
HAL Id: tel-01165015
https://theses.hal.science/tel-01165015v1

Submitted on 18 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic problems in power management of
computing systems

Georgios Zois

To cite this version:
Georgios Zois. Algorithmic problems in power management of computing systems. Data Structures
and Algorithms [cs.DS]. Université Pierre et Marie Curie - Paris VI; Athens university of economics
and business. Research centre, 2014. English. �NNT : 2014PA066462�. �tel-01165015�

https://theses.hal.science/tel-01165015v1
https://hal.archives-ouvertes.fr

Université Pierre et Marie Curie

Athens University of Economics and Business

École doctorale Informatique, Télécommunications et Électronique
(Paris)

Laboratoire d’ Informatique de Paris 6

Décision, Systèmes Intelligents et Recherche Opérationnelle

Algorithmic problems in power management of
computing systems

par Georgios Zois

Thèse de doctorat des Informatics

Dirigée par Evripidis Bampis et Ioannis Milis

Présentée et soutenue publiquement le 12 Décembre 2014

Devant le jury composé de:

Evripidis Bampis, Professeur co-directeur de thèse

Christoph Dürr, CNRS-DR2 Examinateur

Stavros Kolliopoulos, Associate Professor Rapporteur

Evangelos Markakis, Lecturer Examinateur

Monaldo Mastrolilli, Professor Rapporteur

Ioannis Milis, Professor co-directeur de thèse

Denis Trystram, Professeur Examinateur

To my parents

i

ii

Acknowledgements

First of all, I would like to express my gratitude to my supervisors, Ioannis Milis and

Evripidis Bampis, for accepting me as their Ph.D. student. Without their essential guidance

and support, this thesis would not exist.

I am also grateful to Christoph Dürr for sharing with me his ideas and knowledge, as well

as to Dimitrios Fotakis, Emmanouil Zampetakis and Vincent Chau, that I was fortunate

to work with. Moreover, I am particularly thankful to my friends and colleagues Giorgio

Lucarelli and Dimitrios Letsios for their valuable cooperation. I’m also glad that I have met

Martha Sideri and Evangelos Markakis who introduced me to the theory group of AUEB.

During my studies at LIP6, I benefited from being a resident of Fondation Hellenique

at CIUP. Its unique and motivating environment was ideal for accomplishing my goals, and

I am surely going to miss the discussions with my friends Costas, Vasilis D, and Vasilis T.

I am deeply thankful to Chara for encouraging and supporting me during the years of

my studies. Finally, I would like to thank my parents and my sister for their unconditional

love and support through ups and downs.

Funding support: This thesis has been produced under the framework of the research

program “HERACLEITUS II: strengthening the human research potential through imple-

menting doctoral research”. I gratefully acknowledge co-funding support by the European

Union (European Social Fund ESF) and Greek national funds, through the Operational

Program “Education and Lifelong Learning” of the National Strategic Reference Frame-

work (NSRF).

iii

iv

Abstract

This thesis is focused on energy-efficient algorithms for job scheduling problems on speed-

scalable processors, as well as on processors operating under a thermal and cooling mecha-

nism, where, for a given budget of energy or a thermal threshold, the goal is to optimize a

Quality of Service criterion. A part of our research concerns scheduling problems arising in

large-data processing environments. In this context, we focus on the MapReduce paradigm

and we consider problems of energy-efficient scheduling on multiple speed-scalable proces-

sors as well as classical scheduling on a set of unrelated processors.

First, we study the minimization of the maximum lateness of a set of jobs on a single

speed-scalable processor. We consider two variants of the problem: a budget variant, where

we aim in minimizing maximum lateness for a given budget of energy and an aggregated

variant, where we want to minimize a linear combination of maximum lateness and energy.

We propose optimal algorithms for both variants in the non-preemptive case where jobs

have common release dates. Our algorithms are based on a number of structural properties

that can be obtained after applying the KKT (Karush-Kuhn-Tucker) conditions on a convex

programming formulation of the problem. In the presence of arbitrary release dates, we

prove that both variants become strongly NP-hard. Moreover, for the budget variant we

show that it does not admit any O(1)-competitive deterministic algorithm, while for the

aggregated variant we propose a 2-competitive online algorithm.

Then, we study energy-aware MapReduce scheduling where the goal is to minimize the

total weighted completion time of a set of MapReduce jobs under a given budget of energy.

We first propose a convex programming relaxation of the problem, when the execution order

of jobs is known. We combine the solution of this relaxation with two natural list scheduling

policies (First Come First Served and Highest Density First) and compare experimentally

their effectiveness. Although their performance for random instances is fairly good, we

prove that there are instances for which it is very far from the optimal. Next, we propose

a linear programming approach which is based on an interval indexed LP-relaxation of

the problem that incorporates a discretization of the possible speed values. Our algorithm

transforms an optimal solution to this LP into a feasible solution for the problem by list

scheduling in the order of tasks’ α-points, where α ∈ (0, 1). We obtain a constant factor

approximation algorithm for the total weighted completion time of a set of MapReduce jobs

using energy augmentation. In the context of classical MapReduce scheduling (where energy

v

is not our concern) we also study the scheduling of a set of MapReduce jobs on unrelated

processors with the goal of minimizing their total weighted completion time. We propose a

54-approximation algorithm which computes a feasible schedule by merging two individual

schedules (of either Map or Reduce tasks) into a single schedule. Moreover, we consider

the significant part of data shuffle in MapReduce applications and extend our model to

capture the shuffle phase. We manage to keep the same ratio of 54 when the Shuffle tasks

are scheduled on the same processors with the corresponding Reduce tasks, which becomes

81 when the Shuffle and the Reduce tasks are scheduled on different processors.

Finally, we focus on temperature-aware scheduling on a single processor that operates

under a strict thermal threshold, where each job has its own heat contribution and the goal

is to maximize the schedule’s throughput. We consider the case of unit-length jobs with

a common deadline and we revisit the offline CoolestFirst scheduling, i.e., the job with

the smaller heat contribution is scheduled first. We study the approximability of Algorithm

CoolestFirst and propose two different rounding schemes that yield lower bounds on its

approximation factor. The first is based on a partition of the schedule according to the

heat contributions of the jobs, while the second is based on a linear programming approach.

The latter, which is actually more refined, yields a lower bound of at least 0.72.

vi

Sommaire

Cette thèse se focalise sur des algorithmes efficaces en énergie pour des problèmes d’or-

donnancement de tâches sur des processeurs de variation de vitesse ainsi que sur des pro-

cesseurs fonctionnant sous un mécanisme de réchauffement-refroidissement, où, pour un

budget d’énergie donné ou un seuil thermique, l’objectif consiste à optimiser un critère de

Qualité de Service. Une partie de notre recherche concerne des problèmes d’ordonnance-

ment de tâches apparaissant dans des environnements de traitement de grandes données.

Dans ce contexte, nous nous focalisons sur le paradigme MapReduce et nous considérons des

problèmes d’ordonnancement efficaces en énergie sur un ensemble de processeurs pouvant

varier leur vitesse, ainsi que des problèmes d’ordonnancements classiques sur un ensemble

des processeurs non-reliés. Premièrement, nous étudions la minimisation du retard maximal

d’un ensemble de tâches sur un seul processeur de variation de vitesse. Nous considérons

deux variantes de ce problème : la variante budgétaire, où nous voulons minimiser le retard

maximal étant donné un budget d’énergie et la variante agrégée, où nous voulons minimiser

une combinaison linéaire du retard maximal et de l’énergie maximale. Nous proposons des

algorithmes optimaux pour ces deux variantes dans le cas non-préemptif où les tâches ont

des dates de disponibilités communes. Nos algorithmes sont basés sur un nombre de pro-

priétés structurales qui peuvent être obtenues en appliquant les conditions KKT (Karush-

Kuhn-Tucker) sur une formulation de programmation convexe du problème. Nous prouvons

que les deux variantes deviennent fortement NP-difficile lorsque les tâches ont des dates

de disponibilités arbitraires. En outre, nous montrons que la variante budgétaire n’admet

aucun algorithme déterministe O(1)-compétitif, alors que pour la variante agrégée nous

proposons un algorithme en ligne 2-compétitif.

Par la suite, nous étudions l’ordonnancement MapReduce où le but est de minimiser

le temps d’achèvement pondéré d’un ensemble de tâches MapReduce étant donné un bud-

get d’énergie : d’abord, nous proposons un programme convexe relâché de ce problème, où

l’ordre d’exécution des travaux est connu. Nous combinons la solution de ce relâchement

avec deux politiques naturelles de listes (First Come First Served et Highest Density First)

et nous comparons leur efficacité expérimentalement. Malgré leur bonne performance pour

le cas aléatoire, nous prouvons qu’il y a des cas pour lesquels elles sont loin de l’optimum.

Deuxièmement, nous proposons une approche d’ordonnancement linéaire qui est basée sur

un intervalle indexé LP-relâchement du problème qui incorpore une discrétisation des va-

vii

leurs de vitesse possibles. Notre algorithme transforme une solution optimale de ce pro-

gramme linéaire en une solution réalisable du problème en ordonnançant les tâches dans

l’ordre défini par les α-points des tâches, où α ∈ (0, 1). Nous obtenons un algorithme d’ap-

proximation de facteur constant pour le temps de complétude pondéré total d’un ensemble

de tâches MapReduce en utilisant une augmentation d’énergie. Dans le contexte d’ordon-

nancement MapReduce classique (où l’énergie n’est pas prise en compte) nous étudions aussi

l’ordonnancement d’un ensemble des travaux MapReduce sur des processeurs non-reliés en

minimisant la somme des temps de complétude pondéré. Nous proposons un algorithme 54-

approché qui calcule un ordonnancement réalisable en fusionnant deux ordonnancements

individuels (de tâches Map ou Reduce) dans un ordonnancement unique. En outre, nous

considérons la partie principale de data shuffle dans des applications shuffle phase. Nous

arrivons à garder le même rapport d’approximation de 54 lorsque les tâches Shuffle sont or-

donnancées sur les mêmes processeurs avec les tâches correspondantes, et devient 81 quand

les tâches Shuffle et Reduce sont ordonnancées sur des processeurs différents.

Enfin, nous nous focalisons sur l’ordonnancement sous contraintes thermiques sur un

seul processeur fonctionnant en-dessous d’un seuil de température stricte où chaque tâche

a sa propre contribution thermique et le but est de maximiser le nombre de tâche exécutée.

Nous considérons le cas où les tâches ont des durées unitaires ayant la même date d’échéance

et nous revisitons l’algorithme hors-ligne CoolestFirst, c’est-à-dire la tâche ayant la

contribution thermique la plus petite est ordonnancée en premier. Nous étudions l’approxima-

bilité de l’Algorithme CoolestFirst et proposons deux différents schémas d’arrondis qui

produisent des bornes maximales sur son facteur d’approximation. Le premier est basé sur

une partition de l’ordonnancement selon les contributions thermiques des tâches, tandis que

le second est basé sur un programme linéaire. Celui-ci, qui est en effet plus raffiné, produit

une borne minimale d’au moins 0.72.

viii

PerÐlhyh

H ergasÐa aut epikentr¸netai se energeiak� apodotikoÔc algìrijmouc gia probl ma-

ta qronodomolìghshc se epexergastèc dunamik c klim�kwshc thc taqÔthtac, kaj¸c epÐshc

kai se epexergastèc oi opoÐoi leitourgoÔn k�tw apì èna mhqanismì jèrmanshc kai yÔxhc,

me stìqo thn elaqistopoÐhsh enìc poiotikoÔ krithrÐou apìdoshc. 'Ena shmantikì mèroc thc

èreun�c mac èqei ¸c prwtarqikì kÐnhtro th qronodromolìghsh se perib�llonta epexergasÐac

meg�lou ìgkou dedomènwn. Se autì to plaÐsio, epikentrwnìmaste sto prìtupo MapReduce

kai melet�me probl mata energeiak� apodotik c qronodromolìghshc se pollaploÔc epexer-

gastèc klimakoÔmenhc taqÔthtac, kaj¸c epÐshc kai tupik� probl mata qronodromolìghshc

se mh sqetizìmenouc epexergastèc.

Arqik�, proteÐnoume to prìblhma elaqistopoÐhshc thc mègisthc kajustèrhshc enìc su-

nìlou ergasi¸n se monadikì epexergast klimakoÔmenhc taqÔthtac. Melet�me dÔo ekdoqèc

tou probl matoc: mÐa ekdoq dedomènou proôpologismoÔ, ìpou o stìqoc eÐnai h elaqistopo-

Ðhsh thc mègisthc kajustèrhshc gia dedomèno proôpologismì enèrgeiac kai mÐa sugkentrw-

tik ekdoq ìpou o stìqoc eÐnai h elaqistopoÐhsh enìc grammikoÔ sunduasmoÔ thc mègisthc

kajustèrhshc kai thc enèrgeiac pou katanal¸netai. ProteÐnoume bèltistouc algìrijmouc

poluwnumikoÔ qrìnou gia tic dÔo ekdoqèc sthn perÐptwsh pou oi ergasÐec diajètoun koinoÔc

qrìnouc apodèsmeushc. Oi proteinìmenoi algìrijmoi basÐzontai se èna sÔnolo domik¸n qa-

rakthristik¸n thc bèltisthc qronodromolìghshc, ta opoÐa ex�gontai me thn efarmog twn

KKT (Karush-Kuhn-Tucker) sunjhk¸n se èna kurtì prìgramma antÐstoiqo tou probl matìc

mac. Sthn perÐptwsh pou oi ergasÐec diajètoun aujaÐretouc qrìnouc apodèsmeushc, apodei-

knÔoume ìti kai oi dÔo ekdoqèc eÐnai strongly NP-hard. Epiplèon, sthn teleutaÐa perÐptwsh,

gia thn ekdoq dedomènou proôpologismoÔ deÐqnoume ìti den epidèqetai ntetermistikì al-

gìrijmo stajeroÔ lìgou antagwnismoÔ, en¸ gia thn sugkentrwtik ekdoq proteÐnoume ènan

2-antagwnistikì algìrijmo.

Sth sunèqeia melet�me probl mata MapReduce qronodromolìghshc me epÐgnwsh thc e-

nèrgeiac kai stìqo thn elaqistopoÐhsh tou sunolikoÔ bebarhmènou qrìnou olokl rwshc enìc

sunìlou MapReduce ergasi¸n, dedomènou enìc proôpologismoÔ enèrgeiac. Arqik� prote-

Ðnoume th diatÔpwsh enìc qalarwmènou kurtoÔ progr�mmatoc gia to prìblhma, dedomènhc

mÐac di�taxhc ektèleshc twn ergasi¸n. Sundu�zoume th lÔsh thc kurt c qal�rwshc me dÔo

sun jeic strathgikèc qronodromolìghshc (First Come First Served and Highest Density

First) kai sugkrÐnoume peiramatik� tic lÔseic touc. Molonìti h apìdosh touc gia tuqaÐa

ix

stigmiìtupa eÐnai arket� kal , ìpwc apodeiknÔoume, up�rqoun stigmiìtupa gia ta opoÐa apo-

klÐnei arket� apì aut thc bèltisth lÔshc. Epomènwc, proteÐnoume mÐa mejìdeush grammikoÔ

programmatismoÔ, h opoÐa basÐzetai sth diatÔpwsh mÐac grammik c qal�rwshc tou probl ma-

toc mèsw diakritopoÐhshc tìso tou qronikoÔ orÐzonta kaj¸c epÐshc kai twn pijan¸n tim¸n

twn taqut twn ektèleshc. O proteinìmenoc algìrijmoc metasqhmatÐzei mÐa bèltisth lÔsh

thc grammik c qal�rwshc se mÐa efikt lÔsh tou probl matoc ektel¸ntac tic ergasÐec b�sei

thc di�taxhc pou upodeiknÔetai apì ta α-points, α ∈ (0, 1) twn ergasi¸n sth lÔsh tou gram-

mikoÔ progr�mmatoc. PetuqaÐnoume ènan algìrijmo stajer c prosèggishc gia to prìblhma

elaqistopoÐhshc tou sunolikoÔ bebarhmènou qrìnou olokl rwshc enìc sunìlou MapReduce

ergasi¸n, o opoÐoc qrhsimopoieÐ prosaÔxhsh thc enèrgeiac. Sto plaÐsio thc MapReduce

qronodromolìghshc, ìtan h enèrgeia den apoteleÐ stìqo, melet�me epÐshc thn pio genik

perÐptwsh qronodromolìghshc enìc sunìlou MapReduce ergasi¸n se mh sqetizìmenouc e-

pexergastèc, me stìqo thn elaqistopoÐhsh thc sunolik c bebarhmènhc olokl rws c touc.

ProteÐnoume ènan 54-proseggistikì algìrijmo o opoÐoc upologÐzei mÐa efikt qronodromo-

lìghsh gia to prìblhma, sunen¸nontac dÔo xeqwristèc qronodromolog seic (gia tic Map

tic Reduce ergasÐec) se mÐa. Epiplèon, epekteÐnoume to montèlo mac ¸ste na sumperil�bei

mÐa epiplèon shmantik par�metro stic MapReduce efarmogèc, aut tou data shuffle. E-

pitugq�noume na diathr soume ton par�gonta prosèggishc Ðso me 54 sthn perÐptwsh pou

oi Shuffle ergasÐec ekteloÔntai stouc Ðdiouc epexergastèc me tic Reduce ergasÐec, o opoÐoc

gÐnetai 84 sthn perÐptwsh pou oi Shuffle kai oi Reduce ergasÐec ekteloÔntai se diaforetikoÔc

epexergastèc.

