dedicated to my mother, because I wouldn’t be
here if I had not seen in her eyes all I could become.

ix

Table of Contents

Abstract iii

Acknowledgements vii

Table of Contents xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Automatic Speech Recognition . 1
1.2 Pronunciation variation . 2
1.3 Grapheme-to-phoneme conversion . 5
1.4 The confusability problem . 6
1.5 Motivation . 6
1.6 Thesis outline . 7

2 Background and State-of-the-art 9
2.1 Grapheme-to-phoneme conversion . 9
2.2 Phonemic confusability . 12

2.2.1 Confusability: an ASR error analysis 13
2.2.2 Moderating confusability . 14
2.2.3 Speech-dependent lexicons . 15
2.2.4 Combining g2p conversion and speech-dependent lexicons 16
2.2.5 Phonemic confusability in the Keyword-Spotting task 18

2.3 FST background . 21
2.3.1 Generalities . 21
2.3.2 Semiring . 21
2.3.3 Weighted Finite-State Transducers 21
2.3.4 Some useful semirings . 22
2.3.5 Algorithms . 23
2.3.6 Entropy semiring . 25
2.3.7 Matchers . 26
2.3.8 FST-based speech recognition 26

xi

3 SMT-inspired pronunciation generation 29
3.1 Introduction . 29
3.2 Methodology . 30

3.2.1 Moses as g2p and p2p converter 30
3.2.2 Pivot paraphrasing approach . 32

3.3 Experimental setup . 33
3.4 Evaluation . 35

3.4.1 Definition of evaluation measures 35
3.4.2 G2P conversion results . 36
3.4.3 P2P conversion results . 40

3.5 Speech recognition experiments . 42
3.6 Conclusion . 45

4 Pronunciation confusability 47
4.1 Introduction . 48
4.2 A new confusability measure . 49

4.2.1 ASR decoding with FSTs . 49
4.2.2 Decomposing the acoustic and linguistic modeling 50
4.2.3 Definition of pronunciation entropy 51

4.3 Phoneme recognition . 52
4.4 Pronunciation entropy results . 54
4.5 Conclusion . 56

5 Phoneme confusion model in ASR 59
5.1 Introduction . 59
5.2 Problem set-up . 61
5.3 Training criteria . 62

5.3.1 The CRF model . 62
5.3.2 Soft-margin CRF . 63
5.3.3 Large-margin methods . 63

5.3.3.1 Perceptron . 63
5.3.3.2 Max-margin . 64

5.3.4 Optimization algorithm . 65
5.4 An FST-based implementation . 66

5.4.1 Preprocessing . 66
5.4.2 Defining the input and output FSTs 67
5.4.3 Computing the edit distance with FSTs 68
5.4.4 Discriminative training algorithms 68

5.4.4.1 Perceptron . 69
5.4.4.2 Max-margin . 69
5.4.4.3 CRF . 69
5.4.4.4 Soft-margin CRF . 70

5.5 Experimental setup . 70
5.6 Phonemic analysis . 71
5.7 Evaluation . 72

xii

5.7.1 Computation of the objective . 72
5.7.2 Phoneme Accuracy . 73
5.7.3 Decoding process . 74
5.7.4 Discussion of the results . 77

5.8 Conclusion . 78

6 Confusion model for KWS 81
6.1 Introduction . 81
6.2 Keyword spotting system . 82

6.2.1 Indexing and searching representation 82
6.2.2 Confusion model . 84
6.2.3 Confusion model initialization 85

6.3 Confusion model training . 85
6.3.1 The Figure of Merit . 85
6.3.2 Discriminatively optimizing the Figure of Merit 86

6.4 Experimental setup . 87
6.5 Results . 87
6.6 Conclusion . 89

7 Conclusion and Perspectives 91
7.1 Thesis summary . 91
7.2 Perspectives . 92

Appendix A Phoneme set for American English 95

Appendix B Publications 97

Bibliography 99

xiii

List of Figures

1.1 Basic ASR system architecture . 3

2.1 Basic KWS architecture . 18

3.1 Alignment of the word “rainbow” with its pronunciation /renbo/ 31

4.1 Example of ambiguity during word segmentation in ASR decoding 49
4.2 Expansion of the topology of the P FST with phi and rho matchers that

consume the phonemes inserted between valid pronunciations 51

5.1 Perceptron loss on training data . 72
5.2 CRF objective on training data . 73

6.1 Timed Factored Index . 83
6.2 ROC curves on training data . 88
6.3 ROC curves on evaluation data . 88

xv

List of Tables

2.1 Basic matchers . 26

3.1 Training conditions . 34
3.2 PER on all references (canonical pron+variants) for Moses-g2p (M-g2p)

and Pivot (P) for canonical pronunciation training 37
3.3 PER on all references (canonical pron+variants) for Moses-g2p (M-g2p)

and Pivot (P) for the entire training set condition 37
3.4 Recall on all references (canonical pron+variants) and only on variants

for Moses-g2p (M-g2p) and Pivot (P) for canonical pronunciation training 38
3.5 Recall on all references (canonical prons+variants) and only on variants

for Moses-g2p (M-g2p) and Pivot (P) for the entire training set condition 38
3.6 Recall on variants only for generation of 1-, 4- and 9-best variants by

Moses-g2p (M-g2p) and Pivot (P) for the entire training set condition . . 39
3.7 Macro-Recall on all references (canonical prons+variants) and only on

variants for Moses-g2p (M-g2p) and Pivot (P) for both training conditions. 39
3.8 Results using Moses as phoneme-to-phoneme converter for the 3 training

conditions . 40
3.9 Results using the pivot paraphrasing method for the 3 training conditions 41
3.10 Quaero 2010 development data set composition and baseline word error

rates (%) with the original dictionary and a single pronunciation one. . . 43
3.11 WER(%) adding Moses nbest-lists (M1, M2,M5) to the longest pronunci-

ation baseline . 43
3.12 WER(%) adding Moses nbest-lists (M1, M2,M5) to the most frequent pro-

nunciation baseline . 44
3.13 WER(%) adding Moses nbest-lists (M1, M2,M5) to the original LIMSI

dictionary . 44
3.14 WER(%) generating prons for OOVs using l2s and Moses nbest-lists (M1,

M2, M5, M10). 45

4.1 Average number of states and arcs in the lattices and FSTs 54
4.2 Pronunciation entropy with different dictionary baselines 54
4.3 Pronunciation entropy with the 4-gram LM after adding n-best pronunci-

ations, produced by a Moses-based g2p converter, to the “longest” baseline 55
4.4 Pronunciation entropy with the 4-gram LM after adding Moses’ n-best

pronunciations to the “most frequent” baseline 55

xvii

4.5 WER(%) adding Moses nbest-lists (M1, M2,M5) to the single pronuncia-
tion dictionaries . 56

5.1 Phoneme Accuracy in the dev set . 73
5.2 Phoneme Accuracy in the test set . 73
5.3 Phoneme Accuracy of the phoneme output of the word recognizer (test set) 75
5.4 Word Accuracy on the test set . 77

A.1 Phoneme set for American English . 95

xviii

Chapter 1

Introduction

This thesis starts with an introduction to the problem of pronunciation modeling for
automatic speech recognition (ASR). As the area of speech processing applications ex-
pands, pronunciation modeling, together with speech recognition, are characterized by a
progressive shift of the processed data types from read speech to spontaneous talk, and
of the used methods from knowledge-based to principally statistical ones. Despite a long
history of research in the field, construct a good pronunciation dictionary is still an open
problem. Many decisions are required in the process of building a dictionary. Examples
of such decisions, to name a few, include the size of the dictionary, the sources of varia-
tion to take into account, the number of variants to include, the use or not of information
from other sources such as prosodic or syntactic knowledge, a suitable way to handle the
homophones, etc. Consequently, there is still a vivid interest in improving the construc-
tion of the recognition lexicon, and there are still improvements to be made, especially
when spontaneous or less canonical (i.e., accented) speech is involved.

1.1 Automatic Speech Recognition

Automatic speech recognition is the task of transcribing a recorded speech segment
into its corresponding sequence of words. A general description of an ASR system will
be given following (Young, 1996). The overall procedure realized in an ASR system
is presented in Figure 1.1, taken from (Holmes and Holmes, 2002). A front-end signal
processor is used to convert a speech waveform into a sequence of acoustic vectors, Y =
y1, y2, ..., yT . Each of these vectors is a compact representation of the short-time speech
spectrum covering a period of typically 10 msecs. The utterance consists of a sequence
of words W = w1, w2, ...wT and it is the job of the ASR system to determine the most
probable word sequence Ŵ given the observed acoustic signal Y . To do this, Bayes’ rule
is used to decompose the required probability P (W |Y) into three components, that is:

Ŵ = arg max
W

P (W |Y) = arg max
W

P (W)P (Y |W)

P (Y)
. (1.1)

And if we want to approximate the decision rule to exploit also alternative pronunci-

1

2 CHAPTER 1. INTRODUCTION

ations, it becomes:

Ŵ ∼= arg max
W

∑
q

P (W)P (Sq|W)P (Y |Sq)

∼= arg max
W

max
q
P (W)P (Sq|W)P (Y |Sq), (1.2)

where q = 1, 2, ..., N is the index to multiple phoneme sequences Sq that are alternative
pronunciations for sentence W .

The term P (W) represents the a priori probability of observing the word sequence
W independent of the speech signal and is determined by the language model. The term
P (Y |Sq) gives the probability of observing the vector sequence Y given a phoneme se-
quence Sq and is described by the acoustic model. Finally the term P (Sq|W) gives the
probability of observing the phoneme sequence Sq given the word sequence W and is
described by the pronunciation model.

Finding the best word sequence Ŵ is the task of the decoder. There are two main
approaches: depth-first and breadth-first. In depth-first designs, the most promising hy-
pothesis is pursued until the end of the speech utterance is reached. Some examples of
depth-first decoders are stack decoders and A*-decoders (Jelinek, 1969),(Paul, 1991). In
breadth-first designs, all hypotheses are pursued in parallel. Breadth-first decoding ex-
ploits Bellman’s optimality principle and is often referred to as Viterbi decoding (Aubert,
2000). Large-vocabulary ASR systems are complex and pruning of the search space is
essential; this typically uses a process called beam search (Steinbiss, 1989).

The ideal decoding strategy would use every available knowledge source. But is often
difficult or expensive to integrate a very complex knowledge source into first pass search.
Hence, multi-pass decoders are used (Gales and Young, 2007). The output of the first
recognition pass is generally expressed as a rank-ordered n-best list of possible word
sequences, or as a word graph or a lattice describing all the possibilities as a network. A
multi-pass decoding is inappropriate for real-time applications but it has shown significant
improvements for off-line applications.

1.2 Pronunciation variation
Pronunciation variations can be modeled at different levels of ASR systems described

above, as explained in (Strik and Cucchiarini, 1999): the lexicon, the acoustic model,
the language model. At the acoustic level, context-dependent phone modeling captures
the phone variations within particular contexts. At the lexicon level, alternative pronun-
ciations can be included to explicitly represent pronunciation variation. At the language
model (LM) level, the inter-word pronunciation variations are handled with grammar net-
works, statistical LMs or multi-word models.

The growing interest in automatic transcription of Conversational Telephone Speech
(CTS) has stimulated research in modeling pronunciation variation. It has been found
that pronunciation variation is one of the factors that influences the performance of an au-
tomatic speech recognition system (McAllaster et al., 1998), especially for spontaneous
speech. Indeed, there is a large number of possible pronunciation variants occurring in

1.2. PRONUNCIATION VARIATION 3

Figure 1.1: Basic ASR system architecture

spontaneous speech; these variants often extend beyond single speech sounds (modeled by
the acoustic model) and reach up to whole words or word tuples. Even context-dependent
acoustic models for sub-word units (like phonemes) are not able to cover pronuncia-
tion variants of this kind (Kipp et al., 1997). Some examples of phonetic variability not
captured by (or presenting difficulties for) triphones (context-dependent phones) include
syllable deletion, vowel reduction (prosodic effects) and other cases (non-reduction) of
phone substitution (mostly because of co-articulation). Thus, pronunciation variation is
usually modeled by enumerating appropriate pronunciations for each word in the vocab-
ulary using a pronunciation lexicon.

Following (Ladefoged, 2006), two levels of representation of the pronunciation vari-
ation are distinguished: the broad and the narrow phonetics. The broad phonetics cover
only the more noticeable phonetic features of an utterance, whereas narrow phonetics
encode more information about the phonetic variations of the specific allophones in the
utterance. One particular form of broad phonetics is a phonemic transcription, which
disregards all allophonic difference. This is the kind of transcription that is used in the
recognition dictionary we will be working with in this thesis (Lamel and Adda, 1996).
The narrow phonetics are modeled by the allophones of the acoustic model and are not
the subject of research in this work. It should be noted, however, that there is a continuum
between broad and narrow phonetics, and there are cases where it is difficult to do the
distinction between them.

Examples of broad phonetics are variations that depend on word-level features of
lexical items (such as part-of-speech, case, tense, etc.) and variations that are particular to
specific lexical entries. We give some examples of these variants specifically for English,
which is the language used for the experimental part of this thesis. Variants that depend

4 CHAPTER 1. INTRODUCTION

on word-level features include contractions (“what’s”, “can’t”, etc.), reductions (“gonna”,
“wanna”, etc.), part-of-speech variants (as in the noun and verb versions of “record”),
and tense variants (as in the past and present tense versions of “read”). In most speech
recognition systems, these types of variants are handled in an explicit manner. Reductions
and contractions are typically entered into the pronunciation lexicon as distinct entries
independent of the entries of their constituent words. All alternate pronunciations due to
part of speech or tense are typically entered into the pronunciation lexicon within a single
entry without regard to their underlying syntactic properties.

Other variants modeled by broad phoentics are simply word-dependent pronunciation
variants which are not the result of any linguistic features of that word. A simple example
of a word with such variants is “either”, which has two different phonemic pronunciations.
These variants are typically encoded manually by lexicographers.

Narrow phonetics include variations that depend on the stress and syllable position
of phonemes In English these are typically related to the realization of stop (or plosive)
consonants. The set of possible allophones of a stop consonant in English is heavily
dependent on its position within a syllable and the stress associated with the syllables
preceding and following the stop. For instance, the stop /t/ has several allophonic real-
izations. It is an aspirated phone [th] when word-initial (“tea”) and in front of stressed
syllables. It is glottalized when syllable-final or before nasals [t′] (“eat”). In American
English, intervocalically when the second vowel is unstressed, the /t/ sounds a lot softer
an is pronounced as a flap [R] 1(“butter”).

Another case of narrow phonetics are variations that depend only on local phonemic
or phonetic context (for ex., variants of “coupon”). These are independent of any higher-
level knowledge of lexical features, lexical stress, or syllabification. Examples of these
effects are vowel fronting, place assimilation of stops and fricatives, gemination of nasals
and fricatives, and the insertion of epenthetic silences.

It is important to note that pronunciation variation can result from several sources,
such as human error (i.e., mispronunciations), the linguistic origin of the speaker (re-
gional variation or foreign accent), the speaker’s education and socio-economic level, the
speaking style and conversational context and the relationship between interlocutors (Co-
etzee and Kawahara, 2012). We do not explicitly account for these types of variations
within the grapheme-to-phoneme conversion framework presented in Chapter 3 of this
thesis. However, the methods presented in Chapters 5 and 6 could be used to adapt a
lexicon to a particular accent or speaker if suitable data were available.

Predicting pronunciation variations, that is, alternative pronunciations observed for
a linguistically identical word, is a complicated problem and depends on a number of
factors that will be detailed in the following paragraphs. The construction of a good
pronunciation dictionary is critical to ensure acceptable ASR performance (Lamel and
Adda, 1996). Moreover, the number of pronunciation variants that need to be included
in a dictionary depends on the system configuration. For example, (Adda-Decker and
Lamel, 1999) noticed that, for both read and spontaneous native speech recognition, better
acoustic models seem to demand less pronunciation variants incorporated in the lexicon,

1. A flap is a type of consonantal sound, which is produced with a single contraction of the muscles so
that one articulator (such as the tongue) is thrown against another.

1.3. GRAPHEME-TO-PHONEME CONVERSION 5

because acoustic models can model implicitly a part of the phonemic variation. They also
noted that consistency is one of the most important factors of pronunciation modeling.

What makes pronunciation modeling even more complicated, especially for conversa-
tional speech, is the fact that often there is only a partial change in phones which cannot
be well represented neither by baseforms nor by surface-forms. In (Saraclar and Khudan-
pur, 2004) it is noted that further analysis of the manual phonetic transcription reveals a
significant number (> 20%) of instances where even human labelers disagree on the iden-
tity of the surface-form, as the sound of alternative pronunciations often lie somewhere
between the canonical and alternative pronunciation. The best strategy to adopt to model
pronunciation variation therefore depends on the degree of deviation from the canonical
pronunciation.

Another interesting observation that makes pronunciation modeling a non-trivial prob-
lem is that variation depends also on the frequency of words. (Antilla, 2002) claims that
an adequate theory of phonology should account for the “locus of variation” (where vari-
ation is observed and where it is not), and the “degrees of variation” (the frequency of
different variants). In other words, we should not add the same number of variants to all
words, but allow some variation phenomena more to certain words. For example, frequent
words seem to have more variants in spontaneous speech. This is because speakers seem
to be less careful in pronouncing frequent words and words that are very easily predictable
based on the context (Fosler-Lussier, 1999).

1.3 Grapheme-to-phoneme conversion
Grapheme-to-phoneme conversion (g2p) is the task of finding the pronunciation of a

word given its written form. Despite several decades of research, it remains a challeng-
ing task and plays a role in many applications for human language technologies. It is an
essential element of speech recognition and speech synthesis systems. Moreover with the
wide use of real data there are words not yet included in a recognition dictionary (out-
of-vocabulary words), for which a pronunciation rapidly and automatically generated is
often required. These words are often named entities which depend strongly on current
events and, thus, it is difficult to predict their presence in speech and include them in the
dictionary (Béchet and Yvon, 2000). Another domain of application of the phonetization
task in natural language processing is the detection and correction of orthographic errors
(van Berkel and De Smedt, 1988). What is more, the strong relation between phonol-
ogy and morphology is well known and studied with morphological phenomena of purely
phonological origins or guided by phonological constraints, among other dependencies
(Kaisse, 2005). Other applications include computer-aided language learning, pronuncia-
tion training and in general e-learning systems.

Grapheme-to-phoneme conversion is a way to generate pronunciations totally inde-
pendent of a given set of speech data. The pronunciation model is often the only part of
an ASR system that is static and not trained on a particular data set. However, the need
of a dynamic dictionary adapted to speech data is found to be important to improve ASR
performance. Adding a lot of variants to a recognition dictionary, even if these variants
are evaluated to be of high quality, does not necessarily lead to an improvement in the

6 CHAPTER 1. INTRODUCTION

error rate of the system. The alternative pronunciations introduce a confusability to the
system that is difficult to measure and to limit in an appropriate way. Adding alterna-
tive pronunciations with probabilities can moderate this confusability, but training these
pronunciation weights is an open problem.

1.4 The confusability problem
When adding alternative pronunciations to a lexicon there is always the potential of

introducing a detrimental amount of confusability. The homophone (words that sound
the same but are written differently) rate may increase, which means that these additional
variants may not be helpful to the recognition performance (Tsai et al., 2001). A typical
example in English is the word “you” (see Appendix A for the phoneme notations): the
received pronunciation is /yu/ and is chosen when one single variant is used; modeling
some variation requires to consider the pronunciations /yu/ and /yc/, which both occur
in our multiple pronunciation dictionary. The latter pronunciation (/yc/), in the phrase
“you are”, is easily confused with /ycr/, the pronunciation of “your”. Such confusions, in
particular when they involve frequent words, can cause a degradation of the ASR system
as more alternatives are added.

To handle this confusability, the phonemic variation provided by speech data can be
useful in the process of choosing which variants to add in the recognition lexicon and
of training their weights. In this way, an adapted dynamic lexicon is constructed. This
lexicon is ideally trained to minimize the error rate of the system, as is traditionally done
for the training of the acoustic model and also tried for the training of the language model.

1.5 Motivation
Despite the abundance of work on the automatic generation of pronunciations and

pronunciation variants, there is still place for improvement. Many techniques proposed
to handle the generation of pronunciations for out-of-vocabulary words (OOVs) do not
consider how to model pronunciation variation. The first part of this thesis jointly ad-
dresses the prediction of baseline and variant pronunciations for OOV words, as well
as the enrichment of the dictionary with pronunciation variants for the existing words,
by borrowing techniques from statistical machine translation-in effect, modeling pronun-
ciation variation as we would a foreign language. These variants are often necessary,
especially when working with conversational speech where reduced forms of pronuncia-
tions frequently replace the canonical forms. In this part of the thesis, a given dictionary
is used as the training corpus and no speech data are involved in the training procedure.

A recognition lexicon introduces a certain amount of ambiguity to the decoding pro-
cedure because of homophones that can be present at the word level, but often expand
up to the sentence level. This ambiguity augments when variants are added to the lex-
icon. Subsequently, the focus of this thesis moves towards analyzing this confusability
introduced to the system by a pronunciation dictionary containing or not pronunciation
variants. A measure is proposed to model this confusability at the sentence level using

1.6. THESIS OUTLINE 7

posterior estimates, and its correlation with the error rate of the ASR system is investi-
gated.

Trying to find a way to better moderate this confusability, next speech data are also
taken into account for the construction of the recognition lexicon, which this time is
adapted to a particular audio data set, as is traditionally done for the acoustic model-
ing. In this case, a discriminative framework aiming to directly minimize the error rate of
the system is chosen in order to decide which variants to keep in the lexicon and how to
suitably train their weights.

Finally, a part of this work is dedicated to the keyword spotting (KWS) task which
has gained a lot of attention the last years as the amount of available audio data augments
and an efficient way to index and search them becomes crucial in order to have access to
them. This is a post-processing task of speech recognition, using the output of an ASR
system to construct an index on which a user-defined query term is searched in order to
detect if and when it was uttered. A discriminative framework is adopted again in order to
expand the index of a KWS system adding phonemic variation to it and correcting ASR
errors.

1.6 Thesis outline
Below we present an overview of how this thesis is organized, as well as the main

contributions of each chapter. This document is organized in six chapters, each devoted
to a particular aspect of this work.

Chapter 2 provides the necessary background to follow the rest of the thesis. Besides,
it discusses related work on grapheme-to-phoneme conversion, phonemic confusability
and speech-dependent pronunciations as well as phonemic confusability as it appears in
the keyword spotting task.

Chapter 3 will focus on the automatic generation of pronunciations for OOVs, and of
pronunciation variants when the baseform is given. In this chapter, the main contribution
is two proposed methods that give state-of-the-art results for the grapheme-to-phoneme
and the phoneme-to-phoneme tasks.

Chapter 4 deals with understanding more on the problem of confusability introduced
when a multiple pronunciation dictionary is used. A new measure is proposed to quantify
this confusability and its correlation with the ASR performance is discussed.

Chapter 5 proposes a discriminative framework for expanding the pronunciation dic-
tionary using speech data. A confusion model of phonemic pairs is used to expand the
phonemic space where pronunciations are looked for during ASR decoding. The weights
of this confusion model are discriminatively trained to minimize the phoneme error rate.

Chapter 6 expands the use of a discriminatively trained phonemic confusion model
to the keyword spotting task. This time the objective function to minimize is an approxi-
mation of Figure of Merit (FOM), a measure of the keyword spotting performance.

Chapter 7 gives a final summary of this thesis and some reflections about the pre-
sented work, as well as some future research directions.

Chapter 2

Background and State-of-the-art

This chapter provides an overview of the methods used for automatic generation of
pronunciations and pronunciation variants. A variety of methods have been proposed that
can be broadly grouped into knowledge-based and data-based methods. We can further
distinguish two families of approaches in data-driven pronunciation generation. The first
one represents the case when a pronunciation dictionary (usually manually generated us-
ing linguistic knowledge) is used as the training set to generate pronunciation variants and
new pronunciations for out-of-vocabulary (OOV) words. These tasks are usually referred
to in the literature respectively as grapheme-to-phoneme (g2p) conversion and phoneme-
to-phoneme (p2p) conversion (when only variants of existing baseform pronunciations
are concerned)(Section 2.1).

However, adding pronunciation variants to an ASR system does not always improve
the performance, independently of how these variants are produced. The reason is that
confusability is introduced to the system by the alternative pronunciations. And while all
the other parts of an ASR system are trained to be adapted to particular data and minimize
the system error, this is not the case for the components and the weights of the pronuncia-
tion model. That is why there have been some attempts to generate pronunciations depen-
dent on those observed in speech data and suitably train their weights. Different machine
learning methods have been explored in this direction. Lately discriminative training has
been used and appears to better counterbalance the introduced confusability. This second
family of speech-dependent approaches will be detailed in Section 2.2. There will be a
presentation of the existing literature for the ASR task and also the post-processing ASR
task of keyword spotting (KWS) which is also explored in this thesis.

An important part of the work presented in this thesis on measuring pronunciation
confusability and on the discriminative training of pronunciation weights is implemented
in a Finite State Transducer (FST) framework. Thus, some basic elements of the theory
of FSTs are presented in Section 2.3 of this chapter.

2.1 Grapheme-to-phoneme conversion
Finding the pronunciation of a word from its written form (g2p conversion) has long

been a research topic and has many applications, especially in speech synthesis and recog-

9

10 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

nition, and spelling checkers. For many applications it is important to predict pronunci-
ations of new terms or to add alternative pronunciations for existing ones. One of the
problems we are trying to solve in this way is the problem of OOVs. In speech recogni-
tion, OOVs are never recognized and are substituted by in-vocabulary words. This can
lead to misrecognition also of neighboring words, and thus to errors that cannot be re-
covered by later processing stages. Concerning the need for alternative pronunciations,
it is more crucial in conversational speech when often reduced forms of pronunciations
are used. This, of course, is highly related to the articulatory characteristics and to the
linguistic background of a particular speaker.

Historically a substantial amount of manual effort is involved in the creation of a pro-
nunciation lexicon. Knowledge-based methods using phonological rules (Oshika et al.,
1975), (Divay and Vitale, 1997), (Adda-Decker and Lamel, 1999), (Wester, 2003), require
specific linguistic skills, are not language-independent and do not always capture the ir-
regularities in natural languages, especially in spontaneous speech. These phonological
rules may be implemented implicitly, in that the various alternative pronunciations that
they describe are specifically listed as entries in the lexicon. Or they can be implemented
explicitly in the system. That is, apply transformation rules on the baseform in order to
create alternative pronunciations. Another drawback of these methods is that, there may
be a mismatch between the information found in the linguistic literature and the data for
which the method has to be used. For example, the linguistic resources may not cover
variation found in spontaneous speech (Strik and Cucchiarini, 1999).

However, with the large vocabularies used in automatic systems, there has been a
move towards data-driven approaches, based on the idea that given enough examples it
should be possible to predict the pronunciation of an unseen word simply by analogy. In
this section we will present some methods for automatically constructing a static pronun-
ciation dictionary. Meaning that the only training data available are the pairs of words
and their phonemic transcriptions in a dictionary. No use of speech data will be made to
learn from real spoken utterances. This last case will emerge as a need because of the
drawbacks of static dictionaries and will be examined in details in Section 2.2.

A variety of machine learning techniques have been applied to the g2p problem in the
past including neural networks (Sejnowski and Rosenberg, 1986) and decision trees (Di-
etterich and Bakiri, 1995) that predict a phoneme for each input letter using the letter and
its context as features, but do not consider -or consider very limited- context in the out-
put. More complex configurations of decision trees determine the questioned grapheme
context in a dynamic way as the tree grows (Pagel et al., 1998). Another type of tree is the
classification and regression tree (CART), thoroughly studied by (Breiman et al., 1984).
This kind of tree is grown by testing a set of binary questions for each node, and choosing
the best question according to some measures. Generalized decision trees (Vazirnezhad
et al., 2005), simultaneously take into account word phonological structures, stress, and
phone context information and typically achieve better results.

Other techniques allow previously predicted phonemes to inform future decisions such
as HMM in (Taylor, 2005) but they do not take into account the input’s graphemic context.
With this model, phonemes are regarded as states that form a Markov chain, from which
grapheme observations are drawn independently. The task of pronunciation prediction is

2.1. GRAPHEME-TO-PHONEME CONVERSION 11

then to find the optimal state sequence within the HMM, given a spelling of a word as the
observation sequence. All the above mentioned methods tend to degrade rapidly when
encountering patterns unusual for the language under consideration.

Another proposed method is the so-called “pronunciation by analogy” method (De-
dina and Nusbaum, 1991), (Yvon, 1996), based on formal analogies in the graphemic
domain, allowing derivation of the correct pronunciation for a new word from the parts
of similar words present in the dictionary. Given a suitable measure of similarity between
words, such as the Levenshtein distance, they directly retrieve partial pronunciations for
local fragments of the input word. These pronunciation fragments are then concatenated
to obtain the final pronunciation. The pronunciation by analogy allows a better handling
of unusual patterns, but relies heavily on individual, language-dependent alignments be-
tween letters and phonemes (Bellegarda, 2005).

A g2p converter considered in the literature to give state-of-the-art results is one based
on joint-sequence models, originally proposed by (Deligne et al., 1995) and applied to
g2p conversion by various researchers such as (Bisani and Ney, 2002) and (Chen, 2003).
Such converters achieve better performance by pairing letter sub-strings with phoneme
sub-strings, allowing context to be captured implicitly by these groupings. Other methods
using many-to-many correspondences, such as the one proposed in (Jiampojamarn et al.,
2008) report high accuracy.

Following the reasoning of (Wang and King, 2011), we can observe that of the mod-
els described above, HMMs and joint-sequence models are generative models, i.e., they
model the joint probabilities of graphemes and phonemes and derive the posterior prob-
ability according to the Bayes’ rule. On the other hand, neural networks and decision
trees are discriminative models which estimate the posterior probability directly. From
another perspective, HMMs and joint-sequence models perform global inference, mean-
ing that they search for the optimal pronunciation as an entire phoneme sequence (even
if this is based only on a sliding localized window of grapheme observations), while neu-
ral networks and decision trees perform piece-wise inference to generate pronunciations
for individual graphemes and then compose the word pronunciation by concatenation. A
discriminative model may be superior to a generative model because it does not need to
model the (possibly complex) distributions over observations; on the other hand, global
inference will probably be superior to the piece-wise inference. The CRF model has been
used successfully in speech recognition lately. The idea behind using it also for g2p con-
version is that it is a discriminative model that can perform global inference, suggesting
that it may be more suitable for g2p than decision trees, HMMs or joint-sequence models.
Some examples can be found in (Lavergne et al., 2010), (Wang and King, 2011), (Illina
et al., 2011) and (Lehnen et al., 2011) reporting state-of-the-art performance.