Tèloc, epikentrwnìmaste se probl mata qronodromolìghshc me epÐgnwsh thc jermokra-

sÐac, se èna monadikì epexergast pou leitourgeÐ b�sei enìc austhroÔ jermikoÔ katwflÐou,

ìpou k�je ergasÐa èqei th dik thc jermik suneisfor� kai o stìqoc eÐnai h megistopoÐhsh

tou throughput thc qronodromolìghshc. Melet�me thn perÐptwsh ìpou oi ergasÐec eÐnai

monadiaÐou m kouc kai èqoun mÐa koin projesmÐa kai epanexet�zoume mÐa kl�sh problhm�twn

ìpou mÐa ergasÐa den ekteleÐtai efìson mÐa �llh, mikrìterhc jermik c suneisfor�c pro-

jesmÐac, èqei apodesmeuteÐ kai eÐnai diajèsimh kai epikentrwnìmaste sth megistopoÐhsh tou

throughput sthn offline ekdoq tou probl matoc, k�tw apì thn CoolestFirst qronodromo-

lìghsh. AnalÔoume thn proseggisimìthta tou algìrijmou CoolestFirst kai proteÐnoume

dÔo diaforetik� sq mata stroggulopoÐhshc. To pr¸to basÐzetai sth diamèrish thc qrono-

dromolìghshc sÔmfwna me tic jermikèc suneisforèc twn ergasi¸n, en¸ to deÔtero se mÐa

je¸rhsh mèsw grammikoÔ programmatismoÔ. To deÔtero sq ma belti¸nei to pr¸to kai dÐnei

èna k�tw fr�gma megalÔtero Ðso tou 0.72.

x

Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 Energy and temperature management . 2

1.2 Algorithmic problems and tools . 5

1.3 Outline of the thesis . 13

2 Speed Scaling to minimize maximum lateness 17

2.1 Related work . 18

2.2 Contribution . 20

2.3 Budget variant with common release dates 22

2.4 Budget variant with arbitrary release dates 30

2.5 Aggregated variant . 33

2.6 Concluding remarks . 38

3 Energy-efficient scheduling of MapReduce jobs 41

3.1 Related work . 42

3.2 Contribution . 45

3.3 A convex programming approach . 47

3.4 A linear programming approach . 52

3.5 Classical MapReduce scheduling . 62

3.6 Concluding remarks . 71

4 Temperature-aware scheduling for throughput maximization 73

4.1 Related work . 74

4.2 Contribution . 75

4.3 Preliminaries . 77

4.4 A first analysis . 78

4.5 A finer analysis . 80

4.6 Discrete lines . 84

xi

4.7 Concluding remarks . 87

5 Conclusions 89

Bibliography 92

Appendix A 103

List of Figures 104

List of Algorithms 107

xii

Chapter 1

Introduction

The exponential growth in power consumption and the widespread use of computing

devices over the last decade, have rendered energy saving as a major concern today in

terms of both cost and availability in computing systems. For instance, energy consump-

tion dominates the operating cost of large data centers. As noted in [68] the cost of energy

for data-center operators may constitute half of their total cost of ownership. Moreover,

mainly due to the extensive use of mobiles, tablets, etc. 1 as well as the use of sensor

devices 2 that are battery operated, limiting energy consumption has become a major chal-

lenge in their design to extend batteries’ lifetime. Furthermore, as a major part of energy

consumption is converted into heat, there is an exponential rise in heat density causing

difficulties in cooling microprocessor chips (as processor’s speed increases, so does the heat

that is generated). This reduces the reliability and increases the manufacturing costs of the

hardware components resulting in an urgent need for regulating the operating temperature

of processor systems.

Energy and temperature management have been extensively studied by computer en-

gineers at hardware and system design level (see e.g., [102, 34]). In fact, although similar

computational models (Random Access Machine, or Turing Machine) and general scientific

approaches are used to study computational resources of both time and space, the physics

of energy is not captured by them. So, completely different mechanisms, oriented to energy

management, have been proposed to study energy and temperature as a computational

resource, aiming to reduce the energy consumption and the temperature of a device. In

such mechanisms the question generally addressed is the trade-off between the conflicting

objectives of performance and energy-efficiency, the more power is available, the better

performance can be achieved. However, as noted in [45], despite the advances in battery

technology and in low-power micro-architecture design, it seems impossible to meet the

energy needs of future computing devices. So, an interesting direction for research is to

1. Total mobile subscriptions are expected to grow from 6.8 billion in 2014 to 9.2 billion by the end of
2019 [46].

2. In sensor networks, where charging the battery is difficult, there is a great interest in the development
of low-cost and low-power sensor devices (see e.g., SmartDust [106]).

1

address energy and temperature management at the higher levels of Operating Systems

and applications.

In this context, over the last decade the goal of energy-efficiency gave rise to challenging

algorithmic problems involving the management/optimization of energy and temperature

as resources. Some reasonable questions that arise when designing algorithms for such

problems are, what policy should the Operating System use to save energy (resp. heat

dissipation)? It seems natural, therefore, to address energy and temperature management

problems as scheduling problems, motivated by the allocation of limited resources (e.g.,

processors, energy, temperature) to a set of activities (e.g., computer applications/jobs).

In general, the goal of a scheduler is to find an allocation that optimizes some objective

function, which represents a Quality of Service (QoS) criterion. Some common QoS criteria

for scheduling problems in computing environments are: (i) the makespan, which is the

time where all jobs are completed (ii) the maximum lateness, which quantifies the failure

of each job meeting its deadline, (iii) the throughput, which corresponds to the number of

jobs that finish their execution on time and (iv) the total completion (or finishing) time

of a set of jobs in a schedule. The main research objective of this thesis is to develop

efficient algorithms for deterministic scheduling problems arising in energy-bounded and

temperature-bounded computation, with the goal of optimizing some of the above QoS

criteria.

1.1 Energy and temperature management

Various mechanisms have been proposed in algorithmic research for energy and temper-

ature management. We describe here in details the two mechanisms on which our research

is focused and at the end of this section we give a brief review of other mechanisms.

Speed scaling mechanism. A standard way to handle energy consumption is through

Dynamic Voltage and Frequency Scaling (DVFS) of a processor. In this setting, also known

as speed scaling, the processor can run at variable speeds based on demand and performance

constraints. For instance, speed scaling is applied to Intel processors through the “Turbo

Boost” technology, while on AMD processors it is achieved with the “PowerNow” tech-

nology. According to the well-known cube-root rule for the CMOS devices the speed of a

processor is proportional to cube-root of the power [34]. Algorithms for these problems in-

volve increasing power when the improvement in performance justifies the increased energy

or temperature.

The theoretical study of speed scaling was initiated in a seminal paper by Yao et al. [111].

The authors proposed to formulate the speed scaling problems as scheduling problems and,

by generalizing on the cube-root rule of CMOS devices they assumed that if a processor

runs at speed s then the power consumption is sβ, where β > 1 is a processor dependent

constant. Actually, β is in the range (1, 3] for essentially all technologies [34, 107] (e.g., for

2

Intel PXA 270 is equal to 1.1, for Pentium M770 1.6 and for a TCP offload engine 1.66).

A key fact of this power function is that it is a strictly convex function 3 of speed. Since

energy consumption of the processor is power integrated over time (see Figure 1.1(i)), this

intuitively means that high processor’s speed implies high performance (with respect to

some QoS criterion) at the price of high energy consumption, while lower speeds can save

energy but performance degrades.

time

speedβ

energy

(i)

time

speed

work

(ii)

Figure 1.1: (i) The energy consumption over time and (ii) the work volume accomplished by a
job.

The initial problem studied by Yao et al. [111] concerns a set of jobs, each one associated

with an amount of work (CPU cycles), that must be accomplished in order to be completed

(see Figure 1.1(ii)), a release date and a deadline. The goal is to schedule the jobs into a

single speed-scalable processor, in order to minimize the total energy consumption while

respecting the deadline feasibility QoS criterion, i.e., each job must be completed by its end-

time. Moreover, during its execution, a job may be interrupted (preempted) and resumed

later.

In the same context, where speed scaling is used to minimize the energy consumption,

two different models have been also proposed: (i) the bounded speeds model, where the

processors’ speeds are bounded above and below (see e.g., [37]), and (ii) the discrete speeds

model, where the processors’ speeds are chosen among a set of discrete speeds (see e.g., [79]).

The problems studied in this thesis (in terms of energy management) adopt the speed

scaling model proposed by Yao et al. [111] for different objective functions, as it will be

described in the following sections. For an extensive review on speed scaling scheduling,

the reader is referred to the survey of Albers [6].

Thermal and cooling mechanism. A different kind of mechanisms that form a critical

research topic, concern the temperature management in computer systems. In terms of

thermal behavior the proposed mechanisms are motivated by the fact that the processors

3. A function is convex if for any two points of its curve their line segment lies above or on the curve and
is strictly convex if the line segment between any two points lies strictly above the curve (except if there
are endpoints).

3

operate so as to avoid exceeding a thermal threshold, i.e., the maximum safe operating

temperature; the violation of such a threshold reduces the lifetime or even damages the

processors. In fact, the temperature of a processor is dynamically controlled by the hard-

ware dynamic thermal management system, which automatically reduces the processor’s

speed when the thermal threshold is violated. Furthermore, concerning the running jobs,

some of them might be more CPU-intensive, bearing more heat contribution than others.

Thus, by considering the order of their execution, the thermal behavior of the processor

(and so its performance) may vary. A significant part of the proposed work in this context

deals with single or multi-core systems, where the heat contribution of jobs is varying, and

the system has to decide an ordering of the jobs to the processor(s) so as to improve the

thermal behavior and, consequently, the system’s performance (see e.g., [44, 54, 71, 110]).

Based on the latter results, Chrobak et al. [41] stimulated the theoretical study of

temperature-aware scheduling problems that aim to model the thermal and cooling man-

agement of processors. In their model they consider unit-length jobs, each one representing

a unit portion of each job waiting to be processed by the system. Each job is assumed to

have its own heat contribution, representing the increase in the processor’s temperature, a

release date and a deadline, and is going to be scheduled on a single processor operating

under a strict thermal threshold. They assume that the heat contribution of each job is

known in advance. This is not exactly the case in practice, but approximate heat contri-

butions can be determined by well established prediction methods (see [110]). Moreover,

the ambient temperature is assumed to be equal to zero and the thermal behavior of a

processor (that depends on technical characteristics) is modeled by a constant c > 0, so

called cooling factor. Finally, the processor runs at constant speed, and the scheduler can

leave an idle time unit whenever the execution of any available job violates the thermal

threshold.

Temperature:

h idle

T T+h
c T T

c

(i) (ii)

Figure 1.2: The thermal and cooling mechanism of a processor during (i) the execution of a
unit-length job of heat contribution h and (ii) an idle unit-time slot.

The thermal and cooling mechanism of a processor is performed in a geometric manner

(i.e., geometric increase or decrease of the temperature) as follows. Let Θ be the thermal

threshold and T the current temperature of the processor. If a job, with heat contribution

h, is allowed to be executed then, the processor’s temperature after its execution becomes

equal to T+h
c , while it holds that T+h

c ≤ Θ (see Figure 1.2(i)). Moreover, when the processor

is idle, i.e., no job is executed, the temperature becomes equal to T
c , as if a job of heat

4

contribution equal to zero is executed during a unit-time slot (see Figure 1.2.(ii)). The goal

is to compute a schedule which maximizes the throughput, i.e., the number of tasks that

meet their deadlines.

Other mechanisms. A common mechanism for saving energy is the Dynamic Power

Management (DPM), also called power-down, where the device can always reside in one

of several states, with individual power consumption rates. In addition to the active state

there can be, for instance, standby, suspend, sleep, and full-off states. In practice, the

BIOS of most computers includes the Advanced Configuration and Power Interface (ACPI)

that provides five states, including standby and hibernation. However, altering a device

between different states involve some delay and the expenditure of energy. The critical

research issue in algorithmic power-down problems is to improve the delay and energy

cost of these transitions with the energy savings. For an excellent survey on power-down

scheduling problems the reader is referred to [5]. Usually in practice both power-down

and speed scaling mechanisms are applied in order to reduce the energy consumption in

computing devices (see e.g. [16]) thus, it seems realistic to study problems that combine

both. From an algorithmic point of view this interaction raises questions that are even

absent from both mechanisms. For instance, it is not always beneficial to run jobs with the

smallest possible speed that allows to meet their deadlines, since a higher speed may create

an idle period in which the system may transit into a lower-energy state. The theoretical

study of such mechanisms was introduced by Irani et al. [65].

Finally, in terms of temperature management, a different approach was proposed by

Bansal et al. [25], based on the Newton’s law of cooling i.e., the assumption that the rate

of heat loss of a processor is proportional to the difference between its temperature and the

ambient temperature.

1.2 Algorithmic problems and tools

As already mentioned, the scope of this thesis concerns deterministic scheduling prob-

lems arising when we introduce energy and temperature constraints as an input to our

problem. In fact, these are scheduling problems of two criteria, where the general goal is to

determine a scheduling policy that optimizes some QoS criterion (e.g., lateness, through-

put, total completion time) of cost Q, while simultaneously minimizes the total energy

consumption (resp. temperature), let E its cost. As these two criteria are in opposition,

e.g., the more energy available the better QoS produced, there are four different optimiza-

tion problems that arise.

O1: The first one, is to optimize Q while bounding the cost of E . This bound corre-

sponds to an available energy budget E or a thermal threshold Θ.

O2: Symmetrically with the first, the second one is to bound Q and then to optimize

E .

5

O3: The third one is to minimize their sum, Q+E , or a weighted combination of the two

costs that expresses their relative value in the total cost i.e., Q+ λE , where λ ∈ <+.

O4: The fourth one, is to identify the set of Pareto optimal schedules (points) (Q,E).

A schedule S with Q = Q(S) and E = E(S) is called Pareto optimal if there is no

schedule S′ such that Q(S′) ≤ Q(S), if Q is to be minimized (resp. Q(S′) ≥ Q(S))

and E(S′) ≤ E(S), with at least one of the two inequalities being strict.

Motivated by applications where computing devices operating under a limited amount

of available energy, we study problems with objectives of the form O1 and O3. More

specifically, taking advantage of the wide variety of algorithmic techniques from scheduling

theory, we propose offline and online algorithms with provably good performance guarantees

on the quality of their solutions. It is clear that solving problems of the form O4 also solves

the problems of forms O1-O3.

Before proceeding to the contributions of the thesis, we will give a brief description of

the tools used for the evaluation of our algorithms’ performance as well as the necessary

terminology from scheduling theory.

1.2.1 Complexity and performance guarantees

The approach followed in this thesis is the design of efficient algorithms regarding the

new field of energy (resp. temperature)-aware scheduling problems. The term efficient

algorithm corresponds to an algorithm of polynomial number of steps compared to the size

of the problem input, also called polynomial time algorithm. However, as in all algorithm

oriented areas (e.g., combinatorial optimization, theoretical computer science) most of the

problems of practical interest are computationally intractable.

The classification of computational problems in easy and hard is the object of study of

computational complexity theory, initiated in the early 70’s. A computational problem is

easy to solve, if there is an efficient algorithm for it and the complexity class that contains

all easy problems is the class P . The hardness of a computational problem is formalized in

a class called NP. Roughly speaking NP contains only decision problems (with an output

either yes or no) such that each yes instance I has a polynomially bounded (on the size of

I) certificate that can verify I in polynomial time. In order to provide a precise notion of

what it means for a problem to be at least as hard as another, the concept of reduction

has been proposed. We say that a problem A reduces to B, or equivalently B is at least

as hard as A, if there exists a function f which, for every instance I of A, produces an

equivalent instance f(I) for B. It is important to note that reductions must be polynomial

time algorithms, which means that the function f can be computed in polynomial number

of steps.

A problem A is NP-hard if, for each problem A′ ∈ NP, A′ reduces to A. If moreover,

A ∈ NP, then we say that it is NP-complete. The notion of completeness of a problem

in NP means that, if there is a polynomial algorithm for it then, through a polynomial

6

reduction, we should have a polynomial time algorithm for any problem in NP, which

proves that P = NP. We call strongly NP-hard a problem that remains NP-hard when

its input values are bounded by a polynomial of the input. For more details concerning

the class NP as well as the computational complexity theory, the reader is referred to the

books of Garey and Johnson [51] and Papadimitriou [85].

Scheduling problems form a vast sub-area of optimization problems. An optimization

problem is specified by a set of instances and a non-empty set of feasible solutions for

them, as well as an objective function mapping every feasible solution to an objective

cost. Optimization problems are distinguished to minimization problems, where the optimal

solution is the feasible solution of the minimum cost, and maximization problems where

the optimal solution is the feasible solution of maximum cost. We will define by OPT(I)

the optimal objective cost of a feasible solution to a problem instance I. Since for most of

the practical optimization problems it is NP-hard to find an optimal solution, one way to

overcome this difficulty, at the expense of reducing the quality of the solution, is to design

approximation, instead of optimal algorithms.

Definition 1.1 Consider a minimization (resp. maximization) problem Π and a positive

value ρ ∈ R+, where ρ ≥ 1. An algorithm A is called ρ-approximation for problem Π, if,

for each problem instance I, it finds a feasible solution of cost cA(I), such that,

– cA(I) ≤ ρ ·OPT(I), if Π is a minimization problem.

– OPT(I) ≤ ρ · cA(I), if Π is a maximization problem.

The value ρ is called approximation ratio (or factor) of algorithm A. Moreover, A is a

polynomial time algorithm.

The best that we can expect for an NP-hard minimization (resp. maximization) prob-

lem is an approximation scheme, i.e., a family of algorithms, which, for each fixed constant

ε > 0, it computes a (1 + ε)-approximate (resp. (1− ε)-approximate) solution to the prob-

lem. If the time complexity of this scheme is polynomial on the input size, then it is

called polynomial time approximation scheme (PTAS) and if it is also polynomial on 1
ε ,

then it is called fully polynomial time approximation scheme (FPTAS). Moreover, if the

time complexity is of the order of O(npoly log(n)), the scheme is called quasi-polynomial time

approximation scheme or QPTAS.

For an extensive study on approximation algorithms for many important combinatorial

optimization problems, the reader is referred to the books [108, 105].

Online algorithms. Studying the computational complexity of algorithms in the offline

setting, i.e., when the algorithm is aware of the whole input in advance, and more specifically

designing polynomial time approximation algorithms for NP-hard problems, it is useful to

guarantee the quality of the algorithm’s solution compared to the optimal one. However,

in the online case, i.e., when not all relevant input data are available, but revealed as the

computation progresses, we are interested in the ratio between our algorithm’s performance

7

on a problem instance and the offline optimum for this instance. This concrete measure

of quality of online algorithms is called competitive ratio [49] and formally is defined as

follows.