Another interesting approach is the one presented in (Chen et al., 2008). They uti-
lize discriminative training, which has been successfully used in speech recognition, to
sharpen the baseline n-grams of grapheme-phoneme pairs generated by a standard joint-
sequence model. They address the problem in a unified discriminative framework. Two
criteria, maximum mutual information (MMI) and minimum phoneme error (MPE), are
investigated and improvements are shown on the test datasets.

Recently, g2p conversion has also been expressed as a statistical machine translation

12 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

(SMT) problem. Moses, a publicly available phrase-based SMT toolkit (Koehn et al.,
2007), was used for g2p conversion and tested in French (Laurent et al., 2009) and Ital-
ian (Gerosa and Federico, 2009) ASR systems and other languages (Rama et al., 2009).
This method is based on the analogy of the problem of g2p conversion and SMT. It uses
many-to-many alignments between the graphemic and the phonemic transcriptions and,
thus, allows to take into account context information in both sides. SMT-based methods
also give state-of-the-art results in g2p conversion.

Concerning the p2p conversion, the same methods used for g2p conversion can be
applied. Data-based methods proposed in the literature include the use of neural networks
(Fukada et al., 1999), decision trees (Weintraub et al., 1996), and also automatic gen-
eration of rules (van den Heuvel et al., 2009) or confusion matrices (Tsai et al., 2007)
for p2p conversion. Sometimes, specific-purpose p2p converters can be used to correct
mistakes of a general-purpose g2p, for example to improve the pronunciation of proper
names (van den Heuvel et al., 2007).

All the above mentioned methods predict individual phonemes or subsequences of
phonemes. Rather than predicting the full phonemization of a word given its orthography
in one go, they decompose or simplify the task. This task simplification mitigates sparse-
ness problems of the machine learning systems. In addition, task decomposition allows
them to be robust and generic when they process unseen data. However, these systems
tend to perform badly when there are many low-frequency and too case-specific classes.
Another important drawback is the lack of a global method to check whether their local
decisions form a coherent output. The authors of (van den Bosch and Canisius, 2006) give
the examples of a g2p conversion system that predicts schwas on every vowel in a poly-
syllabic word such as “parameter” because it is uncertain about the ambiguous mapping
of each of the “a”s and “e”s, and thus produces a bad pronunciation. Global models that
coordinate, mediate, or enforce that the output is a valid sequence are typically formu-
lated in the form of linguistic rules, applied during processing or in post-processing, that
constrain the space of possible output sequences (see for example (Prince and Smolensky,
2004)). In (van den Bosch and Canisius, 2006), a method is proposed to learn constraints
automatically from data in a global model.

To sum up, the need to model the g2p conversion in a way that takes both graphemic
and phonemic contexts into account is observed in order to obtain state-of-the-art results.
Lately, there is also a turn towards methods that perform global inference and are based
on discriminative modelization and high accuracy is achieved. An open issue is still how
to control the validity of the generated pronunciations, maybe integrating global word
features to the explored models.

2.2 Phonemic confusability
The problem of simply adding pronunciation variants generated by a g2p or a p2p

converter to a lexicon without imposing any constraints, is the potential increase of con-
fusability introduced to the system. In this section, we will see that this confusability is
an inevitable phenomenon of natural speech. We will then present methods proposed to
analyze this confusability. In this direction, an analysis of the ASR errors related to con-

2.2. PHONEMIC CONFUSABILITY 13

fusions will be attempted. We will continue with an overview of the literature concerning
possible ways to constrain the detrimental influence of confusability to ASR performance.
There will be a focus on attempts to generate dynamic lexicons based also, or completely,
on speech data. This section concludes with a detailed presentation of the phonemic con-
fusability problem in the keyword spotting task.

2.2.1 Confusability: an ASR error analysis

Work on pronunciation modeling for automatic speech recognition systems has had
mixed results in the past; one likely reason for poor performance is the increased confus-
ability in the lexicon that results from just adding new pronunciation variants. In addition,
increasing the number of pronunciations within a system often increases the decoding
time. Both of these problems are related to the concept of confusability: words with sim-
ilar phonetic sequences can be confused with each other. With more pronunciations, the
homophone rate (words that sound the same but are written differently) increases, which
means that these additional variants may not be helpful to the recognition performance
(Tsai et al., 2001). Such cases, in particular for frequent words, can be responsible for the
degradation of the ASR system when many alternatives are added.

At this stage, it could be interesting to see how the confusions are perceived by hu-
mans and if there is a correspondence between these human methods of perception and
the way confusion is perceived and analyzed in an ASR system. The problem of identi-
fying the unit of human acoustic perception is still an open issue, but there have been a
lot of studies that describe the confusable segments for the human auditory system taking
a sub-word (phonetic unit) approach. In segmental phonology, phonemes are the sounds
which can distinguish one word from another. A phoneme is defined as a contrastive
phonological segment (Chomsky and Halle, 1968). However, most machine-based per-
ception methods perform the confusability analysis at the word level, limiting themselves
to observed spoken examples (Mangu et al., 2000), (Goel et al., 2004). One attempt to ad-
dress this weakness is the thorough descriptive work of (Greenberg et al., 2000), in which
the outputs from eight recognition systems are compared at the phonetic level. Their
analysis shows that phonetic and word errors are correlated and conclude that acoustic-
phonetic variation is a leading contributor to word errors. The missing link in this work is,
however, an analysis of how the phonetic variability affects word recognition. A second
drawback of these methods is that they are based on an a posteriori analysis of the speech
recognition errors and are unable to make any predictions (Printz and Olsen, 2000), (Deng
et al., 2003). For example, (Chase, 1997) developed a technique for assigning blame for a
speech recognition error to either the acoustic or language model. This error assignment
allows system developers to focus on certain speech segments for improving either of the
two models; however, one cannot use this model to generate new predictions. Thus, the
capability to generalize to unseen speech data is missing and restrains the use of such
techniques.

For the reasons exposed in the above paragraph, we will focus on the analysis algo-
rithms that treat confusion data at a sub-word level. But now we will try to circumvent
the problem of having a descriptive model of ASR errors which cannot be generalized

14 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

to speech data not yet observed. One option is to compute statistics at the acoustic level
as done in (Printz and Olsen, 2000). However, in this work the only source of confusion
considered is the overlap between Gaussians, not taking into accounts cases where the
acoustics might change dramatically (i.e., presence of noise). In addition, this method
requires a very detailed knowledge of the system, a fact that makes the generalization of
the use of such a measure a difficult task. An alternative is to collect statistics about pairs
of recognized and correct linguistic units (e.g., phonemes) and to estimate the confusions
at this level rather than at a more detailed level. One might learn that the recognizer often
substitutes one phone for another, or often deletes a particular phone, resulting in a recog-
nition error. This is the approach taken in (Deng et al., 2003) in estimating the word error
rate for a particular task, and is similar to the approach taken by (Fosler-Lussier et al.,
2002). While this type of modeling produces a less detailed analysis than comparing the
distance between mixtures of Gaussians, it requires fewer assumptions about the recog-
nizer (for example, it can be used to model systems with neural network acoustic models,
or more complex structures such as general graphical models (Bilmes and Zweig, 2002)).
This kind of models of confusion should be easier to train (and thus may be more usable
by non-experts), but the accuracy of the predictions may suffer. For example, in (Pucher
et al., 2007), it is shown that the confusion measure that presents the higher correlation
with the word confusion is an HMM-based distance. However, edit distance between
phonemes performs quite well especially when articulatory and perceptual phonetic in-
formation is used in addition. Finally, in (Jyothi and Fosler-Lussier, 2009) better error
predictability is achieved by combining HMM-based phone distances with information
providing by phone confusion matrices.

2.2.2 Moderating confusability

Treating the confusability at the pronunciation level has proven to be quite a com-
plicated task and a straight correlation with the word error rate of the ASR system is
yet to be discovered. A straightforward solution could be to discard any homophones.
For example, in (Sloboda and Waibel, 1996), any learned baseform that matched a word
pronunciation currently in the dictionary was discarded. However, the homophones are
an inherent characteristic of spoken language and discarding them can severely harm the
ASR performance. Thus, a more sophisticated way of handling the effects of pronuncia-
tions in the system’s confusability is needed.

Another effort to constrain the confusability is presented in (Tsai et al., 2007). It is
claimed that a pronunciation frequently occurring in many other words introduces ex-
tra confusability and hence its importance should be limited. To do so, the inverse word
frequency (iwf) is used as a pruning factor to determine the appropriate number of pronun-
ciations to be included in the dictionary. In (Williams and Renals, 1998), an investigation
is presented on the use of confidence measures for the evaluation of pronunciation mod-
els and on the use of these evaluations in an automatic baseform learning process. The
goal when evaluating a pronunciation model for some word is to determine how well the
model matches acoustic realizations of that word and an acoustic confidence measure is
suitable for such a task, as it can be defined as a function which quantifies how well a

2.2. PHONEMIC CONFUSABILITY 15

model matches some acoustic data. Another way to reduce the number of pronunciation
variants is presented in (Hain, 2005), where the variant with the highest frequency of oc-
currence in the training data is kept after forced alignment. In (Svendsen et al., 1995),
a data-driven optimization of the pronunciation dictionary is proposed, which creates a
single baseform per word, subject to a maximum-likelihood criterion.

A method with interesting results in the directions of constraining the confusability of
an ASR system is the discriminative training of its different parts. Discriminative train-
ing has been successfully applied for acoustic modeling training (Povey, 2003) and for
language modeling training (Roark et al., 2004). In the pronunciation modeling training
recently some efforts have been made. There are some proposed methods of choosing
pronunciations that are directly correlated with the recognition performance. In (Vinyals
et al., 2009) and in (Adde et al., 2010) the aim is to find the variant that minimizes the
risk of introducing recognition errors. To do so, they adapt the Minimum Classification
Error (MCE) framework. Most of such works however are tested on small corpora con-
sisting of short sequences (or even on isolated word recognition tasks) and using small
pronunciation dictionaries covering few pronunciation variants. When trying to imple-
ment these methods to real data, there are often computational problems and it is not sure
these methods are always well generalizable.

2.2.3 Speech-dependent lexicons

There are efforts made in the direction of constructing lexicons that will constrain the
confusability caused by the recognition lexicon. One such effort is the construction of
speech-dependent lexicon, adapted to the data, ideally with weights suitably trained. To
do so, the FST representation of the data is proven to be efficient (for more details on
the FSTs see Section 2.3). However, other representations of the phonemic sequences are
also possible. In (Chen, 2011), for example, the reference and surface phones are aligned
using an HMM representation. Most of these methods make use of a suitable way to
generate the uttered phoneme sequence, align it with the reference sequence and find the
surface (spoken) pronunciations that correspond to the baseform pronunciations. These
methods are of course limited to words present in the training set.

To circumvent this limitation, it is also possible to extract phonological rules once the
alignment is done. These rules are not the result of linguistic knowledge as the ones used
in knowledge-based approaches (see Section 2.1). It is not even sure they correspond to
any linguistic phenomena. They just adapt the baseform pronunciations to a transcription
that better matches the spoken utterance. These rules can better represent a particular
speaker or even compensate for errors of the ASR system. Some examples of such ap-
proaches are given in (Cremelie and Martens, 1999), (Riley et al., 1999), (Yang et al.,
2002), (Akita and Kawahara, 2005) and (Van Bael et al., 2007).

Ideally, the observed transcriptions of spoken utterances are obtained manually by lis-
tening to these utterances and by writing down the corresponding phonetization, called
the auditorily verified (AV) transcription. Unfortunately, collecting AV transcriptions for
a large and representative set of training utterances is very costly. This explains why
only a few studies (e.g. (Riley et al., 1999)) actually use such transcriptions. A more

16 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

practical approach is to make use of the acoustic models to retrieve the most likely pro-
nunciation and to consider this pronunciation as the observed one. In that case one can
use a phoneme recognizer as already mentioned (i.e. (Weintraub et al., 1996), (Wolff
et al., 2001)). It is desirable that the phoneme recognizer incorporates n-gram phono-
tactics. Using a phoneme-loop recognizer that imposes no constraints can lead to many
errors -especially if the phoneme recognizer is of low quality- that are difficult to recover.
Alternatively, an aligner can be used that lines up the utterance with an automaton rep-
resenting the baseline transcription and some deviations (phoneme deletions, insertions,
substitutions) thereof, like in (Cremelie and Martens, 1999), (Riley et al., 1999), (Yang
et al., 2002).

Such phoneme alignments that allow the extraction of phonological rules, have been
shown to be particularly useful for the recognition of non-native speech. Some examples
are given in (Amdal et al., 2000), (Nakamura et al., 2002), (Ward et al., 2002), (Goronzy
and Kompe, 2004) and (Huang et al., 2004).

Once these rules are learned, the next step should be to suitably train their weights.
The aim of the training is to enforce the discriminative power of the added pronunciation
variants keeping the introduced confusability low. In a lot of the works mentioned above,
no training of the weights is effected. In (Shu and Lee Hetherington, 2002), a method for
training an alignment model represented as an FST with the EM algorithm is introduced.
This method is tested on the extraction of phonological rules and it is shown that the
Word Error Rate (WER) can be reduced. It is also shown that weighting word-dependent
phonemic pronunciations reduce WER more than using weighting phonological rules.
However, a trained set of phonological rules has the advantage that is can provide pro-
nunciation weights also for unseen words. Another EM training of the weights of the
lexicon based on the utterances of a given word is presented in (Hazen et al., 2005) and
(Badr et al., 2010). A discriminative training of the weights might be better generalizable
and applicable to phonological rules, as EM training has the drawbacks of finding a local
maximum and of often over-fitting to the training data.

2.2.4 Combining g2p conversion and speech-dependent lexicons

An interesting idea of lexicon enhancement was presented in (Beaufays et al., 2003).
Their procedure works by initializing a hypothesis with a g2p converter and thereafter
refining it with hypotheses from the joint alignment of phone lattices obtained from audio
samples and the reference transcriptions. Good results are shown for proper name recog-
nition using this method. Another example of such lexicon enhancement combining g2p
conversion and automatic transcriptions is presented in (Choueiter et al., 2007). Thus,
transcribed utterances can be used to correct a lexicon generated by a g2p conversion,
which is prone to errors especially for low-frequency and irregular words. This idea is
developed also in (Bodenstab and Fanty, 2007) using a multi-pass algorithm combining
audio information and g2p conversion. During the first pass, audio samples are analyzed
and frequent phonetic deviations from the canonical pronunciation (generated previously
by a g2p converter) are derived. The second pass then constrains the set of possible pro-
nunciation variations, and forces each audio sample to “choose” which pronunciation best

2.2. PHONEMIC CONFUSABILITY 17

represent its acoustics.

Apart from improving a g2p-generated lexicon using audio data, another good reason
for trying to learn lexicons with such combined methods is the cost issue as mentioned
in (Goel et al., 2010). If each time we need to develop a pronunciation lexicon for a
language it is necessary to call upon qualified phoneticians, it can be quite expensive and
time consuming. In addition, if more than one human is involved there may be differences
in opinion. Moreover, human mistakes cannot be avoided. And to reduce in a satisfying
way the OOV rate, a large dictionary is needed. What is proposed in (Goel et al., 2010)
is to bootstrap learning with a limited lexicon consisting of the 1000 most frequent words
in the training data. The next step is to train a g2p system using this lexicon. This g2p
system is then used to generate multiple pronunciations for all words used for building
the LM which covers the test data. The next step is to use the training data to select the
best pronunciation out of these multiple pronunciations via a forced alignment. Then, a
new lexicon is created with the selected pronunciations, the acoustic models are retrained
and the above process is iterated. The new lexicon is however limited to words seen in
the training data, as in all methods where no phonological rules are extracted.

In the former paragraph, it is noted that in (Goel et al., 2010) the acoustic models are
retrained in each iteration of their algorithm. The question of how to incorporate pronun-
ciation variability into acoustic modeling warrants a further discussion. Interestingly, it
has been found that straightforward approaches to this problem often fail. One possible
approach would be to train a pronunciation model, use this pronunciation model to re-
transcribe the acoustic training set to obtain a surface form transcription and retrain the
acoustic models. However, as has been discussed by (Saraclar and Khudanpur, 1999),
this can lead to degradation in ASR performance. In (Saraclar and Khudanpur, 1999),
they demonstrate that when a base phone is realized as a surface-form, the acoustic model
should model it as such, meaning it should retain dependencies on both baseform and
surface-form phones. A solution proposed in (Venkataramani and Byrne, 2001) is to
align the baseform with the surface transcription, construct a hybrid transcription and use
it in supervised MLLR adaptation. In this thesis, the acoustic models will not be retrained
each time the pronunciation lexicon changes. The acoustic models that are used are large
models with context which cover most cases of phonemic variation. However, as a future
work plan, the acoustic models could be retrained with the new pronunciation lexicons in
order to have a better consistency in modeling phonemic variation throughout the different
parts of the ASR system.

To sum up, in this work we support the idea that it is better to model phonemic vari-
ation and confusability at a sub-word level to avoid the problem of word sparseness and
allow generalization to unseen data. In particular, we chose phonemes as the modeling
unit, in a first place for practical reasons; available dictionaries use this unit and it is a
unit more easily manageable than syllables in several languages and more precisely in
English, that is the language we mainly focus on in this thesis. Concerning confusability,
most works do not take into account how the pronunciation model influences the whole
decoding process. In addition, it is difficult to model confusability with a measure that
presents a high correlation with the error rate of the system.

18 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Speech-recogni1on$ Term-detector$

Evalua1on-tool$ Decision-maker$ATWV,$DET$
curves$

Speech$
signal$

ASR$subsystem$(offline)(

KWS$subsystem$(online)(

Figure 2.1: Basic KWS architecture

2.2.5 Phonemic confusability in the Keyword-Spotting task

As the available data archives (audio, multimedia,...) increase constantly, efficient
ways to index and search them become crucial in order to provide access to them. Key-
word spotting (KWS) aims at detecting search terms in spoken utterances. Given a user-
defined search term, the keyword spotter predicts the best time span for this word in the
spoken utterance along with a confidence score. If the prediction confidence is above a
certain level, the keyword is declared to be spoken in the utterance within the predicted
time span, otherwise the keyword is declared as not occurring in the speech segment.
The problem in keyword spotting training is directly related to the confusability problem,
as its desired performance is a highly discriminative one. The model parameters are in-
deed chosen so that the utterance in which the keyword is spoken would have a higher
confidence than any other spoken utterance in which the keyword is not spoken.

The standard KWS architecture consists of an ASR subsystem to produce the word/sub-
word lattices and a KWS subsystem for term detection. The ASR system could also gen-
erate 1-best, n-best or confusion networks of words/subwords. In this thesis, we will work
with lattices. The speech recognition typically generates the lattices from the speech sig-
nal; a term detector searches these lattices for putative occurrences of the search terms;
a decision maker finally decides whether each putative detection is reliable. This basic
architecture can be seen in Figure 2.1.

Since this is a detection task, performance can be characterized by Receiver Operating
Characteristic (ROC) curves of miss (Pmiss) versus false alarm (Pfa) probabilities, or

2.2. PHONEMIC CONFUSABILITY 19

by a weighted function of the two probabilities. For the NIST STD06 evaluation the
primary evaluation metric was the actual term-weighted value (ATWV), which is defined
as follows (NIST, 2006).

ATWV = 1− 1

T

T∑
t=1

(Pmiss(t) + βPfa(t)) (2.1)

Pmiss(t) = 1− Ncorr(t)

Ntrue(t)
, Pfa(t) =

Nspurious(t)

Total −Ntrue(t)
(2.2)

where T is the total number of terms, β is set to approximately 1000, Ncorr and Nspurious

are the total number of correct and spurious (incorrect) term detections, Ntrue is the total
number of true term occurrences in the corpus, and Total is the duration (in seconds) of
the indexed audio corpus. For a detailed definition of the ROC curves, see Section 6.3.1.

To be more accurate, the term detection component of this architecture is developed
in two phases, the index and the search phase. The index creation is done offline and is
independent of the search terms. Its purpose is to create a suitable database structure that
will allow the fast and robust detection of spoken utterances of a particular term during
the search phase. The search of a particular term is an online procedure.

Creating the index from the 1-best word recognition result is the simplest and fastest
way to do it. However, in this way a recognition mistake concerning a search-term word
leads directly to a detection error, either a miss or a false alarm (FA). The problem be-
comes of course more acute if the used ASR system is weak, which can often be the case
for low-resourced languages, for noisy data, etc. Thus, to avoid misses, a solution is to
use the whole hypothesized word lattice.

There are different ways of creating the index. In (Vergyri et al., 2007), the authors
propose the use of an n-gram index with scores and time information. The score of each
n-gram is the posterior probability, computed as the forward-backward combined score
(acoustic, language and prosodic scores were used) through all the lattice paths that share
the n-gram nodes. In (Allauzen et al., 2004) a deterministic weighted finite-state trans-
ducer is constructed as index, storing soft-hits in the form of (utterance ID, start time, end
time, posterior score) quadruplets. In (Wallace et al., 2011) the index takes the form of a
phonetic posterior-feature matrix.

An important problem in KWS is the problem of OOVs, and not only because an OOV
is directly an error in the KWS system. Their importance depends on the evaluation mea-
sure used. The ATWV measure has two characteristics: (1) missing a term is penalized
more heavily than having a false alarm for that term, (2) detection results are averaged
over all query terms rather than over their occurrences, i.e. the performance metric con-
siders the contribution of each term equally. Thus OOVs, though infrequent, have the
same impact on the metric as in-vocabulary (IV) terms (Akbacak et al., 2008). Moreover,
the impact of OOVs in real life can be important as they are often related to names and to
important/new events. The problem is serious: for instance, in the study of (Logan et al.,
2000), it is found that about 12% of the users queries contain OOV words.

A possible solution for handling the problem of OOVs and recognition errors is the use
of hybrid systems. In the hybrid systems, rather than using the straightforward solution

20 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

of a word index, different sub-word units are employed to perform the term detection and
confidence estimation. Typically, a phoneme-based system is used to handle OOV terms.
In this approach, search terms are converted to pronunciations by g2p models, and the
pronunciations are searched for in a phoneme lattice generated by a speech recognizer
(see (Saraclar and Sproat, 2004) and (Can et al., 2009) among others).

Sometimes, some sub-word units are used for detection and others for estimating
the confidence. For example, in (Tejedor et al., 2009) the best system is found when
phonemes are used as detection units, while graphemes are used for confidence estima-
tion. Another interesting idea in this paper is that not only system hybridization is used,
but also system combination. For instance, it is possible to combine a phoneme-based
and a grapheme-based system using the same confidence estimation. This kind of sys-
tem combination is shown to improve the system performance for English and Spanish.
Especially for English, which is the language we experiment on in this thesis, more sig-
nificant improvement is observed. In English, it is known that the pronunciation rules are
rather complex, leading to an irregular relationship between graphemes and phonemes,
which makes the grapheme- and phoneme-based systems capture different information of
the language and exhibit complementary performance on KWS. That is why in the work
presented in this thesis (see Chapter 6) we decided to build an English phoneme-based
KWS system and try to improve it. A future aim is indeed to integrate it in a hybrid sys-
tem. The current state-of-the-art KWS system are mainly hybrid systems as they perform
better even for IV terms.

Another approach to compensate for OOVs in a hybrid system is the one presented
in (Bisani and Ney, 2005), where subword units called graphones are used. Each gra-
phone is a pair of a letter sequence and a phoneme sequence of possibly different lengths.
Graphones are trained using a pronunciation dictionary and are used to replace the OOVs.

There are many challenges in finding a good operating point for a KWS system that
balances false alarms and true hits, particularly when the queries are OOV terms. OOV
terms have more unpredictable pronunciations, caused by ASR errors, pronunciation vari-
ation, and acoustic variation. A solution is to use n-best predictions in pronunciations
(Wang et al., 2009). However, this increases the FA rate, which is why a confidence prun-
ing threshold is set on the predictions. There are different ways of setting this confidence
threshold. In (Wang et al., 2009), it is proposed to integrate the confidence of the predicted
pronunciation with the confidence of a term detection so that a jointly-optimal postponed
decision rule can be formulated based on a compound confidence. In (Parada et al., 2010),
it is shown that automatically tagging OOV regions helps to reduce false alarms. To de-
tect OOVs regions, the authors use a system that combines the posterior probability of
subword units and the entropy of the subword unit in the region of interest. An interest-
ing result of this work is that simply increased n-best representation of queries did not
translate to significant improvements in KWS performance. Instead, incorporating pho-
netic confusability increased the hits by helping to compensate for potential differences
in deriving index and query representations.

A confusion matrix can directly compensate for differences between the index and
the query representations. This idea was first introduced in spoken document retrieval in
(Moreau et al., 2004). In (Zhang et al., 2006) the keywords are expanded using a phoneme

2.3. FST BACKGROUND 21

confusion matrix. However, only substitutions are taken into account, and no training of
the matrix weights is effected. An improved version of this method is presented in (Wang
and Zhang, 2012), where the confusion matrix is combined with a word-level minimum
classification error training method.

Another possible solution is to incorporate phonemic confusions directly in the acous-
tic model. In (Pinto et al., 2007) an hybrid Markov model-artificial neural network
(HMM-ANN) keyword system is used and an acoustic confusion model is built such
as to take into account the systematic errors made by the neural network. In (Wallace
et al., 2011) the phoneme confusions are directly incorporated in the index, as an index is
created not of discrete phone instances but rather of probabilistic acoustic scores of these
phones at each time instant. Thus, the indexing phase produces a posterior-feature matrix.
The search phase is performed on this matrix by calculating the likely locations of term
occurrences through estimation of their likelihood from the probabilistic scores.

2.3 FST background

2.3.1 Generalities

In the last two decades, FSTs have been shown to be useful for a number of appli-
cations in speech and language processing (Mohri, 1997). FST operations such as com-
position, determinization, and minimization make manipulating FSTs both effective and
efficient. In this thesis, all the FST manipulations are realized using the OpenFst library
(Allauzen et al., 2007).

Weighted transducers (resp. automata) are finite-state transducers (resp. automata)
in which each transition carries some weight in addition to the input and output (resp.
input) labels. The interpretation of the weights depends on the algebraic structure of the
semiring in which they are defined.

2.3.2 Semiring

A semiring is a system (K,⊕,⊗, 0̄, 1̄) containing a set of weights K and the operators
⊕ and ⊗, such that: (K,⊕, 0̄) is a commutative monoid with 0̄ as the identity element for
⊕; (K,⊗, 1̄) is a monoid with 1̄ as the identity element for ⊗; ⊗ distributes over ⊕: for
all a, b, c in K: (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) and c ⊗ (a ⊕ b) = (c ⊗ a) ⊕ (c ⊗ b),
and 0̄ is an annihilator for ⊗ : ∀a ∈ K, a⊗ 0̄ = 0̄⊗ a = 0̄. When manipulating weighted
transducers, the ⊗ and ⊕ operators are used to combine weights in a serial and parallel
fashion, respectively. A semiring is commutative when ⊗ is commutative.

2.3.3 Weighted Finite-State Transducers

A weighted finite-state transducer T over a semiring K is an 8-tuple T = (Σ,∆, Q, I,
F, E, λ, ρ) where: Σ is the finite input alphabet of the transducer; ∆ is the finite output
alphabet; Q is a finite set of states; I ⊆ Q the set of initial states; F ⊆ Q the set of final

22 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

states; E ⊆ Q× (Σ∪{ε})× (∆∪{ε})×K×Q a finite set of transitions; λ : I → K the
initial weight function; and ρ : F → K the final weight function mapping F to K.

A weighted automaton A = (Σ, Q, I, F, E, λ, ρ) is defined in a similar way simply
by omitting the output labels. The weighted transducers and automata considered in this
work are assumed to be trimmed, i.e. all their states are both accessible and co-accessible.
Omitting the input labels of a weighted transducer T results in a weighted automaton
which is said to be the output projection of T .

Using the notation of (Cortes et al., 2006), if e = (q, a, b, q′, w) is a transition in E,
p(e) = q (resp. n(e) = q′) denotes its origin (resp. destination) state, i(e) = a its input
label, o[e] = b its output label and w(e) = E(e) its weight. These notations extend to
paths: if π is a path in T , p(π) (resp. n(π)) is its initial (resp. ending) state and i(π)
is the label along the path. We denote by P (q, q′) the set of paths from q to q′ and by
P (q, x, y, q′) the set of paths for q to q′ with input label x ∈ Σ∗ and output label y ∈ ∆∗.
The path from an initial to a final state is a successful path. The weight associated by a
weighted transducer T to a pair of strings (x, y) ∈ Σ∗ ×∆∗ is denoted by T (x, y) and is
obtained by ⊗-summing the weights of all successful paths with input label x and output
label y:

T (x, y) =
⊕

π∈P (I,x,y,F)

λ(p[π])⊗ w[π]⊗ ρ(n[π]) (2.3)

T (x, y) = 0̄ when P (I, x, y, F) = ∅.
Another notion that will be used in the KWS chapter (Chapter 6) is the notion of

factor automaton. A factor automaton is a finite automaton which accepts the set of all
sub-strings (factors) of the string. It is an efficient way to represent the set of all sub-
strings where each sub-string corresponds to exactly one path. Thus, any matching string
can be found in time equal to the length of the pattern looked for.

2.3.4 Some useful semirings
The real semiring (R,+,×, 0, 1) is a suitable semiring to use when the weights rep-

resent probabilities. The log semiring is defined as (R ∪ [−∞,∞],− log(exp(−x) +
exp(−y)),+,∞, 0). It is isomorphic to the real semiring via the negative-log map-
ping and is used in practice for numerical stability. Another commonly used semiring
is the tropical semiring, which is the standard semiring in OpenFst. It is defined as
(R ∪ [−∞,∞],min,+,∞, 0), i.e., min is the ⊕ of the semiring (with identity ∞) and
+ is the ⊗ of the semiring (with identity 0). The log and the tropical semirings are of
particular importance for speech processing.

In Chapter 6, reference is frequently made to special semiring structures defined on
the Cartesian product of ordered sets. More precisely, the index structure of the presented
KWS system is a weighted transducer over the lexicographic semiring. We will give
here the definitions of the product semiring and the lexicographic semiring, as the latter
is based on the definition of the former. The product semiring of two partially-ordered
semirings A = (A,⊕A,⊗A, 0̄A, 1̄A) and B = (B,⊕B,⊗B, 0̄B, 1̄B) is defined as

A× B = (A× B,⊕×,⊗×, 0̄A × 0̄B, 1̄A × 1̄B) (2.4)

2.3. FST BACKGROUND 23

where⊕× and⊗× are component-wise operators, e.g. ∀a1, a2 ∈ A, b1, b2 ∈ B : (a1, b1)⊕×
(a2, b2) = (a1 ⊕A a2, b1 ⊕B b2). A partial order on a semiring K is a relation <K defined
as: ∀x, y ∈ K, x <K y⇐⇒x = x⊕ y.

The lexicographic semiring of two partially-ordered semiringsA = (A,⊕A,⊗A, 0̄A, 1̄A)
and B = (B,⊕B,⊗B, 0̄B, 1̄B) is defined as

A ∗ B = (A× B,⊕∗,⊗∗, 0̄A × 0̄B, 1̄A × 1̄B) (2.5)

where ⊗∗ is component-wise multiplication operator and ⊕∗ is a lexicographic priority
operator, ∀a1, a2 ∈ A, b1, b2 ∈ B:

(a1, b1)⊕∗(a2, b2) =

{
(a1, b1) if a1 = a1 ⊕A a2 or (a1 = a2 and b1 = b1 ⊕B b2)
(a2, b2) otherwise

}
(2.6)

Using the definition of the partial order given above, the ⊕∗ operator can be defined
as:

(a1, b1)⊕∗ (a2, b2) =

{
(a1, b1) if a1 <A a2 or (a1 = a2 and b1 <B b2)
(a2, b2) otherwise

}
(2.7)

More generally, one can define the product and lexicographic semirings on the Carte-
sian product of n ordered sets {A1,A2, . . . ,An}. In addition, the product and lexico-
graphic semirings on {A1,A2, . . . ,An} can be recursively defined using the associativity
of × and ∗ operators. For example for the product semiring:

A1 ×A2 × · · · × An = ((· · · (A1 ×A2)× · · ·)×An). (2.8)

2.3.5 Algorithms
This section presents several fundamental algorithms for weighted transducers and

automata. For more details, the reader is referred to (Mohri, 2009).
The Composition operation allows different levels of information to be combined.

The composition T = T1 ◦ T2 of two transducers T1 and T2 has exactly one path mapping
sequence x to sequence y for each pair of paths, the first in T1 mapping x to some sequence
z and the second in T2 mapping z to y. The weight of a path in T is the ⊗-product of the
weights of the corresponding paths in T1 and T2 (Salomaa and Soittola, 1978). Its formal
definition can be given as:

T (x, y) = T1 ◦ T2 =
⊕
z

T1(x, z)⊗ T2(z, y), (2.9)

when the semiring is commutative and the sum
⊕

is well-defined and in K for all x, y.
Another useful operation is the Determinization. An automaton is deterministic if it

has a single initial state, there are no two arcs leaving a state with the same input label and
there are no input epsilon labels. Determinization takes an FST and attempts to construct a
deterministic equivalent. Weighted determinization requires some technical conditions on
the semiring or the weighted automaton. The algorithm works with any weakly divisible

24 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

semiring. A semiring (K,⊕,⊗, 0̄, 1̄) is said to be weakly divisible if for any x and y in K
such that x ⊕ y 6= 0̄, there exists at least one z such that x = (x ⊕ y) ⊕ z. Additionally,
it is assumed that for any string x ∈ Σ∗ , the sum of the weights of the paths labeled with
x and starting at an initial state is non-0̄ : w[P (I, x,Q)] 6= 0̄. This condition is always
satisfied with trim weighted automata over the tropical semiring or any zero-sum-free
semiring. Determinization does not terminate for all weighted automata. There exists,
however, a general twins property for weighted automata that provides a characterization
of determinizable weighted automata under some general conditions (see (Mohri, 2009)
for more details).

Minimization takes a deterministic WFSA and returns an equivalent WFSA with the
minimal amount of states. It first pushes the weights in the WFSA and then encodes it
as a costless acceptor. In speech recognition, it can make a size reduction in the used
transducers.

Concerning the weight pushing, which is done implicitly in minimization as noted
earlier, weights can be pushed towards the initial or the final state. Pushing is a special
type of reweighting which globally preserves the path weights. Weight pushing is used
when the normalization of the weights of a WFST is desired. This algorithm can thus
be used in order to make an FST stochastic, meaning that the weights of all arcs leaving
a state sum to one. Normalization is particularly important because it enables the use of
log-linear parameterizations. It enables to transform the weights to joint or conditional
probabilities and we will use it later in this thesis in the context of discriminative training.

It should be noted that the normalization realized by weight pushing is a global, and
not a per-state one. As explained by (Eisner, 2002), the per-state normalization is a more
constrained one. In fact, the result may differ for equivalent FSTs that express the same
weighted relation. Undesirable consequences of this fact have been termed “label bias”
(Lafferty et al., 2001). Also, in the conditional case such per-state normalization is only
correct if all states accept all input suffixes (since “dead ends” leak probability mass). In
the joint case, this problem can be cirmumvented by pruning all non-coaccessible states
before normalization.

Another category of algorithms that interests us are the ones related to Shortest dis-
tance and Shortest path problems. A general definition of shortest distance from a state
q to a state p is the sum of the weights of all paths from q to p using ⊕ as already men-
tioned earlier. In this work, the shortest distance is particularly useful for the calculation
of the forward and backward probabilities. Let T be a weighted transducer over a semir-
ing K. For any state q ∈ Q, we denote by d[q] the shortest distance from I to q (forward
probability on the real or the log semiring) and by f [q] the shortest distance from q to F
(backward probability in the real or the log semiring):

d[q] =
⊕

π∈P (I,q)

(λ(p[π])⊗ w[π]) (2.10)

f [q] =
⊕

π∈P (q,F)

(w[π]⊗ ρ(n[π])) (2.11)

The shortest path algorithm (resp. n-shortest path) computes the 1-best (resp. n-best)
paths in the transducer T . The shortest distance is defined for any semiring k-closed to T .

2.3. FST BACKGROUND 25

Let k >= 0 be an integer. A semiring (K,⊕,⊗, 0̄, 1̄) is said to be k-closed if

∀x ∈ K,
k+1⊕
n=0

xn =
k⊕

n=0

xn. (2.12)

For instance, the tropical semiring is a k-closed semiring with k = 0.
To calculate the shortest path, the semiring must have the path property a ⊕ b ∈ a, b.

For instance, the tropical semiring, where the ⊕ is the minimum operator, which actually
computes a shortest path.

2.3.6 Entropy semiring
Next, a detail description of the expectation semiring is given and its use to calculate

entropy is explained. It will be a necessary concept for our work presented in Chapter 4.
The entropy H(p) of a probability mass function p defined over a discrete set X is

defined as (Cover and Thomas, 1991):

H(p) = −
∑
x∈X

p(x)logp(x), (2.13)

where by convention 0log0 = 0. This definition can be extended to probabilistic automata
which define distributions over sets of strings. We call an automaton probabilistic if for
any state q ∈ Q, the sum of the weights of all cycles at q is well-defined and in K and∑

x∈Σ∗ A(x) = 1. In a probabilistic automaton, the target of a transition is no longer a
single state, but is a probabilistic choice over several next states (Paz, 1971). The entropy
of A can be written as:

H(A) = −
∑
x

A(x)logA(x), (2.14)

where A(x) is the output weight associated by an automaton A to an input string x ∈ Σ∗.
The expectation (or entropy) semiring is defined in (Eisner, 2001) as (K,⊕,⊗, (0, 0), (1, 0)),

where K denotes (R∪ [−∞,∞])× (R∪ [−∞,∞]). For weight pairs (a1, b1) and (a2, b2)
in the real semiring, the ⊕ and ⊗ operations are defined as follows 1:

(a1, b1)⊕ (a2, b2) = (a1 + a2, b1 + b2) (2.15)

(a1, b1)⊗ (a2, b2) = (a1a2, a1b2 + a2b1) (2.16)

The entropy of A defined in equation (2.14) can be computed as a single-source short-
est distance for an automaton defined over the entropy semiring (Cortes et al., 2006) with
weights (w,−wlogw) where w is in R. If the sum of the weights of all paths from any
state p ∈ Q to any state q ∈ Q is well-defined, the shortest distance from p to q is:

d[p, q] =
⊕

π∈P (p,q)

w[π]. (2.17)

1. Usual conventions apply: a⊕∞ = a, a⊗∞ =∞.

26 CHAPTER 2. BACKGROUND AND STATE-OF-THE-ART

Thus, the shortest distance from the initial states to the final states for the probabilistic
automaton A with weights (w,−wlogw) in K will be:

d[I, F] = (
∑
x

A(x),−
∑
x

A(x)logA(x)) = (1, H(A)). (2.18)

2.3.7 Matchers
We will now make a special reference to matchers provided by OpenFst because, as

we will see later, they will be necessary in this work. Matchers can find and iterate through
requested labels at FST states; their main use is in composition matching. In the simplest
form, these are just a search or hash keyed on labels. More generally, they may implement
matching special symbols that represent sets of labels such as ρ (rest), σ (all) or φ (fail),
which can be used for more compact automata representations and faster matching. In
Table 2.1 a summary is given of the basic matchers and their effect.

Matcher Matches Consumes
φ Rest None
ρ Rest All
σ All All
ε All None

Table 2.1: Basic matchers

2.3.8 FST-based speech recognition
In a speech recognition system, each knowledge source can be represented as an FST

(Mohri et al., 2002). Typically, this concerns the language model, the pronunciation lexi-
con, the context dependency and the acoustic model. These parts are combined using the
composition operation which allows the combination of different levels of representation.
Then some optimizations are performed (remove epsilons, determinization and minimiza-
tion) and the final step is the decoding. The decoding can be implemented by the shortest
path algorithm on the tropical semiring. In fact, the tropical semiring is appropriate for
performing Viterbi search using negative log probabilities: we add negative logs along a
path and take the min between paths. An abstract presentation of the decoding process
can be given as:

Ŵ = bestpath(H ◦ C ◦ L ◦G), (2.19)

where Ŵ is the sequence of words corresponding to the best recognition hypothesis. H
represents the HMM set and C is an FST that maps the context-dependent to context-
independent phonemes. L is the pronunciation model FST, containing a mapping of se-
quences of phonemes to words, G is the language model finite state automaton (FSA),
which contains n-gram statistics, and ◦ is the composition operator.

The FSTs provide a common and natural representation of these models and general
transducer operations combine them flexibly and efficiently. Weighted determinization

2.3. FST BACKGROUND 27

and minimization algorithms optimize their time and space requirements, and a weight
pushing algorithm distributes the weights along the paths of a weighted transducer opti-
mally for speech recognition. Thus, the FST approach has recently become a state-of-
the-art technology in speech recognition allowing the implementation of large models
reducing decoding time.

Chapter 3

Pronunciation and pronunciation
variants generation using SMT-inspired
approaches

In this chapter two alternative methods are proposed, inspired by machine translation,
to derive pronunciations and pronunciation variants from an initial lexicon. First, a ma-
chine translation tool is used as a g2p converter to extract an n-best pronunciation list. The
same toolkit is used to perform p2p conversion and derive variants from a given canonical
pronunciation. The second approach is a novel method based on a pivot approach, previ-
ously used for the paraphrase extraction task, and here applied as a post-processing step
to the g2p converter or directly to the canonical pronunciation as a p2p converter. Our
g2p converter allows to generate pronunciations for OOVs, but also enriches our original
dictionary with pronunciation variants, while the p2p converters focuses on adding vari-
ation to the dictionary. The performance of these two methods is tested under different
training conditions (using for the training a lexicon with or without alternative pronunci-
ations). The recall and precision results on the g2p and p2p conversion tasks prove the
generation of good quality pronunciations. Finally some speech recognition experiments
are presented using the new, enriched lexicons.

3.1 Introduction
This work aims to generate pronunciation variants in an automatic and language in-

dependent way, even when no variants are included in the lexical resources available
for training. Most available dictionaries contain no or few variants, or their variants are
not consistent or suitable for training. The proposed methods are tested for English, a
language known to be difficult for pronunciation generation, since there is a loose rela-
tionship between letters and sounds. In addition, there are a lot of words of foreign origin
that keep the pronunciation of their initial language, and others that have a variety of
pronunciations depending upon the speakers.

Moses (Koehn et al., 2007), a publicly available phrase-based statistical machine
translation method is first used as a g2p converter. Then, two options are explored to

29

30 CHAPTER 3. SMT-INSPIRED PRONUNCIATION GENERATION

generate pronunciation variants. In the first one, variants are derived from the generated n-
best list. Moses is also used as a p2p converter to generate variants from baseform pronun-
ciations when variants are included in the training set. However, this method fails when
a single-pronunciation dictionary is used for training. In this latter case a novel approach,
originally used for the paraphrase extraction task, was proposed to use also graphemic
information to generate variants. This novel approach is based on the principle that se-
quences of modified phonemes can be identified using a graphemic sequence as a pivot.
This means that sequences of modified phonemes that correspond to the same graphemic
sequence are identified as a plausible variation pattern. This pivot-based method is used
to generate variants given a canonical pronunciation of a word. Then, it is used as a post-
processing step to the Moses g2p converter, enabling the generation of pronunciations
with variants for out-of-vocabulary words (OOVs). It is independent of the origin of the
input pronunciations, focusing on local variations, which are the most common pronun-
ciation variants. To the best of our knowledge, this is the first application of such a pivot
approach to the generation of pronunciation variants.

The motivation behind using Moses and the pivot method for g2p conversion is the
similarity that can be observed between the phrase-based approach in translation and the
g2p conversion. This approach allows us to align sub-strings of graphemes to sub-strings
of phonemes. Context in both the graphemic and the phonemic transcriptions is taken
into account for the pronunciation prediction, which is a desired characteristic for the g2p
task. This similarity will further emerge from the description of our system as a machine
translation task in the following section.

3.2 Methodology

3.2.1 Moses as g2p and p2p converter

Moses uses a phrase translation model based on the noisy channel model. Following,
(Koehn et al., 2003), Bayes’ rule is used to reformulate the translation probability for
translating a foreign sentence f into (traditionally) English e:

arg max
e

p(e | f) = arg max
e

p(f | e)p(e). (3.1)

In the g2p conversion task, we replace f with the graphemic representation of a word and
e with its phonemic representation. The former equation allows the use of a language
model (LM) p(e), which will be a phoneme-based LM in our case, and of a separate
“translation model” p(f |e). It expresses the best predicted pronunciation given a word.

During decoder, the input word f is segmented into a set of I grapheme (i.e., letter)
sequences (“phrases”) f

I

1. Each letter sequence f i in f
I

1 is transcribed (“translated”) to
a phoneme sequence ei. A probability distribution φ(f i | ei) models the transcription of
these segments. The corresponding grapheme and phoneme sequences with their prob-
abilities are presented in a so called “phrase table”. Recall that due to Bayes’ rule, the
transcription direction is inverted from a modeling standpoint. Thus, p(f | e) is decom-

3.2. METHODOLOGY 31

r
a

i
n

b
o
w

r e n b o

Figure 3.1: Alignment of the word “rainbow” with its pronunciation /renbo/

posed into:

p(f
I

1 | eI1) =
I∏
i=1

φ(f i | ei). (3.2)

An alignment model is needed to extract the aligned graphemic and phonemic se-
quences and calculate their probabilities φ(f i | ei). We learn sequence alignment us-
ing GIZA++ (Och and Ney, 2000), an open-source toolkit proposed for the IBM models
(Brown et al., 1993). The IBM models that this toolkit implements allow one-to-one align-
ments. This problem is remedied with the use of some heuristics. First, the parallel corpus
is aligned bidirectionally. This gives two alignments, and an expansion heuristic between
the intersection and the union is used to reconcile them(Koehn et al., 2003). In this work,
a pronunciation dictionary is used in the place of an aligned bilingual text corpora. The
orthographic transcription is considered as the source language and the pronunciation as
the target language. The graphemes and phonemes are the units of alignment. In Figure
3.1 an example of an alignment of a word of the training set with its pronunciation can be
seen. The reader is referred to Appendix A for a list of the used phoneme set.

A 5-gram phoneme language model (LM), estimated on the pronunciations in the
training set using the SRI toolkit (Stolcke, 2002), is used to provide additional phonemic
information and corresponds to the target LM in SMT. Finally, the combination of all
components is fully optimized with a minimum error training step (tuning) on a develop-
ment set. The tuning strategy used was the standard Moses training framework based on
the maximization of the BLEU score (Papineni et al., 2002).

Moses can output an n-best translation list, that is an ordered list of translations of a
source string. The 1-, 2-, 5- or 10-best translations (i.e. pronunciation variants) per word
are kept.

The above described models can also be used for a p2p converter, which has, more-

32 CHAPTER 3. SMT-INSPIRED PRONUNCIATION GENERATION

over, higher potential for capturing pronunciation variation phenomena in languages like
English, where orthography and pronunciation generally have a looser relationship than
in other languages. In this case, the source language and the target language are aligned
phonemic transcriptions. For the source side sequences we use the canonical pronuncia-
tion (the longest one 1), for the target side sequences itself and/or its variants depending
on their existence or not in the different versions of the training set as presented in the
Section 3.3.

3.2.2 Pivot paraphrasing approach
The pivot method applies the work of (Bannard and Callison-Burch, 2005) to the

generation of pronunciation variants. Paraphrases are alternative ways of conveying the
same information. The analogy with pronunciation variants of a word is easily seen: the
different pronunciations being alternate phonemic expressions of the same orthographic
information. In our case, the “paraphrases” are phonemic sequences of the phrase table
generated by Moses from the word-pronunciation training pairs. For each phonemic se-
quence in the phrase table, we find all corresponding graphemic sequences and then look
back to find what other phonemic sequences are associated with the set of graphemic
ones. These phonemic sequences are plausible paraphrases.

The paraphrase probability p(e2 | e1) of two phonemic sequences e1 and e2 is assigned
in terms of the phrase table probabilities φ(f | e1) and φ(e2 | f) estimated based on the
counts of the aligned graphemic-phonemic phrases. Since e1 can be translated as multiple
graphemic phrases, we sum over f for all the corresponding graphemic entries of the
phrase table:

ê2 = arg max
e2 6=e1

p(e2 | e1) (3.3)

= arg max
e2 6=e1

∑
f

φ(f | e1)φ(e2 | f) (3.4)

An example of a paraphrase pattern in the dictionary is:
discounted diskWntxd dIskWnxd
discountenance dIskWntNxns dIskWnNxns

The alternative pronunciations differ only in the part that can be realized as either nt
or n, while the rest remains the same. The nt and n form a paraphrased pair, a common
pattern found in many words in the pronunciation lexicon. The pivot method focuses
on local modifications observed between variants of a word and is a lot faster than the
n-best list generation by Moses-g2p. All occurrences of these paraphrased patterns are
substituted in the input pronunciations, which can be either the baseform pronunciations
or the 1-best pronunciations of Moses-g2p. The second case allows us to add variants also
to OOVs.

At this point, different types of pruning are applied on the generated variants. First,
the candidate variants are reranked based on additional phonemic contextual information

1. Most of the variants reflect reduced pronunciations found in casual speech.

3.3. EXPERIMENTAL SETUP 33

expressed by the 5-gram phoneme LM already used by Moses for the g2p conversion.
The SRI toolkit served for the reranking. Then, pruning is done based on the length of the
paraphrases substituted in the pronunciations. It was experimentally found that the quality
of the generated variants improves when only 3- and 4-grams paraphrases are substituted
because more context is taken into account throughout the procedure and some confusions
are avoided.

The Levenshtein Distance between each pronunciation and its generated variants was
then calculated. This measure should not exceed a threshold since the different pronunci-
ations of a word are usually phonemically very close. Pruning with thresholds of 3 (LD3)
and 2 (LD2), meaning that all the variants with edit distances greater than 3 and 2 re-
spectively are pruned, were tried. Finally, the 1-, 4- and 9-best pronunciation variants per
input pronunciation were kept and merged with the input pronunciations in order to have
2-, 5- and 10-best pronunciations generated and so as to be able to compare these with the
n-best lists from Moses g2p.

3.3 Experimental setup

The LIMSI American English pronunciation dictionary, created with extensive man-
ual supervision, serves as basis of this work. The pronunciations are represented using a
set of 45 phonemes (Lamel and Adda, 1996) (for a detailed presentation of the phoneme
set, see Appendix A). 18% of the words are associated with multiple pronunciations.
These mainly correspond to well-known phonemic alternatives (for example the pronun-
ciation of the ending “ization”), and to different parts of speech (noun or verb). The
dictionary contains a mix of common words, acronyms and proper names, the last two
categories being difficult cases for g2p converters and particular effort has been made to
pronounce proper names in text-to-speech synthesis technology (Spiegel, 1993). Case dis-
tinction is eliminated since in general it does not influence the word’s pronunciation, the
main exceptions being the few acronyms which have a spoken and spelled form. Some
symbols in the graphemic form are not pronounced, such as the hyphen in compound
words.

The dictionary has 187,975 word entries (excluding words starting with numbers) with
on average 1.2 pronunciations per word. Each dictionary entry contains the orthographic
form of a word and its pronunciations (one or more). The majority of words have only
one pronunciation, leaving it to the acoustic model to represent the observed variants in
the training set that are due to allophonic differences. Moreover, since the dictionary
is mostly manually constructed, it is certainly incomplete with respect to coverage of
pronunciation variants particularly for uncommon words. The pronunciations of words
of foreign origin (mostly proper names) may also be incomplete since their pronunciation
depends highly on the speaker’s knowledge of the language of origin. This means that
some of the automatically generated variants are likely to be correct (or plausible) even
if they are not in the current version of the Master dictionary. It was however decided to
use this dictionary as it is reputed to be a high quality dictionary for speech recognition,

34 CHAPTER 3. SMT-INSPIRED PRONUNCIATION GENERATION

which will be the domain of application of the proposed methods in Section 3.5 2.
The dictionary was randomly split based on the graphemic form of the word into a

training, a development (dev) and a test set. The dev set is necessary for the tuning of
the Moses model. In order to have a format that resembles the aligned parallel texts used
for training machine translation models, the dictionary is expanded so that each entry
corresponds to a word-one pronunciation pair. The resulting dev and test sets have 11k
and 19k distinct entries.

The g2p converter is trained for two conditions, on the entire training subset using all
pronunciations of words (tr set), or on the same word list but using only one (canonical)
pronunciation per word (tr set l). Since canonical pronunciations are not explicitly indi-
cated in the lexicon, the longest one is taken as the canonical form. In the first training
condition, there are 200k entries (distinct word-pronunciation pairs) in the training set
with on average 1.2 pronunciations/word. In the second training condition, the training
set has 160k entries with a single pronunciation per word.

Concerning the p2p systems, three different training conditions are compared. The
first two are the ones already presented for the g2p training in the previous paragraph. The
third training condition concerns training only on words with two or more pronunciation
variants. Thus, all words in this training set have multiple pronunciations (tr set m).

At this point, a further preparation of the training set for each method is required.
For the method where Moses is used as a p2p converter, a “monolingual” parallel cor-
pus is needed, meaning that both the source language and the target language will have
phonemes as elements. The source language is always formed by the canonical pronun-
ciation segmented into phonemes. The target language is formed by the corresponding
pronunciations depending on the training condition. When Moses is used as a g2p con-
verter as well as for the pivot method, the training set is used as a parallel corpus with one
graphemic transcription - pronunciation pair per line with spaces separating characters,
in order to generate n-best lists (Moses-g2p converter) or to use the generated translation
table to extract paraphrased sequences (pivot method). Each word is a source sentence
with each grapheme being an element of the source sentence and each pronunciation is a
target sentence with each phoneme forming an element of the target sentence.

Table 3.1 gives an overview of the data sets used with the number of entries (distinct
pairs) and the average number of pronunciations per word in the three training conditions
after preprocessing.

Table 3.1: Training conditions

Training set Number of entries Average number prons/word
tr set 201,423 1.2
tr set l 162,974 1.0
tr set m 67,769 2.3

It can be seen in Table 3.1 that there are large differences between the three training

2. Although not publicly available, this dictionary is available by request. It has been used by numerous
laboratories. SRI, Philips Aachen, ICSI and Cambridge University have reported improving the perfor-
mance of their systems using this dictionary.

3.4. EVALUATION 35

conditions. For tr set m the number of entries diminishes to one third of the original dic-
tionary. However, the number of pronunciations per word almost doubles. In this case,
the extra information given by the canonical pronunciations of words with only one pro-
nunciation is lost, but we allow the system to change the frequency relationship between
the phrases of the canonical pronunciations and the phrases found in pronunciation vari-
ants, and see how this influences the generation of pronunciation variants which is the
main interest of the p2p conversion. In the second training condition, only the canonical
pronunciation of each word is kept in the training data. This allows us to see if pronunci-
ation variants can be generated even under limited training conditions. For example, this
condition corresponds to generating variants from the output of a rule-based g2p system
which, if originally developed for speech synthesis, may not model pronunciation variants
or to enriching a dictionary with limited pronunciation variants.

3.4 Evaluation

In this Section the evaluation of the g2p and p2p conversion will be presented. A
further evaluation of the generated pronunciations is effected adding these pronunciations
to a state-of-the-art ASR system. These speech recognition results will be presented in
the next Section (Section 3.5). In practice, it is much easier and less costly to assess
the performance of a letter-to-sound module separately and in isolation from any other
components (unit testing). This avoids the dependencies that can arise in end-to-end
evaluation and is thus more suitable for an initail comparison of different techniques for
g2p and p2p conversion (Jansche, 2003).

3.4.1 Definition of evaluation measures

In this study, precision and recall, first introduced in information retrieval (Van Rijs-
bergen, 1979), as well as phone error rate (PER) are used to evaluate the predictions of
one or multiple pronunciations. We will first define these measure for the g2p conversion
case. Word xi of the test set (i = 1..w) has j distinct pronunciations yij (yi is a set with
elements yij, j = 1..di). Moreover, our systems can generate one or more pronunciations
f(xi) (f(xi) is also a set). Recall (R) is conventionally defined:

R =
1

w

w∑
i=1

|f(xi) ∩ yi|
|yi|

(3.5)

Precision (Pr) is defined analogously as the number of correct generated pronunciations
divided by the total number of generated pronunciations. They are calculated on all ref-
erences (canonical pronunciations and variants) to evaluate the g2p conversion, but also
only on the variants in order to specifically evaluate their correctness.

We refer to the previous definitions as micro-recall and micro-precision respectively
(Stroppa, 2005). If the examples are normalized by the number of expected pronuncia-

36 CHAPTER 3. SMT-INSPIRED PRONUNCIATION GENERATION

tions (correct pronunciations in the reference ri), the total recall becomes:

r =

∑w

i=1 |ri||yi|∑w

i=1 |yi|
, (3.6)

where ri = |f(xi)∩yi|
|yi| the recall of the word xi. In this last case, the macro-recall is

defined. Macro-precision is defined analogously. The macro-measures give more weight
to the examples with multiple pronunciations, while the micro-measures consider all the
examples equally weighted.

The PER is measured using the Levenshtein Distance (LD) between the generated
pronunciations and the reference pronunciations and the mean value on the whole corpus
is taken:

PER1−best =

∑w

i=1 PER(yi, f(xi))

w
(3.7)

PERn−best =

∑w

i=1

∑di
j=1 PER(yij, f(xi))∑w

i=1 |yi|
. (3.8)

The idea is to compute the PER when only one pronunciation is generated by Moses
(PER1−best) and when an n-best list of pronunciations is generated by Moses (PERn−best).
The nominator of Equations 3.7 and 3.8 computes the PER of each word of the dictionary
and sums the PERs of all the dictionary words. If only one pronunciation is generated by
Moses (Equation 3.7), it is desired that this pronunciation is as close as possible to one of
the reference pronunciations of the corresponding word. In order to compute the PER, the
LD between all the reference pronunciations of the word and the one pronunciation gen-
erated by Moses is computed and the minimum of these LD scores is kept and normalized
by the number of reference phonemes. Then, the denominator serves to take the mean
value of the PERs of all reference words. If more pronunciations are generated by Moses
(Equation 3.8), the LD between each pronunciation of the reference and each pronunci-
ation generated by Moses is computed, and the minimum LD score for each reference
pronunciation is kept. These minimum LD scores are again normalized and the PERs of
the reference pronunciations are generated. In the n-best case, we have one minimum LD
score for each reference pronunciation, and not one for each word as in the 1-best case.
This is because we aim at generating as many correct reference pronunciation variants as
possible and not just one correct pronunciation per word as in the 1-best case. Finally, the
denominator serves to take the mean value of the PERs of all reference pronunciations.

The definitions are the same for the p2p conversion task, with the difference that in
the upper equations xi is the canonical pronunciation of the test set, for which a set yi of
one or more pronunciation variants is generated.

3.4.2 G2P conversion results
The Moses-g2p converter (M-g2p) and the pivot paraphrasing method (P) were tested

for the entire training set (tr set) and for the canonical pronunciation training conditions
(tr set l). The PER on the test set for the training condition (tr set l) is presented in
Table 3.2 for Moses-g2p and Pivot with LD2 pruning (P LD2) and in Table 3.3 for the
training condition (tr set). The PER for both training conditions is about 6% for the 1-best

3.4. EVALUATION 37

Moses-g2p pronunciation, and about 1% if the 10-best pronunciations are considered. The
similar results between the two training conditions are a good indication that our systems
can generate pronunciations of good quality even under restricted variation conditions in
training. Since the 1-best pronunciations generated by Moses-g2p are used as input to the
pivot post-processing, the corresponding entry in the table is empty for Pivot. The string
error rate (SER) is 25%.