Definition 1.2 Consider a minimization problem (resp. maximization) problem Π and let

cA(I) denote the cost of algorithm A on problem instance I. We define the competitive ratio

of an algorithm A for problem Π to be the value σ, such that, for each problem instance I,

– cA(I) ≤ σ ·OPT(I), if Π is a minimization problem.

– OPT(I) ≤ σ · cA(I), if Π is a maximization problem.

1.2.2 Scheduling terminology

Since the early 50’s [67] scheduling problems have formed a vast sub-area of combina-

torial optimization. Many scheduling problems have been studied while new algorithmic

techniques that have been devised to tackle them have influenced research on different

fields e.g., Data Bases, Computer Networks, Operations Research. Given the magnitude of

scheduling theory, next we describe only the concepts relevant to this thesis. An explicit

overview of scheduling theory can be found in the books [75, 87].

A scheduling problem involves a set J of n jobs that are going to be executed on a set P
of m processors. The execution of each job j ∈ J requires a certain processing volume. In

the speed scaling setting this processing volume corresponds to the number of CPU cycles

required by the job and is called work volume uj , while in the classical scheduling setting,

where processors run at unit speed, it corresponds to the actual processing time of the job

in the schedule and is denoted by pj .

Jobs in set J may also subject to constraints that should be taken into account for their

execution. For instance, precedence constraints between jobs (i.e., a fixed partial order of

the jobs) might be given as an input to the scheduling problem, represented by a directed

acyclic graph G = (V,A), where V corresponds to the jobs and (j, k) ∈ A if and only

if j must be completed before k can start its execution (see in Figure 1.4(i)). Moreover,

preemption might be allowed, i.e., the execution of a job can be interrupted and resumed

at later time. A job j ∈ J might be also associated with a release date rj before which it

cannot start its execution, a weight wj that represents its importance with respect to other

jobs and a due date (or deadline) dj by which it should complete its execution.

In general, the processor environment of most scheduling problems can be either a single

processor, in which all jobs have to be processed, or multiple processors, where each job

can be processed on any of the processors (each processor can execute at most one job at

a time). Two common multi-processor environments are (i) identical processors: each job

j ∈ J has the same work volume uj on every processor, and (ii) unrelated processors: each

job j is given a vector of work volumes (ui,j), i ∈ P. Note that, in the classical scheduling

setting, where processors run at unit speed, we have that, in (i) the work volume of each

job is equal to its processing time, i.e., for each j ∈ J , uj = pj , while in (ii) for each job

8

j ∈ J and each processor i ∈ P, ui,j = pi,j .

In many practical scheduling problems each job consists of a fixed number of tasks

(or operations). Each task is associated with a processing volume by which it contributes

to the completion of the job. A common multi-task scheduling model is the flow-shop,

where an ordered set of m processors, {1, 2, . . . ,m}, is given and each job j consists of m

different tasks Ti,j , i = 1, 2 . . . ,m, that are subject to the precedence constraints, repre-

sented by a directed graph G = (V,A), where V corresponds to the set of all tasks and

A = {(Ti,j , Ti+1,j) | j ∈ J , i = 1, 2, . . . ,m − 1}. Each task Ti,j is going to be scheduled

non-preemptively on the corresponding processor i.

An interesting generalization of the flow shop problem is the multi-stage flexible flow-

shop environment: There are k stages, each job consists of k tasks and each task can be

scheduled on a set of parallel processors (e.g., identical, unrelated, etc.). The processors at

each stage might be indistinguishable and the tasks of each job have to be scheduled in the

order indicated by the stages (from 1 to k). A processor can execute at most one task at a

time, while preemption of tasks is not allowed.

A flow-shop model in which there are no precedence constraints among the tasks of

each job is defined as the open-shop model. Moreover, an important version of the open-

shop model, where the tasks of the same job can be processed concurrently, i.e., different

processors are allowed to execute operations of the same job at the same time, is called

concurrent open-shop.

In this thesis, we are going to study scheduling problems on single and parallel processors

that operate under the speed scaling or thermal and cooling mechanisms, as described in

Section 1.1.

When scheduling a set of n jobs J to a set processors, the goal is either to minimize

or maximize the value of an objective function. Some typical objective functions are the

following:

– Makespan: represents the time when the last task of a schedule finishes its execution

and is denoted by Cmax = maxj∈J {Cj}, where Cj , j = 1, 2, . . . , n, is the completion

time of job j in the schedule. In the schedule of Figure 1.3(ii) we have that Cmax = 32.

– Total (or average) weighted completion time: it is denoted by
∑

j∈J wjCj . In the

schedule of Figure 1.3(ii), if we assume that jobs have unit weights, then
∑

j∈J Cj =

90.

– Maximum lateness: the lateness of a job j in a schedule is the difference between its

completion time Cj minus its due date dj and is denoted by Lj = Cj − dj . In fact,

if a job completes before its due date, its lateness can be negative. The maximum

lateness over all jobs in a schedule is denoted by Lmax. In the schedule of Figure 1.3(ii),

Lmax = 12, attained by job 2. In the schedule of Figure 1.3(iii) the maximum lateness

is again attained by job 2, but is equal to Lmax = 1.

– Throughput : is the number of jobs that complete their execution before their deadline.

9

(i)

(iii)(ii)

1

2

4

(8, 6, 30)

(5, 11, 30)(12, 0, 12)

0

(7, 4, 7)

time12 19 27 32

1 2 3 4
1

2 3

4

6 8 10 11 14.33 time0

speed

2
1.5

3.5
4

3

Figure 1.3: (i) The precedence graph of an instance of four jobs. Each job j is specified by an
ordered triple, (vj , rj , dj), where vj is its work volume, rj its release date and dj its due date. (ii)
A schedule of the jobs on a single processor. The jobs’ work volumes vj correspond to their actual
processing times pj and their completion times are displayed on the time axis. (iii) A schedule of
the jobs on a single speed-scalable processor. Both the jobs’ completion times and the speeds are
displayed on the time and speed axes, respectively.

In the schedule of Figure 1.3(ii), jobs 1 and 3 are completed before their deadlines,

so the throughput is equal to 2. In the schedule of Figure 1.3(iii), all jobs except job

2 are completed before their deadlines and the throughput equals 3.

Generally speaking, a schedule computed by an algorithm is feasible for an objective,

if all the constraints and properties posed by the job and the processor environments are

satisfied.

Concerning the speed scaling setting, an important note when designing a schedule is

that except for which job to execute, the scheduler must also determine at what speed the

job should be executed. Clearly, this additional requirement makes speed scaling scheduling

more complex, compared with classical scheduling. For example, consider the two schedules

illustrated in Figure 1.3(ii)-(iii) with respect to the total completion time QoS criterion. In

the classical scheduling setting, where the processor runs at unit speed and energy is not

our concern, Figure 1.3(ii) represents a feasible schedule of the instance in Figure 1.3(i)

– respecting the release dates and the precedences among the jobs – that attains total

completion time equal to 90. However, in the speed scaling setting, as we can see from

the schedule depicted in Figure 1.3(iii), a job j is specified by both its processing time pj

(p1 = 6, p2 = 2, p3 = 2, p4 = 10/3) and its speed sj (s1 = 2, s2 = 3.5, s3 = 4, s4 = 1.5).

Actually, the volume pj · sj corresponds to the work volume of job j. To be more precise,

assuming that each job runs at a single constant speed during its execution is completely

10

reasonable. As we will see in Chapters 2 and 3, this is actually a key-fact in many speed

scaling scheduling problems and is based in the convexity of the power function. Thus, the

total energy consumption E, although it is power integrated over time, can be computed as

the following sum E =
∑

j∈J pjs
β
j , where β > 1 is the processor dependent constant. Let

us assume that β = 2. Thus, as we can compute, the whole schedule consumes 88 units of

energy and the total completion time is equal to
∑

j∈J Cj = 38.33.

In terms of energy (resp.temperature)-aware scheduling, the above typical objective

functions can be further extended with the total energy consumption and thermal threshold

measures, and formulated as one of the objectives O1-O4 in Section 1.2. Consider again for

example the instance of Figure 1.3(i), for the problem of minimizing the total completion

time, in a speed-scalable processor, for a given energy budget E = 88. Then, the schedule in

Figure 1.3(iii) is feasible, with total energy consumption equal to E and
∑

j∈J Cj = 38.33.

Moreover, consider the problem of maximizing throughput, for a given thermal threshold

Θ, in a processor equipped with the thermal and cooling mechanism. Clearly, the schedule

depicted in Figure 1.4, for Θ = 1, is a feasible schedule that attains throughput equal to

4. Note that, job 3 is not scheduled at its release date, since it would violate the thermal

threshold Θ, so the processor remains idle while reducing its temperature by half and

allowing job 3 to be executed at the next time instant.

2 1 4 idle 3

Temperature: 0 0.1 0.1 0.8 0.4 0.85

time0 1 2 3 4 5

Figure 1.4: A feasible schedule of four jobs on a processor equipped with the thermal and cooling
mechanism, for a thermal threshold Θ = 1. Each job j is specified by an ordered triple (hj , rj , dj),
where hj is its heat contribution, rj its release date and dj its deadline. The instance comprises of
jobs: 1→ (0.1, 0, 2), 2→ (0.2, 0, 2), 3→ (1.3, 3, 5), 4→ (1.5, 2, 3). The initial temperature is zero.

1.2.3 An application: The MapReduce paradigm

Energy consumption and cooling of data centers dominate their operational cost while

posing significant limitations in terms of efficiency. Moreover, an increasingly larger amount

of processing in data centers is managed today by distributed platforms for parallel process-

ing of large data sets. A standard programming model for implementing massive parallelism

in large data centers is the MapReduce paradigm [43]. Applications of MapReduce such

as search indexing, web analytics and data mining, involve the concurrent execution of

several MapReduce jobs on a system like Google’s MapReduce [43] or Apache Hadoop [89].

Several empirical works have been carried-out focusing on improving the energy-efficiency

in MapReduce and especially for data processing in the Hadoop framework. Most of this

11

work is mainly based on the power-down mechanism [78, 47, 48, 53]. However, as Wirtz

et al., [109] recently showed, for some computation intensive MapReduce applications the

use of intelligent speed scaling may lead to significant energy savings. In this thesis, we

focus on the theoretical study of energy-aware scheduling of MapReduce computations in

the speed scaling setting.

When a MapReduce computation (or MapReduce job) is executed a number of Map

and Reduce tasks are created. Each Map task operates on a portion of the input elements,

translating them into a number of key-value pairs. After an intermediate process, all the

key-value pairs having the same key are transmitted to the same Reduce task. The Reduce

tasks operate on the key-value pairs, combine the values associated with a key, and generate

the final result. Figure 1.5 illustrates the main parts during the execution of a MapReduce

job. Note that, the time for transmitting the intermediate data from Map to Reduce tasks

(communication cost) is a significant part of the processing cost in MapReduce applications,

called data shuffle.

Map tasks

Reduce tasks

Key-value pairs

Input
data Combined

Output

Figure 1.5: The structure of a MapReduce job

In addition to the many practical applications of MapReduce, there has been a signifi-

cant interest in developing appropriate cost models and a computational complexity theory

for MapReduce computation (see e.g., [4, 69]), in order to understand the basic principles

underlying the design of efficient MapReduce algorithms (see e.g., [2, 72]), and to obtain up-

per and lower bounds on the performance of MapReduce algorithms for some fundamental

computational problems (see e.g. [3] and the references therein).

Many important advantages of MapReduce are due to the fact that the Map tasks

or the Reduce tasks can be executed in parallel and essentially independently from each

other. However, to best exploit massive parallelism available in typical MapReduce systems,

one has to carefully allocate and schedule Map and Reduce tasks to actual processors

(or computational resources, in general). This important and delicate task is performed

in a centralized manner, by a process running in the master node. A major concern of

the scheduler, among others, is to satisfy task dependencies within the tasks of the same

12

MapReduce job; all the Map tasks must finish before the execution of any Reduce task of

the same job. A MapReduce job is completed when the last of its reduce tasks finishes its

execution. Moreover, during the assignment and scheduling process, a number of different

needs must be taken into account, e.g, data shuffle, data locality (i.e., executing tasks on

the node that stores the data), skew (i.e., highly variable task runtimes) which gives rise

to the study of new challenging MapReduce scheduling problems.

Despite the importance and the challenging nature of scheduling in MapReduce envi-

ronments, and despite the extensive investigation of a large variety of scheduling problems

in parallel computing systems (see e.g., [87]), less attention has been paid to MapReduce

scheduling problems. In fact, most of the previous work on scheduling in MapReduce

systems concerns the experimental evaluation of scheduling heuristics, mostly from the

viewpoint of finding good trade-offs between different objectives (see e.g., [112] and the ref-

erences therein). From a theoretical viewpoint, only few results on MapReduce scheduling

have appeared so far [83, 38, 40]. These are based on simplified abstractions of MapReduce

scheduling, closely-related to the concurrent open-shop and the two-stage flexible flow-shop

scheduling models, that capture issues such as task dependencies, shuffle, and task assign-

ment, under the objective of minimizing the total weighted completion time of a set of

MapReduce jobs. This is actually a natural objective since large MapReduce data clusters

are usualy shared among several users. Under this context, we initiate the study of energy

management in MapReduce scheduling on speed-scalable parallel processors, with the goal

to minimize the total weighted completion time of a set of MapReduce jobs with respect to

a given energy budget. Furthermore, when energy management is not a concern, we focus

on generalizations of the theoretical framework proposed so far, incorporating important

needs, such as data locality and data shuffle, in the scheduling process of the MapReduce

jobs.

1.3 Outline of the thesis

This thesis is focused on energy-efficient algorithms for scheduling problems, under

the speed scaling and the thermal and cooling mechanisms, where, for a given energy

budget or thermal threshold, the goal is to find schedules, which maximize a QoS criterion.

Three different QoS criteria are studied: maximum lateness, total weighted completion

time and throughput. New challenging problems, motivated by the MapReduce paradigm,

are also considered, in terms of both energy-bounded scheduling on parallel speed-scalable

processors as well as classical scheduling on a set of unrelated processors. An organisation

of the thesis results is described below.

Speed scaling for maximum lateness. In Chapter 2, we initiate the study of the

problem of scheduling a set of jobs, each one associated with a release date, a due date

and a work volume, to be executed non-preemptively on a single speed-scalable processor in

13

order to minimize the maximum lateness. In their seminal paper, Yao et al. [111], considered

the problem of minimizing energy consumption on a single speed-scalable processor, while

setting the maximum lateness to zero. As maximum lateness minimization and energy

savings are conflicting objectives, we consider two variants: i) a budget variant, where we

aim in minimizing maximum lateness for a given energy budget and ii) an aggregated variant,

where our objective is the minimization of a linear combination of maximum lateness and

energy, i.e., Lmax + λE, λ ∈ <+. We first study the case where all jobs are realeased

at time zero and by applying the well-known KKT (Karush, Kuhn, Tucker) conditions

on a convex programming formulation for each problem variant, we obtain a number of

structural properties of an optimal solution and we propose optimal greedy algorithms for

the non-preemptive single processor case with common release dates.

In the presence of arbitrary release dates, we prove that both problem variants become

strongly NP-hard. In addition, we turn our attention to the online case and for the budget

variant we prove that it does not admit anyO(1)-competitive deterministic algorithm, which

is actually expected (see Theorem 10 in Bansal et al. [26]). Instead, for the aggregated

variant we propose a 2-competitive online algorithm.

Speed scaling for MapReduce jobs. A known variant of the standard open-shop prob-

lem, called concurrent open-shop (see e.g. [80]), is closely-related to an abstract model of

MapReduce scheduling proposed in [38, 40]. Indeed, a MapReduce job consists of a set of

Map tasks and a set of Reduce tasks that can be executed simultaneously. However, this

should be done provided that all Map tasks must finish before the execution of any Reduce

task of the same job, while both the Map and Reduce tasks can be executed in parallel. In

Chapter 3, we study the problem of scheduling a set of MapReduce jobs, where each task

is associated with a positive work volume and each job has a single weight and a single

release date. The tasks are preassigned on a set of speed-scalable parallel processors and

the goal is to minimize the total weighted completion time of jobs. We propose a convex

programming relaxation of our problem, when an order of the jobs is prespecified and we

design greedy heuristics that combine the solution of this convex relaxation with two natu-

ral list scheduling policies: (i) First Come First Served and (ii) Highest Density First, and

compare experimentally their effectiveness. As we prove, although these heuristics behave

well for reasonable random instances, in terms of worst-case analysis their approximation

ratio is proved to be arbitrarily high. As our goal is to design a good approximation al-

gorithm, we propose a O(1)-energy O(1)-approximation algorithm, which uses constant

energy augmentation. A schedule is called c-energy ρ-approximate if its objective function

is at most ρ times far from the objective function of an optimal schedule and it exceeds

the given energy budget by a factor of at most c (see e.g. [91]). Our result is based on

an interval indexed LP-relaxation of the problem that incorporates a discretization of the

possible speed values and transforms an optimal solution of this LP to a feasible solution for

our problem, by list scheduling in the order of tasks’ α-points (see e.g. [61, 98]). Further-

14

more, we introduce a trade-off between the approximation ratio and energy augmentation,

as a function of α, where our result becomes a constant-factor approximation. In fact, our

algorithm achieves a (α β−1√α)2+3α β−1√α+1

(α β−1√α)2(1−α)
(1+ε)-approximation, where ε > 0, α ∈ (0, 1) and

β > 1 is the exponent of speed in the power function; recall that P (s) = sβ. In the case

where there are no precedence constraints between Map and Reduce tasks and all jobs have

a common release date, the problem becomes equivalent with the speed scaling version of

concurrent open-shop scheduling under an energy budget, and our algorithm achieves a
1

α β−1√α(1−α)
(1 + ε)-approximation.