Table 3.2: PER on all references (canonical pron+variants) for Moses-g2p (M-g2p) and
Pivot (P) for canonical pronunciation training

Method Measure 1-best 2-best 5-best 10-best
M-g2p PER (%) 6.22 3.99 1.98 1.26
P LD2 PER (%) - 6.17 5.16 3.52

Table 3.3: PER on all references (canonical pron+variants) for Moses-g2p (M-g2p) and
Pivot (P) for the entire training set condition

Method Measure 1-best 2-best 5-best 10-best
M-g2p PER (%) 6.13 4.00 1.97 1.17
P LD2 PER (%) - 6.00 4.47 3.52

Table 3.4 gives recall results compared to all references (top) and only variants (bot-
tom) with both methods for canonical pronunciation training. Table 3.5 gives the corre-
sponding results for training on the entire training set (keeping one or multiple pronunci-
ations per word). Precision was also calculated, but only recall is presented because we
consider it more important to cover possible pronunciations than to have too many, since
other methods can be applied to reduce the overgeneration (alignment with audio, manual
selection, use of pronunciation probabilities, etc). The best value that both precision and
recall can obtain is 1.

It can be seen in Table 3.5 that, for the training on the entire training set, Moses-g2p
outperforms the pivot-based method in terms of recall measured on all references (R-all
ref) and on variants only (R-variants). The best result is a recall on all references of 0.94
when using the 10-best pronunciations generated by Moses-g2p.

In Table 3.4 the recall on all references (top) and only on variants (bottom) for canon-
ical pronunciation training are shown. For the recall on variants, the results of pivot
without LD pruning are presented (P) as well as with LD threshold 3 (P LD3) and LD
threshold 2 (P LD2) to show the improvement obtained by the intermediate pruning steps
(see Section 3.2.2 for a reminder on the pruning performed on the pivot result).

Comparing the recall on all references (R-all ref) in the two tables, a 3% absolute
degradation can be seen in Table 3.4 for both methods. However, the variant-only recall
degrades more severely. For the latter case (R-variants) pivot with LD2 or LD3 pruning
outperforms Moses-g2p. It manages to generate more correct variants even when no
variants are given in the training set (see lower part of Table 3.4). Pivot takes directly the
variation patterns from the phrase table of Moses avoiding the overfitting effects of the

38 CHAPTER 3. SMT-INSPIRED PRONUNCIATION GENERATION

Table 3.4: Recall on all references (canonical pron+variants) and only on variants for
Moses-g2p (M-g2p) and Pivot (P) for canonical pronunciation training

Method Measure 1-best 2-best 5-best 10-best
M-g2p R-all ref 0.68 0.79 0.88 0.91
P R-all ref - 0.72 0.78 0.82
P LD3 R-all ref - 0.72 0.78 0.82
P LD2 R-all ref - 0.72 0.78 0.83
M-g2p R-variants 0.10 0.25 0.44 0.55
P R-variants - 0.19 0.32 0.44
P LD3 R-variants - 0.35 0.49 0.60
P LD2 R-variants - 0.36 0.50 0.61

Table 3.5: Recall on all references (canonical prons+variants) and only on variants for
Moses-g2p (M-g2p) and Pivot (P) for the entire training set condition

Method Measure 1-best 2-best 5-best 10-best
M-g2p R-all ref 0.68 0.82 0.91 0.94
P LD2 R-all ref - 0.74 0.80 0.84
M-g2p R-variants 0.27 0.63 0.82 0.89
P LD2 R-variants - 0.50 0.66 0.73

EM algorithm used by Moses for the construction of a generative model. Moreover, to
reduce the overall complexity of decoding, the search space of Moses is typically pruned
using simple heuristics and, as a consequence, the best hypothesis returned by the decoder
is not always the one with the highest score.

It should be pointed out that the measures (recall and PER) on all references favors
the Moses-based approach since the pivot-based approach aims to generate variants. This
is why recall only on variants was also evaluated. However, while the pivot method
gives better results than Moses-g2p to variants generation for the canonical pronunciation
training condition, this is not the case when multiple pronunciations are used for training.
Some additional analyses were carried out to investigate this further. When the pivot
is used as a post-processing step to the Moses-g2p converter, its input is the output of
Moses which has PER of 6%, low enough to be reliable, but the SER is 25% which can
plausibly degrade the performance of pivot. To verify this hypothesis, the pivot method
was applied to the correct canonical pronunciation of the test set and these results were
compared to the previous results of 1-, 4- and 9-best variants generated by pivot as well
as to the variants generated by Moses-g2p. In order to more clearly see the influence of
variants generated by pivot, the 1-best pronunciation generated by Moses was not retained
as had been done previously. This pronunciation was also removed from the n-best list
generated by Moses-g2p in order to compare the two methods. Table 3.6 gives recall
results computed on variants in the reference set. It can be seen that pivot, when applied to
a correct input, not only outperforms itself applied to a “noisy” input, but also the Moses-
g2p method. This is an important observation, as there are cases where the enrichment

3.4. EVALUATION 39

Table 3.6: Recall on variants only for generation of 1-, 4- and 9-best variants by Moses-
g2p (M-g2p) and Pivot (P) for the entire training set condition

Method Measure 1-best 4-best 9-best
M-g2p R 0.35 0.55 0.62
P LD2 R 0.23 0.39 0.46
P correct entry LD2 R 0.39 0.65 0.75

Table 3.7: Macro-Recall on all references (canonical prons+variants) and only on vari-
ants for Moses-g2p (M-g2p) and Pivot (P) for both training conditions.

Canonical pron training condition
Method Measure 1-best 2-best 5-best 10-best
M-g2p mac-R-all ref 0.62 0.73 0.82 0.87
P LD2 mac-R-all ref - 0.66 0.73 0.78
M-g2p mac-R-variants 0.10 0.23 0.40 0.51
P LD2 mac-R-variants - 0.33 0.46 0.56

Entire dict training condition
Method Measure 1-best 2-best 5-best 10-best
M-g2p mac-R-all ref 0.62 0.78 0.89 0.93
P LD2 mac-R-all ref - 0.69 0.77 0.82
M-g2p mac-R-variants 0.25 0.56 0.79 0.88
P LD2 mac-R-variants - 0.46 0.63 0.70

of a single pronunciation dictionary is desired, for example in a conversational speech
transcription task.

All results presented in this section are calculated with the complete 45-phone set
used in the LIMSI dictionary. However, some exchanges are less important than others.
If some errors, such as the confusion between syllabic nasals and a schwa-nasal sequence,
are not taken into account (a subset of those proposed in (Lee and Hon, 1989)), the overall
recall improves by 1-2% absolute for both methods, and the PER is reduced by 0.1-0.2%
for Moses-g2p and 0.3-0.4% for pivot.

Last but not not least, the reference dictionary is mostly manually constructed and
certainly incomplete with respect to coverage of pronunciation variants particularly for
uncommon words. The pronunciations of words of foreign origin (mostly proper names)
may also be incomplete since their pronunciation depends highly on the speaker’s knowl-
edge of the language of origin. This means that some of the generated variants are likely to
be correct (or plausible) even if they are not in the references used in the upper evaluation.

For the g2p conversion task, macro-recall gave similar results to the conventional
recall. For the sake of completeness, these results are summarized in Table 3.7 for both
training conditions.

40 CHAPTER 3. SMT-INSPIRED PRONUNCIATION GENERATION

3.4.3 P2P conversion results

The two systems, Moses as phoneme-to-phoneme converter (m p2p) and the pivot
paraphrasing method (p p2p) were tested for the three training conditions presented in
Section 3.3. The results using the two proposed evaluation metrics are shown in Tables
3.8 and 3.9 respectively. We only present recall measures in the tables because this is
what is of most interest in the particular task. The best value that both precision and recall
can obtain is 1. However, the best value of precision is often further limited depend-
ing upon the number of elements of the n-best list and the overgeneration that cannot be
avoided. The n-best list is limited to 10 because preliminary studies showed that larger
n only slightly improves recall while severely degrades precision. There is quite a bit of
overgeneration, since in the 19k pronunciation-pronunciation pairs of the test set there are
only 4k pairs with pronunciation variants. This could not be avoided with a random selec-
tion of the test set from the original dictionary where only 18% of words have variants as
already stated. However, there is the possibility that some of the generated variants which
are not in the reference (and therefore counted as errors) could be considered acceptable
by a human judge.

As can be expected, for both methods the number of correctly generated variants in-
creases with the size of the n-best list. This is normal not only because the number of
hypothesis increases with the size of the n-best list, but also because there are canoni-
cal pronunciations in the test set that have more than one variant (approximately 1/6 of
the part of the test set with multiple pronunciations) which cannot be captured when an
insufficient number of pronunciations is generated.

It is also interesting to compare the results of the first and the third training conditions
(entire training set vs. keeping only entries with multiple variants) for the two methods.
In the second case, the amount of training data is only one third of the original training
set. However, the results are more or less the same for both training conditions. This may
be because the information that the model is using to learn how to generate variants is
mostly captured by the multiple pronunciations in the training set and less by the fewer
variations observed in the canonical pronunciations of one-pronunciation words. What
the model is learning in this case is focused on the relationship between the canonical
pronunciation and other variants, and therefore has effectively more relevant information
and it does not get watered down by the self-production. This may compensate for the

Table 3.8: Results using Moses as phoneme-to-phoneme converter for the 3 training
conditions

Training set Measure 1-best 5-best 10-best
tr set Micro-recall 0.20 0.75 0.83

Macro-recall 0.19 0.73 0.81
tr set l Micro-recall – 0 0

Macro-recall – 0 0
tr set m Micro-recall 0.21 0.75 0.80

Macro-recall 0.19 0.74 0.80

3.4. EVALUATION 41

Table 3.9: Results using the pivot paraphrasing method for the 3 training conditions

Training set Measure 1-best 5-best 10-best
tr set Micro-recall 0.29 0.60 0.70

Macro-recall 0.26 0.56 0.66
tr set l Micro-recall 0.09 0.26 0.38

Macro-recall 0.09 0.24 0.35
tr set m Micro-recall 0.25 0.56 0.70

Macro-recall 0.22 0.53 0.66

reduced amount of data.
A comparative analysis of the two methods can also be made. In the first (entire

training set) and in the third (only entries with variants) training conditions, using Moses
as a p2p converter gives better results in terms of the generation of pronunciation variants
for both micro and macro measures when the 5-best and the 10-best variants are kept.
However, when only the 1-best generated pronunciation is kept, the pivot method gives
better results. This is due to the generation of canonical pronunciations by Moses when
used as p2p converter, which are subsequently removed from the results because they
already exist in the input. The number of variants generated by Moses-p2p when only the
1-best is kept are quite limited. This is why, while the recall is lower than that of the pivot
method, the precision is higher.

It can be seen that the results change when the training set is limited to the canonical
pronunciations only (the second condition). In this case the pivot method manages to
produce some results, while for Moses the model fails to generate any variants (this is
why the corresponding columns are left empty in Table 3.8) and all the variants that are
in the 5-best or the 10-best lists are false. These results warrant a bit more discussion.
The results are promising for the pivot method, because even when the training dictionary
has few or no pronunciation variants, the pivot method can still be used to generate some
alternative pronunciations. This can be explained by the fact that the pivot method uses
also the graphemic information. Even if no variants are included in the training set, it can
still find graphemic sequences of words that correspond to different phonemic sequences
and consider these phonemic sequences as possible modifications of pronunciations. For
example, in the training set the word “autoroute” is pronounced /ctorut/ and the word
“shouting” is pronounced /SWtIG/. These words have the graphemic sequence “out” in
common which can be used as a pivot between the phonemic sequences /ut/ and /Wt/.
These phonemic sequences become a paraphrased pair that generates correctly the vari-
ants /rWts/ and /ruts/ of the word “routes” found in the test set.

This also illustrates the difficulty of generating pronunciations in English, because
the correspondence between orthographic forms and canonical pronunciations does not
follow strict rules which would prevent the pivot method from finding modified phonemic
sequences corresponding to the same graphemic sequence. This is not the case when
Moses is used as phoneme-to-phoneme converter. When no variants are given to the
system, it does not have any additional information in order to be trained for the task of
generating multiple pronunciations. It is like trying to train an SMT system without a

42 CHAPTER 3. SMT-INSPIRED PRONUNCIATION GENERATION

target language. It can just learn to align the phonemic sequences with themselves, which
is not applicable to the generation of variants. In this case, is it wrong to use Moses for
this task as it is obvious that it has nothing to learn from the training data.

3.5 Speech recognition experiments
The pronunciations generated by the Moses-g2p were further tested in two speech

recognition experiments. In the first, automatically generated variants are added to a
single-pronunciation dictionary, and in the second we simulate adding pronunciations for
OOV words. To our knowledge it is the first time they are tested in a state-of-the-art ASR
for English broadcast data.

The speech transcription system uses the same basic modeling and decoding strat-
egy as in the LIMSI English broadcast news system (Gauvain et al., 2002). The speech
recognizer makes use of continuous density HMMs with Gaussian mixture for acous-
tic modeling and 4-gram statistics estimated on large text corpora. The acoustic models
(AMs) are gender-dependent, word position dependent, speaker-adapted, and Maximum
Likelihood trained on about 500 hours of audio data. They cover about 30k phone con-
texts with 11,600 tied states. N-gram LMs were trained on a corpus of 1.2 billion words
of texts from various LDC corpora (English Gigaword, BN transcriptions, commercial
transcripts), news articles downloaded from the web, and assorted audio transcriptions.
The recognition word list contains 78k words, selected by interpolation of unigram LMs
trained on different text subsets as to minimize the OOV rate on a set of independent de-
velopment texts. The transcription system has two main components, an audio partitioner
based on an audio stream mixture model (Gauvain et al., 1998) and a word recognizer. For
each speech segment, the word recognizer determines the sequence of words, associating
start and end times and an optional confidence measure with each word. Word recognition
was performed in a single decoding pass with decoding time being roughly the duration
of the audio signal, generating a word lattice with cross-word, position-dependent AMs,
followed by consensus decoding (Mangu et al., 1999) with a 4-gram LM. Unsupervised
AM adaptation is performed for each segment cluster using the CMLLR and MLLR tech-
niques prior to decoding.

The Quaero (www.quaero.org) 2010 development data were used in these experi-
ments. This 3.5 hour data set contains 9 audio files recorded in May 2010, covering a
range of styles, from broadcast news (BN) to talk shows. Roughly 50% of the data can be
classed as BN and 50% broadcast conversation (BC). These data are considerably more
difficult than pure BN data. The overall word error rate (WER) with the original recogni-
tion dictionary is 30%, but the individual shows vary from 20% to over 40%. These are
competitive WERs on these data. The WERs for the individual shows are shown in Table
3.10. The results with baseline system, which has an average of 1.2 prons per word, can
be compared to that using a single pronunciation dictionary (the most frequent based on
automatic alignments of the audio training data).

In Table 3.11, the n-best pronunciations (1-, 2- and 5-best) generated by the Moses-
based system under the two training conditions, are added to the canonical pronunciation
of the original recognition dictionary (Baseline longest). The results show that using

3.5. SPEECH RECOGNITION EXPERIMENTS 43

Table 3.10: Quaero 2010 development data set composition and baseline word error
rates (%) with the original dictionary and a single pronunciation one.

Show Duration Baseline 1 pron
20100305 BBC WH 16 mn 33.1 36.6
20100305 BBC PHONEIN 35 mn 43.1 44.3
20100305 NEWSPOD 37 mn 24.4 27.3
20100305 BBC MAYO 15 mn 33.5 38.1
20100308 NEWSPOD 32 mn 23.6 26.9
20100308 NAKED SCIENTISTS 18 mn 23.1 28.3
20100310 BBC MIDWEEK 15 mn 30.7 33.7
20100310 BBC MEDIASHOW 26 mn 30.3 32.9
20100311 CNN NEWS 27 mn 22.0 25.3

only the longest pronunciation (line “Baseline longest”: WER 41,6%) results in a large
increase in WER compared to using the original recognition dictionary which includes
common variants (WER 30%). Adding pronunciations improves over the baseline longest
dictionary, up until the 5-best pronunciations. The pronunciations trained using the entire
training set (one or multiple pronunciations per word) improve more the WER compared
with the pronunciations trained with the canonical pronunciation dictionary. This is be-
cause the former are trained to better model the variants which correspond to the reduced
forms, closer to the spoken language most of the times.

In Table 3.12, the same pronunciations (M1, M2, M5) are added to the most frequent
pronunciation of the recognition dictionary (Baseline most frequent). The most frequent
pronunciation baseline dictionary has a WER closer to the baseline of the original mul-
tiple pronunciation dictionary. In this case adding one pronunciation (for both training
conditions) improves the performance of the ASR system, but adding more pronuncia-
tions degrades it.

In both Tables 3.11 and 3.12 it can be observed that the best results are reported when
only one variant is added to the lexicon (column “M1”). This suggests that adding more
variants actually harms the ASR performance, even if these variants actually improve the
recall score in the g2p conversion evaluation (see Section 3.4). This observation intro-
duces the confusability problem which we will try to better understand and moderate in
the following chapters of this thesis.

Although the quality of the pronunciations trained on a multiple pronunciation dictio-
nary is higher, measured with recall on all references and on variants, they are submitted

Table 3.11: WER(%) adding Moses nbest-lists (M1, M2,M5) to the longest pronunciation
baseline

Training condition M1 M2 M5
Canonical pronunciation 38.2 38.4 40.8
Entire training set 37.9 38.2 39.1
Baseline longest 41.6

44 CHAPTER 3. SMT-INSPIRED PRONUNCIATION GENERATION

Table 3.12: WER(%) adding Moses nbest-lists (M1, M2,M5) to the most frequent pro-
nunciation baseline

Training condition M1 M2 M5
Canonical pronunciation 32.0 33.4 37.3
Entire training set 32.0 34.5 38.9
Baseline most frequent 32.9

Table 3.13: WER(%) adding Moses nbest-lists (M1, M2,M5) to the original LIMSI dic-
tionary

Training condition M1 M2 M5
Entire training set 31.1 33.8 38.9
Original LIMSI dictionary 30.0

to the same confusability effects. What is more, when adding two or five pronunciations
to the most frequent baseline, the system with pronunciations trained on a single canoni-
cal pronunciation presents lower WERs. An explanation could be that the pronunciations
trained under multiple pronunciations can better represent reduced forms and, thus, are
closer to the most frequent baseline and easier to be confused. An example of the intro-
duced confusability is that of the multiple pronunciation training outputs for the entry of
the dictionary “they’re”. There are the pronunciations /DeX/ and /Der/ when the 2-best
list is kept. The latter pronunciation (/Der/) is not generated under the canonical pro-
nunciation training. /Der/ is an homophone with the pronunciations of the word “their”.
Such frequent cases can be responsible for the degradation of the ASR system with pro-
nunciations trained on the multiple pronunciation dictionary, when many alternatives are
added.

We also tried to add the same pronunciations (M1, M2, M5) to the original multiple
pronunciation LIMSI dictionary, but no improvement was observed even when just one
additional pronunciation was included in the original recognition dictionary (Table 3.13).

We then simulated the generation of pronunciations for OOVs. Starting with the full
dictionary with variants, the pronunciations for the 20% least frequent words in the test
data (about 7% of dictionary) were replaced with automatically generated pronunciations
using the Moses g2p system. For comparison, the g2p system l2s (Wasser, 1985), obtained
from the Cambridge University ftp server and slightly modified to use the phone set of the
LIMSI ASR system, was used to generate pronunciations for the missing words. (Lamel
and Adda, 1996) reports that this system provided consistent pronunciations and gave
satisfactory recognition results. The results in Table 3.14 show that the dictionary with
Moses-based pronunciations for the OOVs outperforms those of the l2s system, even
with 10 pronunciations, even though these many alternatives can be expected to cause
confusions.

Nevertheless, in neither case was the performance of the original multiple pronun-
ciation dictionary achieved. This dictionary is a difficult baseline because it is mostly
manually constructed and well-suited to the needs of an ASR system.

3.6. CONCLUSION 45

Table 3.14: WER(%) generating prons for OOVs using l2s and Moses nbest-lists (M1,
M2, M5, M10).

l2s M1 M2 M5 M10
37.8 31.3 31.2 32.0 33.2

3.6 Conclusion

This chapter has reported on applying two data-based approaches inspired from re-
search in statistical machine translation to the problem of generating pronunciation vari-
ants, both methods fully automatic and language independent. The main contribution of
this work is that we propose a novel pivot-based method and compare this approach with
directly taking the n-best lists from a Moses SMT system. A general comment can be that
the n-best lists of Moses have a higher recall when a comparison is made to all reference
pronunciations in the test set. However, the pivot-based method generates more correct
variants. This is an advantage of the pivot method that could be useful in certain cases, for
example to generate variants from the output of a rule-based g2p system which, if origi-
nally developed for speech synthesis, may not model pronunciation variants or to enrich
a dictionary with limited pronunciation variants.

When used for p2p conversion, the approaches differ in the way that information
about pronunciation variation is obtained. The approach using Moses as phoneme-to-
phoneme converter takes into account only the information provided by the phonemic
transcriptions. The pivot method uses information from both the phonemic and the or-
thographic transcriptions.When the full dictionary (that contains words with one or more
pronunciations) is used for training, the Moses-based method gives better results than the
pivot-based one. This is also the case when training is carried out only on entries with
multiple pronunciations. However, when the training dictionary does not contain any pro-
nunciation variants, the Moses-based method cannot be used, while pivot can still learn
to generate variants. This is an advantage of the pivot method, and could be useful for
languages without well-developed multiple-pronunciation dictionaries. This arises from
the use of information provided by the orthographic transcription by the pivot method.

Another important outstanding issue concerns the proper way to evaluate the ability
of a system to generate pronunciation variants. In this work, recall and PER have been
used, however other measures could also be applied. For example, in the case of phoneme
accuracy it may be appropriate to have phone-class dependent penalties with certain con-
fusions being more important than others. Moreover, some pruning could be applied on
the generated variants in order to imporve precision. One direction to explore is using
audio data to remove pronunciations, however this can only apply to words found in the
audio data. The reader is referred to (Yvon et al., 1998) for a discussion on open questions
concerning the evaluation of g2p systems.

The pronunciations generated by Moses were also used to carry out some tests in a
state-of-the-art ASR system. These experiments show that the added pronunciations are
of good quality even when trained under limited variation conditions and can improve
the single pronunciation baselines. When the generation of pronunciations for OOVs is

46 CHAPTER 3. SMT-INSPIRED PRONUNCIATION GENERATION

simulated, they outperform a Cambridge l2s system and they give results close to the
baseline. Our point is not, however, to focus on the improvement of the performance of
an ASR system, but to propose data-driven approaches for variant generation that better
model variability in spoken language which can be useful in several applications.

Chapter 4

Measuring the pronunciation
confusability in ASR decoding

In the previous chapter, the focus was on g2p and p2p conversion and the generated
pronunciations and variants were added to a state-of-the-art word recognizer. A basic
observation of this work, and at the same time a well-known problem of pronunciation
modeling, was the confusability introduced to the system once alternative pronunciations
are added to the recognition dictionary. This confusability, as already mentioned, can
severely degrade the ASR performance, especially if the weights of the pronunciation
variants are not suitably trained. This is an extra amount of confusability that is added
to the “basic” confusability of the pronunciation dictionary. The “basic” confusability
is a compromise between the size of the dictionary and the OOV rate, meaning that a
smaller in size dictionary (with less words) will have less homophones and thus less con-
fusability, but it will present a higher OOV rate. Therefore, it can result in a worse ASR
performance, this time not because of confusability issues, but because of words missing
in the dictionary. How to measure and reduce this “basic” as well as the extra confus-
ability when variants are added is an open problem, because homophones are an inherent
phenomenon of speech and we cannot just discard them without negatively affecting the
ASR performance.

In this chapter, we focus on understanding more about the confusability inherent to
the pronunciation dictionary. In particular, we define a measure aimed at assessing how
well a pronunciation model will function when used as a component of a speech recogni-
tion system (Section 4.2). This measure, pronunciation entropy, fuses information from
both the pronunciation model and the language model and measures the uncertainty in-
troduced by these components in the system. We then show how to compute this score
by effectively composing the output of a phoneme recognizer with a pronunciation dic-
tionary and a language model, and investigate its role as predictor of pronunciation model
performance. In Section 4.4 we present results of this measure for different dictionaries
with and without pronunciation variants and counts.

47

48 CHAPTER 4. PRONUNCIATION CONFUSABILITY

4.1 Introduction

A lot of work has been carried out on the generation of pronunciations and pronunci-
ation variants independently of the speech (g2p conversion, p2p conversion) or in a task
specific framework using surface pronunciations generated from a phoneme recognizer
or including acoustic and language model information. However, despite the inclusion of
the acoustic model (Holter and Svendsen, 1999), (Fosler-Lussier and Williams, 1999) and
language model influences (Kessens et al., 1999) into the pronunciation modeling process,
most works lack a sense of how the added alternative pronunciations will affect the overall
decoding process. Confusability is not limited to the phonemic proximity between homo-
phones but includes also ambiguities provoked by the segmentation of the phonemes to
words, and in the same time is influenced by the LM scores. This is novel compared to
previous works, such as the work of (Fosler-Lussier, 1999), where the entropy is defined
as a local measure computed on predicted units (phones/syllables/words).

Figure 4.1 gives an example of the ambiguity that can be created during segmentation
into words of a phoneme sequence. For the sake of simplicity, let’s consider that a sim-
ple phoneme sequence is generated by a phoneme recognizer. Usually a phoneme lattice
is generated which can make the segmentation ambiguities a lot larger. Thus, a simple
phoneme sequence when composed with the pronunciation dictionary is recognized as
two phrases of different length and word content. However, some of the extra confus-
ability introduced by the pronunciation model may be compensated by the LM, whose
scores may help the decoder to recognize the right sentence in the end. Thus, a method
for quantifying the confusion in a combined acoustic-lexical system is needed.

A confusability measure traditionally used to measure the uncertainty residual to a
system is the entropy. Specifically in an ASR system, lexical entropy measures the con-
fusability when a certain LM is used. In some previous works, the scores of the acoustic
and pronunciation models are used in addition to the LM scores in order to measure lex-
ical entropy (Printz and Olsen, 2000). In (Wolff et al., 2002), the authors consider the
entropy of the variant distribution as a measure of the pronunciation confusability, but
they do not take into account the language model, and in (Fosler-Lussier, 1999) only a
prior distribution on pronunciations is used for the entropy calculation. Our aim is to in-
tegrate pronunciation model and language model information into a single framework for
describing the confusability. Especially incorporating language model information would
provide a more accurate reflection of the decoding process, and hence a more accurate
picture of the possible lexical/acoustic confusions (Fosler-Lussier et al., 2002). The idea
is then to introduce a measure inspired by the formulation proposed in (Printz and Olsen,
2000) but in a somewhat reverse fashion. Instead of measuring the “true” disambiguation
capacity of the LM by taking acoustic similarities into account, we aim at measuring the
actual confusability introduced in the system by the pronunciation model, taking also into
account the LM. We call this measure pronunciation entropy.

To compute this measure, we will decompose the decoding process in two sepa-
rate parts: the acoustic decoding on the one hand, the linguistic decoding on the other
hand. Given an input signal, a phoneme recognizer is first used to obtain a sequence of
phonemes; the rest of the decoding process is realized using a set of Finite State Machines

4.2. A NEW CONFUSABILITY MEASURE 49

@ z a n c r

as honor

as Anne or

Pronunciation
dictionary p(a|w)

Language
model p(w)

 Decoder p(a|w)p(w)

''as honor''

Figure 4.1: Example of ambiguity during word segmentation in ASR decoding

(FSMs) modeling the various linguistic resources involved in the process. This is not op-
timal from an ASR point of view, but allows us to carry a further study on the components
of the decoder. Doing so allows us to measure the confusability incurred by the acoustic
decoder for fixed linguistic models; or, conversely, to assess the impact of adding more
pronunciations, for fixed acoustic and language models. This latter scenario is especially
appealing, as these measurements do not require to redecode the speech signal: it thus
become possible to try to iteratively optimize the pronunciation lexicon at a moderate
computational cost. Experiments are carried out to measure the confusability introduced
by single and multiple pronunciation dictionaries in an ASR system of continuous speech,
using the newly introduced pronunciation entropy.

4.2 A new confusability measure

4.2.1 ASR decoding with FSTs

The recognition process can be modeled with a sequence of weighted finite-state trans-
ducers (WFSTs) (Pereira and Riley, 1996). An abstract representation of the Viterbi de-
coding process of the present work can be given as:

Ŵ = bestpath(A ◦ P ◦ L ◦G), (4.1)

50 CHAPTER 4. PRONUNCIATION CONFUSABILITY

where Ŵ is the sequence of words corresponding to the best recognition hypothesis. A
is the phoneme hypothesis lattice generated by the phoneme recognizer, P is an FST that
contains a mapping from phonemes to the phonemic lexical representation of each word,
L is the pronunciation model FST, containing a mapping from each phonemic lexical
representation to the corresponding word, G is the language model finite state automaton
(FSA), which contains n-gram statistics, and ◦ is the composition operator. Constraining
the model by the pronunciation and the language models means that only words that are
part of complete paths in the decoding will be counted as confusions.

The same model of decoding as a series of formal compositions will be used for the
work presented in Chapter 5.

4.2.2 Decomposing the acoustic and linguistic modeling

In a first place, a phoneme recognizer generates the phoneme hypothesis latticeA from
the speech signal. These phonemes are the input in the following process of consecutive
compositions. The phoneme lattices are generated by the ASR system without taking
into account the pronunciation nor the language model during decoding. The aim is to
decompose the decoding parts in order to better evaluate the influence of the pronunciation
model in the decoding process. The acoustic scores are considered stable and independent
of the linguistic (pronunciation and language) confusability and thus are omitted. Later,
however, to have a final score as close as possible to the real decoding score, the acoustic
scores will be kept and, in addition, a weight scaling (LMscale) will be applied on the
language model. No time information is kept in the lattice. The pronunciation model
will automatically segment the phoneme sequences in pronunciations, and consequently
in words. All results will be presented in Section 4.4.

Then, the FST P is constructed, which represents the pronunciations of our lexicon
(see Section 4.3). Each path of P has as input a sequence of phonemes and returns the
corresponding phonemic lexical representation (pronunciation). P is composed with each
phoneme lattice. In order to account for insertions of phonemes between valid pronunci-
ations of our lexicon, the topology of P is slightly expanded. This expansion simulates
a simple error recovery strategy consisting in deleting superfluous phonemes in a left to
right fashion. Fig. 4.2 illustrates this expansion on a simple example, with the use of
failure transitions implemented with the so-called phi-matchers and rho-matchers (see
Section 2.3). Each state in P corresponds to the prefix of an actual pronunciation: when-
ever we reach a state from which no continuation is possible, a phi-transition allows us to
reach the state corresponding to a trimmed prefix, from which the first phoneme has been
deleted. This simple error recovery strategy is applied recursively. A rho-loop is finally
used in the initial state, which is also the final state, in case the first or last phonemes of
a sequence do not permit to complete a known pronunciation. Assume, for instance, that
we reach state 2 in P (see Fig. 4.2), and that the following symbol is ’c’, for which no
transition exists. The phi-transition will then enable to move to state 3, and to continue
the prefix ’bc’.

Next, the FST L representing the pronunciation dictionary with pronunciations as
inputs and words as outputs is constructed. Its weights are the conditional probabilities

4.2. A NEW CONFUSABILITY MEASURE 51

0

rho:eps

1

a:eps

3

b:eps

b:ab

phi:eps 2

b:eps

c:bc

phi:eps

a:ba

a:aba

phi:eps

Figure 4.2: Expansion of the topology of the P FST with phi and rho matchers that
consume the phonemes inserted between valid pronunciations

of a pronunciation given a word. When no pronunciation probabilities are available, a
uniform distribution over the probabilities of pronunciations of each word is applied. This
FST is composed with each phonemes-pronunciations FST (A ◦ P) resulting from the
previous composition.

A final composition is made with the FSA G that models a backoff language model,
with word probabilities as weights. G is constructed as described in (Riccardi et al., 1996;
Allauzen et al., 2003). This results in FSTs with phonemes as input and words as output,
which are projected to the output and determinized. Then, the arc weights of each FST
are normalized per state, i.e. scaled such that the probability of arcs leading out of a
state (plus the probability of being final) sums to 1 for each state. A general weight-
pushing algorithm in the log semiring (Mohri, 1997) is applied for the normalization and
the weights in the new stochastic FSA are converted to the desired posterior probabili-
ties given the pronunciations (see Section 2.3.5). What is calculated is the conditional
probability p(w | a) of all the word sequences that can be transcribed as a and, thus, are
competitors:

p(w | a) =
p(a | w)p(w)∑

w′∈W p(a | w′)p(w′)
. (4.2)

4.2.3 Definition of pronunciation entropy

We define as pronunciation entropy a measure of the actual confusability introduced
to an ASR system by the pronunciation model. It is defined in a sentence level to take
into account the ambiguities of the word segmentations performed by the recognition
dictionary. It integrates the LM scores and, plausibly the acoustic scores, to provide a
global reflection on the decoding process.

In order to have a measure of the confusability of the pronunciation lexicon, the en-
tropy of the posterior probability p(w | a) that combines the pronunciation model and the
language model information is computed. As described in Section 2.3.6, computing the

52 CHAPTER 4. PRONUNCIATION CONFUSABILITY

shortest distance on the expectation semiring can result in the desired entropy. However,
the expectation semiring must have components in the real semiring in order to compute
the entropy correctly, but even real numbers of double precision are not stable enough
for large lattices. Thus, an expectation semiring with components in the log semiring
is needed. That is why we define a new semiring, the log-expectation (or log-entropy)
semiring, changing the ⊕ and ⊗ operators as well as the identities of the semiring. In this
new semiring (K,⊕,⊗, (∞, 0), (0, 0)), K denotes (R∪ [−∞,∞])× (R∪ [−∞,∞]) and
the operations ⊕ and ⊗ on weight pairs (a1, b1) and (a2, b2) in K, are defined as:

(a1, b1)⊕(a2, b2) =

(−log(exp(−a1) + exp(−a2)), b1 + b2)
(4.3)

(a1, b1)⊗(a2, b2) =

(a1 + a2, exp(−a1)b2 + exp(−a2)b1)
(4.4)

When working on the log-entropy semiring, each negative log arc weightw is replaced
by the new weight (w,w ∗ exp(−w)). Then, the shortest distance from the initial to the
final state is computed as explained in Section 2.3.6. Some experiments were performed
on small exemplar lattices with real arc weights and the entropy was calculated directly
with the entropy semiring, already defined in OpenFst. However, for larger lattices the
use of the log and the log-entropy semirings was required for numerical stability reasons.

4.3 Phoneme recognition
The phoneme recognizer used in these experiments is built using acoustic models that

are tied-state, left-to-right 3-state HMMs with Gaussian mixture observation densities
(typically 32 components). The acoustic models are word position independent, gender-
dependent, and Maximum Likelihood trained on about 500 hours of audio data. It should
be noted that the phone contexts cover both within word and cross word triphones, but are
independent of the phone position in the word. This is actually different from the acoustic
models that were used in the word recognition experiments reported in Chapter 3, where
word position is explicitly taken into account with different phonemes expressing different
word positions (word initial/final/internal triphones). The states are tied by means of a
decision tree to reduce the model size and to increase triphone coverage. State-tying
constructs one tree for each state of each phone so as to maximize the likelihood of the
training data using single Gaussian state models, penalized by the number of tied-states.
Silence is modeled by a single state with 1,024 Gaussians. The acoustic models cover
about 30k phone contexts with a total of 11,500 tied states.

Unsupervised acoustic model adaptation is performed for each segment cluster using
the CMLLR and MLLR techniques prior to decoding. Concerning the cepstral features,
the 39 cepstral parameters are derived from a Mel frequency spectrum, with cepstral mean
removal and variance normalization carried out on a segment-cluster basis, resulting in a
zero mean and unity variance for each cepstral coefficient. A 3-dimensional pitch feature
vector (pitch, ∆ and ∆∆ pitch) is combined with the cepstral features, resulting in a total
of 42 (plpf0) or 81 parameters (mlpplpf0).

4.3. PHONEME RECOGNITION 53

It suffices to say that the phone labels that are produced at that stage are determinis-
tically mapped to the corresponding phonemes, which constitute the actual labels in the
phoneme lattice. The recognition dictionary is a simple lexicon made up of the same list
of phonemes used to represent pronunciations in the word lexicon (see Section 3.3). A
3-gram phoneme-based language model was also constructed to respond to the demands
of the system for language modeling. A phoneme lattice is thus generated after a single
decoding pass. The lattices are pruned so as to limit them to a reasonable size. To circum-
vent the fact that a lattice does not always finish with an end-of-sentence symbol, which
can be the case because of the use of a time-based segmentation, an end-of-sentence sym-
bol is added before the final state of each lattice.

The FST approach described in Section 4.2.1 is applied for word decoding. A 4-gram
word LM is used, trained on a corpus of 1.2 billion words of texts from various LDC cor-
pora (English Gigaword, Broadcast News (BN) transcriptions, commercial transcripts),
news articles downloaded from the web, and assorted audio transcriptions. The recog-
nition word list contains 78k words, selected by interpolation of unigram LMs trained
on different text subsets as to minimize the out-of-vocabulary (OOV) rate on set of de-
velopment texts. The recognition dictionary used as a baseline is the LIMSI American
English recognition dictionary with 78k word entries with 1.2 pronunciations per word.
The pronunciations are represented using a set of 45 phonemes (Lamel and Adda, 1996).
This dictionary is constructed with extensive manual supervision to be well-suited to the
needs of an ASR system. Other dictionaries with and without counts and variants were
also tested, as described in the next section. These are the same lexicon and LM as the
ones used in Section 3.5.

A part of the Quaero (www.quaero.org) 2010 development data was used in the recog-
nition experiments. This data set covers a range of styles, from broadcast news (BN) to
talk shows. Roughly 50% of the data can be classed as BN and 50% broadcast conver-
sation (BC). These data are considerably more difficult than pure BN data. These are the
same data used for word recognition when testing the g2p and p2p converters in Chapter
3. We chose to use the same data as well as the same lexicon and LM to be consistent in
the experimental protocols used throughout the thesis and to allow for a further compari-
son and analysis of the results. The part of the Quaero data that was used resulted in 285
lattices generated by the phoneme recognizer. This is a sufficient number of lattices to
have results that can be generalized. The FST-based decoding is applied to these lattices.

Table 4.1 summarizes some of the characteristics of the lattices and FSTs used in the
composition process: the average number of states and arcs of the lattices A and of the
phonemes-to-pronunciations FST P , of the pronunciations-to-words FST L and of the 4-
gram word LM FSAG. Their size indicates that we are working in a real ASR framework
with FSTs of large size. Thus, there is an important computational gain by the fact that
the FST approach permits to change a part of the decoding without repeating the whole
process.

54 CHAPTER 4. PRONUNCIATION CONFUSABILITY

Table 4.1: Average number of states and arcs in the lattices and FSTs
Num. A P L G
States 442 180,833 2 83,367,599
Arcs 650 503,234 171,272 200,322,203

4.4 Pronunciation entropy results

The presented pronunciation entropy is an average of the entropy calculated on the
FSAs of the word sequences generated after the application of the FST decoding on the
output lattices of the phoneme recognizer. The pronunciation entropy is calculated for
the baseline dictionary with and without frequency of occurrence counts. When the fre-
quency counts are not taken into account, a uniform probability distribution is assigned
to the pronunciations of each word (“Baseline with uniform probabilities” in Table 4.2).
The pronunciation entropy is also calculated for the “longest” baseline (keeping only the
longest pronunciation per word in the original recognition dictionary) and the “most fre-
quent” baseline (keeping only the most frequent pronunciation per word in the original
recognition dictionary based on counts collected on the training data). The highest or-
der language model (LM) used in the decoding of the word recognition experiments is a
4-gram.

In Table 4.2, the pronunciation entropy is presented when 2-, 3- and 4-gram LMs
are used for the FST-based decoding. As expected, as the order of the LM diminishes,
the entropy increases. The results when the order of the LM diminishes warrant some
more thoughts. The difference in entropy even between the use of 4-gram and 2-gram
is smaller than expected. The decoding is actually restricted by the given lexicon, that
does not permit pronunciations, and thus words, to be correctly recognized if there is an
error in the phoneme sequence. By manual observation of the best word hypotheses and
their comparison with the corresponding references, it was thus noticed that only a small
number of long n-grams are correctly recognized and, consequently, the impact of using
a longer n-gram is relatively limited. However, it can also be an indication that there are
confusions that do not get compensated even when an LM with larger context is used.

Table 4.2: Pronunciation entropy with different dictionary baselines
4g LM 3g LM 2g LM

Baseline with uniform probabilities
4.095 4.101 4.284

Baseline with counts
4.071 4.087 4.298

Longest Baseline
3.673 3.679 3.877

Most frequent Baseline
4.092 4.122 4.355

4.4. PRONUNCIATION ENTROPY RESULTS 55

It is worth staying a bit longer in Table 4.2 to compare the pronunciation entropy of
the baselines which contain one or more pronunciations per word (upper part of the table)
and the single-pronunciation baselines (lower part of the table). The entropy is lower in
the single pronunciation baselines, and its lowest score is observed when the “longest”
baseline is used. The fact that its entropy is lower even when compared with the “most
frequent” baseline, which is also a single-pronunciation baseline, may be explained by the
fact that the most frequent pronunciations represent better the spoken terms that can be
often easily confused. Especially in spontaneous speech, some function words are often
pronounced similar to other function words and may not be easily distinguished by the
LM. This is particularly a problem for frequent words that are easy to insert, delete or
substitute.

A final observation from Table 4.2, comparing “Baseline with uniform probabilities”
and “Baseline with counts”, can be that pronunciations with counts do reduce confusabil-
ity. It is normal not to see a lot of changes because in any case the majority of words
has only one pronunciation and thus probability 1 which do not change when counts are
added. In addition, counts are not available for all words, but only for those observed in
the training data. When no counts are available, uniform probabilities are applied. Thus,
finally there are no great differences between the dictionary with counts and the dictio-
nary without counts. Even so, this result enforces the idea that if we want to moderate
confusability we should add adequate weights to the pronunciation variants and not just
remove them, which could be detrimental to the recognition performance.

The increase in entropy is much greater when more pronunciations are added in the
dictionary as can be seen in Tables 4.3 and 4.4. The n-best pronunciations are added in
the “longest” and the “most frequent” baselines. The M1, M2 and M5 in these tables
correspond to the 1-, 2- and 5-best pronunciations generated automatically using Moses
(Koehn et al., 2007) as a g2p converter, being trained on the baseline dictionary (with
1.2 pronunciations per word). Moses has been successfully used as a g2p converter for
several languages, and for English it gives state-of-the-art results (Karanasou and Lamel,
2011) (see Chapter 3) . The results in Tables 4.3 and 4.4 are computed with the 4-gram
LM.

Table 4.3: Pronunciation entropy with the 4-gram LM after adding n-best pronunciations,
produced by a Moses-based g2p converter, to the “longest” baseline

Training condition M1 M2 M5
Multiple pronunciations 4.234 5.252 6.228
Longest Baseline 3.673

Table 4.4: Pronunciation entropy with the 4-gram LM after adding Moses’ n-best pro-
nunciations to the “most frequent” baseline

Training condition M1 M2 M5
Multiple pronunciations 4.537 5.255 5.937
Most frequent Baseline 4.092

56 CHAPTER 4. PRONUNCIATION CONFUSABILITY

Table 4.5: WER(%) adding Moses nbest-lists (M1, M2,M5) to the single pronunciation
dictionaries

Dictionary Baseline M1 M2 M5
Longest pron 41.6 37.9 38.2 39.1
Most frequent pron 32.9 32.0 34.5 38.9

These results suggest that there can be a large influence of the pronunciation dictio-
nary in the confusability of an ASR system, not sufficiently compensated by the language
model. However, when adding as many alternative pronunciations some non-uniform
probabilities should be used to moderate confusability. If not, the uniform probability
contributed to each variant of a word with multiple pronunciations is lower. Thus, for
highly probable words, since the system will have the tendency to choose them, the con-
fusability will increase. But if the pronunciation probabilities are also taken into account,
this confusability can be moderated, because a pronunciation of a word with lower prob-
ability and lower confusability (higher pronunciation probability) can be preferred over a
pronunciation of a word with higher probability but lower pronunciation probability.

Observing the table 4.5 there is not a clear correlation shown between the confusabil-
ity measured by the pronunciation entropy and the word error rate of the system. For both
single pronunciation dictionaries (“Baseline longest” and “Baseline most frequent”) the
baseline WER is worse compared to some (or all) of the WER values once the Moses’
n-best pronunciations are added to the system. However, the same baseline dictionar-
ies present the lowest (best) pronunciation entropies. The only correlation that can be
observed is if we limit the comparison to the WER values once the Moses’ n-best pro-
nunciations are added (columns “M1”, “M2” and “M5”). The WER degrades as more
variants are added, which correlates with the augmentation of the pronunciation entropy
for the same cases in Tables 4.3 and 4.4.

4.5 Conclusion
A new measure of the confusability of the pronunciation model in a sentential basis

during the decoding phase of an ASR system was presented. Results were reported using
baseline dictionaries with one or more pronunciations per word, with and without counts,
as well as on dictionaries extended with variants generated by a state-of-art data-driven
method. This measure correlates well with our intuition about how the confusability is
influenced by the change of the recognition lexicon. The baseline dictionary including
the most-frequent pronunciations introduces a higher confusability than the baseline dic-
tionary that includes the canoncical pronunciations, because the most frequent pronunci-
ations are often reduced types that can be more easily confused. In addition, adding more
variants to the recognition dictionary results in an augmentation of the entropy, since the
number of homophones (or quasi-homophones) increases.

We would like to highlight the fact that the pronunciation entropy introduced in this
work is a measure of the confusability at the sentence level. This is novel, and important
because when adding many variants to an ASR system what is more important than the

4.5. CONCLUSION 57

homophone rate in the dictionary, is to measure this rate in the data. In fact the homo-
phone rate in the original recognition dictionary (baseline) is 1.16, while in the baseline
“longest” it is 1.10 and in the baseline “most frequent” it is 1.15. When adding up to 5
pronunciation variants to the baseline “longest” or the baseline “most frequent”, the ho-
mophone rate becomes 1.24 in both cases. All these rates are close to one another, so it
seems that what mostly influences confusability are some frequent homophone words or
word sequences.

It is not straightforward however to find a correlation between the confusability and
the ASR performance. What makes this procedure particularly complicated is the fact
that confusable words are a non-negligible phenomenon of natural speech and ignoring
them severely reduces the completeness of the dictionary, meaning that a consistent set
of pronunciations is not necessarily connected with a pronunciation network of low per-
plexity. This lack of correlation turned our interest at this point towards other techniques
that would allow us to add variants to a recognition dictionary without degrading the ASR
performance. That is why we started experimenting with discriminative techniques for
the construction of a dynamic lexicon using also phonemic information provided by the
speech data. This is the work that will be presented in the following chapters.

Chapter 5

Discriminative training of a phoneme
confusion model for a dynamic lexicon
in ASR

In the previous chapter, we analyzed and measured the pronunciation confusability.
The proposed measure, however, was not found to be clearly correlated with ASR per-
formance. Until that point, the focus was on constructing and analyzing the performance
of a pronunciation dictionary without using any specific information provided by speech
data. That was the case in g2p and p2p conversion, where our training corpus was a given
lexicon. That was also the case in our study on measuring the pronunciation confusability
using the information provided by the linguistic part of the ASR decoding (pronuncia-
tion and language models). Because of the lack of improvement of the ASR performance
using such approaches, we decided to turn towards approaches that will allow us to con-
struct a dynamic lexicon trained on a particular audio data set, as is traditionally done,
for example, for the acoustic model training. The goal is to add pronunciation variants
with weights trained to directly improve the error rate of the ASR system. A discrimina-
tive framework is chosen to achieve this goal. The objective function to minimize is the
phoneme error rate, directly related to the system’s performance.

5.1 Introduction
As already analyzed in the Background Section 2.2, while all the other parts of an

ASR system are trained to be adapted to particular data, this is not often the case for
the components (i.e pronunciations) and the weights of the recognition dictionary. There
have been some efforts, however, over the last years in this direction. In (Weintraub
et al., 1996), the best performance is achieved by extracting pronunciation probabilities
based on the frequency counts of each word and pronunciation. This can be applied only
to words present in the training set and no further training of the weights is performed.
Another method proposed in (Shu and Lee Hetherington, 2002), (Hazen et al., 2005) and
(Badr et al., 2010) is the EM training of the weights of the lexicon. Nevertheless, this
generative method often suffers from over-fitting to the training data. That is why in

59

60 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

the last years there is a turn towards discriminative methods. In (Vinyals et al., 2009),
maximum entropy is used to determine the weight for each pronunciation. In a somehow
different approach, discriminative training is also used by (Jyothi et al., 2012) to train an
articulatory feature-based model of pronunciation. The drawback is that such methods
are often computationally expensive and, thus, are tested on small data sets. Moreover,
the latter work is once again limited only to words present in the training set.

In this work, we adapt a discriminative framework for training the weights of the pro-
nunciation model and we conduct experiments on large data sets to evaluate the proposed
method in a real-world task. First, the output of a phoneme recognizer is aligned with the
reference and a set of phoneme confusion pairs is extracted. These confusion pairs form a
confusion model that will be used to expand the phonemic search space of pronunciations
during the ASR decoding. To train the weights of this confusion model, we compose it
with the output lattices of the phoneme recognizer and a discriminative training is effected
minimizing the phoneme edit distance between the output sentences of the phoneme rec-
ognizer and the true reference sentences. This results in a set of phonemic rules, that can
be applied on the baseline pronunciations. In this way we hope to have pronunciations
that better reflect the actual spoken utterances (see Section 5.6). Note that in this way we
do not add a fixed number of pronunciations per word, as done with static g2p conversion.

As mentioned above, discriminative training is used to train the confusion model’s
weights, which aims to directly improve the system’s performance while keeping the
confusability low. In a discriminative model, the parameters of the model (i.e., pronunci-
ation or language model probabilities) are adapted to minimize the recognition error rate.
By contrast, the parameters of a maximum likelihood model are derived, as the name
suggests, to maximize the likelihood of some data given the model; an increase in the
likelihood of training data, however, does not always translate into reduced error rates.

Another way of seeing the application of our confusion model is as a corrector of the
errors of the phoneme recognizer. The study of (Greenberg et al., 2000) has shown that
phonetic and word errors are correlated (see Section 2.2), a fact that justifies our choice of
an objective function in the phoneme level. Working at the phoneme level allows us to add
variants to the baseform pronunciations of any word and not be limited to words that are
present in the training data. Moreover, there are less parameters to train (limited number
of phoneme pairs) compared to searching the confusions at the word or the sentence level
and, thus, we are able to work with a continuous speech ASR system segmented in long
sentences (approx. 80 words/sentence, see Section 5.5).

The assumption that improving the PER can result in suitable pronunciation variants
for a word-based system can be reasonable under certain conditions. The acoustic model
of a LVCSR system is trained with certain pronunciations that may not be correct, but
once it is trained this way, correcting the pronunciations can do more harm than good.
Consider an extreme case where pronunciations of all words were generated by a g2p
converter making a consistent error such as switching phonemes /a/ and /e/. When the
acoustic model is trained, it learns that every /a/ sounds like /e/ and the other way around,
but since all the pronunciations are consistent with this error, it can still give perfect word
recognition. Introducing a confusion model that would correct the pronunciations by
switching /a/ and /e/ would actually break the system. Of course, we do not have such

5.2. PROBLEM SET-UP 61

extreme errors in our pronunciation dictionaries, but there certainly will be some errors
in the pronunciation dictionary, and these errors will be still consistent with the acous-
tic model that was trained using it. However, this problem is alleviated if the reference
phoneme sequence for confusion model training is obtained from the reference word se-
quence using forced alignment with the same pronunciation dictionary. This way, the
confusion model accounts for differences between what phoneme sequence the phoneme
recognizer tends to recognize and what is the “correct” phoneme sequence according to
the original unexpanded pronunciation dictionary. Nevertheless, to really benefit from
this confusion model, it might be profitable to retrain the acoustic model after applying
the confusion model (or with the new pronunciation dictionary generated using the con-
fusion model), which can be time-consuming though and is not done in this work.

For the moment, a simple unigram phonemic confusion model is used. This work
is presented as a proof of concept that this method and its possible expansions (for ex.
a direct generalization to the case of a contextual confusion model is possible) can be
promising for the adaptation of the recognition dictionary to a particular data set. We
present experiments using the averaged perceptron, originally proposed by (Freund and
Schapire, 1999), and the CRF model, originally proposed by (Lafferty et al., 2001). The
acoustic scores are used during the training of the pronunciation weights, enabling us to
integrate some phonemic information provided by the acoustic model. This can improve
the results as observed in (Weintraub et al., 1996) and (McGraw et al., 2013). All the
implementations are done with Finite State Transducers (FSTs). For basic background
information on the theory of FSTs the reader is directed to Section 2.3.

5.2 Problem set-up

We train a phoneme confusion model that acts as an error corrector of the output of
the phoneme recognizer. In this work, as already mentioned, for the sake of simplic-
ity a unigram model of phoneme pairs including substitutions and deletions is trained.
The training algorithms used maximize a convex objective function and, thus, no specific
initialization of our confusion model is necessary.

Formally define inputs and outputs: Let X denote an input space and, for a partic-
ular x ∈ X , let Y(x) denote an output space. Given an x ∈ X and a y ∈ Y(x), f(x, y)
denote a feature vector representation of x and y and θ is a parameter vector containing
one component for each feature.

We assume a training set consisting of n examples {〈x(i), y(i)〉}ni=1, where x(i) is a
phoneme lattice and y(i) the reference corresponding to the true phoneme sequence. The
phoneme lattice can be expanded with the use of the confusion model. Let Y(x(i)) be
the set of phoneme sequences in the expanded phoneme lattice. Each path π in Y(x(i))
corresponds to an alignment (x, y) of a recognized phoneme sequence x and a possible
correction y.

Decoding/Inference:The phoneme decoding problem requires solving

y∗ = arg max
y′∈Y(x)

θ>f(x, y′). (5.1)

62 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

Decoding thus amounts to choosing the minimum-scoring path in the FST represent-
ing Y(x). The features f(x, y) correspond to the phonemic confusions represented by our
model. By changing the weights θ, we also change the path weights and, thereby changes
the best path in the FST. Discriminative training aims at changing the weights θ in such a
way that the best path gets closer to the reference phoneme sequence. This approach can
be viewed as a discriminative “reranking” of the pairs f(x, y) that occur in Y(x).

5.3 Training criteria
A critical step before decoding is the computation of the optimal weights θ. The

weights are chosen to maximize a scoring function. For the sake of completeness, we re-
view four criteria for training the weights θ. However, only two of them are implemented
in the present work (the perceptron and the CRF model). The other two are mentioned as
possible extensions to this work.

5.3.1 The CRF model
As a first training criterion, we can use the conditional log-linear model. Following

the notations of (Gimpel and Smith, 2010), the conditional log-linear (CLL) model is
defined as

pθ(y|x) =
exp{θ>f(x, y)}∑

y′∈Y(x) exp{θ>f(x, y′)}
. (5.2)

A small modification is needed though. In addition to the weights θ of the confusion
model, there also exist the scores ax,y from the acoustic model of the phoneme sequences
x propagated to the sequence y. These scores are independent of θ and appear as an
additive factor in Equation 5.2. Since they do not depend on θ they do not contribute to
the derivatives as we will see below and, therefore do not interfere with the optimization.
The CRF model becomes

pθ(y|x) =
exp{θ>f(x, y) + ax,y}∑

y′∈Y(x) exp{θ>f(x, y′) + ax,y′}
(5.3)

The corresponding problem of training the weights θ by maximizing the conditional
log-likelihood can be expressed as

max
θ

n∑
i=1

[
θ>f(x(i), y(i)) + ax(i),y(i) − log

∑
y∈Y(x(i))

exp{θ>f(x(i), y) + ax(i),y}
]

(5.4)

Note that for the time being, no regularization term is used in the CRF model. Later
we plan to experiment on using L2 and L1 regularizations. The L2 penalty term C

2
||θ||22

is the standard approach for parameter estimation in CRFs, where C is a regularization
parameter. It smoothes the objective function to avoid over-fitting. The most significant
alternative to L2 regularization is to use the L1 penalty term C1||θ||1 :such regularizers are
able to yield sparse parameter vectors in which many component have been zeroed and,

5.3. TRAINING CRITERIA 63

thus, implicitly perform feature selection (Tibshirani, 1996). The combination of the two
penalty terms is also possible (Zou and Hastie, 2005). It could also be interesting to use
an entropy-based regularization term (Grandvalet and Bengio, 2006) (see the Conclusion
section 5.8).

The CRF training criterion is equivalent to MMI training traditionally used in speech
recognition to discriminatively train the acoustic model’s weights (Povey, 2003). It could
be argued that this is a complicated model whose power is not fully used in our case of a
unigram context-independent confusion model. However, the aim is to develop a frame-
work that can be later generalized to more complicated features without any changes.

5.3.2 Soft-margin CRF
Instead of using the CRF model, the softmax-margin objective is an alternative based

on the simple intuition that high cost outputs for x(i) should be penalized more heavily.
The advantage of this objective compared with the CRF model is the ability to incorporate
task-specific cost functions. The soft-margin CRF objective to maximize is

f(θ) =
n∑
i=1

[
θ>f(x(i), y(i)) + ax(i),y(i) − log

∑
y∈Y(x(i))

exp{θ>f(x(i), y) + ax(i),y + cost(y(i), y)}
]
,

(5.5)
where cost(y(i), y) a task-specific cost function that measures the extent to which a struc-
ture y differs from the true structure y(i).

Equation 5.5 is a generalization of Povey’s Boosted MMI (Povey et al., 2008). It can
be seen as replacing the maximum of max-margin (see Section 5.3.3.2) by a soft margin
that is proportional to the number of errors in the hypothesized sentence. It can be shown
that it bounds the minimum risk optimization criterion (Gimpel and Smith, 2010). This
variation also yields a convex optimization problem which can be efficiently solved using
standard tools. It can be implemented atop standard CRF training and requires the same
amount of computation as the CRF model.

5.3.3 Large-margin methods
Instead of a probabilistic view that transforms θ>f(x, y) into a probability, we take a

geometric view in which f(x, y) is an embedding of 〈x, y〉 into Rd. During training, we
consider the point f(x(i), y(i)) and all competing points f(x(i), y) for y ∈ Y(x(i))\{y(i)}.
The goal is to choose a direction (encoded in the weight vector θ) along which the point
f(x(i), y(i)) dominates its competitors, i.e., θ>f(x(i), y(i)) has a high value. Furthermore,
the alternative points f(x(i), y) should all receive scores θ>f(x(i), y) that are inversely
proportional to the amount of error incurred in labeling x(i) with y when the true answer
is y(i) . This is naturally encoded in a cost function cost(y(i), y) as already mentioned.

5.3.3.1 Perceptron

The perceptron can be seen as an approximation of the online version of the CRF
training criterion if we approximate the posterior probability of the most likely hypothesis

64 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

to one and all the other hypotheses to zero. The perceptron algorithm iteratively updates
weights by considering each training example in turn. On each round, it uses the current
model to make a prediction. If the prediction is correct, there is no change to the weights.
If the prediction is incorrect, the weights are updated proportionally to the difference
between the correct feature vector f(x(i), y(i)) and the predicted feature vector f(x(i), y∗).
Following the perceptron algorithm as presented in (Smith, 2011), the weight update for
each training example is:

θ ← θ + a
(
f(x(i), y(i))− f(x(i), y∗)

)
, (5.6)

where a is the learning rate. This is a variant of the perceptron algorithm also applied to
language modeling in (Roark et al., 2004).