In the same Chapter 3, under the context of classical scheduling we study the more

general (and practically important) case of scheduling a set of MapReduce jobs on unrelated

processors under the objective of minimizing their total weighted completion times. In

[83], Moseley et al. considered MapReduce scheduling as a generalization of the two-stage

flexible flow shop problem. They focused on the identical processors setting, proposing a

12-approximation algorithm. For unrelated processors, they dealt with the simple case in

which each job has a single Map and a single Reduce task and proposed a 6-approximation

algorithm. In our work, we consider the general case where each job can have any number

of Map and Reduce tasks and propose a 54-approximation algorithm. Our main technical

tool is the computation of a schedule of the Map (resp. Reduce) tasks to processors by

combining a time indexed LP-relaxation of the problem with a well-known approximation

algorithm for the makespan minimization problem on unrelated processors running on the

time intervals specified by the optimal LP solution. Then, our result is derived by merging

the two schedules produced for the Map and the Reduce tasks into a single schedule that

respects task dependencies. Moreover, we integrate our model to capture data Shuffle,

which forms a significant part of the processing cost in MapReduce applications. More

specifically, we introduce a number of Shuffle tasks for each Map task that simulate the

transmission of each key-value pair computed from a Map task, to every Reduce task.

Each Shuffle task is associated with a transfer time, which is independent of the processor

assignment, while its execution lies on some reasonable assumptions. For the Map-Shuffle-

Reduce scheduling problem, we prove constant approximation algorithms in two different

cases: i) a 54-approximation when the Shuffle tasks are scheduled on the same processors

as the corresponding Reduce tasks and ii) a 81-approximation when the Shuffle tasks run

on different processors of the Reduce tasks.

Temperature-aware scheduling. In Chapter 4, we study a temperature-aware schedul-

ing problem where we are given a set of unit-length jobs, each one associated with a heat

contribution and a common deadline, to be scheduled on single processor that operates

under the thermal and cooling mechanism [41]. The goal is to maximize throughput, while

not exceeding the given thermal threshold Θ. In their paper, Chrobak et al. [41] proved that

the above problem is strongly NP-hard. Moreover for the online version where each job has

an arbitrary deadline and a release date they proposed a class of 2-competitive scheduling

15

policies, where each job is never scheduled if a job with a smaller deadline or heat contri-

bution is available. In this thesis, we revisit this class of problems proposed in [41], and

focus on the maximization of the throughput in the offline setting, under CoolestFirst

scheduling: each time unit when the temperature is cool enough, the processor executes the

job with the smallest heat contribution, otherwise remains idle. For the case of unit-length

jobs with a common deadline we propose two lower bounds on the approximation factor

of CoolestFirst, providing two different rounding schemes: a standard one, based on a

partition of the produced schedule according to job’s heat contributions and a more delicate

one that uses a linear programming approach, yielding a lower bound on the approximation

factor of at least 0.72.

Note

The results of this thesis are based on the following papers:

– Evripidis Bampis, Dimitrios Letsios, Ioannis Milis and Georgios Zois. Speed Scalig

for Maximum Lateness. In Proceedings of the 18th Annual International Computing

and Combinatorics Conference (COCOON), Springer LNCS 7846:187-200, 2012.

– Christoph Dürr, Ioannis Milis, Julien Robert and Georgios Zois. Approximation the

Throughput by Coolest First Scheduling. In Proceedings of 10th Workshop on Ap-

proximation and Online Algorithms (WAOA), Springer LNCS 7434:25-36, 2012.

– Dimitris Fotakis, Ioannis Milis, Emmanouil Zampetakis and Georgios Zois. Schedul-

ing MapReduce jobs on Unrelated Processors. In Workshop Proceedings of the EDBT/ICDT

Joint Conference, CEUR-WS.org (ISSN 1613-0073), pp. 2-5, 2014. Final version in

arxiv preprint, abs/1312.4203, 2014.

– Evripidis Bampis, Vincent Chau, Dimitrios Letsios, Giorgio Lucarreli, Ioannis Milis

and Georgios Zois. Energy-efficient Scheduling of MapReduce jobs. In Proceedings of

the 20th International European Conference on Parallel and Distributed Computing

(EURO-PAR), Springer LNCS 8632:198-209, 2014.

16

Chapter 2

Speed Scaling to minimize

maximum lateness

An instance of our problem consists of a set of n jobs J = {1, 2, . . . , n}, where every job

j is associated to a release date rj , a due date dj , as well as to a work volume vj . This set of

jobs has to be executed non-preemptively on a single speed-scalable processor. For a given

schedule the lateness of job j is defined as Lj = Cj−dj , where Cj is the completion time of

job j and the maximum lateness is defined as Lmax = max1≤j≤n{Lj}. However, this setting

is not amenable to obtaining near-optimal solutions, as an optimal Lmax could be negative.

An easy way to overcome this is to assume that all due dates are negative (by subtracting

a sufficiently large constant from each one), which implies that the optimal Lmax is always

positive. Then, an equivalent model is that of scheduling with delivery times [58], where

each job j needs a time qj ≥ 0 after its completion to be delivered and different jobs may

be delivered simultaneously. By setting qj = −dj we obtain an equivalent instance in the

new model, since for any schedule Lmax = max1≤j≤n{Cj − dj} = max1≤j≤n{Cj + qj}. Due

to this equivalence, in the sequel we are using the delivery times model and referring to the

quantity Lj = Cj + qj as the lateness of job j. Jobs that attain the maximum lateness in

a schedule are referred as critical jobs.

Adopting the speed scaling mechanism proposed by Yao et al. [111] (see Section 1.1)

if a processor runs at speed s, at a given time, then its power consumption is P (s) = sβ,

where β > 1 is a processor dependent constant, specifying the energy-inefficiency of the

processor; speeding up by a factor c increases the power consumption by cβ−1 per unit of

computation. The processor’s energy consumption can be computed by integrating power

over time. In this context, a schedule σ has to specify for every job the time interval during

which it is executed as well as its speed over time. A key-property, which is actually a

straightforward consequence of the convexity of speed-to-power function, is the following.

Lemma 2.1 [65] Consider an instance I of the Bud-Lateness (resp. Aggr-Lateness)

problem with a convex power function P . There is an optimal schedule where every job

17

j ∈ J is executed at constant speed sj.

According to Lemma 2.1, if a processor operates at a constant speed sj during the execution

of a job j, it will execute its whole amount of work volume vj in vj/sj time units while

consuming an amount of energy Ej = vjs
β−1
j .

We consider the energy-aware problem of scheduling non-preemptively the set of jobs J
on a single speed-scalable processor so as: (i) to minimize the maximum lateness, Lmax =

maxi∈J {Lj} under a given budget of energy E, so called budget variant, and (ii) to minimize

a linear combination of maximum lateness and energy, Lmax + λE, where λ ≥ 0 is a

given parameter, so called aggregated variant. The second objective specifies the relative

importance of energy versus maximum lateness. We denote the former variant by Bud-

Lateness and the latter by Aggr-Lateness.

10 11 13 time

speed

3

2

1

L3 = 15

L2 = 15

L1 = 15

+q3

+q2

+q1

s1, s3 = 1

s2 = 2

Figure 2.1: A feasible schedule of the Bud-Lateness problem for three jobs with zero release
dates, work volumes 10, 2, 2, delivery times 5, 4, 2, β = 2 and E = 20. The total energy consumption
is equal to 18, while the maximum lateness equals Lmax = 15, and it is attained by all jobs.

A feasible schedule of the Bud-Lateness problem for an instance of three jobs, with an

energy budget equal to E = 20, is illustrated in Figure 2.1. Note that this is also feasible

for the Aggr-Lateness problem.

2.1 Related work

Since the seminal paper by Yao et al. [111] speed scaling scheduling has been studied

extensively (see e.g. [6] for a recent review). Here, we refer to the most significant results

relevant to our work, focusing only on results for the single speed-scalable processor envi-

ronment. The case of multiple speed-scalable processors will be examined in Section 3.1.

Yao et al. [111] introduced the theoretical study of speed scaling by considering a scheduling

problem, where the jobs are associated with release dates and deadlines, and the goal is to

find a feasible preemptive schedule on a single speed-scalable processor with the minimum

energy used while respecting the deadline feasibility QoS criterion. They studied both the

offline and online versions. For the offline version, they proposed an elegant greedy algo-

rithm, so called YDS, that runs in polynomial time O(n3). The optimality of YDS was

18

formally proved later (by applying the KKT conditions on a convex programming formula-

tion) by Bansal et al. [25]. For the online version, they presented two constant-competitive

algorithms, the Average Rate and the Optimal Available algorithm. More specifically, they

proved that the competitive ratio of Average Rate is at most 2β−1ββ, which is almost tight,

as it was later proved by Bansal et al. [27], since it cannot be smaller than (2 − δ)β−1ββ,

where δ tends to zero as β goes to infinity. Optimal Available was later analyzed by Bansal

et al. [25], where they proved a tight competitive ratio of ββ. In [25], the authors also pro-

posed a different online strategy with competitive ratio of 2(β
β−1)βeβ. Recently, a general

lower bound of eβ−1

β , for every deterministic online algorithm, has been proposed by Bansal

et al. [29]. Finally, in the non-preemptive case the energy minimization problem was proved

strongly NP-hard [15] and to the best of our knowledge, the best result so far [22] attains

an approximation ratio of (1 + ε)βB̃β, where B̃β is a generalization of the Bell number also

valid for fractional values of β.

Most closely-related to our results are the following, concerning several QoS criteria

under a budget or an aggregated variant on a single speed-scalable processor.

Pruhs et al. [90] studied the problem of minimizing the total flow time of jobs in a

schedule, under a given energy budget, when jobs have arbitrary release dates. The flow

time of a job is defined as the difference between its completion time and its release date.

For the case where jobs have unit-work jobs, they proposed an optimal hill-climbing 1

polynomial time algorithm, of complexity O(n2 log c), where c is the range of possible

energy values whom each schedule is optimal, divided by the desired precision. For jobs

with arbitrary work volumes, the authors proposed a (1 + ε)β-energy O(1
ε)-approximate

polynomial time algorithm, using (1 + ε)β energy augmentation, for ε ∈ (0, 1). For the

same problem, Bunde [35] proved a negative result, stating that there is no exact algorithm

using exact real arithmetic, including the extraction of k-th roots, even when jobs have unit-

work volumes. Albers and Fujiwara [7] were the first to consider an aggregated variant,

with the objective of minimizing the total flow times of jobs plus energy. They studied

both offline and online versions of the problem, in the case of unit-work jobs. In the

offline case, they developed a polynomial time dynamic programming algorithm, with time

complexity of O(n3 log ρ), where ρ is the inverse of the desired precision. In the online

case, they first proved that when jobs have arbitrary work volumes the competitive ratio

of any deterministic non-preemptive online algorithm cannot be better than Ω(n1−1/β) and

they proposed a 8.22(1 + Φ)β(β
1−β)β-competitive algorithm, where Φ = 1+

√
5

2 is the golden

ratio. The latter result was improved by Bansal et al. [26], which proposed a 4-competitive

algorithm. In [26] the authors also studied the preemptive version when jobs have arbitrary

work volumes and presented a (1 + ε) max

{
2, 2(β−1)

β−(β−1)
β−2
β−1

}
, for ε ∈ (0, 1), which was

1. The algorithm starts with an optimal schedule for a large energy budget and decreases energy while
tracking the changes to the schedule.

19

improved to 2

1−
(

(β−1)/β
β
β−1

) by Lam et al. [74] and to 3-competitive by Bansal et al. [28].

Finally, Andrew et al. [10], based on the latter result proposed a 2-competitive algorithm.

However, for the budget variant in the online setting, Bansal et al. [26] proved that there

is no O(1)-competitive algorithm, even if all jobs have unit works.

Megow and Verschae [82] studied the problem of minimizing the total weighted comple-

tion time under a given energy budget and proposed a PTAS in the case where all jobs are

released at time zero. It is interesting to note, that, for their result they applied the KKT

conditions to a convex programming formulation of the problem, with respect to a given

order of jobs, and proved that their problem is equivalent to the single (unit speed) proces-

sor scheduling problem with the objective of minimizing the
∑

j∈J wj(Cj)
β−1
β ; actually, the

same result has been also proved by Vásquez [104]. So, their PTAS is in fact applied for the

latter problem. Megow and Verschae [81] also proposed a (2 + ε)-approximation algorithm,

when jobs have arbitrary released dates and preemption is allowed. Carrasco et al. [36] stud-

ied the aggregated variant of minimizing the total completion time plus energy, when jobs

are subject to precedence constraints. They proposed a 4(1 + ε)(1 + δ)-approximation algo-

rithm, for δ, ε ∈ (0, 1). They also proposed a similar 4β(1 + ε)β−1(1 + δ)β−1-approximation

algorithm for the objective of minimizing the total weighted tardiness plus energy, where

the tardiness Tj of a job j in a schedule is defined as the Tj = max{0, Cj − dj}.
Angel et al. [13] studied the problem of maximizing the throughput for a given energy

budget and proposed an optimal polynomial time dynamic programming algorithm, of

complexity O(n4 log n logP), where P is the sum of the jobs’ work volumes, in the case

where all jobs are released at time zero. Based on dynamic programming, they also gave

an optimal polynomial time algorithm, of time complexity O(n6 log n logP), in the case

of jobs with agreeable deadlines, i.e., for every pair of jobs i, j such that ri < rj it holds

that di ≤ dj . Moreover, they studied the weighted case, where the goal is to maximize the

total weight of the jobs that finishing after their deadlines, and proved that the problem

is NP-hard in the ordinary sense, while also proposed an optimal pseudo-polynomial time

algorithm, when jobs have agreeable deadlines. Angel et al. [12] also proved optimal pseudo-

polynomial time algorithms, for the general problem when preemption is allowed, for both

weighted and unit-weight cases.

Bunde [35] studied the problem of makespan minimization under an energy budget

and proposed an optimal polynomial time algorithm, on the order of O(n2), for the non-

preemptive case where each job has an arbitrary release date. Moreover, the author proposed

a slight modification of the latter algorithm for finding all Pareto optimal schedules.

2.2 Contribution

Maximum lateness is a standard QoS criterion in scheduling theory, whose optimization

has been extensively studied in the classical scheduling literature [66, 76, 88, 59]. Moreover,

20

it extends the deadline feasibility QoS criterion studied in the seminal paper by Yao et

al. [111] in which the maximum lateness is fixed to zero. In this chapter, we propose to

minimize maximum lateness in the context of energy management under the speed scaling

setting.

In general, high processor speeds imply high performance with respect to the maximum

lateness at the price of high energy consumption. As maximum lateness minimization and

energy savings are conflicting objectives, we consider two variants of the problem: the bud-

get variant (Bud-Lateness), where we aim in minimizing maximum lateness for a given

budget of energy and the aggregated variant (Aggr-Lateness) where our objective is to

minimize a linear combination of maximum lateness and energy. Note that the multiplica-

tion of either energy or lateness by a scalar, captures the relative value of these terms in

the total cost. In both variants of the problem preemption is not allowed.

Our first result, in Section 2.3, is an optimal polynomial time algorithm for the Bud-

Lateness problem when all jobs are released at time zero, running at time O(n log n). To

this direction, we first note that in an optimal schedule jobs are executed in a non-increasing

order of their delivery times. Moreover, due to the convexity of the speed-to-power function,

we are able to formulate the problem as a convex program, which is actually already an

optimal algorithm for the problem by applying the Elipsoid algorithm [84] which runs in

polynomial time with arbitrary precision. As the Elipsoid algorithm is rather impractical, in

order to derive a fast combinatorial algorithm, we apply the KKT conditions in our convex

program and deduce a number of structural properties that, as we prove, are necessary and

sufficient for a schedule to be optimal. Thus, it suffices to design an algorithm that creates

such a schedule. Our algorithm is executed in two steps. In the first step it constructs

groups of jobs satisfying the latter properties, apart from consuming an energy amount not

greater than the energy budget E. In the second part, it manages the energy consumption

with respect to E.

When the jobs have arbitrary release dates, in Section 2.4, we prove that the Bud-

Lateness problem becomes strongly NP-hard, by a reduction from 3-PARTITION. We

also prove that, in the online case, there is no constant competitive deterministic algorithm,

even when all jobs have unit works. This is actually a presumable result as, when we do not

know the future jobs, it is difficult to decide how much energy to invest for the currently

available ones. A similar result has been proved by Bansal et al. [26] for the total flow

time QoS criterion. Next, in Section 2.5, we turn our attention to the Aggr-Lateness

problem and in the case when all jobs are released at time zero, by using a similar analysis

as for the Bud-Lateness problem (in Section 2.3) we derive an optimal polynomial time

algorithm. In fact, the same result can be also derived by performing a binary search

procedure over the interval of all possible energy levels, applying our optimal algorithm for

the Bud-Lateness problem, for each candidate energy budget. For the general case of jobs

having arbitrary release dates, we also prove strongly NP-hardness, by a similar reduction

21

from 3-PARTITION, and then focus on the online case of our problem for which we propose

a 2-competitive algorithm. Our algorithm processes jobs into phases and the jobs in each

phase are scheduled according to our optimal offline algorithm, where jobs have a common

release date. Finally, in Section 2.6, we conclude and propose directions for future work.

2.3 Budget variant with common release dates

In this section we present a polynomial algorithm for the Bud-Lateness problem, when

all jobs have a common release date r. For convenience, let r equal to zero. Our algorithm is

based on a number of structural properties of an optimal schedule, deduced by formulating

our problem as a convex program and applying the KKT conditions (see Appendix A for

definition).

2.3.1 A convex programming formulation

A convex programming formulation of our problem stems from two basic properties of

an optimal schedule. First, because of the convexity of the speed-to-power function, each

job j runs at a constant speed sj . Second, jobs are scheduled according to the EDD (Earliest

Due Date First) rule, or equivalently in non-increasing order of their delivery times; this

can be easily shown by a standard exchange argument. Hence, we propose the formulation

(CP), where all jobs are considered to be released at time zero and numbered according to

the EDD order.