The actual loss function of the perceptron that we search to minimize is the following
approximation to the zero-one loss:

1

n

n∑
i=1

θ>
(
f(x(i), y(i))− f(x(i), y∗)

)
. (5.7)

We introduce here the notion of margin that we will need later. In separable problems,
perceptron can also aim at finding the largest separating margin between the classes:

θ>
(
f(x(i), y(i))− f(x(i), y)

)
> δ ∀i, y, (5.8)

where δ > 0 the margin with which the data are separable, if there exists a weight vector
θ that satisfies relation 5.8. If the data are separable, there is theoretical evidence of the
convergence of the algorithm (Collins, 2002).

Also following (Collins, 2002), we use the averaged parameters from the training
algorithm in decoding the held-out and test examples. Say θ(i)

t is the parameter vector after
the ith example is processed on the t pass through the training data. Then the averaged
parameters are defined as θAV G =

∑
i,t θ

(i)
t /nT , where n is the number of examples in our

training set and T the number of passes over the training set. The averaged perceptron was
originally proposed by (Freund and Schapire, 1999) and was shown to give substantial
improvements over the non averaged version in accuracy for tagging tasks (Collins, 2002).

5.3.3.2 Max-margin

When adding a cost function to the margin, Equation (5.8) that expresses the margin
constraints becomes

θ>
(
f(x(i), y(i))− f(x(i), y)

)
≥ cost(y(i), y) ∀i, y. (5.9)

The learning problem becomes the minimization of the objective respecting the con-
straints of Equation (5.9). Let the objective be the L2 penalty:

min
θ

C

2
||θ||22 (5.10)

5.3. TRAINING CRITERIA 65

If we relax the constraints,

min
θ,ξ

C

2
||θ||22 +

n∑
i=1

ξi (5.11)

s.t. ξi ≥ −θ>f(x(i), y(i)) + max
y∈Y(x(i))

(
θ>f(x(i), y) + cost(y(i), y)

)
. (5.12)

Thus, the objective function can be written as

min
θ

n∑
i=1

[C
2
||θ||22 − θ>f(x(i), y(i)) + max

y∈Y(x(i))

(
θ>f(x(i), y) + cost(y(i), y)

)]
. (5.13)

To this term we should not forget to add the score from the acoustic model as we did
before for the CRF model:

min
θ

n∑
i=1

[C
2
||θ||22−θ>f(x(i), y(i))−ax(i),y(i)+ max

y∈Y(x(i))

(
θ>f(x(i), y)+ax(i),y+cost(y

(i), y)
)]
.

(5.14)

5.3.4 Optimization algorithm
For CRF and soft-margin CRF a gradient descent with learning rate a can be used as

an optimization algorithm. The derivatives that need to be computed for the CRF are:

∂CRF (θ)

∂θj
=

n∑
i=1

[
fj(x

(i), y(i))−
∑

y∈Y(x(i))

fj(x
(i), y)pθ(y|x(i))

]
(5.15)

=
n∑
i=1

[
fj(x

(i), y(i))− Epθ(y|x(i))[fj(x
(i), y)]

]
(5.16)

The feature expectation Epθ(y|x(i))[fj(x
(i), y)] is the averaged value of the feature fj

across all y ∈ Y(x(i)), with each y weighted by its conditional probability given x(i).
Using the log-linear form of the model (Equation (5.3)), the expectation rewrites as:

Epθ(y|x(i))[fj(x
(i), y)] =

∑
y∈Y(x(i)) fj(x

(i), y) exp{θ>f(x(i), y) + ax(i),y}∑
y′∈Y(x(i)) exp{θ>f(x(i), y′) + ax(i),y′}

. (5.17)

Let Zx(i) =
∑

y′∈Y(x(i)) exp{θ>f(x(i), y′) + ax(i),y′} be the normalization term, indepen-
dent of y. The expectation is computed using the standard forward-backward algorithm.

The additional computation involved in the soft-margin CRF compared to the CRF
is very small: when applying the forward-backward algorithm to compute the features
expectation, we take into account also the cost of each hypothesis. More details will be
given in the FST implementation section (see Section 5.4).

66 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

For the perceptron, its standard update formula is used as already mentioned. For the
max-margin, stochastic subgradient descent with a step a is used because the objective
is not differentiable everywhere because of the max operation. Let MM(θ) be the max-
margin objective presented in Equation (5.14). A subgradient of this objective is:

∂MM(θ)

∂θj
= Cθj−fj(x(i), y(i))+fj

(
x(i), arg max

y∈Y(x(i))

(
θ>f(x(i), y) + ax(i),y + cost(y(i), y)

))
(5.18)

An additional comment regarding CRF training is in order: until now we presented a
simple supervised learning setup where learning is done with gradient descent. However,
in this work online training is chosen, which is computationally less expensive than batch
training. In online classification, the model is updated after each example. In this case, the
term iteration of the training algorithm corresponds to processing one training example
and making an update. We refer to an iteration over the whole training set with the term
epoch. The gradient descent is thus replaced by stochastic gradient descent, a simplified
algorithm. Meaning that each iteration estimates this gradient on the basis of a single
randomly selected example (Bottou, 2010). In the perceptron case, the stochastic gradient
descent matches the original algorithm.

The learning rate is the rate of convergence of the training algorithms. If the step
size is too small, the convergence is slower. If the step size is too large, the weights
may oscillate and not reach a stable point. In online training, it has been found that it is
better not to use a fixed learning rate a. Instead, learning rates are generally decreased
according a schedule of the form a = a0/(1 + a0 ∗ t), where t = 1, 2, ...n is the iteration
of the learning algorithm (the example we are processing). This schedule was originally
proposed by (Robbins and Monro, 1951). It is a gradually decaying learning rate, but
smoother than 1/t. The initial rate a0 was heuristically set to a0 = 0.1.

5.4 An FST-based implementation
In the following section, we use some abbreviations to refer to the basic FST algo-

rithms (see Section 2.3.5): ShortestPath(), ShortestDistance(), RmEpsilon() (remove all
ε-transitions), Determinize(), Minimize(), Push() (push weights), π1() (project to the input
omitting output labels) and π2() (project to the output omitting input labels).

5.4.1 Preprocessing
We take the phoneme lattices generated from the phoneme recognizer described in

Section 5.5. To avoid the problem of duplicated hypothesis in the input lattices since
no time information is kept, pauses, fillers and silences are removed both from the input
lattices and the reference lattices in a preprocessing step. We then apply the RmEpsilon(),
Determinize() and Minimize() algorithms on the lattices (see Section 2.3.5). Thus, in each
lattice each input sentence is represented by exactly one path.

The applied algorithms are optimization algorithms, which optimize the time and/or
space requirements of the weighted transducers on which they are applied. The ε-transitions

5.4. AN FST-BASED IMPLEMENTATION 67

cause some delay in the use of the resulting transducers since the search for an alphabet
symbol to match in composition or other similar operations requires reading some se-
quences of εs first. Concerning determinization, the basic advantage of a deterministic
automaton is the absence of redundancy: it contains at most one path matching any given
input sentence, thereby reducing the time and space needed to process an input sequence.
Finally, a deterministic weighted automaton which is minimized has the smaller number
of states among the deterministic automata that realize the same computation (i.e., are
equivalent).

5.4.2 Defining the input and output FSTs
Depending on the task, we work in the log or in the tropical semiring. In these semir-

ings all arc weights represent negative log weights that can be interpreted as costs.
Let Ph be the input lattice after the preprocessing and R the reference phoneme string

represented as an FSA. Ph is a lattice with arc weights that represent the acoustic scores
of the phoneme recognizer. It is not probabilistic. The paths (phoneme sequences) in this
lattice are the input x to the discriminative training.

In this work, a unigram model of phoneme confusions (substitutions and deletions)
is used, represented by an FST C(θ), where the vector θ has one component for each
possible confusion. C(θ) is an one-state FST whose structure is designed as follows.
We first run a forced alignment of the training data with the reference, yielding phone-
mic references; we then align the one-best outputs of the phoneme recognizer with the
corresponding reference sequences and count the number of phoneme deletions and sub-
stitutions. Confusion pairs that appear less than 20 times are not kept to avoid learning
hazardous mistakes 1. The resulting FST contains 1021 phoneme pairs, for which weights
are to be trained. Each confusion is represented by one arc in the FST, whose input (resp.
output) symbol corresponds to the recognized (resp. reference) symbol. Thus, each arc
expresses a phoneme substitution, deletion or identity (if there is not a misrecognition of
the reference phoneme).

We compose Ph ◦C(θ) to expand the input lattice. Let’s call Ph1(θ) the resulting FST.
The sequence of input symbols of a path in the new FST is the x and the sequence of its
output symbols is the y of the feature vector representation f(x, y). Let Y(x) be the set
of all paths projected to the output in π2(Ph1(θ)). Let y(i) be the reference corresponding
to the true phoneme sequence or the closest approximation of y to the true phoneme
sequence. If the ShortestPath() algorithm on the tropical semiring is applied on Ph1(θ),
let y∗ be the output phoneme sequence corresponding to the best path of the FST.

Note that the arc weights of Ph1(θ) result from the composition of the acoustic scores
of Ph and the confusion model’s scores of C(θ). Since we work on the log semiring,
the path weight is computed by summing the weights of the arcs of the path. In these
preliminary experiments, we are using a unigram confusion model, meaning that each arc
weight is independent of the weights of the other arcs.

Decoding becomes the problem of choosing the minimum-scoring path on the tropical
semiring in the FST representing Y(x). The weights θ should be trained such as the

1. This lowest limit of appearance of the confusion pairs was heuristically set to 20.

68 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

best path y∗ resulting from decoding is the one whose distance from the reference is
minimized.

5.4.3 Computing the edit distance with FSTs
To compute the loss function, we need to compute the minimum edit distance between

the reference y(i) and the surface phonemic sequences of the lattice x(i). To do so, an
efficient way is provided with the use of FSTs. The edit distance is defined as:

editdistance = #ofsubstitutions+ #ofdeletions+ #ofinsertions

In our case, we compute it at the phoneme level, and refer to it as a phoneme edit distance.
We actually compute the Levenshtein distance as all costs are set to unity except for
matches which have zero cost. Following the definition of (Heigold, 2010),

d(x(i), y(i)) = minx∈x(i),y∈y(i)d(x, y), (5.19)

where x (resp. y) is a phonemic sequence of the set of phonemic sequences of the lattice
x(i) (resp. y(i)). The reference y(i) is represented as a lattice if multiple references are
available. In this work, it is a single phonemic sequence. where x (resp. y) is a phonemic
sequence of the set of phonemic sequences of the lattice x(i) (resp. y(i)). The reference
y(i) is represented as a lattice if multiple references are available. In this work, it is a
single phonemic sequence.

The edit distance transducer LD is a WFST that defines the phoneme alignments with
their costs, i.e. each arc represents a local edit operation with the respective cost as the
arc weight. Deletions and insertions are encoded with the empty symbol ε (used in the
hypothesis’ side for deletions and in the reference’s side for insertions).

If x(i) and y(i) are represented as unweighted FSTs, then the edit distance can be
computed on the tropical semiring as:

d(x(i), y(i)) = ShortestPath(x(i) ◦ LD ◦ y(i)) (5.20)

5.4.4 Discriminative training algorithms
In Section 5.4.2, we explained how the best path y∗ in Ph1(θ) is found and that this

is the path we would like to approach to the reference. The next step is to find the path
in Ph1(θ) which has the minimum distance to the reference. To do so, we introduce an
FST which represents all possible editions between Ph1(θ) and the reference R. This is
computed by the operation E = Ph ◦C ◦LD ◦ R on the tropical semiring, where Ph ◦C
has no weights. The operation ShortestPath(E) gives us the path y(i) in Ph1(θ) with the
minimum distance from the reference. Updating the weights θ should get us closer to the
path y(i). Another way of viewing it is that y∗ is the best hypothesis given θ and y(i) is the
optimal hypothesis.

Next, the training algorithms for the different optimization criteria are presented and
a pseudocode is provided for each case.

5.4. AN FST-BASED IMPLEMENTATION 69

5.4.4.1 Perceptron

We start with a variant of the perceptron algorithm:
for t=1...T, i=1...n do

Compute y(i), then 〈x(i), y(i)〉
Compute y∗, then 〈x(i), y∗〉
if 〈x(i), y(i)〉 6= 〈x(i), y∗〉 then

update = 〈x(i), y(i)〉 − 〈x(i), y∗〉
θ ← θ + a ∗ update

end if
end for

where 〈x, y〉 is the feature representation in the corresponding paths and T the number of
epochs.

5.4.4.2 Max-margin

For the max-margin training algorithm, the computation of

fj

(
x(i), arg max

y∈Y(x(i))

(
θ>f(x(i), y) + ax(i),y + cost(y(i), y)

))

is needed. We have to add the cost corresponding to each arc of Ph1(θ) and then find
the best path. This cost is the distance from the reference. To have an FST equivalent
to the Ph1(θ) but with the cost added to each arc, the following operation is performed:
Minimize(Determinize(π1(Ph′1(θ) ◦ LD ◦ R))). Then, the ShortestPath() algorithm is
applied. Note that to keep both the input and output symbols of Ph1(θ) after the above
composition, a mapper is applied on Ph1(θ). The new FST Ph′1(θ) uses both input and
output symbols of Ph1(θ) as a combined input, while its output symbol is the output
symbol of Ph1(θ) unchanged. The training algorithm pseudocode is given below:

for t=1...T, i=1...n do
Compute 〈x(i), y(i)〉
Compute 〈x(i), y∗cost−augmented〉
update = 〈x(i), y(i)〉 − 〈x(i), y∗cost−augmented〉
θ ← θ + a ∗ update

end for

5.4.4.3 CRF

For the CRF training, we use a stochastic gradient descent with learning rate a. As
explained in Section 5.3.4, we use online training instead of computing the objective and
the derivatives on the whole corpus. The derivatives are computed in Equation (5.15). We
need to compute the expectation of each feature:

Epθ(y|x(i))[fj(x
(i), y)].

70 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

To do this, the forward-backward algorithm is applied on the FST Ph1(θ). The for-
ward values (from the initial state to each state q) alpha[q] and the backward values (from
each state to the final state q) beta[q] are computed with the ShortestDistance() operation.
Both the forward and the backward values are stored as vectors. Then, the expectation is
computed as follows:

for StateIterator q do
for ArcIterator k from each state q do

arc.weightk = exp{θ>f(x
(i)
k , yk) + a

x
(i)
k ,yk
}

Compute pθ(yk|x(i)
k) = alpha[q]∗beta[arc.nextstate]∗arc.weightk

Z
x(i)

E
pθ(yk|x

(i)
k)

= pθ(yk|x(i)
k)∗ < x

(i)
k , yk >

Epθ(y|x(i))+ = E
pθ(yk|x

(i)
k)

end for
end for
The normalization term Zx(i) is computed with a ShortestDistance() (backward) op-

eration to the initial state. Instead, we can normalize the probabilities of Ph1(θ) with
the Push(, REWEIGHT TO INITIAL) operation before applying the ShortestDistance()
operations. In this case, there is no need for the term Zx(i) in the just above described algo-
rithm for the expectations’ computation. All ShortestDistance() operations are performed
on the log semiring.

Once the vector of expectations for all features Epθ(y|x(i))[f(x(i), y)] is computed, the
CRF training algorithm can be applied:

for t=1...T, i=1...n do
Compute 〈x(i), y(i)〉
Compute Epθ(y|x(i))[f(x(i), y)]

update = 〈x(i), y(i)〉 − Epθ(y|x(i))[f(x(i), y)]
θ ← θ + a ∗ update

end for

5.4.4.4 Soft-margin CRF

The only difference between the CRF and the Soft-Margin CRF training is that the
forward-backward algorithm is applied this time on the FST resulting from the operations
Minimize (Determinize(π1(Ph′1(θ) ◦ LD ◦R))). Other than that, the training algorithm
is the same as in the previous section.

5.5 Experimental setup
The phoneme recognizer used in this chapter is the same as the one described in

Section 4.3. We use the output of a phoneme recognizer to get the surface phonemic
transcriptions and then align them to the canonical transcription (reference). In this way
we get a set of phoneme confusion pairs. A phonemic 3-gram language model is used in
the construction of the phoneme recognizer to impose some constraints in the generated

5.6. PHONEMIC ANALYSIS 71

phonemic sequences. At the other extreme, a phone-loop recognition with no grammar
would produce totally unbiased phonemic strings, but these strings may not form valid
candidates according to the lexicon.

For discriminative training we have 40h of broadcast news (BN) data used by the
Quaero project (www.quaero.org), which include 5k phoneme lattices. Lattices with
very high error rate were removed and the remaining 4k lattices were used for train-
ing. The removed lattices presented a very high error rate because of lack of reference
for the particular time segments or because of other unpredictable factors (i.e. extreme
presence of noise,...). The PER on the training data is 35%. Note that we are work-
ing with real-world continuous speech, segmented in particularly long sentences (on
average 80 words/sentence). The phoneme lattices used for training have on average
1,000 phonemes/sentence, with the actual length of each lattice varying from 2 to 10,000
phonemes per sentence.

The Quaero dev2010 (4h) were evenly subdivided into test and dev sets. These are
the data used as test data in the previous chapters of this thesis (see Sections 3.5 and 4.3).
The test and the dev sets each contain 350 lattices. These data are more difficult to handle
than standard BN data, because there are mixed with broadcast conversational (BC) data.

An FST decoder is needed for some of the experiments presented in Section 5.7. It is
the same as the one used in Chapter 4. Is is a simple one-pass decoder that does not take
into account word boundaries or time information.

5.6 Phonemic analysis

At this point, the most common confusions learned after the training of our confusion
model warrant some further analysis. At the end of the first epoch of the CRF model
training (4k iterations of the online training algorithm), the confusions learned seem to
be compatible with phenomena encountered in continuous speech. Common substitutions
include the syllabic consonants (see Appendix A) being substituted by the nearest conso-
nant (ex. /N/ by /n/ or /L/ by /l/). There are also observed reductions to schwas (ex. /N/
to /x/, /U/ to /x/ or /R/ to /X/). Moreover, some vowels that represent similar sounds are
getting confused, for ex. /U/ by /c/ and /W/ by /@/. This is the case for consonants, too,
for ex. /N/ getting substituted by /d/, /S/ by /T/ and /L/ by /r/. The most frequent deletions
are the deletions of /N/, /R/ and /U/, which can be easily deleted when unstressed. Note
that some of these changes (for ex. substitution of syllabics by their corresponding simple
consonant) are actually taken into account when restricting the used phoneme set. The
restriction of the phoneme set to one with less phonemes is based on the merging of some
phonemes that are responsible for some very current confusions. This method, originally
proposed by (Lee and Hon, 1989) is often used to evaluate a phoneme recognizer’s perfor-
mance. This phoneme analysis provides a further indication that our model learns indeed
some common confusions of continuous speech.

72 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

5.7 Evaluation

5.7.1 Computation of the objective

A first test that was realized to control that the discriminative training works properly
was to compute the objective function that we try to optimize on the training data. As
already mentioned, online training is chosen for the CRF case and for the perceptron, for
which it is the default approach. Only one epoch over the training data is performed, since
we would like to see the performance of the system keeping the time of computation low.
This is why we actually chose to use online training which has been shown to be asymp-
totically efficient after a single pass on the training set (Bottou, 2010) 2. The objective is
computed after each 50 iterations (examples) on a randomly chosen sub-set of the training
data set.

In the case of the perceptron, the loss function is an approximation of the zero-one loss
given in Equation 5.7. This loss function, in the ideal case, should be zero if no difference
between the best hypothesis and the reference was observed. In our case, as can be seen
in Figure 5.1, the loss function converges to a minimum after around 1200 iterations of
the training algorithm.

Figure 5.1: Perceptron loss on training data

In the case of the CRF model, we want to train the weights θ while maximizing the
conditional log-likelihood (Equation 5.4). To see some improvement in the upper objec-
tive, some normalization of the initial acoustic weights a was necessary before combining
them with the weights θ in order to have the weights in the same scale of values. After
this normalization, the objective is indeed maximized as expected, as can be seen in Fig-
ure 5.2. Note that, for both perceptron and CRF, a convergence towards a stable point is
shown in the respective figures within the first epoch on the training data.

2. We tried to train on several epochs but the PER on the dev set did not improve further, following the
position on the convergence within the first epoch.

5.7. EVALUATION 73

Figure 5.2: CRF objective on training data

Table 5.1: Phoneme Accuracy in the dev set
System Correct(%) Phoneme Acc(%) Del(%) Sub(%) Ins(%)
Baseline 59.0 54.9 19.1 21.9 4.2
Perceptron 57.9 53.6 18.9 23.2 4.3
Averaged Perceptron 59.3 55.0 18.7 22.0 4.3
CRF 58.4 51.6 15.9 25.7 6.7

5.7.2 Phoneme Accuracy

Since the loss function we try to minimize is based on the phoneme error rate, it
is interesting at this point to see if using a confusion model can improve the Phoneme
Accuracy in the development (dev) and test sets. Slight improvements are observed over
the baseline in the dev set for the Phoneme Accuracy (see Table 5.1). Note that the
proposed model is a very simple one (a unigram model of substitutions and deletions)
which can surely not capture exactly the phoneme context dependencies presented in
pronunciation modeling. However, some partial improvements can be observed. For
example, looking at the column “Deletions” in Table 5.1, the system with the CRF-trained
confusion model reduces the deletion rate from 19.1% to 15.9%. The best performance is
achieved by the averaged perceptron which slightly improves the phoneme accuracy.

Similar results are observed in the test set, which is a positive indication towards the
generalization power of the chosen algorithms (see Table 5.2).

Table 5.2: Phoneme Accuracy in the test set
System Correct(%) Phoneme Acc(%) Del(%) Sub(%) Ins(%)
Baseline 59.5 55.7 19.6 20.9 3.8
Perceptron 58.3 54.5 19.4 22.3 3.8
Averaged Perceptron 59.8 56.0 19.3 20.9 3.9
CRF 58.7 52.8 16.5 24.8 6.0

74 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

It is also interesting to note that adding the confusion model without any training of
its weights severely degrades the system’s performance. It results in a Phoneme Accuracy
near zero and is not presented in any more details in the results tables. This is because
of the expansion of the phonemic search space of pronunciations without any constraints,
which adds a detrimental amount of confusability. There is an increase of 121% in the
average number of paths in the phoneme lattices in the dev set after the composition with
the confusion model and after some pruning is performed. An increase of 126% is ob-
served for the test set. However, after the training of the weights the baseline performance
is re-established and a slight improvement is observed. This result can be seen as a first
indication that the weights of our model are trained in the right direction and it can be
promising if more context is added in the model in the future.

Note also that the acoustic models we use are already context-dependent, plus a 3-
gram phonemic LM is used in the phoneme recognizer. That means that a large part of
the phonemic variation is already captured by the acoustic model and the phonemic LM.
It would be maybe easier to see some improvements if a simple phoneme-loop phoneme
recognizer was used to generate the phonemic lattice.

5.7.3 Decoding process
The next step is to introduce the confusion model into the decoding process of a word

recognizer. We expand the phonemic search space of pronunciations and integrate with
the pronunciation and the language models. Thus, instead of using a static recognition
lexicon, a dynamically speech-adapted lexicon is produced.

To do so, an FST-based decoder is needed. The LIMSI state-of-the-art decoder is not
based on the OpenFST implementation used to produce our confusion model. A first idea
was to take the phoneme lattices produced by the phoneme recognizer and compose them
with the confusion, pronunciation and language models. This would correspond to the
decoding of the linguistic part of the system keeping the acoustic part stable (see Chapter
4). However, the PER of around 45% of the phoneme recognizer in the test set (see Table
5.2) is not a good starting point for this partial decoder. In fact, the resulted word error rate
(WER) is very low with or without using the confusion model in the decoding procedure.
Even the oracle WER is too low (around 50%) to allow a meaningful evaluation of our
confusion model.

To circumvent this problem, we decided to add the confusion model in a post-processing
step to the LIMSI word decoder. First, we take the 1-best word output of the LIMSI word
recognizer and we express it as an FST W . Then we compose with the inverted FST of
the pronunciation model Pr−1 and the result is a phoneme lattice A:

A = W ◦ Pr−1. (5.21)

The pronunciation model FST Pr is the result of the composition of the FSTs P ◦ L (see
Section 4.2.1) and assigns a sequence of phonemes to a word. At this point, the Phoneme
Accuracy of this phoneme lattice is computed and compared with the performance of the
phoneme recognizer. The Phoneme Accuracy of the phoneme lattice generated by the
above mentioned composition is 70% (see the line “Lattice A” in the Table 5.3). The

5.7. EVALUATION 75

Phoneme Accuracy of the phoneme recognizer in the same test set is 55% (as can be seen
in the line “Phoneme recognition” in the Table 5.3). These results support our hypothesis
that using the phoneme recognizer to generate word sentences fails because of the low
quality of the phoneme recognizer.

This phoneme lattice is then expanded with the confusion model C(θ) and a new
phoneme lattice B is generated:

B = W ◦ Pr−1 ◦ C(θ). (5.22)

The best Phoneme Accuracy of the expanded latticeB is found to be 77.8% when the con-
fusion model is trained using the averaged perceptron (see line “Lattice B” with Training
“CRF” in the Table 5.3), which corresponds to a large improvement over the baseline.
These reslts were found to be significantly better (p < 0.001). Note that as baseline we
consider the phoneme lattice A resulting for the 1-best output of the word recognizer with
a simple composition with the reverse pronunciation lexicon (line “LatticeA” in the Table
5.3). Note also that there is a large improvement over the baseline for all three training
criteria applied on the confusion model.

Observing more in detail the results of Table 5.3, it can be seen that the main im-
provement produced by the confusion model consists in an important decrease in the
insertions, meaning that our confusion model learns to do more deletions. A discussion
could be opened at this point on the utility of a unigram confusion model since some vari-
ation is already captured by the context-dependent phones (triphones) used in the acoustic
modeling. There are, however, some cases were the triphones fail to model pronunciation
variation, as shown by (Jurafsky et al., 2001). More in particular, (Jurafsky et al., 2001)
showed that triphones cannot capture variation related to syllable deletions. This is the
gap that our confusion model covers by an augmentation of the number of deletions that it
provokes. Such a behaviour of our model is not observed, however, in Tables 5.1 and 5.2.
This can be because of the lower baseline (lower phoneme accuracy) of the phoneme rec-
ognizer, meaning that more confusions are present that may be difficult to get consistently
corrected even by our suitably trained confusion model.

Table 5.3: Phoneme Accuracy of the phoneme output of the word recognizer (test set)
Correct(%) Phoneme Acc(%) Del(%) Sub(%) Ins(%) Training

Phoneme
recognition

59.5 55.7 19.6 20.9 3.8

Lattice A 89.6 69.9 3.9 6.6 19.7
Lattice B 81.3 77.4 6.5 12.2 3.9 CRF

78.7 76.2 7.6 13.7 2.5 Perceptron
81.0 77.8 7.3 11.7 3.2 Av. Perceptron

Next, we recompose with the pronunciation model Pr and the language model G (the
same as the one used in Chapter 4) to produce a new word sequence W1. To sum up, the
series of compositions to get to W1 is:

W1 = W ◦ Pr−1 ◦ C(θ) ◦ Pr ◦G (5.23)

76 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

This series of inverse compositions and recompositions is based on the idea presented
in (Fosler-Lussier et al., 2005) implemented to find the confusable words and predict
ASR errors. Ideally the new word sequence W1 would have a lower word error rate
compared to the word sequence W . However, the following problem occurs: comparing
W and W1 is not a fair comparison because they are not the outputs of the same decoder.
Our FST decoder is surely a more simple one compared to the LIMSI decoder. It is an
one-pass decoder, while the LIMSI decoder is a multiple-pass decoder using an n-gram
language model of a higher order in each pass. Another weakness of our decoder is that
no time information is kept and often there is not a perfect alignment of the decoder’s
output with the reference. If there are whole lattices missing from the reference we can
of course ignore them during scoring, but this is not as simple when just parts of lattices
are missing and no time information is kept in the decoder’s output. Furthermore, in our
simple FST-based decoder, no post-processing is applied on the data before the scoring
(i.e. lowercase, remove symbols such as “-”, correct the orthography of some words
when there is a mismatch between the reference and the lexicon transcription,...). These
are some standard normalizations performed on the data before the scoring of the output
of the LIMSI decoder.

Moreover, since the inverted mappings are one-to-many (for ex. the lexicon Pr in-
cludes more than one pronunciations for certain words) and the word boundary informa-
tion is lost after the compositions, the set W1 will typically have more elements that W .
There can be a lot of homophones in the new phoneme space after the composition with
the inverted pronunciation model. And these homophones are not limited in within-word
boundaries but can correspond to groups of words or even to whole sentences. Last but
not least, the acoustic scores are lost during the inverse composition because there is not
a way provided to keep the phoneme acoustic scores corresponding to the 1-best word
output of the LIMSI decoder.

For the above reasons and for others concerning the detailed construction of the de-
coder, the baseline Word Accuracy of the FST decoder (before introducing the confusion
model - see line “Lattice Wb” in Table 5.4) is lower than the one of the LIMSI decoder
(around 70%). The lattice Wb is the result of the post-processing compositions:

Wb = W ◦ Pr−1 ◦ Pr ◦G. (5.24)

As can be seen in Table 5.4, using the confusion model trained using the CRF model
(“Lattice W1” with Training “CRF”) results in a slight improvement over the baseline
(“Lattice Wb”), which is however statistically significant (p < 0.02). The perceptron
and the averaged perceptron training criteria do not result in an improvement over the
baseline. Furthermore, the large improvement observed in a phoneme level (Phoneme
Accuracy improved from 70% to 77% for the CRF training, see Table 5.3) does not
carry over to the level of words. This can be again because of the characteristics of the
FST-decoder mentioned in the above paragraphs (the acoustic model’s information is lost,
no word-boundaries,...). It is not straightforward though how to integrate the FST-based
confusion model to a non-FST decoder. It should also be noted that the training of the
confusion model is not done in the same conditions; that is, the acoustic scores are used
during the training. Doing the training on the phonemic transcription of the word output

5.7. EVALUATION 77

Table 5.4: Word Accuracy on the test set
Correct(%) Word Acc(%) Del(%) Sub(%) Ins(%) Training

Lattice Wb 67.5 61.1 10.1 22.4 6.4
Lattice W1 67.1 61.7 11.9 20.9 5.4 CRF

64.2 58.7 12.9 22.9 5.5 Perceptron
67.0 59.7 11.0 22.0 7.3 Av. Perceptron

of the LIMSI decoder would allow a better match of the training and test conditions and
may result in larger improvements. We refer to this here as a future work plan.

5.7.4 Discussion of the results

Some further analysis can be made concerning the improvement expected when the
phoneme confusion model is introduced. It could be beneficial to retrain the acoustic
model after applying the confusion model (or with the new pronunciation dictionary gen-
erated using the confusion model), which is however time-consuming and was not done
in this work. Another element of the set-up that brings some difficulties to the picture
is the baseline dictionary used. It is a semi-manually generated dictionary corrected to
correspond to the needs of an ASR system and it already includes some of the most com-
mon variants. What is more, some of its variants were added manually and are not always
consistent and may even influence negatively the training procedure. Plus, it is surely a
more difficult baseline to improve than a dictionary without any variants including just
the canonical pronunciation forms.

In any case, we should not forget that confusability remains a severe problem of pro-
nunciation modeling and it is difficult to moderate it without taking into account any
context. It is interesting to note that when adding to the recognition dictionary, for ex-
ample, just one pronunciation variant generated by the Moses-g2p converter (see Section
3.5), the WER already degrades even though the variants are generated taking a lot of
context into account. This shows again the importance of the training of the pronuncia-
tion weights. The fact that our unigram phoneme confusion model with trained weights
does not add further confusability to the system, is a promising result for the use of the
proposed training techniques.

Some more reasons explaining the difficulty of the task we are facing, can be searched
in the characteristics of our data. We are dealing with continuous speech of very long sen-
tences that makes the computational cost very high for training. Moreover, because of this
computational cost we are obliged for the moment to work at the phoneme level and not
expand the model at the sentence level. One more reason for the high computational cost
is the fact that we are working with lattices and not rescoring n-best lists as in previous
works. To the best of our knowledge it is the first time such a discriminative method to
train pronunciation weights is applied to such a large ASR system (continuous speech
with sentences of such length, baseline dictionary of 80,000 word entries). But of course
in such a large system it becomes more difficult to see improvement, as well as to find the
sources of errors.

78 CHAPTER 5. PHONEME CONFUSION MODEL IN ASR

5.8 Conclusion

We close this chapter by presenting some highlights of this work. First of all, using a
unigram confusion model does not introduce additional confusability to the system once
its weights are trained. This is an indication that the weights are trained in the right direc-
tion and further improvements may be expected if more context is added to the confusion
model. Another result that is worth to highlight is the improvement over the baseline of
the FST-decoder, at the phoneme and at the word level, when the confusion model is used
in a post-processing step. However, integrating it in a non-FST decoder stays an open
problem.

An interesting characteristic of our model is that it does not add a particular number
of pronunciations per word, but instead expands the phonemic search space where pro-
nunciation variants can be found. This correlates better with the observation that some
words (for example frequent words) have many variants while others are more stable
phonemically (Antilla, 2002). In addition, the phonemic analysis of the confusions shows
a good representation by our confusion model of frequent phonemic variations found in
real speech (Section 5.6).

It should be also noted that all experiments were conducted in a continuous speech
large ASR system with long segmented sentences which is admittedly a difficult base-
line. Plus, English is a language known for the difficulty it presents on the phonemic
variation modelisation. As already mentioned, in our knowledge it is the first time such
a discriminative method to train pronunciation weights is applied to an ASR system with
long segmented sentences, as such a task can present computational difficulties, as well
as difficulties in analyzing the errors and in observing some improvement.

Concerning the training of our model, two discriminative training methods were ex-
plored. Discriminative training methods are found to better control confusability as they
take into account not only the correct transcription but also competing hypotheses ob-
tained by decoding the training corpus. In addition, in this work we present a set-up and
methods that can be generalized to more complicated features (i.e., heuristics, linguistic-
oriented features,...(Tang et al., 2012)) without any significant changes needed. Moreover,
during the training of the pronunciation weights, we make use of acoustic scores which
allows to take into account some phonemic information provided by the acoustic model.
Last but not least, we propose a purely data-driven method, and linguistic or heuristic ini-
tialization of the model is not needed. Plus, the pure FST implementation of the decoder
and of the discriminative training enables the integration of the training modules and of
the trained confusion model in any FST-based ASR system.

Working at the phoneme level also presents some advantages. It is easily generalis-
able as it allows us to find pronunciations also for words not present in the training data.
Furthermore, if we later add the phonemic context to our confusion model, the FST-based
decoding set-up allows us to deal not only with within-word but also with cross-word
phonemic variation.

In the future, different objective functions can be applied, such as cost-augmented
CRF and large-margin methods, while also adding more context to the confusion model
is judged very important. Moreover, a regularization term should be added to the loss

5.8. CONCLUSION 79

function of our models to allow them a better generalization to new data. It could be
interesting to compare the performance of our system using different regularization terms.
An idea we would like to implement is to add the entropy as a regularization term as
proposed in (Grandvalet and Bengio, 2006). This allows a further combination with the
work presented in Chapter 4, where the pronunciation entropy is proposed as a measure
of the pronunciation confusability.

One of the problems during the evaluation of this work was a mismatch between
the training and the test conditions when our confusion model was introduced as a post-
processing step to the LIMSI word recognizer (for example the acoustic scores are used in
training but are not available for testing). To circumvent this, we could do the training on
the phonemic transcription of the word output of the LIMSI decoder, keeping the one-best
output or an n-best list or lattice of hypotheses. Moreover, the scoring procedure could
be better aligned with the one followed by the LIMSI system if some normalization rules
were applied on the output data and if word boundaries information was kept during the
inverse decoding.

Last but not least, the proposed methods can be easily trained up to the word level
keeping the same phoneme-based features but doing a word decoding instead of a phoneme
one. This allows to add more complicated features, for example word-specific features for
a phoneme transformation. In this way, a global control of the resulting pronunciations
can be conducted. Moreover, correcting common errors in some frequently appearing
words may improve a lot the accuracy.

Chapter 6

Discriminatively trained phoneme
confusion model for KWS

In the previous chapter, a discriminative trained phoneme confusion model was used
to expand the phonemic search space of pronunciations in ASR decoding. This approach
allowed us to enrich the recognition lexicon with phonemic variation without adding un-
desirable confusability to the system. In this chapter, we propose the use of discriminative
training to construct a phoneme confusion model, which expands the phonemic index of
a KWS system. The objective function that is optimized this time is the Figure of Merit
(FOM), which is directly related to the KWS performance. A phonemic index in KWS
allows us to handle the problem of OOVs, but often encounters the low quality of the
available phoneme recognizer. The introduced phoneme confusion model will act as a
corrector of the errors of the phoneme recognizer used for the construction of the index.
It can also be seen as a way to add alternative pronunciations to the query terms. These
pronunciation variants will be adapted to a particular data set, as in the previous chapter.
The experiments conducted on English data sets show some improvement on the FOM
and are promising for the use of such technique.

6.1 Introduction
The last years there is an increasing interest towards KWS in audio data, an application

that is applied as a post-processing step to ASR recognition. As the amount of real-
world spoken data rapidly increases, the ability to search it efficiently for particular words
or phrases of interest gains more importance. KWS aims at searching audio data and
detecting any given keyword, which is typically a single word or a short phrase. KWS
systems build for off-line data processing usually operate in two phases: indexing and
search. The system processes the audio data once, during the indexing phase, without
knowledge of the query terms. This phase is done off-line and is the more time-consuming
one. The output index is stored and accessed during the search phase, in order to locate
the terms and link them to the original audio (for more details see Section 2.2.5).

Word-level indexing may seem to be a straightforward solution, but it cannot handle
OOV terms which are often named entities not covered by the automatic speech recogni-

81

82 CHAPTER 6. CONFUSION MODEL FOR KWS

tion (ASR) dictionaries. The OOV rate may increase with time, as dictionaries are usually
fixed while the content of real-world data changes dynamically. Generating pronuncia-
tions for OOVs implies having a letter-to-sound system, which is often not accurate, es-
pecially for languages with limited resources. Augmenting the recognition system with
pronunciation variants can help, but implies regenerating the index and may introduce
confusability to the KWS system and increase the false alarms, especially if their weights
are not properly tuned. Moreover, there are many applications where the performance of
the word recognizer is severely degraded due to challenging audio conditions, and even
in-vocabulary words are not successfully represented in the index. For these reasons,
subword-level and particularly phonemic-based KWS systems have been used in the past
(Saraclar and Sproat, 2004), which do not impose any vocabulary restrictions.

In the current work, a phoneme index is created from lattices generated by a phoneme
recognizer, which allows us to preserve information about phonemic uncertainty of the
phoneme recognition in the index. The phonemic index allows detecting any word without
constraining the system to the in-vocabulary terms. However, the quality of the phoneme
recognizer can be quite low, especially when dealing with data recorded under noisy or
mismatched conditions. For this reason, a phoneme confusion model is introduced in this
work. Its goal is to predict the deviation of the phoneme recognition output compared
to the true spoken phonemes. Once applied on the index, this confusion model acts as a
corrector of the recognition errors.

Our confusion model expands the index with alternative phoneme sequences, which
inherently introduce additional detections when searching queries. This can be beneficial,
especially if the space limitations forces us to significantly prune the phoneme lattices to
keep the index to a reasonable size. However, KWS performance optimization is a coun-
terbalancing procedure of increasing the true detections while keeping the false alarms
low. To address this problem, we train the parameters of the confusion model discrim-
inatively, where the optimized objective function is the Figure of Merit (FOM), a well-
established evaluation metric of KWS performance. The FOM was also used in (Wallace
et al., 2011) to directly optimize the weights of the index, which had the form of a matrix
of probabilistic acoustic scores. In (Wang et al., 2009), it was used to optimize an inter-
polation factor when alternative pronunciations were added for OOVs. To our knowledge
this is the first time it is used to train the weights of a phoneme confusion model for KWS.

The reader is considered to be familiar with the basic concepts of the theory of finite
state transducers for reading the following sections. For more details, he is referred to
Section 2.3.

6.2 Keyword spotting system

6.2.1 Indexing and searching representation
As already mentioned, our KWS system operates in two phases: indexing and search.

In our work, the query terms are phoneme sequences and the index is constructed from
a set of phoneme lattices generated for each input utterance using a phoneme recognizer.
As proposed in (Can and Saraclar, 2011), the index is represented as a weighted finite

6.2. KEYWORD SPOTTING SYSTEM 83

state transducer (WFST) allowing very efficient search for queries. The index WFST is
constructed in such a way that every subsequence of phonemes found in any path of any
phoneme lattice is represented by exactly one successful path. For such path, the sequence
of input symbols corresponds to the subsequence of phonemes and the output sequence
identifies the lattice/utterance. The index WFST is built on the lexicographic semiring
so that each path weight is a triple representing the start time, the end time and the log
posterior probability of the phoneme subsequence appearing in the lattice at this time. An
example of the index can be seen in Figure 6.1. For more details on constructing the index
WFST, we refer the reader to (Can and Saraclar, 2011).

Figure 6.1: Timed Factored Index

The query terms are represented as weighted finite state acceptors (WFSA). In the sim-
ple case, where the query is a single phoneme sequence, the acceptor is a linear sequence
of arcs with input symbols representing the corresponding phonemes. The acceptor can
have, however, more complicated topology, where its individual paths represent a set of
query terms we want to search for. The acceptor can also represent multiple pronunciation
variants of a query word. In this last case, the weight of each path represents the (log)
probability of the corresponding pronunciation variant.

Let the index and the query be represented by transducer I and acceptor Q, respec-
tively. The search can be performed by composing the two automata Q◦ I and sorting the
paths through the resulting transducer with the shortest-path algorithm. Again, just like in
the case of the original index WFST, each path through the composed transducer encodes
information about the phoneme sequence, the lattice/utterance it was detected in and the
timing. The composed transducer, however, contains only the phoneme sequences repre-
sented byQ. All the FST manipulations are realized using the OpenFst libraries (Allauzen
et al., 2007).

84 CHAPTER 6. CONFUSION MODEL FOR KWS

6.2.2 Confusion model

Now, we want to take into account the fact that the query phoneme sequence can
get assigned wrong posterior probability in the index (e.g. because of a systematic error
of the phoneme recognizer) or is completely missing from the index (e.g. because of
lattice pruning needed to obtain an index of a reasonable size). For these reasons, a
confusion model is introduced reflecting our assumption that a phoneme sequence can get
(with a certain probability) misrecognized as a different sequence, which we may wish to
search for instead. In this work, we consider only simple context independent confusion
model, assuming that each phoneme can get with a certain probability inserted, deleted or
substituted by another phoneme. The confusion model is represented as a WFST on the
tropical semiring with all arcs looping in a single state. For each arc, the weight w(i, o)
can be interpreted as the log probability that the phoneme represented by the input symbol
i gets misrecognized as the output symbol o. An empty symbol ε can be used as input
symbol to represent insertion or output symbol to represent deletion.

A query transducerQ can be now composed with a given confusion model C to obtain
an expanded query transducer Q ◦ C. For each path through Q ◦ C, the output symbols
represent the phoneme sequence we want to search for in the index instead of the original
query (input symbol sequence). The weight of the path then represents the assumed prob-
ability that the output sequence (if found in the index) is in fact the misrecognized input
sequence. Finally, the search of the expanded query in the index I can be performed by
composing all three transducers Q ◦ C ◦ I . Alternatively, this composition can be seen
as searching the original query Q in the expanded/corrected index C ◦ I . Again, each
path through the final transducer Q ◦ C ◦ I can be interpreted as the detection of a query
phoneme sequence in a particular lattice/utterance at a particular time. The weight of the
k-th such path (e.g. as obtained from shortest-path algorithm) defines the detection score
sk. Note that the score combines the weight wk of the confusion model C and the weight
(log posterior) nk of the index I as

sk = wk + nk, (6.1)

which naturally expresses that the final score is the product (sum in log domain) of two
probabilities: 1) probability of misrecognizing the original query as a different phoneme
sequence and 2) probability of detecting that sequence in the index. We can further
decompose the confusion model’s path weight into the contributions of the individual
phonemes j as

wk =
∑
j

w(ikj, okj). (6.2)

It should be noted that the confusion model’s output symbols okj are not visible in the final
transducer Q ◦C ◦ I , as these are consumed by the composition of C and I . However, for
the discriminative training, as will be detailed below, it is still needed to keep track of all
the contributing scores w(ikj, okj) for each detection.

6.3. CONFUSION MODEL TRAINING 85

6.2.3 Confusion model initialization
The weights of the confusion model transducer w(i, o) are the discriminatively trained

parameters as will be described in Section 6.3.2. To get reasonable initial values for the
weights, we obtain the one-best phoneme recognition output from our training corpora,
align it with the reference phoneme sequence, and count the number of phoneme specific
insertions, deletions and substitutions. The weights are thus initialized as follows: For the
insertion of the output phoneme o, the weight (log probability) is set as

w(ε, o) = log
of insertions of phoneme o
of all recognized phonemes

. (6.3)

All other weights are initialized as

w(i, o) = log

(
P (non-ins)

of i recognized as o
of i in the reference

)
, (6.4)

where the probability of the output symbol not being inserted

P (non-ins) = 1− # of all insertions
of all recognized phonemes

(6.5)

and where o = ε corresponds to phoneme deletion.

6.3 Confusion model training

6.3.1 The Figure of Merit
As the criterion for the discriminative training of the confusion model’s parameters

we use the FOM. The FOM is defined as the detection rate averaged over the range of
0 to 10 false alarms per hour and over the individual queries (Rohlicek et al., 1989).
Equivalently, it can be interpreted as the normalized area under the Receiver Operating
Characteristic (ROC) curve in that false alarm range. To evaluate FOM for a given data
set and a given set of queries, we enumerated detections by applying the shortest-path
algorithm to Q ◦C ◦ I transducer. Based on the reference transcription, the detections are
assigned into two sets: set of true detectionsR+ and set of false alarmsR−. In accordance
with the FOM definition, only the top scoring detections are assigned to the sets R+ and
R− corresponding to 10 false alarms per hour and query term. More precisely the top
scoring detections are selected, so that |R−| ≈ A = 10|Q|T , where |Q| is the number of
query terms and T is the number of hours of speech. The FOM is defined as

FOM =
1

A

∑
j∈R−

∑
k∈R+

hkH(sk, sj), (6.6)

where sk is the score for detection k as defined by equation (6.1), hk = 1/(|Q|Occ(k)),
Occ(k) is the number of true occurrences of the query term corresponding to detection k

86 CHAPTER 6. CONFUSION MODEL FOR KWS

in the reference transcript, and

H(sk, sj) =

{
1 sk > sj

0 otherwise.
(6.7)

In accordance with the FOM definition, this formula can be interpreted as a numerical
integration over the ROC curve: Let the outer sum, performed over false detections j, be
sorted by decreasing scores sk. Then, the sum can be seen as an integration over the false
alarm rate axis (i.e. each detection j corresponds to one more false alarm) with an appro-
priate integration step 1/A corresponding to the axis scale. Therefore, each j represents
a certain false alarm rate obtained with the score threshold sk. For a given false alarm
rate j, the inner sum can be interpreted as the corresponding detection rate (averaged over
queries) calculated as the appropriately normalized number of true detections exceeding
the threshold sk.

As can be seen from the formula, the FOM can be also interpreted as a metric testing
the discriminative power of the detection scores by expressing the KWS as the problem
of ranking hits above false alarms.

6.3.2 Discriminatively optimizing the Figure of Merit
Since the FOM is not a continuous differentiable function, which is required for our

optimization, we closely approximate it as

f =
1

A

∑
k∈R+

hk
∑
j∈R−

ς(sk, sj) (6.8)

ς(sk, sj) =
1

1 + exp(−α(sk − sj))
, (6.9)

where the step function H(sk, sj) is approximated by a sigmoid ς(sk, sj) (Raykar et al.,
2007). The tunable parameter a is set to a = 1 for this work. Note also that, compared
to equation (6.6), we have switched the order of the two sums to allow a more efficient
evaluation.

The confusion model parameters are trained to maximize the objective function f on
the training data and using the training queries described in Section 6.4. For the opti-
mization, we use a simple gradient descent algorithm with a fixed step, which requires
the evaluation of the derivatives

∂f

∂w(i, o)
=

α

A

∑
k∈R+

hk
∑
j∈R−

ς(sk, sj)(1− ς(sk, sj))[
∂sk

∂w(i, o)
− ∂sj
∂w(i, o)

]
, (6.10)

where ∂sk/∂w(i, o) is simply the number of times the weight w(i, o) occurs in the sum of
equation (6.2).

6.4. EXPERIMENTAL SETUP 87

Intuitively, in order to increase the FOM, the weights w(i, o) should change such that
the scores of hits increase with respect to the scores of false alarms. Note that when opti-
mizing the weights we do not put any constraint on them, so that they may not correspond
to any probabilistic model in the end.

6.4 Experimental setup
Experiments on English data were conducted. For the phoneme recognizer, acoustic

models developed for the RT-04 evaluation, which were also used for the SRI STD-06
submission for the broadcast news task (Vergyri et al., 2007), were applied. In particular,
gender independent cross-word triphone PLP models were trained for a set of 45 phones
(including pause, reject and two hesitation specific phones). 13 PLP coefficients plus
1st, 2nd and 3rd order derivatives were used, while cepstral mean and variance normal-
ization, vocal tract length normalization and HLDA to reduce dimentionality to 39 were
applied. Decision tree state clustering was used to cluster the triphone states to about
2500 states, and 200 Gaussians per state were trained using 5 MLE training iterations
and 4 discriminative (alternating MPE-MMIE) training iterations. The training data were
LDC distributions including: Hub4 1996 and 1997 (200h), TDT4 (275h) TDT2 (272h)
and BNr1234(2300h). The output lattices were pruned in a preprocessing step before the
index construction.

The data set for the discriminative training of the confusion model’s weights con-
sisted of 8 hours of broadcast news (BN) data. The KWS performance of the proposed
technique was evaluated on the NIST STD06 evaluation (NIST, 2006) set consisting of
3 hours of data. Two disjoint sets of query terms were used for training and evaluation.
From the training data, 1217 query words were extracted and translated to their phonemic
transcriptions. The transcriptions longer than 3 phonemes were kept. To avoid biased
results, the 100 most frequent words but also the words that occurred less than 5 times
were not selected. The evaluation queries were the same 1104 terms that were used for
the NIST STD06 evaluation.

6.5 Results
The performance metric adopted in this work is the FOM (see Section 6.3.1), which

is the one we try to optimize. The results will be presented in terms of the ROC curves
showing the system performance for different operation points.

The baseline system is the one, where the KWS search is realized on the index before
applying the confusion model and expanding the search space. The initialized confusion
model is then applied and discriminatively trained to maximize the FOM on the training
data. Figure 6.2 presents the ROC curves on the training data before training, after 10
iterations and after 50 iterations of the training algorithm. It can be seen that the area
under the ROC curve is indeed increased.

We have found that it is beneficial to smooth the trained confusion model before apply-
ing it to the evaluation data. The smoothing chosen here is the linear interpolation of the

88 CHAPTER 6. CONFUSION MODEL FOR KWS

Figure 6.2: ROC curves on training data

Figure 6.3: ROC curves on evaluation data

trained confusion model weights with a null model, which considers zero probabilities for
substitutions, deletions and insertions and probabilities one for correct phoneme recogni-
tions. The interpolation factor was heuristically set to 0.5. The curve for the smoothed
trained model in Figure 6.3 corresponds to this interpolated model. Some degradation is
seen for the low false alarms region (less than 1 false alarm per hour per query term),
but then some improvement is observed, which increases for high false alarms numbers.
For this area, if a random horizontal line is drawn in Figure 6.3, it can be actually seen
that there is achieved an important decrease in the false alarms number for the same hit
rate when the smoothed trained model is applied. For example, for a hit rate of 0.45, the
false alarms number decreases from 5 (baseline curve) to 2.5 (interpolated trained curve)
false alarms per hour and per query term. It should be noted that the value of the baseline
performance is fairly acceptable for a phonemic KWS system. A last comment can be
made on a slight deterioration of the KWS performance observed on the evaluation set in
comparison to the training set. The KWS task seems to be more difficult on the evaluation
data, which can be due to the different query term list used.

6.6. CONCLUSION 89

6.6 Conclusion
We have presented a phoneme confusion model for the KWS that enables recovery

from recognition errors, and detection of OOVs. A discriminative approach for training
its weights was applied based on the direct optimization of the FOM. The approach was
tested for English. However, it is language-independent and could be applied to other lan-
guages, potentially including languages with limited resources where the OOV problem
is more extensive. In terms of FOM performance a promising improvement was observed
on the evaluation set.

The confusion model is applied on the index constructed using the output lattices of
a phone-loop recognizer. In the future we plan to apply it also to hybrid systems that
use both word and phoneme recognition. The confusion model used in this work does
not take into account any phoneme context. It is our aim to try to use at least bigram
phoneme confusion models and expect to achieve better KWS results. Our aim is also
a better initialization of the confusion model and we have already started working in
this direction. In addition, other more complex methods to train the parameters of our
model could be investigated during the FOM optimization. Last but not least, currently
the confusion model just add bias to the posterior scores. Instead, more complicated
confusion models could be developed that operate directly on the acoustic scores from
which the posteriors are computed. In this case, the confusion model could represent a
multiplicative or additive correction to the acoustic scores.

Chapter 7

Conclusion and Perspectives

We close this thesis with a summary of the main findings and contributions of this
work. After this, some perspectives for continuation of the current work are also dis-
cussed.

7.1 Thesis summary
The first part of this thesis was devoted to the automatic generation of pronunciations

for OOVs and of pronunciation variants for the baseforms of a recognition dictionary.
Some innovating SMT-inspired approaches were proposed and state-of-the-art g2p re-
sults were achieved over a difficult baseline. Then, the expanded lexicon was tested in
speech recognition experiments and some improvements were noticed over a single pro-
nunciation dictionary baseline. However, adding a lot of variants resulted in a degradation
of the ASR performance. This highlighted the well-known problem of phonemic confus-
ability when phonemic variation is added to an ASR system without any constraints. Our
interest then turned in the direction of having a better understanding of these confusability
phenomena and finding a way to measure and counterbalance them.

Next, pronunciation entropy was defined, a measure of the confusability introduced by
the recognition lexicon in the decoding process. Experiments were conducted in order to
observe how this measure is influenced when automatically generated variants are added
to the lexicon. We also measured the influence of using frequency counts as weights to
the pronunciations of the lexicon in contrast to no weights at all. We did not manage to
find a clear correlation of this measure with the error rate of the system though.

The use of frequency counts is a very simplistic way to assign weights to pronunci-
ations and it is restricted to words that occur in the training set. A more suitable way
of choosing pronunciations and training their weights might improve the ASR perfor-
mance. In this thesis, discriminative training was proposed to train a phoneme confusion
model that expands the search space of pronunciations during ASR decoding. The pro-
posed methods offer phonemic variation while keeping the confusability of the system
low. Moreover, the additional variation is adapted to a particular data set and not static
as in the g2p conversion task. An FST-based training and decoding was implemented
and an improvement over the FST-based decoder was observed. It is not straight-forward

91

92 CHAPTER 7. CONCLUSION AND PERSPECTIVES

however to integrate our confusion model in a non-FST based decoder.
Last but not least, we expanded the discriminative training to the KWS task adopting a

new objective function directly related to the KWS performance. There has been growing
interest in the KWS task as the amount of available data exponentially augments and an
efficient way of searching them becomes indispensable in order to be able to make the
best (or any) use of them. In this work, gains were observed over the baseline when using
a discriminatively trained phoneme confusion model to expand the index of a phoneme-
based system.

7.2 Perspectives
We feel that most of the perspectives of this work turn around the construction of a

speech-adapted pronunciation lexicon. This was actually the path this thesis took as we
were understanding more about the problems and needs of pronunciation modeling nowa-
days. A static dictionary can give very good accuracy or recall results in g2p evaluation
without managing to improve the performance of an ASR system. Data specific training
of the recognition lexicon (using speech data) is preferable, as is traditionally done for
the others parts of an ASR system. It is our belief that data-based lexicon adaptation will
become more and more important as we move away from the standard BN recognition
framework, which is more or less characterized by speakers that follow the baseform pro-
nunciation rules. There is an increasing interest in the recognition of speech which is
more spontaneous or more varied due to accents that the static dictionaries often fail to
model correctly.

To construct a speech-adapted pronunciation lexicon, we should first find the right
variants and then weight them such as to give them discriminative power compared to
others. This is what we do with the proposed discriminative training framework us-
ing phoneme confusion pairs to capture the pronunciation variation. Concerning these
phonemic features, adding more context is a promising research direction. It could also
be beneficial to experiment with features providing information from other sources, for
example integrating prosodic or syntactic context.

For the discriminative training proposed in this thesis, we plan to conduct experiments
with objective functions in which the cost is directly integrated. It may also be interesting
to try to add the pronunciation entropy to the objective function, which provides some
additional information that may permit a better control of the confusability. An FST-
based framework is already put in place that allows these transformations without a lot
of additional programming and computational cost. One of our goals is also to move up
the training to the word level keeping the features of phoneme confusions but plausibly
adding word-based features (i.e., a phoneme confusion pair often occurring in a particular
word). This will better account for common errors of the system which are difficult to
correct otherwise. The same models could be used in other tasks without any particular
changes if suitable data were available, for examples in orthographic correction.

It could also be interesting to combine the g2p conversion and the speech-adaptation
approaches proposed in this thesis for the lexicon construction. More in particular, in a
first place we could use the proposed g2p converter (Chapter 3) to generate alternative

7.2. PERSPECTIVES 93

pronunciations for the words of the recognition lexicon. Then, the discriminative speech-
adaptation approach could be used in order to provide weights for these pronunciation
variants and do some pruning on them.

For the KWS task, there is the possibility to integrate the proposed confusion model in
a state-of-the-art hybrid system. In this way more gains might be seen since the proposed
method would be focused to OOV words which are the ones that very often provoke
errors. Moreover, for both ASR decoding and KWS, we would like to test the proposed
models under different experimental conditions, better controlled and targeted to a specific
problem. For example, we might see larger improvements working with accented speech,
where our confusion model could capture, for example, some common accent-specific
phoneme substitutions or deletions.

Appendix A

Phoneme set for American English

In the following table the 45 phoneme set used to construct the LIMSI lexicon and the
acoustic models is presented. For clarity, the corresponding IPA phoneme symbols are
also given with a word example of the pronunciation of each phoneme.

Table A.1: Phoneme set for American English

LIMSI symbols IPA symbols Examples
Vowels i i beet

I I bit
e eı bait
E e bet
@ æ bat
∧ ∧ but
a A bott
c O bought
o oU boat
u u boot
U U book
R 3r bird

Diphthongs Y aı bite
O Oı boy
W aU bout

Fricatives s s sue
z z zoo
S S shoe
Z Z measure
f f fan
v v van
T θ thin
D D that

95

96 APPENDIX A. PHONEME SET FOR AMERICAN ENGLISH

Affricates C tS cheap
J dZ jeep

Semivowels l l led
r r red
w w wed
y j yet

Plosives p p pet
t t tat
k k cat
b b bet
d d debt
g g get

Nasals m m met
n n net
G N thing

Reduced Vowels x @ about
| ı rating
X e@r butter

Syllabics L bottle
M bottom
N button
h h hat
. silence

Appendix B

Publications

2013 Discriminative training of a phoneme confusion model for a dy-
namic lexicon in ASR
P. Karanasou, F. Yvon, T. Lavergne and L. Lamel, Proc. of Interspeech
2013

2012 Discriminatively trained phoneme confusion model for keyword
spotting
P. Karanasou, L. Burget, D. Vergyri, M. Akbacak and A. Mandal, Proc.
of Interspeech 2012

2011 Pronunciation Variants Generation Using SMT-inspired Ap-
proaches
P. Karanasou and L. Lamel, Proc. of ICASSP 2011, pp.4908–4911
Measuring the confusability of pronunciations in speech recogni-
tion
P. Karanasou, F. Yvon and L. Lamel, FSMNLP 2011, ACL Anthology,
pp.107–115
Automatic Generation of a Pronunciation Dictionary with Rich
Variation Coverage Using SMT Methods
P. Karanasou and L. Lamel, CICLing 2011, LNCS 6609, pp.506–517

2010 Comparing SMT Methods for Automatic Generation of Pronunci-
ation Variants
P. Karanasou and L. Lamel, IceTAL 2010, LNCS/LNAI 6233, pp.167–
178

97

Bibliography

M. Adda-Decker and L Lamel. Pronunciation variants across system configuration, lan-
guage and speaking style. Speech Communication, 29:83–98, 1999.