(CP) : minimize L

subject to :

Cj + qj ≤ L, ∀j ∈ J (2.1)
v1

s1
≤ C1, (2.2)

Cj−1 +
vj
sj
≤ Cj , for j = 2, 3 . . . , n (2.3)

n∑

j=1

vjs
β−1
j ≤ E, (2.4)

L,Cj , sj ≥ 0, ∀j ∈ J (2.5)

Our objective is to minimize the maximum lateness, L, among all feasible schedules.

Constraints (2.1) ensure that the lateness of each job is at most L, constraints (2.2) and

(2.3) enforce the jobs to be scheduled according to the EDD rule in non-overlapping time in-

tervals, constraint (2.4) does not allow to exceed the given energy budget E and constraints

(2.5) ensure that the maximum lateness, the completion times and the speeds of jobs are

22

non-negative. Constraint (2.4), for β > 2, and constraints (2.2) and (2.3) are convex, while

constraints (2.1) and (2.5) and the objective function are linear. Thus, our mathematical

program, (CP), is indeed convex.

Note that, (CP) already implies a polynomial algorithm for our problem, as convex

programs can be solved to arbitrary precision by the Ellipsoid algorithm [84]. Since the

Ellipsoid algorithm is rather impractical, we will exploit this convex program to derive a

fast combinatorial algorithm.

2.3.2 Properties of an optimal schedule

In what follows we deduce a number of structural properties of an optimal schedule by

applying the KKT conditions to the convex program (CP).

Lemma 2.2 For the maximum lateness problem with an energy budget E, the following

properties are necessary and sufficient for optimality of a feasible schedule.

(i) Each job j runs at a constant speed sj.

(ii) Jobs are scheduled according to the EDD rule.

(iii) There are no idle periods in the schedule.

(iv) The last job is critical, i.e., Ln = Lmax.

(v) Every non-critical job j has equal speed with the job j + 1, i.e., sj = sj+1.

(vi) Jobs are executed in non-increasing speeds, i.e., sj ≥ sj+1.

(vii) All the energy budget is consumed.

Proof. In order to apply the KKT conditions to (CP), we associate to each set of con-

straints from (2.1) up to (2.4), dual variables ηj , γ1, γj , δ, respectively. W.l.o.g. the variables

L,Cj and sj are positive and, by the complementary slackness conditions, the dual variables

associated to the constraints (2.5) are equal to zero.

Stationarity conditions give that

∇L+

n∑

j=1

ηj∇(Cj + qj − L) + γ1∇(
v1

s1
− C1)

+

n∑

j=2

γj∇(Cj−1 +
vj
sj
− Cj) + δ∇(

n∑

j=1

vjs
a−1
j − E) = 0 ⇒

(1−
n∑

j=1

ηj)∇L+
n−1∑

j=1

(ηj − γj + γj+1)∇Cj

+(ηn − γn)∇Cn +

n∑

j=1

(−γjvjs−2
j + (a− 1)δvjs

a−2
j)∇sj = 0

23

Equivalently, we obtain the following equalities.

n∑

j=1

ηj = 1 (2.6)

ηj = γj − γj+1 1 ≤ j ≤ n− 1 (2.7)

ηn = γn (2.8)

(β − 1)δ =
γj

sβj
1 ≤ j ≤ n (2.9)

The complementary slackness conditions give that

ηj(Cj + qj − L) = 0 1 ≤ j ≤ n (2.10)

γ1(
v1

s1
− C1) = 0 (2.11)

γj(Cj−1 +
vj
sj
− Cj) = 0 2 ≤ j ≤ n (2.12)

δ

(n∑

j=1

vjs
β−1
j − E

)
= 0 (2.13)

First, we show that the properties are necessary for optimality. That is, there is always

an optimal schedule satisfying them.

(i)-(ii) They have been already discussed above.

(iii) First, note that δ 6= 0. If δ = 0 then by (2.9), we get that γj = 0 for each

1 ≤ j ≤ n. This, combined with (2.7) and (2.8) yields that
∑n

j=1 ηj = 0, which is a

contradiction because of (2.6). Since δ 6= 0, we get by (2.9) that γj 6= 0 for each 1 ≤ j ≤ n.

Then, equations (2.11) and (2.12) give that there is no idle time in any optimal schedule

since C1 = v1
s1

and Cj = Cj−1 +
vj
sj

, for 2 ≤ j ≤ n, respectively.

(iv) Since δ 6= 0, by (2.9), it follows that γn 6= 0 and finally, because of (2.8), ηn 6= 0.

So, the last job to finish is always a critical job, by (2.10).

(v) Note that for every non-critical job j, it holds that Cj+qj < L and (2.10) implies that

ηj = 0 for every such job. Hence, if a job j is non-critical ηj = 0⇒ γj = γj+1 ⇒ sj = sj+1,

by (2.7) and (2.9), respectively.

(vi) By the dual feasibility conditions and the equations (2.7) and (2.9) we get, re-

spectively, that ηj ≥ 0 ⇒ γj ≥ γj+1 ⇒ sj ≥ sj+1. Thus, the jobs are executed with

non-increasing speeds.

(vii) If the energy budget is not entirely consumed, then by (2.13), δ = 0, which is a

contradiction, since, as we have already proved, δ 6= 0.

Next, we show that the properties are also sufficient for optimality. That is, any feasible

schedule satisfying them must be optimal. In order to show this, it suffices to prove that,

given any feasible schedule satisfying the properties, we can always give values to the dual

variables such that the KKT conditions are satisfied.

24

Consider a feasible schedule and let sj and Cj be the speed and the completion time

of the job j, 1 ≤ j ≤ n, respectively. Moreover, let L be the maximum lateness of the

schedule. We give values to the dual variables as follows.

δ =
1

(β − 1)sβ1

γj =
sβj

sβ1
, 1 ≤ j ≤ n

ηj =
sβj − s

β
j+1

sβ1
, 1 ≤ j ≤ n− 1

ηn =
sβn

sβ1

We, now, observe that these values of the dual variables together with the values of the

primal variables satisfy the KKT conditions.

Note that

n∑

j=1

ηj =
n∑

j=1

sβj − s
β
j+1

sβ1
=
sβ1

sβ1
= 1

ηj =
sβj − s

β
j+1

sβ1
=
sβj

sβ1
−
sβj+1

sβ1
= γj − γj+1 1 ≤ j ≤ n− 1

ηn =
sβn

sβ1
= γn

(β − 1)δ =
1

sβ1
=
sβj

sβ1

1

sβj
=
γj

sβj
1 ≤ j ≤ n

So the stationarity conditions are satisfied.

Consider now a job j, 1 ≤ j ≤ n. If i is critical, then Cj + qj = L. Else, by property

(v) we have that, for 1 ≤ j ≤ n− 1,

sj = sj+1 ⇔
sβj

sβ1
=
sβj+1

sβ1
⇔ ηj = 0

Thus, equation (2.10) is satisfied. By property (iii), we have that C1 = v1
s1

and Cj = Cj−1 +
vj
sj

, for 2 ≤ j ≤ n. Therefore, equations (2.11) and (2.12) are also satisfied. Furthermore,

by property (vii), all the energy budget is consumed and the equation (2.13) holds. Hence,

the complementary slackness conditions are satisfied.

Finally, in order to complete our proof, it remains to show that the values of all the

dual variables are non-negative. The only case for which this is not straightforward, is for

the values of variables ηj , for 1 ≤ j ≤ n − 1. But, it must be the case that ηj ≥ 0 for all

25

1 ≤ j ≤ n− 1, because of the property (vi) and the theorem follows.

We refer to any schedule satisfying the properties of Lemma 2.2 as a regular schedule.

By (i, j) we denote a sequence of consecutive jobs i, i+ 1, . . . , j. Any regular schedule can

be partitioned into groups of jobs, of the form (i, j), where the jobs i− 1 and j are critical

and the jobs i, i + 1, . . . , j − 1 are not. By Lemma 2.2(v), all jobs of such a group are

executed at the same speed. We denote this common speed by sj and the total amount of

work volume of jobs in (i, j) by v(i, j) =
∑j

k=i vk. Then, the next proposition follows from

Lemma 2.2.

Proposition 2.1 Let i, j, be two consecutive critical jobs of a regular schedule. The speed

of each job in the group (i+ 1, j) equals to sj = v(i+1,j)
qi−qj .

Proof. Since i and j are both critical, they attain equal maximum latencies. Moreover, in

any regular schedule, by Lemma 2.2(iv), there is no idle period between jobs i, i+ 1, . . . , j.

Furthermore, all jobs i+ 1, i+ 2, . . . , j− 1 are non-critical and, by Lemma 2.2(vi), they are

all executed with speed equal to that of job j. Hence, we get, respectively, that

Li = Lj ⇒ Ci + qi = Cj + qj ⇒
i∑

k=1

vk
sk

+ qi =

j∑

k=1

vk
sk

+ qj ⇒ sj =
v(i, j)

qi−1 − qj
.

and the lemma follows.

2.3.3 An optimal combinatorial algorithm

So far, by proving that the properties of a regular schedule are necessary and sufficient

for optimality, we have derived a clear image of the structure of an optimal schedule for

the Bud-Lateness problem, when all jobs are released at time zero. Next, we propose

Algorithm BUD which constructs such a schedule in polynomial time. Note that a regular

schedule is fully specified by the speeds of the jobs. The rough idea of our algorithm is

the following: First, it constructs a preliminary schedule by finding groups of jobs running

in non-increasing speeds without taking care of the energy consumption. Second, the al-

gorithm manages the energy consumption w.r.t. the energy budget E and determines the

final speeds of all jobs. Let E′ be the energy consumption of the current schedule at any

point of the execution of the algorithm.

Algorithm BUD starts from job n which is always a critical job and considers all jobs

but the first, in reverse order (see lines 2-7). When a job j, 2 ≤ j ≤ n, is considered for

the first time, its speed sj is set according to Proposition 2.1, assuming that jobs j − 1

and j are critical. If sj ≥ si, for j + 1 ≤ i ≤ n, then sj is called eligible speed and it is

assigned to job j. If this speed is not eligible, j is a non-critical job and it is merged with

the (j + 1)’s group. More specifically, if c is the last job of this group, then the speeds

of jobs j, j + 1, . . . , c are calculated by applying Proposition 2.1, assuming that j − 1 and

26

c are critical while j, j + 1, . . . , c − 1 are not. Next, the algorithm examines whether the

new value of sj is eligible. If this is the case, then it considers the job j − 1. Otherwise,

a further merging of the j’s group with the (c + 1)’s group, is performed, as before. That

is, if c′ is the last job of the (c + 1)’s group, all jobs j, j + 1, . . . , c′ are assigned the same

speed assuming that jobs j − 1 and c′ are critical, while j, j + 1, . . . , c′ − 1 are not. This

speed, according to the Proposition 2.1, is equal to sc′ = v(j,c′)
qj−1−qc′ . Note that the job c is

no longer critical in this case. This merging procedure is repeated until job i is assigned an

eligible speed. In a degenerate case, jobs j, j + 1, . . . , n are merged into one group. When

the algorithm has assigned an eligible speed to all jobs 2, 3, . . . , n, in line 8, it sets s1 = s2

and its first part completes. An example of the first part of our algorithm is given in Figure

2.2(i).

1
1 2 3

Set s1 = s2 Assign energy E − E ′

to the first group

1 2 3

Reduce the speed of the
first group to s3

3

2

(i) Lmax = 10, E ′ > E, E ′ = 50 (ii) Lmax = 16, E ′ < E, E ′ = 14 (iii) Lmax = 13.79, E ′ = 20

5 6 8 10 12 14 8.16 9.79 11.79time

speed

2

1 1

√
3
2

speed speed

time time

Figure 2.2: The execution of Algorithm BUD for an instance of 3 jobs without release dates, work
volumes 10, 2, 2, delivery times 5, 4, 2, β = 3 and E = 20.

Next, Algorithm BUD takes into account the available budget of energy E (see lines 9-

21). If E−E′ ≥ 0, the current schedule’s energy consumption does not exceed the budget of

energy, and the surplus E−E′ is assigned to the first job. Otherwise, the current schedule is

regular, except that it consumes an amount of energy greater than E. Then, the algorithm

reduces the consumed energy until it becomes equal to E. In fact, it decreases the speed of

the first group, by merging subsequent groups with it, if necessary. This merging procedure

is different from the one of the first part of the algorithm and it is as follows: let j be the

critical job of maximal index with sj = s1 in the current schedule. Observe that sj > sj+1.

The algorithm sets the speed of jobs 1, 2, . . . , i equal to sj+1. This causes a reduction to

E′ and there are two cases to distinguish: either E′ ≤ E or E′ > E. In the first case, the

algorithm adds an amount of energy E − E′ to jobs 1, 2, . . . , j by increasing their speeds

uniformly, i.e. so that they are all executed with the same speed. In the second case, at

least one further merging step has to be performed. When the algorithm terminates, it is

obvious that E′ = E. For an example of the second part of our algorithm see Figures 2.2(ii)

and 2.2(iii).

Theorem 2.1 Algorithm BUD is optimal for the Bud-Lateness problem, when all jobs

27

Algorithm BUD: an algorithm for the Bud-Lateness problem, when jobs have common
release dates.

1: Sort the jobs according to the EDD order.
2: for j = n to 2 do
3: Set sj assuming that j and j − 1 are critical.
4: while sj is not eligible do
5: Merge the j’s group with the next group.
6: end while
7: end for
8: Set s1 = s2

9: Let E′ be the current energy consumption.
10: if E > E′ then
11: Assign energy E − E′ to job 1.
12: else
13: while E < E′ do
14: Set the speed of the first group equal to the speed of the following group.
15: Update E′.
16: if E < E′ then
17: Merge the first group with the next one.
18: end if
19: end while
20: Assign E − E′ energy uniformly to the first group.
21: end if

are released at time zero.

Proof. We shall prove that the algorithm satisfies the properties of Lemma 2.2, i.e., it

produces a regular schedule. For convenience, we distinguish two parts in the algorithm:

Part I, corresponding to lines 1-8 and Part II, corresponding to lines 9-21, respectively.

Property (i)-(ii): The algorithm gives a single constant speed to each job and keeps

their initial EDD order.

Property (iii): In Part I, the speeds of jobs are assigned according to Proposition 2.1.

Specifically, the algorithm fixes two consecutive critical jobs i and j, i < j, with, potentially,

some non-critical jobs between them. Then the speed of the non-critical jobs and the one

of the critical job j is defined such that there is no idle period between the jobs. In Part

II, no idle period is added between any jobs.

Property (iv) - (v): When the speed of job n is initialized, this is done by assuming

that it is critical. Next, consider the current schedule just after the completion of Part I.

This schedule can be partitioned into sequences of jobs, a+ 1, a+ 2, . . . , b, with a ≥ 1, such

that the jobs of each sequence are executed with the same speed which has been assigned

by applying Proposition 2.1, assuming that the jobs a and b are critical. In fact, jobs a and

b attain equal lateness. In order for such a sequence to be a group, we should also prove

that all but the last jobs are non-critical while the last job is critical.

Let a+1, a+2, . . . , b be a sequence of jobs. We claim that Lj < Lb, for a+1 ≤ j ≤ b−1.

28

Assume, by contradiction, that there exists a job i, where a + 1 ≤ i ≤ b − 1, such that

Li ≥ Lb, or equivalently, qi− qb ≥
∑b

j=i+1
vj
sb

. Since the last job of a sequence attains equal

lateness with the last job of the sequence that follows, we have that La = Lb. This yields

that qa − qb =
∑b

j=a+1
vj
sb

. Therefore, qa − qi ≤
∑i

j=a+1
vj
sb

.

Obviously, for any job j, a + 1 ≤ j ≤ b − 1, we must have a speed sj >
vj

qj−1−qj , since

otherwise, it wouldn’t have been merged with another group. That is, qj−1− qj > vj
sj

. If we

sum the last inequalities for a+1 ≤ j ≤ i, we get that qa−qi >
∑i

j=a+1
vj
sb

, a contradiction.

At this point, we have showed that when Part I completes, if a job j, 2 ≤ j ≤ n,

is critical, then it must be the right extremity of a sequence. Moreover, among all jobs

2, 3, . . . , n, the last jobs of all sequences, including job n, attain equal lateness and the

remaining jobs attain smaller lateness. In addition, job 1 attains equal lateness with the

last job of the sequence that follows. Recall that, at this point, we set s1 = s2. Job 1 would

have equal lateness with the last job of the sequence that follows for any s1 > 0 since the

speed of the second group is set by applying Proposition 2.1, assuming that 1 is critical.

So, at the end of Part I, job 1, job n and every last job of a sequence are critical. Therefore,

after Part I finishes, Properties (iv) and (v) hold.

In Part II, if no merging step is performed, then the processing time of job 1 is decreased

by some t ≥ 0 and its lateness decreases by t, while the processing times and speeds of the

other jobs are not modified. So, the lateness of every other job also decreases by t. Hence,

the Properties (iv) and (v) hold.

If at least one merging step is performed, then the speed of the jobs in the first group

decreases and their processing time increases. Then, in the first group, every non-critical

job j has equal speed with the job j + 1 that follows, while the speeds of the jobs in other

groups remain unchanged. Now, let tj be the total increase in the processing time of job

j, 1 ≤ j ≤ n. Note that this quantity is positive only for jobs belonging to the first group

of the current schedule. Then, the lateness of any job j, 1 ≤ j ≤ n, increases by
∑j

i=1 ti;

if c1 is the critical job of the first group, it remains critical after the merging step since

its lateness and the lateness of every other job that follows, increase by the same quantity,

equal to
∑c1

i=1 ti. Note, that if a further merging step is performed, we consider the first

two groups as one group. Moreover, the lateness of any job increases by no more than the

increase of the lateness of job n, and thus, in the final schedule, job n remains critical and

Property (iv) holds. Furthermore, each non-critical job has equal speed with the job that

follows and Property (v) holds as well.

Property (vi): At the end of Part I, the speeds of jobs are non-increasing since otherwise,

a merging step would be performed. Moreover, during Part II, no speed of a job becomes

less than the speed of a subsequent job.