L. Adde, B. Rveil, j.-P. Martens, and T. Svendsen. A minimum classification error ap-
proach to pronunciation variation modeling of non-native proper names. In Proc. of
Interspeech, pages 2282–2285, 2010.

M. Akbacak, D. Vergyri, and A. Stolcke. Open-vocabulary spoken term detection using
graphone-based hybrid recognition systems. In ICASSP, pages 5240–5243, 2008.

Y. Akita and T. Kawahara. Generalized statistical modeling of pronunciation variations
using variable-length phone context. In ICASSP, pages 689–692, 2005.

C. Allauzen, M. Mohri, and B. Roark. Generalized algorithms for constructing statistical
language models. In Proc. of the 41st Annual Meeting of the Association for Computa-
tional Linguistics, volume 1, pages 40–47. Association for Computational Linguistics,
2003.

C. Allauzen, M. Mohri, and M. Saraclar. General indexation of weighted au-
tomata:application to spoken utterance retrieval. In Proc. of HLT-NAACL, 2004.

C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. Openfst: a general and
efficient weighted finite-state transducer library. In Proc. of the 12th international
conference on Implementation and application of automata, CIAA’07, pages 11–23.
Springer-Verlag, 2007.

I. Amdal, F. Korkmazsdiy, and A.C. Surendran. Data-driven pronunciation modelling
for non-native speakers using association strength between phones. In Proc. of ASRU,
pages 85–90, 2000.

A. Antilla. Variation and phonological theory. Chambers, J. K., Trudgill, P. & Schilling-
Estes N., Oxford:Blackwell, 2002.

X. L. Aubert. A brief overview of decoding techniques for large vocabulary continuous
speech recognition. In Automatic Speech Recognition: Challenges for the new Mille-
nium (ASR2000), pages 91–97, 2000.

I. Badr, I McGraw, and J. Glass. Learning new word pronunciations from spoken exam-
ples. In Proc. of Interspeech, 2010.

99

100 BIBLIOGRAPHY

C. Bannard and C. Callison-Burch. Paraphrasing with bilingual parallel corpora. In Proc.
of the 43rd Annual Meeting on Association for Computational Linguistics, pages 597–
604. Association for Computational Linguistics, 2005.

F. Beaufays, A. Sankar, S. Williams, and M. Weintraub. Learning linguistically valid
pronunciations from acoustic data. In Proc. of Interspeech, volume 3, 2003.

F. Béchet and F. Yvon. Les noms propres en traitement automatique de la parole. Traite-
ment Automatique des Langues (T.A.L), 41(3):671–707, 2000.

J. R. Bellegarda. Unsupervised, language-independent grapheme-to-phoneme conversion
by latent analogy. Speech Communication, 46(2):140–152, 2005.

J. Bilmes and G. Zweig. The graphical models toolkit: An open source software system
for speech and time-series processing. In ICASSP, pages 3916–3919, 2002.

M. Bisani and H. Ney. Investigations on joint-multigram models for grapheme-to-
phoneme conversion. In Proc. of ICSLP, 2002.

M. Bisani and H. Ney. Open vocabulary speech recognition with flat hybrid models. In
Proc. of Interspeech, pages 725–728, 2005.

N. Bodenstab and M. Fanty. Multi-pass pronunciation adaptation. In ICASSP, pages
865–868, 2007.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In Yves
Lechevallier and Gilbert Saporta, editors, Proc. of the 19th International Conference
on Computational Statistics (COMPSTAT’2010), pages 177–187. Springer, 2010.

L. Breiman, J. Friedman, C. J. Stone, and R. Olshen. Classification and regression trees.
Chapman & Hall, 1984.

P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. The mathematics of
statistical machine translation: Parameter estimation. Computational linguistics, 19
(2):263–311, 1993.

D. Can and M. Saraclar. Lattice indexing for spoken term detection. IEEE Transactions
on Audio, Speech and Language Processing, 19(8):2338–2347, 2011.

D. Can, E. Cooper, A. Sethy, C. White, B. Ramabhadran, and M. Saraclar. Effect of
pronunciations on oov queries in spoken term detection. In ICASSP, pages 3957–3960,
2009.

L. Chase. Error-responsive feedback mechanisms for speech recognizers. PhD thesis,
Carnegie Melon University, 1997.

N.F. Chen. Informative dialect recognition using context-dependent pronunciation mod-
eling. In ICASSP, pages 4396–4399, 2011.

BIBLIOGRAPHY 101

S. F. Chen. Conditional and joint models for grapheme-to-phoneme conversion. In Proc.
of Eurospeech, pages 2033–2036, 2003.

Y.-N. Chen, P. Liu, J.-L. You, and F. K. Soong. Discriminative training for improving
letter-to-sound conversion performance. In ICASSP, pages 4649–4652, 2008.

N. Chomsky and M. Halle. The Sound Pattern of English. Harper & Row, New York,
1968.

G.F. Choueiter, S. Seneff, and J.R. Glass. Automatic lexical pronunciations generation
and update. In Proc. of ASRU, pages 225–230, 2007.

A.W. Coetzee and S. Kawahara. Frequency biases in phonological variation. Natural
Language & Linguistic Theory, pages 1–43, 2012.

M. Collins. Discriminatively training methods for hmms. theory and experiments with
perceptron algorithm. In Proc. of ACL-02:EMNLP, volume 10, pages 1–8, 2002.

C. Cortes, M. Mohri, A. Rastogi, and M. D. Riley. Efficient computation of the relative
entropy of probabilistic automata. In Proc. of the 7th Latin American conference on
Theoretical Informatics, LATIN’06, pages 323–336. Springer-Verlag, 2006.

T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience, New
York, NY, USA, 1991.

N. Cremelie and J.-P. Martens. In search of better pronunciation models for speech recog-
nition. Speech Communication, 29(2-4):115–136, 1999.

M. Dedina and H. Nusbaum. Pronounce: a program for pronunciation by analogy. Com-
puter Speech and Language, 5:55–64, 1991.

S. Deligne, F. Yvon, and F. Bimbot. Variable-length sequence matching for phonetic
transcription using joint multigrams. In Proc. of Eurospeech, 1995.

Y. Deng, M. Mahajan, and A. Acero. Estimating speech recognition error rate without
acoustic test data. In Proc. of Eurospeech, pages 929–932, 2003.

T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence, 1995.

M. Divay and A.-J. Vitale. Algorithms for grapheme-phoneme translation for english
and french: Applications for database searches and speech synthesis. Computational
linguistics, 23(4):495–523, 1997.

J. Eisner. Expectation semiring: Flexible em for learning finite-state transducers. In Proc.
of FSMNLP, 2001.

J. Eisner. Parameter estimation for probabilistic finite-state transducers. In Annual
meeting-association for computational linguistics, pages 1–8. Association for Com-
putational Linguistics, 2002.

102 BIBLIOGRAPHY

E. Fosler-Lussier. Dynamic Pronunciation Models for Automatic Speech Recognition.
PhD thesis, University of California, Berkeley, 1999.

E. Fosler-Lussier and G. Williams. Not just what, but also when: Guided automatic
pronunciation modeling for broadcast news. In DARPA Broadcast News Workshop,
pages 171–174, 1999.

E. Fosler-Lussier, I. Amdal, and H.-K. J. Kuo. On the road to improved lexical confus-
ability metrics. In Workshop on Pronunciation Modeling and Lexicon Adaptation for
Spoken Language Technology, PMLA, pages 53–58, 2002.

E. Fosler-Lussier, I. Amdal, and H. K. J. Kuo. A framework for predicting speech recog-
nition errors. Speech Communication issue on Pronunciation Modeling and Lexicon
Adaptation, 46(2):153–170, 2005.

Y. Freund and R. Schapire. Large margin classification using the perceptron algorithm.
Machine Learning, 37(3):277–296, 1999.

T. Fukada, T. Yoshimura, and Y. Sagisaka. Automatic generation of multiple pronuncia-
tions based on neural networks. Speech communication, 27(1):63–73, 1999.

M. Gales and S. Young. The application of hidden markov models in speech recognition.
Foundations and Trends in Signal Processing, 1(3):195–304, 2007.

J. L. Gauvain, L. Lamel, and G. Adda. Partitioning and transcription of broadcast news
data. In Proc. of ICSLP, 1998.

J.L. Gauvain, L. Lamel, and G. Adda. The limsi broadcast news transcription system.
Speech Communication, 37(1):89–108, 2002.

M. Gerosa and M. Federico. Coping with out-of-vocabulary words:open versus huge
vocabulary asr. In ICASSP, 2009.

K. Gimpel and N.A. Smith. Softmax-margin crfs: Training log-linear models with cost
functions. In Proc. of HLT-NAACL, pages 733–736, 2010.

N. Goel, M. Thomas, S. Agarwal, P. Akyazi, L. Burget, K. Feng, A. Ghoshal, O. Glembek,
M. Karafit, D. Povey, A. Rastrow, R. C. Rose, and P. Schwarz. Approaches to automatic
lexicon learning with limited training examples. In ICASSP, pages 5094–5097, 2010.

V. Goel, S. Kumar, and W. Byrne. Segmental minimum bayes-risk decoding for automatic
speech recognition. IEEE Transactions on Speech and Audio Processing, 12:234–249,
2004.

S. Goronzy and R. Kompe. Generating non-native pronunciation variants for lexicon
adaptation. Speech Communication, 42:109–123, 2004.

Y. Grandvalet and Y. Bengio. Entropy regularization. In Semi-Supervised Learning, pages
151–168. MIT Press, 2006.

BIBLIOGRAPHY 103

S. Greenberg, S. Chang, and J. Hollenback. An introduction to the diagnostic evaluation
of the switchboard-corpus automatic speech recognition systems. In Proc. of NIST
Speech Transcription Workshop, pages 16–19, 2000.

T. Hain. Implicit modelling of pronunciation variation in automatic speech recognition.
Speech Communication, 46:171–188, 2005.

T. J. Hazen, I. Lee Hetherington, H. Shu, and K. Livescu. Pronunciation modeling using
a finite-state transducer representation. Speech Communication, 46:189–203, 2005.

G. Heigold. A Log-Linear Discriminative Modeling Framework for Speech Recognition.
PhD thesis, Aachen, 2010.

J. Holmes and W. Holmes. Speech Synthesis and Recognition. Taylor & Francis, Inc.,
Bristol, PA, USA, 2002.

T. Holter and T. Svendsen. Maximum likelihood modelling of pronunciation variation.
Speech Communication, 29:177–191, 1999.

C. Huang, T. Cahen, and E. Chang. Accent issues in large vocabulary continuous speech
recognition (lvcsr). International Journal of Speech Technology, 7:141–153, 2004.

I. Illina, D. Fohr, and D. Jouvet. Grapheme-to-phoneme conversion using conditional
random fields. In Proc. of Interspeech, pages 2313–2316, 2011.

M. Jansche. Inference of string mappings for language technology. PhD thesis, OSU
Linguistics Department, 2003.

F. Jelinek. A fast sequential decoding algorithm using a stack. IBM J Research and Dev,
13(6):675–685, 1969.

S. Jiampojamarn, C. Cherry, and G. Kondrak. Joint processing and discriminative training
for letter-to-phoneme conversion. In Proc. of ACL-08:HLT, pages 905–913, 2008.

D. Jurafsky, W. Ward, Z. Banping, K. Herold, Y. Xiuyang, and Z. Sen. What kind of pro-
nunciation variation is hard for triphones to model? In Acoustics, Speech, and Signal
Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference on,
volume 1, pages 577–580, 2001.

P. Jyothi and E. Fosler-Lussier. A comparison of audio-free speech recognition error
prediction methods. In Proc. of Interspeech, pages 1211–1214, 2009.

P. Jyothi, E. Fosler-Lussier, and K. Livescu. Discriminatively learning factorized finite
state pronunciation models from dynamic bayesian networks. In Proc. of Interspeech,
2012.

E. M. Kaisse. Word-Formation and Phonology, volume 64. Springer Netherlands, 2005.

104 BIBLIOGRAPHY

P. Karanasou and L. Lamel. Pronunciation variants generation using smt-inspired ap-
proaches. In Proc. of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, ICASSP, pages 4908–4911, 2011.

J.M. Kessens, M. Wester, and H. Strik. Improving the performance of a dutch csr by mod-
eling within-word and cross-word pronunciation variation. Speech Communication, 29:
193–207, 1999.

A. Kipp, M.-B. Weswnick, and F. Schiel. Pronunciation modeling applied to automatic
segmentation of spontaneous speech. In Proc. of Eurospeech, pages 1023–1026, 1997.

P. Koehn, F. J. Och, and D. Marcu. Statistical phrase-based translation. In Proceed-
ings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology-Volume 1, pages 48–54.
Association for Computational Linguistics, 2003.

P. Koehn, Hoang H., A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, Cowan
B., W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst.
Moses:open source toolkit for statistical machine translation. In Annual meeting-
association for computational linguistics, pages 177–180. Association for Computa-
tional Linguistics, 2007.

P. Ladefoged. A course in phonetics (5th edition). Thomson Wadsworth, Boston, MA,
USA, 2006.

J. Lafferty, A. McCallum, and P. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proc. of ICML, 2001.

L. Lamel and G. Adda. On designing pronunciation lexicons for large vocabulary, con-
tinuous speech recognition. In Proc. of ICSLP, pages 6–9, 1996.

A. Laurent, P. Deleglise, and S. Meignier. Grapheme to phoneme conversion using an smt
system. In Proc. of Interspeech, 2009.

T. Lavergne, O. Cappé, and F. Yvon. Practical very large scale crfs. In Proc. of the
48th Annual Meeting of the Association for Computational Linguistics, pages 504–513.
Association for Computational Linguistics, 2010.

K.F. Lee and H.W. Hon. Speaker-independent phone recognition using hidden markov
models. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(11):1641–
1648, 1989.

P. Lehnen, S. Hahn, A. Guta, and H. Ney. Incorporating alignments into conditional
random fields for grapheme to phoneme conversion. In ICASSP, pages 4916–4919,
2011.

B. Logan, P. Moreno, J.-M. V. Thong, and E. Whittake. An experimental study of an
audio indexing system for the web. In Proc. of ICSLP, pages 676–679, 2000.

BIBLIOGRAPHY 105

L. Mangu, E. Brill, and A. Stolcke. Finding consensus among words: Lattice-based word
error minimization. In Proc. of Eurospeech, 1999.

L. Mangu, E. Brill, and A. Stolcke. Finding consensus in speech recognition: Word
error minimization and other applications of confusion networks. Computer Speech
Language, 14(4):373–400, 2000.

D. McAllaster, L. Gillick, F. Scattone, and M. Newman. Fabricating conversational
speech data with acoustic models: a program to examine model-data mismatch. In
ICSLP, 1998.

I. McGraw, I. Badr, and J.R. Glass. Learning lexicons from speech using a pronunciation
mixture model. IEEE Transactions on audio, speech and language processing, 21(2):
357–366, 2013.

M. Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269–311, 1997.

M. Mohri. Weighted automata algorithms. Handbook of weighted automata, 3:213–254,
2009.

M. Mohri, F. Pereira, and M. Riley. Weighted finite-state transducers in speech recogni-
tion. Computer Speech & Language, 16(1):69–88, 2002.

N. Moreau, H.G. Kim, and T. Sikora. Phonetic confusion based document expansion for
spoken document retrieval. ICSLP Interspeech 2004, 2004.

S. Nakamura, R. Gruhn, and Harald Binder. Recognition of non-native speech using
dynamic phoneme lattice processing. In Acoustic Society of Japan, spring meeting
2002, 2002.

NIST. The spoken term detection (std) 2006 evaluation plan, 2006. URL http://www.
nist.gov/speech/tests/std/docs/std06-evalplan-v10.pdf.

F. J. Och and H. Ney. Improved statistical alignment models. In Proceedings of the
38th Annual Meeting on Association for Computational Linguistics, pages 440–447.
Association for Computational Linguistics, 2000.

B. Oshika, V. Zue, R. Weeks, H. Neu, and J. Aurbach. The role of phonological rules
in speech understanding research. IEEE Transactions on Acoustics, Speech and Signal
Processing, 23(1):104–112, 1975.

V. Pagel, K. Lenzo, , and A. W. Black. Letter-to-sound rules for accented lexicon com-
pression. In Proc. of ICSLP, pages 2015–2018, 1998.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, pages 311–318. Association for Computational Linguistics,
2002.

http://www.nist.gov/speech/tests/std/docs/std06-evalplan-v10.pdf
http://www.nist.gov/speech/tests/std/docs/std06-evalplan-v10.pdf

106 BIBLIOGRAPHY

C. Parada, A. Sethy, and B. Ramabhadran. Balancing false alrams and hits in spoken term
detection. In ICASSP, pages 5286–5289, 2010.

D.B. Paul. Algorithms for an optimal a* search and linearizing the search in the stack
decoder. In ICASSP, pages 693–696, 1991.

A. Paz. Introduction to probabilistic automata. Academic Press, Inc., Orlando, FL, USA,
1971.

F.C.N. Pereira and M.D. Riley. Speech recognition by composition of weighted finite
automata. In Finite-State Language Processing, pages 431–453. MIT Press, 1996.

J. Pinto, A. Lovitt, and H. Hermansky. Exploiting phoneme similarities in hybrid hmm-
ann keyword spotting. In Proc. of Interspeech, volume 4, pages 1817–1820, 2007.

D. Povey. Discriminative Training for Large Vocabulary Speech Recognition. PhD thesis,
Cambridge University Engineering Dept, 2003.

D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon, and K. Visweswariah.
Boosted mmi for model and feature-space discriminative training. In ICASSP, pages
4057–4060, 2008.

A. Prince and P. Smolensky. Optimality Theory: Constraint Interaction in Generative
Grammar. Blackwell Publishers, 2004.

H. Printz and P. Olsen. Theory and practice of acoustic confusability. In Proc. of ISCA
ITRW ASR, pages 77–84, 2000.

M. Pucher, A. Türk, J. Ajmera, and N. Fecher. Phonetic distance measures for speech
recognition vocabulary and grammar optimization. In 3rd Congress of the Alps Adria
Acoustics Association, pages 2–5, 2007.

T. Rama, A. K. Singh, and S. Kolachina. Modeling letter-to-phoneme conversion as a
phrase based statistical machine translation problem with Minimum Error Rate train-
ing. In Proc. of HLT-NAACL: Student Research Workshop & Doctoral Consortium,
2009.

V. Raykar, R. Duraiswami, and B. Krishnapuram. A fast algorithm for learning large scale
preference relations. In Proc. of the Eleventh International Conference on Artificial
Intelligence and Statistics, pages 385–392, 2007.

G. Riccardi, R. Pieraccini, and E. Bocchieri. Stochastic automata for language modeling.
Computer Speech & Language, 10(4):265–293, 1996.

M. Riley, W. Byrne, M. Finke, S. Khudanpur, A. Ljolje, J. McDonough, H. Nock, M. Sar-
aclar, C. Wooters, and G. Zavaliagkos. Stochastic pronunciation modelling from hand-
labelled phonetic corpora. Speech Communication, 29(2-4):209–224, 1999.

BIBLIOGRAPHY 107

B. Roark, M. Saraclar, M. Collins, and M. Johnson. Discriminative language modeling
with conditional random fields and the perceptron algorithm. In Proc. of the 42nd
Annual Meeting on Association for Computational Linguistics, page 47. Association
for Computational Linguistics, 2004.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

J. R. Rohlicek, W. Russell, S. Roukos, and H. Gish. Continuous hidden markov modeling
for speaker-independent word spotting. In ICASSP, pages 627–630, 1989.

A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series.
Springer-Verlag, New York, 1978.

M. Saraclar and S. Khudanpur. Pronunciation ambiguity vs. pronunciation variability in
speech recognition. In Proc. of Eurospeech, pages 515–518, 1999.

M. Saraclar and S. Khudanpur. Pronunciation change in conversational speech and its
implications for automatic speech recognition. Computer Speech and Language, 18
(4):375–395, 2004.

M. Saraclar and R. Sproat. Lattice-based search for spoken utterance retrieval. Proc. of
the HLT-NAACL, pages 129–136, 2004.

T. Sejnowski and C. Rosenberg. Nettalk: a parallel network that learns to read aloud. In
Report JHU/EECS-86/01, 1986.

H. Shu and I. Lee Hetherington. Em training of finite-state transducers and its application
to pronunciation modeling. In Proc. of ICSLP, pages 1293–1296, 2002.

T. Sloboda and A. Waibel. Dictionary learning for spontaneous speech recognition. In
Proc. of ICSLP, pages 2328–2331, 1996.

N. A. Smith. Linguistic Structure Prediction. Graeme Hirst, University ofToronto, 2011.

M. F. Spiegel. Using the orator synthesizer for a public reverse-directory service:design,
lessons, and recommendations. In Proc. of Eurospeech, pages 1897–1900, 1993.

V. Steinbiss. Sentence-hypotheses generation in a continuous-speech recognition system.
In Proc. of European Conference on Speech Communication and Technology, pages
51–54, 1989.

A. Stolcke. Srilm-an extensible language modeling toolkit. In Proc. of ICSLP, 2002.

H. Strik and C. Cucchiarini. Modeling pronunciation variation for asr: A survey of the
literature. Speech Communication, 29:225–246, 1999.

N. Stroppa. Analogy-Based Models for Natural Language Learning. PhD thesis, Tlcom
ParisTech, 2005.

108 BIBLIOGRAPHY

T. Svendsen, F.K. Soong, and H. Purnhagen. Optimizing baseforms for hmm-based
speech recognition. In Proc. of Eurospeech, page 1, 1995.

H. Tang, J. Keshet, and K. Livescu. Discriminative pronunciation modeling: a large-
margin, feature-rich approach. In Proc. of ACL, pages 194–203, 2012.

P. Taylor. Hidden markov models for grapheme to phoneme conversion. In Proc. of
Interspeech, 2005.

J. Tejedor, D. Wang, S. King, J. Frankel, and J. Cols. A posterior probability-based system
hybridisation and combination for spoken term detection. In Proc. of Interspeech, pages
2131–2134, 2009.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

M. Tsai, F. Chou, and L. Lee. Improved pronunciation modeling by inverse word fre-
quency and pronunciation entropy. In Proc. of ASRU, pages 53–56, 2001.

M.-Y. Tsai, F.-C. Chou, and Lee L.-S. Pronunciation modeling with reduced confusion for
mandarin chinese using a three-stage framework. IEEE Transactions on audio, speech
and language processing, 15(2):661–675, 2007.

C. Van Bael, L. Boves, H. van den Heuvel, and H. Strik. Automatic phonetic transcription
of large speech corpora. Computer Speech and Language, 21(4):652–668, 2007.

B. van Berkel and K. De Smedt. Triphone analysis: a combined method for the correction
of orthographical and typographical errors. In Proc. of the 2nd conf. on Applied natural
language processing. Association of Computational Linguistics, 1988.

A. van den Bosch and S. Canisius. Improved morpho-phonological sequence processing
with constraint satisfaction inference. In Proc. of the 8th Meeting of the ACL Special
Interest Group on Computational Phonology and Morphology at HLT-NAACL 2006,
pages 41–49, 2006.

H. van den Heuvel, J.-P. Martens, and N. Konings. G2p conversion of names. what can
we do (better). In Proc. of Interspeech, pages 1773–1776, 2007.

H. van den Heuvel, B. Reveil, and J.-P. Martens. Pronunciation-based asr for names. In
Proc of Interspeech, pages 2991–2994, 2009.

C.J. Van Rijsbergen. Information retrieval. In Butterworths, London, UK., 1979.

B. Vazirnezhad, F. Almasganj, and M. Bijankhan. A hybrid statistical model to generate
pronunciation variants of words. In Proc. of IEEE NLP-KE, pages 106–110, 2005.

U. Venkataramani and W. Byrne. Mllr adaptation techniques for pronunciation modeling.
In Proc. of ASRU, pages 421–424, 2001.

BIBLIOGRAPHY 109

D. Vergyri, I. Shafran, A. Stolcke, V.R.R. Gadde, M. Akbacak, B. Roark, and W. Wang.
The sri/ogi 2006 spoken term detection system. In Proc. of Interspeech, pages 2393–
2396, 2007.

O. Vinyals, L. Deng, D. Yu, and A. Acero. Discriminative pronunciation learning us-
ing phonetic decoder and minimum-classification-error. In ICASSP, pages 4445–4448,
2009.

R. Wallace, B. Baker, R. Vogt, and S. Sridharan. Discriminative optimization of the figure
of merit for phonetic spoken term detection. IEEE Transactions on Audio, Speech and
Language Processing, 19(6):1677–1687, 2011.

C. Wang and P. Zhang. Optimization of spoken term detection system. Journal of Applied
Mathematics, 2012.

D. Wang and S. King. Letter-to-sound pronunciation prediction using conditional random
fields. Signal Processing Letters, IEEE, 18(2):122–125, 2011.

D. Wang, S. King, and J. Frankel. Stochastic pronunciation modelling for spoken term
detection. In Proc. of Interspeech, pages 2135–2138, 2009.

W. Ward, H. Krech, X. Yu, K. Herold, G. Figgs, A. Ikeno, D. Jurafsky, and W. Byrne.
Lexicon adaptation for lvcsr: Speaker idiosyncracies, non-native speakers, and pro-
nunciation choice. In Proc. of PMLA Workshop, pages 83–88, 2002.

J.A. Wasser. English to phoneme translation, final version (4/15/85), 1985.

M. Weintraub, E. Fosler, C. Galles, Y.-H. Kao, S. Khudanpur, M. Saraclar, and S. Weg-
mann. Ws96 project report:automatic learning of word pronunciation from data. In
JHU Workshop Pronunciation Group, 1996.

M. Wester. Pronunciation modeling for asr- knowledge-based and data-driven methods.
Computer Speech and Language, pages 69–85, 2003.

G. Williams and S. Renals. Confidence measures for evaluating pronunciation models,
1998.

M. Wolff, M. Eichner, and R. Hoffmann. Automatic learning and optimization of pronun-
ciation dictionaries. In ISCA Tutorial and Research Workshop (ITRW) on Adaptation
Methods for Speech Recognition, 2001.

M. Wolff, M. Eichner, and R. Hoffmann. Measuring the quality of pronunciation dictio-
naries. In Proc. of PMLA, pages 117–122, 2002.

Q. Yang, J.-P. Martens, P.-J. Ghesquiere, and D. Van Compernolle. Pronunciation vari-
ation modeling for asr: large improvements are possible but small ones are likely to
achieve. In Proc. of PMLA, pages 123–128, 2002.

110 BIBLIOGRAPHY

S. Young. A review of large-vocabulary continuous-speech. Speech Processing Magazine,
IEEE, 13(5):45, 1996.

F. Yvon. Grapheme-to-phoneme conversion using multiple unbounded overlapping
chunks. In Proc. of NeMLaP, pages 218–228, 1996.

F. Yvon, P. Boula de Mareüil, C. d’Alessandro, V. Aubergé, M. Bagein, G. Bailly,
F. Béchet, S. Foukia, J.-F. Goldman, E. Keller, D. D. O’Shaughnessy, V. Pagel, F. San-
nier, J. Véronis, and B. Zellner. Objective evaluation of grapheme to phoneme con-
version for text-to-speech synthesis in french. Computer Speech & Language, 12(4):
393–410, 1998.

P. Zhang, J. Shao, J. Han, Z. Liu, and Y. Yan. Keyword spotting based on phoneme
confusion matrix. In Proc. of ISCSLP, volume 2, pages 408–419, 2006.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Automatic Speech Recognition
	Pronunciation variation
	Grapheme-to-phoneme conversion
	The confusability problem
	Motivation
	Thesis outline

	Background and State-of-the-art
	Grapheme-to-phoneme conversion
	Phonemic confusability
	Confusability: an ASR error analysis
	Moderating confusability
	Speech-dependent lexicons
	Combining g2p conversion and speech-dependent lexicons
	Phonemic confusability in the Keyword-Spotting task

	FST background
	Generalities
	Semiring
	Weighted Finite-State Transducers
	Some useful semirings
	Algorithms
	Entropy semiring
	Matchers
	FST-based speech recognition

	SMT-inspired pronunciation generation
	Introduction
	Methodology
	Moses as g2p and p2p converter
	Pivot paraphrasing approach

	Experimental setup
	Evaluation
	Definition of evaluation measures
	G2P conversion results
	P2P conversion results

	Speech recognition experiments
	Conclusion

	Pronunciation confusability
	Introduction
	A new confusability measure
	 ASR decoding with FSTs
	Decomposing the acoustic and linguistic modeling
	Definition of pronunciation entropy

	Phoneme recognition
	Pronunciation entropy results
	Conclusion

	Phoneme confusion model in ASR
	Introduction
	Problem set-up
	Training criteria
	The CRF model
	Soft-margin CRF
	Large-margin methods
	Perceptron
	Max-margin

	Optimization algorithm

	An FST-based implementation
	Preprocessing
	Defining the input and output FSTs
	Computing the edit distance with FSTs
	Discriminative training algorithms
	Perceptron
	Max-margin
	CRF
	Soft-margin CRF

	Experimental setup
	Phonemic analysis
	Evaluation
	Computation of the objective
	Phoneme Accuracy
	Decoding process
	Discussion of the results

	Conclusion

	Confusion model for KWS
	Introduction
	Keyword spotting system
	Indexing and searching representation
	Confusion model
	Confusion model initialization

	Confusion model training
	The Figure of Merit
	Discriminatively optimizing the Figure of Merit

	Experimental setup
	Results
	Conclusion

	Conclusion and Perspectives
	Thesis summary
	Perspectives

	Appendix Phoneme set for American English
	Appendix Publications
	Bibliography