Property (vii): Recall that E′ is the total energy consumed when Part I completes. If E′

is less than the energy budget, then the energy of the first job increases until the schedule

consumes exactly E units of energy, while if E′ is greater than the energy budget E, then

29

the energy consumption of the schedule is gradually decreased until it becomes equal to E.

Let us now consider the complexity of the algorithm. Initially, jobs are sorted according

to the EDD rule in O(n log n) time. The first part of the algorithm may take O(n2) time

since each merging step takes O(n) time and there can be O(n) merging steps. Also, the

algorithm’s second part takes O(n2) time since the speed of each job may change at most

O(n) times. Therefore, the overall complexity of the algorithm is O(n2). Note that, using

a more careful analysis, based on the use of a stack data structure, it can be shown that

the algorithm may be implemented in O(n log n) time.

2.4 Budget variant with arbitrary release dates

We now consider the general Bud-Lateness problem, where the jobs have arbitrary

release dates and we show that it becomes strongly NP-hard. Moreover, we show that there

is no O(1)-competitive algorithm for its online version, even when all jobs have unit-work

volumes.

2.4.1 NP-hardness

We reduce 3-PARTITION to the Bud-Lateness problem. 3-PARTITION problem is

a well known NP-hard [51] problem where, we are given a positive integer B and a set of

3n positive integers A = {a1, a2, . . . , a3n}, where B/4 < aj < B/2 and
∑

aj∈A aj = nB,

and we ask if there exists a partition of A into n disjoint sets A1, A2 . . . , An such that, for

each 1 ≤ k ≤ n,
∑

aj∈Ak aj = B.

Our reduction is inspired by the NP-hardness proof for the classical maximum lateness

minimization on a single processor problem [51], where we are given a set of jobs with each

job j having a release date rj , a due date dj and a processing time pj and we seek a schedule

with maximum lateness at most Z, for some integer value Z. This problem can be viewed

as a variant of our problem where the speed of each job is part of the instance. Specifically,

we consider that each job j has an amount of work volume vj = pj and it is executed at a

constant speed sj = 1. Based on this idea, we extend the existing NP-hardness reduction

by fixing an energy budget, so that all jobs have to be executed at the same speed sj = 1

in order to get a feasible schedule.

Theorem 2.2 Bud-Lateness problem is strongly NP-hard.

Proof. We construct an instance of the Bud-Lateness problem from an instance of 3-

PARTITION as follows. The instance is depicted in Table 2.1.

– For each integer aj , 1 ≤ j ≤ 3n, we create a job j with vj = aj , rj = 0 and qj = 0.

– We introduce n − 1 gadget jobs, where the gadget job j, 3n + 1 ≤ j ≤ 4n − 1, has

vj = B, rj = (2i− 6n− 1)B and qj = (8n− 2i− 1)B.

– We set E = (2n− 1)B.

30

We shall prove that there is a feasible schedule σ with Lmax at most Z and total energy

consumption E = (2n− 1)B if and only if there exists a 3-PARTITION of A.

j vj rj qj
1 a1 0 0
2 a2 0 0
.
3n a3n 0 0
3n+ 1 B B (2n− 3)B
3n+ 2 B 3B (2n− 5)B
3n+ 3 B 5B (2n− 7)B
.
4n− 2 B (2n− 5)B 3B
4n− 1 B (2n− 3)B B

Table 2.1: An instance of Bud-Lateness problem reduced from an instance of 3-Partition.

(⇐) For the first direction, assume that A1, A2 . . . , An is a partition of A, where∑
aj∈Ak aj = B for 1 ≤ k ≤ n. Then, consider the schedule σ where: (i) each job

j corresponding to an integer aj ∈ Ak, 1 ≤ k ≤ n, is scheduled during the time in-

terval [2(k − 1)B, (2k − 1)B], (ii) each gadget job j, 3n + 1 ≤ j ≤ 4n − 1 is sched-

uled during the time interval [(2j − 6n − 1)B, (2j − 6n)B], and (iii) all jobs are exe-

cuted at constant speed sj = 1. The schedule σ (see Figure 2.3) is feasible and at-

tains maximum lateness equal to Lmax = (2n − 1)B. The total energy consumed is

E =
∑4n−1

j=1 vjs
β−1
j =

∑4n−1
j=1 vj = (2n− 1)B. Thus, by defining Z = (2n− 1)B, the above

schedule corresponding to the instance of 3-PARTITION, has Lmax ≤ Z and E = (2n−1)B.

· · ·
B 3B 5B 7B (2n− 5)B (2n− 1)B(2n− 3)B

job
3n+ 1

job
3n+ 2

job
3n+ 3

job
4n− 2

job
4n− 1

0 2B 4B 6B (2n− 6)B (2n− 4)B (2n− 2)B

A1 A2 A3 A4 An−2 An−1 An

Figure 2.3: A feasible schedule σ for the Bud-Lateness problem that attains maximum lateness
equal to Lmax = (2n− 1)B.

(⇒) For the opposite direction, assume that σ is a feasible schedule with Lmax ≤ Z, for

Z = (2n−1)B, and total energy consumption E = (2n−1)B. In σ, each job j, 1 ≤ j ≤ 3n,

must have completion time Cj ≤ (2n − 1)B and each gadget job j, 3n + 1 ≤ j ≤ 4n − 1,

must have completion time Cj ≤ (2j − 6n)B, since Lj ≤ (2n − 1)B for every job j. For

notational convenience, let W = (2n − 1)B be the sum of work volumes of all jobs. Let

also pj be the execution time of job j, 1 ≤ j ≤ 4n− 1.

It holds also that the completion time of (the last job of) schedule σ is Cmax = (2n−1)B.

To see this, assume for the sake of contradiction that Cmax < (2n − 1)B. Then, by the

31

convexity of speed-to-power function, it follows that the total energy consumption in σ will

be

E(σ) =

4n−1∑

j=1

vjs
β−1
j =

4n−1∑

j=1

vj

(
vj
pj

)β−1

≥W
(

W

Cmax

)β−1

> (2n− 1)B

which is not possible because the energy budget is exceeded. With a similar argument, it

can be shown that there will be no idle time during the interval [0, (2n−1)B] in σ. Moreover,

due to the convexity of the speed-to-power function, among the schedules with makespan

Cmax = (2n− 1)B which have no idle period during [0, (2n− 1)B], only the ones in which

all the jobs are executed with speed equal to sj = 1 have energy consumption not greater

than E = (2n − 1). Clearly, σ must be one of these schedules. Hence, every gadget job j,

3n+ 1 ≤ j ≤ 4n−1, is executed within the whole time interval [(2j−6n−1)B, (2j−6n)B]

in σ.

So far we have shown that every gadget job j, 3n + 1 ≤ j ≤ 4n − 1, spans in σ the

time interval [(2j − 6n − 1)B, (2j − 6n)B], while the other jobs j, 1 ≤ j ≤ 3n, span

the time intervals [2(k − 1)B, (2k − 1)B], 1 ≤ k ≤ n. Therefore, during any interval

[2(k− 1)B, (2k− 1)B], 1 ≤ k ≤ n, there will be executed a set of jobs with total amount of

work volume B. This execution defines a 3-PARTITION for A.

2.4.2 The on-line case

Let us now turn our attention to the online version of the Bud-Lateness problem.

Bansal et al. [26] gave an adversarial strategy for proving that there is no O(1)-competitive

algorithm for the problem of minimizing the total flow of a set of unit-work jobs on

a single speed-scalable processor. This adversarial strategy consists of batches of jobs,

B1, B2, . . . , Bk, with all the jobs in batch Bi released after the online algorithm has finished

all the jobs in Bi−1. Following a similar strategy it can be proved that the makespan mini-

mization problem, for a given budget of energy, i.e. the Bud-Lateness problem, does not

admit an O(1)-competitive algorithm. Note that the makespan minimization is a special

case of our lateness problem (with qj = 0, 1 ≤ j ≤ n).

Theorem 2.3 There is no O(1)-competitive algorithm for the online version of the Bud-

Lateness problem, even when jobs have unit-work volumes.

Proof. In order to prove the theorem, we assume the existence of a ρ-competitive algorithm

A, where ρ > 1 is a constant. Then, we reach a contradiction by showing that there is an

instance of the problem that cannot be feasibly solved by A.

We consider a set of jobs consisting of batches B1, B2, . . . , B`, where the batch Bi,

1 ≤ i ≤ `, contains ni = 2i−1 unit-work jobs which all arrive at the same time; the jobs

of the batch B1 are released at the time r1 = 0 while the jobs of the batch Bi, 1 ≤ i ≤ `,

are released at time ri. We assume that ri is large enough so that the algorithm A has

completed the jobs in the batches B1, . . . , Bi−1 by ri.

32

We denote by C∗max,k, 1 ≤ k ≤ `, the value of the makespan that the optimal offline al-

gorithm achieves for the instance that consists exactly of the jobs in the batches B1, B2, . . . ,

Bk. The term C∗max,k is upper bounded by the makespan of the schedule in which all the

jobs in B1, B2, . . . , Bk are assigned equal speeds such that their energy consumption is equal

to the energy budget E and they are executed continuously starting at time rk. Therefore,

C∗max,k ≤ rk +




(∑k
i=1 ni

)β

E




1
β−1

. (2.19)

As A is a ρ-competitive algorithm, it must complete all jobs of the batches B1, B2,

. . . , Bk not later than ρ · C∗max,k independently of the number of batches that our original

instance contains. Otherwise, it wouldn’t be ρ-competitive for the instance of the problem

that consists only of the batches B1, B2, . . . , Bk. Let Cmax,k be the completion time of the

jobs in batches B1, B2, . . . , Bk in A’s schedule. Then, it must be the case that

Cmax,k ≤ ρ · C∗max,k (2.20)

Let Ek be the energy consumption of the jobs in batch Bk in A’s schedule. Due to the

convexity of the speed-to-power function, we have that

Ek ≥
nβk

(Cmax,k − rk)β−1
(2.21)

By combining inequalities (2.19), (2.20), (2.21) and the fact that rk ≤ C∗max,k, we obtain

that

Ek ≥
nβk(∑k
i=1 ni

)β
E

(2ρ− 1)β−1

Since ni = 2i−1 for 1 ≤ i ≤ k, we conclude that

Ek ≥
E

2β(2ρ− 1)β−1

Thus, if the number of batches ` is large enough, i.e. `→∞, the algorithm will run out

of energy after having completed d2β(2ρ− 1)β−1e batches, so it won’t be able to finish the

batches that follow.

2.5 Aggregated variant

In this section we turn our attention to the Aggr-Lateness problem, the aggregated

variant of the maximum lateness problem, where our objective is to minimize Lmax+λE, for

some λ > 0. For this variant, in the online case, we are able to overcome the impossibility

33

of obtaining constant-factor competitive algorithms (Theorem 2.3). Initially, we consider

instances in which the jobs have a common release date and we describe how to obtain an

optimal offline algorithm for the aggregated variant by slightly modifying our algorithm and

its analysis for the budget variant in Section 2.3. For instances with arbitrary release dates,

we prove that the problem is strongly NP-hard, by using a similar reduction as for the

budget variant. Last, we turn our attention to the online case of the aggregated problem in

which the jobs arrive over time and we propose a 2-competitive algorithm which schedules

the jobs into batches, by repeatedly applying our optimal offline algorithm for jobs with a

common release date.

Common release dates. When all jobs are released at the same time, we are able to

derive a polynomial algorithm, by using Algorithm BUD in the following way: suppose that

we are given the energy consumption E∗ of an optimal schedule minimizing Lmax + λE.

Then, in order to construct such an optimal schedule, it suffices to apply the optimal

algorithm for the budget variant with an energy budget equal to E∗. This means that the

optimal schedule for the aggregated variant is a regular schedule, satisfying the properties

of Lemma 2.2 (with budget E∗). However, in order to construct the optimal schedule

minimizing Lmax + λE, we need to compute E∗. One approach, which has been already

suggested in the literature for the total flow time criterion (see [7, 26]), would be to perform

a binary search procedure in the interval of all possible energy levels. Here, we describe an

alternative approach which resembles to the one we followed for the budget variant.

We first formulate the aggregated variant as a convex program similar to (CP) for the

budget variant. Now, we do not introduce a constraint on the total energy consumption,

since it is added in the objective function. By applying the KKT conditions, we obtain

almost the same structure (properties) of an optimal solution with one single difference:

the energy consumption is not specified by a given budget of energy, but it results from

the fact that the speed of the first job should always be equal to a fixed value. Specifically,

the Property (vii) of Lemma 2.2 is replaced by the fact that “the job executed first runs at

speed s1 =
(

1
(β−1)λ

)β
”. Therefore, in order to obtain an optimal schedule for the aggregated

variant, it suffices to do the following.

Run lines 1-7 of Algorithm BUD. Let σ be the schedule produced. Find the highest-index

critical job, j, j 6= 1, in σ, such that its corresponding sequence, (k, j), has speed sj < s1.

Modify σ such that all jobs 1, 2, . . . , k − 1 are executed at speed s1.

Arbitrary release dates. When jobs have arbitrary release dates, then the problem

becomes strongly NP-hard. Similarly with the budget variant, our reduction is from the

3-PARTITION problem and uses the following lower bound on the objective of any optimal

schedule.

34

Lemma 2.3 For an optimal schedule of the Aggr-Lateness problem, it holds that

OPT ≥ min
j
{rj}+

(
1

s1
+ sβ−1

1

) n∑

j=1

vj

where s1 =
(

1
λ(β−1)

) 1
β .

Proof. We denote the original problem by Π. Let Π′ be the relaxed problem of minimizing

the makespan plus λ times energy with release dates and Π′′ the relaxed problem of mini-

mizing the makespan plus λ times energy with a common release date equal to minj{rj}.
If OPTΠ,OPTΠ′ ,OPTΠ′′ is the cost of the optimal schedule for the problems Π,Π′,Π′′

respectively, it is easy to see that

OPTΠ ≥ OPTΠ′ ≥ OPTΠ′′

Moreover, for an instance of the Π′′ problem, note that in an optimal schedule all jobs are

executed at a constant speed. Since the objective is to minimize the function

H(s) = min
j
{rj}+

n∑

j=1

vj
s

+ λ

n∑

j=1

vjs
β−1,

if we set the first derivative, with respect to s, equal to zero, we yield that the global

minimum is achieved for sβ = sβ1 = 1
λ(β−1) , and the lemma follows directly.

Theorem 2.4 The Aggr-Lateness problem is strongly NP-hard.

Proof. Given an instance of 3-PARTITION we will construct an instance of the Aggr-

Lateness problem.

– For each integer aj we create a job j with work volume vj = aj(
1

λ(β−1))
1
β , rj = 0 and

qj = 0, 1 ≤ j ≤ 3n.

– We introduce n − 1 gadget jobs, 3n + 1, 3n + 2, . . . , 4n − 1, where the gadget job j

has vj = (1
λ(β−1))

1
βB, rj = (2j − 6n− 1)B and qj = (8n− 2j − 1)B.

We claim that there is a feasible schedule σ with Lmax + λE at most Z if and only if

there exists a 3-PARTITION of the set of integers A.

(⇐) To the first direction, assume thatA1, A2 . . . , An is a partition ofA, where
∑

aj∈Ak aj =

B, for 1 ≤ k ≤ n. Then, consider the schedule σ according to which (i) each job j, cor-

responding to an integer aj ∈ Ak, 1 ≤ k ≤ n, is scheduled during the time interval

[2(k − 1)B, (2k − 1)B), (ii) each gadget job j, 3n + 1 ≤ j ≤ 4n − 1 is scheduled during

the time interval [(2j − 6n − 1)B, (2j − 6n)B), and (iii) all jobs are executed at constant

speed s1 = (1
λ(β−1))

1
β . The schedule σ is feasible and its value of objective function is

Lmax + λE = (2n− 1)B[1 + λ 1
λ(β−1)] = (2n− 1)B β

β−1 . By defining Z = (2n− 1)B β
β−1 , the

above schedule corresponding to an instance of 3-PARTITION has objective value at most

Z.

35

Algorithm ALE: an online algorithm for the Aggr-Lateness problem.

Let J0 be the set of jobs that arrive at time t0 = 0. In phase 0, jobs in J0 are scheduled
according to σ∗(J0, 0). Let t1 be the time at which the last job of J0 is finished, i.e., the
end of phase 0, and J1 be the set of jobs released during (t0, t1]. In phase 1, jobs in J1 are
scheduled as in σ∗(J1, t1) and so on. In general, if ti is the end of phase i − 1, we denote
Ji to be the set of jobs released during (ti−1, ti]. Jobs in Ji are scheduled by computing
σ∗(Ji, ti).

(⇒) To the opposite direction, assume that σ is a feasible schedule with weighted

maximum lateness plus energy equal to Lmax +λE ≤ Z, for Z = (2n−1)B β
β−1 . By Lemma

2.3 the speed s1 = (1
λ(β−1))

1
β defines a unique global minimum for our objective. Moreover,

by running each job in σ at a speed s1, we attain maximum lateness plus energy equal to

the assumed one. Thus, σ must run each job i at speed si = s1 = (1
λ(β−1))

1
β . It is easy

to see (as in the proof of Theorem 2.2) that there are no idle periods in σ and that (i)

every gadget job j, 3n + 1 ≤ j ≤ 4n − 1, will be executed during the whole time interval

[(2j− 6n− 1)B, (2j− 6n)B) and (ii) during any interval [2(k− 1)B, (2k− 1)B), 1 ≤ k ≤ n,

there will be executed a set of jobs with total amount of work volume (1
λ(β−1))

1
βB. This

execution defines a 3-PARTITION for A.

t0 = 0

speed

time

t1

· · ·

ti−1 ti

· · ·

ri rn

J0
Ji−1

Jk

tk tk+1

σ∗(Ji−1, ti−1)

Figure 2.4: The structure of a schedule computed by Algorithm ALE.

Now, we turn our attention in the online version of the aggregated variant and we derive

a 2-competitive online algorithm for the Aggr-Lateness problem. The algorithm sched-

ules the jobs in a number of phases by repeatedly applying the optimal offline algorithm for

the Aggr-Lateness problem, when all jobs have a common release date. This approach

was introduced in [95]. We denote by σ∗(J, t) the optimal schedule of a set of jobs J with

a common release date t.

Next, we analyze the competitive ratio of the Algorithm ALE. The structure of a sched-

ule produced by Algorithm ALE is illustrated in Figure 2.4.

Theorem 2.5 Algorithm ALE is 2-competitive for the online version of the Aggr-Lateness

36

problem.

Proof. Assume that Algorithm ALE produces a schedule in `+ 1 phases. Recall that the

jobs of the i-th phase, i.e., the jobs in Ji, are released during (ti−1, ti] and scheduled as in

σ∗(Ji, ti). Let Lmax,i + λEi be the cost of σ∗(Ji, ti), where Lmax,i is the maximum lateness

among the jobs in Ji and Ei be the energy consumed by the jobs of Ji. The objective value

of the algorithm’s schedule is

SOL = max
0≤i≤`

{Lmax,i}+ λ
∑̀

i=0

Ei (2.22)

Now, we consider the optimal schedule. To lower bound the objective value OPT of an

optimal schedule, we round down the release dates of the jobs; the release dates of the jobs

in phase i, are rounded down to ti−1. Let σ∗d and OPTd be the optimal schedule for the

rounded instance and its cost, respectively. Clearly, any feasible schedule for the initial

instance is also feasible for the rounded one. Thus, OPT ≥ OPTd.
To lower bound OPTd we consider a restricted speed-scaling scheduling problem, i.e., a

problem where each job can only be executed by a subset of the available processors. The

instance of this problem consists of `+1 available speed-scalable processors M0,M1, . . . ,M`

and the set of jobs J , with their release dates rounded down, as before. Jobs in J0 can

only be assigned to the processor M0 and every job in Ji can only be executed by one of

the processors M0 or Mi, 1 ≤ i ≤ `. Moreover, it is required that all jobs in Ji, 0 ≤ i ≤ `,

are executed by the same processor. Let σ∗m,OPTm be the optimal schedule and its cost,

respectively, for this restricted problem. Obviously, OPTd ≥ OPTm since σ∗d is feasible for

the restricted scheduling problem.

Let us now describe an optimal schedule σ∗m. Through a simple exchange argument,

it can be shown that the jobs of Ji, 0 ≤ i ≤ `, in an optimal schedule, are executed

by the processor Mi. Moreover, jobs in Ji, for 1 ≤ i ≤ `, are scheduled according to

σ∗(Ji, ti−1), while for i = 0, according to σ∗(J0, t0). Assume that the maximum lateness

of the above schedule, is attained by a job of the set Jk, 0 ≤ k ≤ `, in the processor

Mk. So, let L∗max = L∗max,k, where L∗max, L∗max,k is the maximum lateness of the schedules

σ∗m, σ
∗(Ji, ti−1), respectively. Let E∗i be the energy consumption of schedule σ∗(Ji, ti−1).

Then,

OPTm = L∗max,k + λ
∑̀

i=0

E∗i (2.23)

By considering the schedules σ∗(Ji, ti−1) and σ∗(Ji, ti), it can be easily shown that L∗max,i =

Lmax,i − (ti − ti−1) and E∗i = Ei. Then, by (2.22) and (2.23) it yields that OPTm =

SOL−(tk− tk−1). Note that tk− tk−1 is the total processing time of the jobs in Jk−1, in the

schedule produced by ALE, which is equal to the processing time of the jobs in Jk−1 in σ∗m.

Recall also that the last job of each set Ji attains Lmax,i. Thus, tk−tk−1 ≤ L∗max,k−1 ≤ OPT.

37

Therefore, SOL ≤ 2OPT and Algorithm ALE is 2-competitive for the Aggr-Lateness

problem.

Regarding the tightness of Algorithm ALE, we are able to construct an example of compet-

itive ratio equal to 5
3 . Consider an instance with two jobs 1, 2, with v1 = (K−1)s1, v2 = s1,

r1 = 0, r2 = 1
K , q1 = 1, q2 = K, where K is a big positive constant and s1 =

(
1

λ(β−1)

) 1
β .

Moreover, let λ ≥ 0 and β = 3. Algorithm ALE will schedule job 1 first, in speed s1,

and job 2 second, also in speed s1 and the total energy consumption will be equal to

E = (v1 + v2)sβ−1
1 = Ksβ1 = K 1

λ(β−1) . Thus, the total cost will be equal to SOL =

L2 + λE = 2K + K 1
β−1 = 5

2K. An optimal schedule must execute both jobs after r2, in

the EDD order, with job 1 scheduled last. In this case, the minimum cost is attained by

executing both jobs in speed s1, by applying the optimal offline algorithm for the common

release date 1
K . Hence, OPT = r2 + v2

s1
+ q2 + λE = 1

K +K + 1 + K
2 = 1

K + 1 + 3K
2 . As K

becomes bigger, it holds that SOL→ 5
3OPT.

2.6 Concluding remarks

We presented positive and negative results for the offline and online energy-aware ver-

sions of the classical maximum lateness scheduling problem. These results, along with

the existing literature on energy-aware versions of other problems (e.g., makespan, total

flow time) contribute on the direction of relating the computational complexity (polyno-

mial or NP-hard) of energy-aware scheduling problems with their classical versions. For

polynomial algorithms, the most promising approach consists of deducing strong structural

properties of optimal schedules by applying the KKT conditions on a convex programming

formulation of the problem (see also in [25, 90, 23]). Towards this direction, an important

note is to focus on proving first some basic optimality properties (such as an order of jobs’

execution in the optimal schedule) that lead to a convex programming formulation of the

problem. Actually, even if it is complicated to derive a fast combinatorial algorithm, this

is already a proof of a polynomial algorithm with arbitrary precision. For NP-hardness

results, existing NP-hardness reductions of the corresponding classical scheduling problems

can be adapted by forcing all jobs to be executed with speed equal to one and considering

the processing times as work volumes.

However, two interesting problems that are open concerning their computational com-

plexity are the following: (i) find a preemptive schedule of a set of jobs, with arbitrary

work volumes and arbitrary release dates on a single speed-scalable processor, in order to

minimize their total completion time under a given energy budget, and (ii) find a non-

preemptive schedule of a set of jobs, with arbitrary work volumes and arbitrary weights,

released at time zero, on a single speed-scalable processor, in order to minimize their total

weighted completion time under a given energy budget.

For problem (i), when all jobs are released at time zero, it is easy to derive an optimal

38

polynomial time algorithm as stated in the following theorem, by a simple exchange argu-

ment and by applying the KKT conditions to a convex programming formulation of the

problem.

Theorem 2.6 Consider the problem of scheduling a set of jobs, with arbitrary work vol-

umes, released at time zero, on a single speed-scalable processor, to minimize their total

completion time, for a given energy budget. There is a unique optimal schedule such that,

(i) The jobs are scheduled in non-increasing order of work volumes, i.e., vj ≤ vj+1, 1 ≤
j ≤ n.

(ii) The speed of the j-th job is equal to sj =
(
n−j+1
ρ(β−1)

) 1
β

, and

(iii) ρ is a positive variable, equal to ρ = 1
β−1

(∑
j vj(n−j+1)

β−1
β

E

) β
β−1

.

For arbitrary release dates, Pruhs et al. [90] proposed an optimal polynomial time

algorithm in the case of unit-work jobs, scheduled according to the First Come First Served

(FCFS) rule, i.e., in non-decreasing order of release dates. In fact, the authors studied the

problem under the total flow time objective, which, in terms of optimality, is equivalent to

the total completion time. When jobs have arbitrary release dates, although in the classical

scheduling setting the problem can be solved optimally by applying the Shortest Remaining

Processing Time First (SRPT) rule [18]. However, in the energy-aware context this is not

the case, mainly due to the fact that the job with the smallest remaining work depends on

the previous scheduling decisions (see the discussion in Section 4 of [90] and Section 2.6

of [64]). The best result that has been proposed so far is a (1+ε)β-energy O(1
ε)-approximate

polynomial algorithm that uses (1 + ε)β energy augmentation, for ε ∈ (0, 1).

For problem (ii), as mentioned in Section 2.1, Megow and Verschae [82] proposed a

PTAS, while also proving that the problem is equivalent to the single processor scheduling

problem with the objective of minimizing the
∑

j∈J wj(Cj)
β−1
β . However, the complexity

of the latter problem remains open (see in [63, 101] for approximation results based on the

Smith’s rule [100]).

Finally, another direction for future work concerns the use of energy augmentation for

the online case of the budget variant of the problem, in order to overcome the fact that there

is no O(1)-competitive deterministic algorithm (Theorem 2.3). Moreover, as the proposed

Algorithm ALE for the aggregated variant (in Section 2.5) is not tight, it would be nice to

improve its analysis or find a tight counter-example.

39

40

Chapter 3

Energy-efficient scheduling of

MapReduce jobs

We consider a set J = {1, 2, . . . , n} of n MapReduce jobs to be executed on a set

P = {1, 2, . . . ,m} of m speed-scalable processors. Each job is associated with a positive

weight wj and a release date rj and consists of a set of Map tasks and a set of Reduce tasks

that are preassigned to the m processors. We denote by T the set of all tasks of all jobs,

and by M and R the sets of all Map and Reduce tasks, respectively. Each task Ti,j ∈ T is

associated with a non-negative work volume vi,j .

We consider each job having at least one Map and one Reduce task and that each job has

at most one task, either Map or Reduce, assigned to each processor. Map or Reduce tasks

can run simultaneously on different processors, while the following precedence constraints

hold for each job: every Reduce task cannot start its execution before the completion of

all Map tasks of the same job. In other words, as shown in Figure 3.1, there is a complete

bipartite precedence graph for the tasks of each MapReduce job.

Map tasks

Reduce tasks

T5,j

T3,j

T1,j

T4,j

T2,j

Figure 3.1: The precedence graph among tasks of a MapReduce job j consisting of 3 Map tasks
and 2 Reduce tasks.

For a given schedule we denote by Cj and Ci,j the completion times of each job j ∈ J

41

and each task Ti,j ∈ T , respectively. Note that, due to the precedence constraints of Map

and Reduce tasks, Cj = maxTi,j∈R{Ci,j}. By Cmax = maxj∈J {Cj} we denote the makespan

of the schedule, i.e., the completion time of the job which finishes last. Let also, wmin =

minj∈J {wj}, vmin = minTi,j∈T {vi,j : vi,j > 0}, wmax = maxj∈J {wj}, rmax = maxj∈J {rj}
and vmax = maxTi,j∈T {vi,j}.

We combine this abstract model for MapReduce scheduling with the speed scaling mech-

anism for energy saving described in Section 1.1. Recall that due to the convexity of the

speed-to-power function, a key property of our problem is that each task runs at a constant

speed during its whole execution (see Lemma 2.1). So, if a task Ti,j is executed at a speed

si,j , the time needed for its execution (processing time) is equal to pi,j =
vi,j
si,j

and its energy

consumption is Ei,j =
vi,j
si,j
sβi,j = vi,js

β−1
i,j .

Moreover, we are given an energy budget E and the goal is to schedule non-preemptively

all the tasks to the m processors, so as to minimize their total weighted completion time,

i.e.,
∑

j∈J wjCj , without exceeding the energy budget E. We refer to this problem as

NRG-MapReduce problem.

3.1 Related work

As our work generalizes on existing models proposed for classical MapReduce scheduling,

we present first the results concerning these models.

Over the last decade there has been a great deal of empirical work in MapReduce

scheduling concerning the experimental evaluation of scheduling heuristics in finding good

trade-offs among different practical needs (see e.g., [112] for a review). On the other hand,

in terms of the commonly studied metrics in scheduling theory, only three theoretical works

are known [38, 40, 83]. These represent abstract models for MapReduce scheduling that

are closely-related to the well-known open-shop and flow-shop scheduling models, under the

natural objective of minimizing the total weighted completion time of a set of MapReduce

jobs in a schedule.

A first primitive theoretical framework for MapReduce scheduling was proposed by

Chang et al. [38]. According to their model, the jobs’ tasks are preassigned to processors,

while there is no distinction and no dependencies between Map and Reduce tasks of each

job. The goal is to schedule the tasks non-preemptively into processors so as to minimize

the total weighted completion time of the jobs. However, this model falls into an exten-

sively studied version of the open-shop model, referred as concurrent open-shop (or order

scheduling) problem in scheduling literature, where the tasks of the same jobs can be pro-

cessed concurrently (see Subsection 1.2.2). Concurrent open-shop is known to be strongly

NP-hard [92], even when all jobs have common release dates, unit-weights and there are

only two processors available, while recently it was proved to be inapproximable within

a factor better than 2, assuming the Unique Games Conjecture [24, 70]. Mastrolilli et

42

al. [80] proposed an efficient (primal-dual) combinatorial algorithm that achieves the factor

of 2. However, some standard LP-relaxations for the classical single processor problem of

minimizing the total weighted completion time (see, e.g., [39]) can be also applied to the

concurrent open-shop problem. These extensions lead to approximation algorithms of ratio

3, for arbitrary release dates and 2, for common release dates (see [52, 77]). Similar results

were also proposed in [38] under the MapReduce scheduling context leading to approxima-

tion algorithms of ratios 3 and 2 for arbitrary and common release dates, respectively.

Extending the above model, Chen et al. [40], proposed a more realistic approach which

takes into account the dependencies among Map and Reduce tasks, and derived an LP-based

8-approximation algorithm in the case where all jobs are released at time zero and the goal

is to minimize their total weighted completion time. The algorithm schedules the tasks

non-preemptively, in non-decreasing order of their completion times in an optimal solution

to an LP-relaxation, with respect to the precedences among tasks. The LP-relaxation is

similar to the one proposed in Section 2 of [60], for the problem of minimizing the total

weighted completion time of a set of jobs on a single processor. Moreover, under some

simplified abstractions, the authors managed to model the data shuffle (i.e., the transmission

of intermediate data of a job from Map tasks to Reduce tasks) in MapReduce computations,

and presented a 58-approximation algorithm for this generalization.

In a third model, Moseley et al. [83] introduced the relation of MapReduce scheduling

with the two-stage flexible flow-shop (FFS) problem. In the FFS problem, we are given

a set of jobs, each consisting of a number of tasks (each task corresponds to a stage), to

be scheduled on a set of multiple identical processors for each stage. The jobs should be

executed in the same fixed order of stages, without overlaps between tasks (stages) of the

same job. Known results for the FFS problem concern the two-stage case on parallel iden-

tical processors. More specifically, for the makepsan objective a PTAS is known [94], while

for the total completion time objective, a simple 2-approximation algorithm was proposed

in [55], for the special case where each stage has to be executed on a single processor. For

the latter case, which is known to be strongly NP-hard [50], Moseley et al. [83] proposed

a QPTAS which becomes a PTAS for a fixed number of tasks’ processing times. For the

MapReduce setting, the authors [83] extended the two-stage FFS problem so that, at the

first stage the set of Map tasks are going to be executed concurrently on a set of parallel

identical processors (say Map processors) while in the second stage, the set of Reduce tasks

are going to be executed concurrently on a set of parallel identical processors (say Reduce

processors). The two sets of processors might be indistinguishable while, all tasks are avail-

able at time zero and jobs have unit-weights. They presented a greedy 12-approximation

algorithm which constructs a non-preemptive schedule by merging two individual schedules

for the Map and the Reduce tasks, with respect to the precedence constraints among them.

They also studied the online version of the problem, when preemption is allowed, and pro-

posed a (1 + ε)-speed O(1/ε2)-competitive online algorithm, for any ε ∈ (0, 1), under (1 + ε)

43

speed augmentation. Moreover, they studied the more general environment of unrelated

processors and focused on the special case of the problem, where each job has a single

Map and a single Reduce task. Using similar ideas, as in the identical processors’ case,

they presented a 6-approximation algorithm. Finally, for the online version of the latter

case, when preemption is allowed, they proposed a (1+ ε)-speed O(1/ε5)-competitive online

algorithm, for any ε ∈ (0, 1), under (1 + ε) speed augmentation.

As already discussed in Section 1.2.3, our work focuses on the theoretical study of

energy-aware MapReduce scheduling, with the objective of minimizing the total weighted

completion time of a set of MapReduce jobs, for a given energy budget. Actually, the

processor environment is closely-related to the concurrent open-shop model (with prece-

dences among Map and Reduce tasks) combined with multiple speed-scalable processors.

Although we are not aware of any theoretical work in this setting, a huge body of research

work has been proposed for scheduling on multiple speed-scalable processors under differ-

ent processor environments. Next, we present some of the main results relevant to our

objectives.

Megow and Verschae [81], proposed a (2 + ε)-approximation algorithm for minimizing

the total weighted completion time, for a given energy budget, on a set of multiple identical

speed-scalable processors, where jobs have arbitrary release dates and preemption is allowed.

Bampis et al. [20] proposed an optimal polynomial time algorithm for the minimization of

a linear combination of the total weighted completion time of the jobs and the total energy

consumption, on multiple identical speed-scalable processors, without preemptions and re-

lease dates. Angel et al. [11], proposed a randomized 2(1 + ε)-approximation algorithm, for

ε ∈ (0, 1), for minimizing the total weighted completion time, for a given energy budget, on

unrelated parallel processors operating under a model where the processing time and the

energy consumption of each job depend on both the processor on which the job is executed

and the speed that is used by the processor. In fact, every processor can change its speed

dynamically, choosing among a finite set of speeds.

Pruhs et al. [91] studied the non-preemptive makespan minimization problem, for a given

energy budget, on multiple identical speed-scalable processors, in the presence of precedence

constraints. They proposed a O(log1+2/βm)-approximation algorithm for the problem.

They also gave a PTAS for the case with no precedence constraints. Recently, Bampis et

al. [21] significantly improved the latter result (where jobs have precedence constraints)

proposing a (2−1/m)-approximation algorithm for the problem. They moreover, proposed

a general framework for designing approximation algorithms for makespan minimization

variants on (single or multiple) speed-scalable processors, for a given energy budget, and

presented a 2-approximation algorithm for the open-shop environment on multiple speed-

scalable processors.

Finally, Angel et al. [14] proposed a 2(β+1)-approximation algorithm for the maximiza-

tion of the weighted throughput, for a given energy budget, on a set of multiple unrelated

44

speed-scalable processors, when jobs have arbitrary release dates, the preemption of the

jobs is allowed but not their migration 1. In fact, their algorithm is polynomial on the in-

put size and on 1/ε, while also violates the energy budget by (1+ε), for ε ∈ (0, 1). They also

proposed optimal polynomial and pseudopolynomial algorithms for several special cases of

the problem.

3.2 Contribution

In this chapter we adopt the model proposed by Chen et al. [40] while extending it to

multiple speed-scalable processors environment, with a given budget on energy consump-

tion. We study two different algorithmic approaches for the NRG-MapReduce problem.

The first, in Section 3.3, is a convex programming approach where the main idea is the

following: if we are aware of the execution order of the jobs in a schedule, then we are able

to compute their processing times. In fact, by considering an order of execution for the jobs

we are able to formulate a convex programming formulation of the problem. To maintain

a reasonable (polynomial on the input size) number of constraints, we introduce a rough

lower bound concerning the tasks completion times which is based on their precedence con-

straints. As a result, our convex program might produce infeasible schedules. So, in order to

ensure feasibility, we apply a greedy algorithm that uses the processing times computed by

the convex program, while respecting both the given order of execution and the precedences

between Map and Reduce tasks. We test the above algorithm for two standard scheduling

policies, the First Come First Served (FCFS) and the Highest Density First (HDF), and

we compare their solutions for different random instances. Moreover, by using the solution

of the convex relaxation as lower bound on the optimal solution of the NRG-MapReduce

problem, with respect to either FCFS or HDF orders, we extract fairly good approxima-

tion ratios for our algorithm, for both scheduling policies. However, as we prove, there are

instances for which the optimal solutions, with respect to the FCFS or HDF orders, are

very far (more than n) from the optimal solution to the NRG-MapReduce problem.

In order to derive a good approximation ratio for the NRG-MapReduce problem, in

Section 3.4, we propose a second approach based on a linear programming formulation of

our problem, which results in a constant approximation ratio. To obtain our result we use

a combination of ingredients. We start by discretizing both the time horizon as well as

the range of possible processors’ speed values, imposing only a small loss in the objective

value of the schedule, compared to the optimal one. This is done by computing an upper

bound on the makespan while also, upper and lower bounds on the speed values of each

task in an optimal schedule. These discretizations allow us to setup an interval-indexed

LP-relaxation of our problem, using as parameters the completion times of jobs and the

speeds of the tasks. Our LP is inspired by ideas proposed for the classical single processor

1. In a migratory schedule each job may be executed by more than one processors, with no parallel
execution.

45

problem (see [39]) and extends them to our problem, for multiple speed-scalable processors.

In fact, having computed an optimal solution to LP, we extend the idea of list scheduling

in the order of α-points, so as to find a trade-off between the energy and the total weighted

completion time, as function of α. We prove that this idea leads to a O(1)-energy O(1)-

approximation algorithm for the NRG-MapReduce problem. Note that, α-points have

been also used in the context of speed scaling in [36].

In Section 3.5, we deal with the classical MapReduce scheduling and generalize the

models proposed so far [38, 40, 83]. The basic idea behind a MapReduce job is that each

job is split into a large number of Map and Reduce tasks that can be executed in parallel

(see e.g., [4, 69, 3]). In addition, a significant cost when running a MapReduce job is that

of data shuffle, i.e., the time for transmitting the intermediate data from Map to Reduce

tasks (communication cost). This cost affects crucially the performance of MapReduce

systems (e.g., bandwidth bottleneck [40], high wall-clock time [103]) and usually dominates

the computation cost of Map and Reduce tasks (see e.g. [4, 3]). In terms of scheduling, this

makes the problem more intricate and important for system performance. So, we consider

a general model taking into account the real constraints of MapReduce systems: (a) each

job has multiple tasks in each stage; (b) the assignment of tasks to processors is flexible; (c)

there are dependencies between Map and Reduce tasks; (d) the processors are unrelated to

capture data locality; and (e) there is a significant communication cost for the data shuffle.

Our goal is to find a non-preemptive schedule minimizing the objective of total weighted

completion time for a set of MapReduce jobs.

More importantly, we present constant approximation algorithms which generalize the

model proposed by Moseley et al. [83] on unrelated processors, towards two directions:

we deal with jobs consisting of multiple Map and Reduce tasks and also incorporate the

shuffle phase into our setting. As it has been observed in [83], new ideas and techniques

are required for both these directions.

In Subsection 3.5.1, we present a 54-approximation algorithm for the Map-Reduce

scheduling problem when jobs consist of multiple Map and Reduce tasks. The main idea of

our algorithm is similar to the one proposed in [83] for single task jobs: first, we compute a

schedule for only the Map (resp. Reduce) tasks and then, we merge the two schedules into

a single one with respect to the task dependencies. However, in [83], since each job consists

of a single Map and a single Reduce task, a schedule of only Map (resp. Reduce) tasks can

be computed by applying the well known 3/2-approximation algorithm by Skutella [97], for

the problem of minimizing the total weighted completion time of a set of jobs on unrelated

processors. Instead, we formulate an interval-indexed LP-relaxation for the problem of

minimizing the total weighted completion times separately for Map and Reduce tasks on

unrelated processors. Our LP formulation is inspired by the one proposed by Hall et al. [60]

for scheduling a set of single task jobs on unrelated processors under the same objective.

However, in our problem, not all the tasks of each job contribute to the objective value, but

46

only the one that finishes last and this makes the analysis of such an LP more difficult. Re-

cently, Correa et al. [42] proposed and analyzed a similar LP-relaxation for a more general

problem, where, instead of jobs consisting of tasks, they are given a set of orders of jobs and

the completion time of each order is specified by the completion of the job that finishes last.

Since scheduling multi-task Map and Reduce jobs separately is quite similar to the setting

considered in [42], we can use their approximation result for scheduling separately the Map

and Reduce tasks. Next, we concatenate the two schedules into a single one respecting

the task dependencies, extending the ideas in [83] so as to ensure that preemption is not

allowed and our schedule respects the precedences between Map and Reduce tasks.

In Subsection 3.5.2, we incorporate the data shuffle phase into our model by introducing

an additional set of Shuffle tasks, each one associated with a communication cost (transfer

time). When the Shuffle tasks are scheduled on the same processors as the corresponding

Reduce tasks, we are able to keep the same 54-approximation ratio for the Map-Shuffle-

Reduce scheduling problem. Moreover, we also prove a 81-approximation ratio when the

Shuffle tasks are allowed to be executed on different processors than their corresponding

Reduce tasks. To the best of our knowledge, this is the most general setting of the FFS

problem (with a special third stage) for which a constant approximation guarantee is known.

3.3 A convex programming approach

We are interested in natural list scheduling policies such as First Come First Served

(FCFS) and Highest Density First (HDF). However, in our context we need to deter-

mine the speeds of every task in order to respect the energy budget. Therefore, we propose

a convex programming relaxation of our problem, when an order of execution of the jobs

is given as input.

47

3.3.1 The convex program

(CPσ) : minimize
∑

j∈J
wjCj

subject to :

∑

Ti,j∈T

vβi,j

pβ−1
i,j

≤ E (3.1)

rj′ +

j∑

k=j′

pi,k ≤ Ci,j , ∀Ti,j , Ti,j′ ∈ T , j′ ≺ j (3.2)

Ci′,j + pi,j ≤ Ci,j , ∀Ti,j ∈ R, Ti′,j ∈M (3.3)

Ci,j ≤ Cj , ∀Ti,j ∈ T (3.4)

si,j , Ci,j , Cj ≥ 0, ∀Ti,j ∈ T , j ∈ J

Let σ = 〈1, 2, . . . , n〉 be a given order of the jobs. Consider now the restricted ver-

sion of the NRG-MapReduce problem where, for each processor i ∈ P, the tasks are

forced to be executed according to this order. We shall refer to this problem as the NRG-

MapReduce(σ) problem. Note that, the order is the same for all processors. We write

j ≺ j′ if job j ∈ J precedes job j′ ∈ J in σ. We propose a convex program that considers

the order σ as input and returns a solution that is a lower bound to the optimal solution

for the NRG-MapReduce(σ) problem.

In order to formulate our problem as a convex program, for each task Ti,j ∈ T , let

pi,j be a variable that corresponds to its processing time and Ci,j a variable that deter-

mines its completion time. Let also Cj , j ∈ J , be the variable that corresponds to the

completion time of job j. Then, (CPσ) is a convex programming relaxation of the NRG-

MapReduce(σ) problem.

The objective function of (CPσ) is to minimize the weighted completion time of all jobs.

Constraint (3.1) guarantees that the energy budget is not exceeded; note that we have

substituted the energy consumption Ei,j of each task Ti,j by its equivalent Ei,j = pi,js
β
i,j =

pi,j(
vi,j
pi,j

)β, where si,j =
vi,j
pi,j

is the speed of task Ti,j . Constraints (3.2) and (3.3) give lower

bounds on the completion time of each task Ti,j ∈ T , based on the release dates and the

precedence constraints, respectively. Note that, if we do not consider precedences between

the tasks, then (CPσ) will return the optimal value of the objective function, instead of a

lower bound on it, as constraints (3.2) describe in a complete way the completion times

of the tasks. However, this is not true for constraints (3.3) which are responsible for the

precedence constraints. Finally, constraints (3.4) ensure that the completion time of each

job is the maximum over the completion times among all of its tasks.

48

3.3.2 Experimental evaluation of scheduling policies

As the optimal solution to (CPσ) does not necessarily describe a feasible schedule, we

need to apply an algorithm that uses the processing times found by (CPσ) and the order

σ so as to create a feasible schedule for the NRG-MapReduce(σ) problem, and hence

for the NRG-MapReduce problem. This can be achieved by Algorithm EMRσ, which

at every time instant where a processor becomes available, schedules a task that is been

released but not yet executed, while respecting the precedences among Map and Reduce

tasks.

Algorithm EMRσ: a heuristic for the NRG-MapReduce problem.

1: Compute an optimal solution to (p̄i,j , C̄i,j , C̄j) to (CPσ).
2: for each time where a processor i ∈ P becomes available do
3: Select a task, say Ti,j , of highest priority such that: Ti,j is already released and has

not yet been executed and if Ti,j is a Reduce task, then all Map tasks of the same job
must have been already completed at t.

4: Schedule Ti,j non-preemptively, with processing time pi,j .
5: Let Ci,j be the completion time of task Ti,j .
6: end for
7: for each job j ∈ J do
8: Compute its completion time Cj = maxi∈P Ci,j .
9: end for

Now, we consider the following standard scheduling policies and we test Algorithm

EMRσ, with respect to the order indicated by each one of them.

First Come First Served (FCFS): for each pair of jobs j, j′ ∈ J , if rj < rj′ then j ≺ j′
in σ. Highest Density First (HDF): for each pair of jobs j, j′ ∈ J , if

wj∑
Ti,j∈j

vi,j
>

wj′∑
Ti,j′∈j

′ vi,j′
then j ≺ j′ in σ.

We compare the FCFS and HDF policies with respect to the quality of the solution they

produce for the NRG-MapReduce(FCFS) and NRG-MapReduce(HDF) problems, re-

spectively. Our simulations have been performed on a machine with a CPU Intel Xeon

X5650 with 8 cores, running at 2.67GHz. The operating system of the machine is a Linux

Debian 6.0. We used Matlab with cvx toolbox. The solver used for the convex program is

SeDuMi.

The instance of the problem consists of a matrix m × n that corresponds to the work

of the tasks, two vectors of size n that correspond to the weights and the release dates of

jobs, a precedence graph for the tasks of the same job, the energy budget and the value

of β. Similarly with [40], the instance consists of m = 50 processors and up to n = 25

jobs. Each job has 20 Map and 10 Reduce tasks, which are preassigned at random to

a different processor. The work of each Map task is selected uniformly at random from

[1, 10], while the work of each Reduce task vi,j ∈ R is set equal to a random number in

49

[1, 10] plus
3·∑Ti′,j∈M

vi′,j

|{Ti′,j∈M}| , taking into account the fact that Reduce tasks have more work

to execute than Map tasks. The weight of each job is selected uniformly at random from

[1, 10] and the release date of a job, is given as a Bernoulli random variable with probability

1/2 for every interval (t, t + 1]. The energy budget that is used equals E = 1000, while β

is set β = 2. We have also set the desired accuracy of the returned solution of the convex

program to be equal to 10−7. For each number of jobs, we have repeated the experiments

with 10 different matrices. The results we present below, concern the average of these 10

instances. The benchmark and the code used in our experiments are freely available at

http://www.ibisc.univ-evry.fr/~vchau/research/mapreduce/.

5 10 15 20 25
0

50

100

150

200

number of jobs

∑
w
j
C
j

EMRFCFS

EMRHDF

CPFCFS

CPHDF

Figure 3.2: Comparing solutions for FCFS and HDF (scaled down by a factor of 103).

As shown in Figure 3.2 the heuristic based on FCFS outperforms the heuristic based on

HDF. In fact, the first heuristic gives up to 16− 21% better solutions than the second one

for different values of n. Surprisingly, the situation is completely inverse if we consider the

corresponding solutions of the convex programs. More precisely, the convex programming

relaxation using HDF leads to 26%−43% smaller values of the objective function compared

to the convex programming relaxation using FCFS. Moreover, we can observe that the ratio

between the final solution of each heuristic with respect to the lower bound for the NRG-

MapReduce(σ) problem given by the convex program is equal to 1.46 for FCFS and 2.43

for HDF; the variance is less than 0.1 in both cases.

Negative results: Concerning how close is an optimal solution for the NRG-MapReduce(σ)

problem, if we use the FCFS or the HDF order, with respect to an optimal solution for

the NRG-MapReduce problem, the following proposition gives negative results.

Proposition 3.1 There are instances of the NRG-MapReduce(FCFS) and the NRG-

MapReduce(HDF) problems, for which the optimal solutions are within a factor of Ω(n)

from the optimal solution to the NRG-MapReduce problem.

Proof. First, consider an instance of the NRG-MapReduce(FCFS) problem, consisting

50

of m processors and n jobs, where m = n. The release date of each job j ∈ J is (j − 1)ε,

for a very small ε > 0, and its weight wj = 1. Each job j ∈ J consists of m tasks, one

per processor. Moreover, the task Ti,j ∈ T is a Map task only if i = j; otherwise Ti,j is a

Reduce task. For each task Ti,i ∈ M, let vi,i = 1. For each task Ti,j ∈ R, let vi,j = ε. Let

also E = 1 and β = 2.

Note that, if ε � 1 then the processing time of each Reduce task can be considered

to be very small in both the optimal schedules for the NRG-MapReduce and the NRG-

MapReduce(FCFS) problems. So, we can ignore the execution time and the energy

consumption of the Reduce tasks. We only consider the precedence constraints that they

imply.

In an optimal solution for the NRG-MapReduce problem, the Map task of job j starts

at time (j − 1)ε. Due to the convexity and the fact that wj = 1 for each j ∈ J , we can

assume that all Map tasks will be executed with the same speed; hence the processing time

of each Map task is approximately equal to β−1
√

m
E = m, as E = 1 and β = 2. Thus, the

completion time of each job is approximately equal to m, and hence OPT = O(m2).

On the other hand, in an optimal solution for the NRG-MapReduce(FCFS) problem

the Map tasks are not executed in parallel, as we are forced to respect the order and the

precedence constraints. Ignoring again the processing times of the Reduce tasks, we can

assume that the Map task of job j starts at the completion time of job j − 1. In order

to find the speed sj of each Map task Tj,j ∈ T into an optimal solution for the NRG-

MapReduce(FCFS) problem, we have to solve the following convex program.

minimize

n∑

j=1

n− j + 1

sj
subject to

n∑

j=1

sj ≤ E

The objective of this convex program corresponds to the one of the NRG-MapReduce(FCFS)

problem for the given instance, while the constraint ensures that the selected speeds respect

the energy budget. By applying the Karush-Kuhn-Tucker conditions to this program we

get that sj = E·(n−j+1)1/2∑n
i=1(n−i+1)1/2

. By replacing this to the objective we get

OPTFCFS =
n∑

j=1

n− j + 1
E·(n−j+1)1/2∑n
i=1(n−i+1)1/2

=
1

E

(
n∑

i=1

(n− i+ 1)1/2

)2

=
1

E

(
n∑

i=1

i1/2

)2

= O

(
n3

E

)

As n = m and E = 1, the proposition follows.

Now, we consider a simplified instance for the NRG-MapReduce(HDF) problem,

51

which consists of only one processor and does not take into account Map and Reduce tasks

and hence precedences. In this instance the critical issue is the release dates. For each job

j, 1 ≤ j ≤ n−1, we have vj = 1, wj = 1 and rj = 0, while for the job n we have vn = 1− ε,
wn = 1 and rn = r, where r ∈ R is a big number. Let E = 1 and β = 2.

In an optimal schedule for the NRG-MapReduce problem, the jobs 1, 2, . . . , n− 1 are

scheduled consecutively starting from time 0, while the job n is scheduled starting from

time r. Let E1 and E2 be parts of the energy budget used for the execution of the jobs

1, 2, . . . , n−1 and n, respectively. Clearly, it holds that E1+E2 = 1. Hence, following similar

analysis as for the NRG-MapReduce(FCFS) problem, the total weighted completion time

of the jobs 1, 2, . . . , n− 1 will be

n−1∑

j=1

wjCj = O

(
n3

E1

)

The processing time of job n is E2, and hence its completion time is Cj = r+E2. Therefore,

for the optimal solution for the NRG-MapReduce problem we have that,

OPT = O

(
n3

E1

)
+ r +

1

E2

= O

(
n3

E1

)
+ r +

1

1− E1
= r +O(n3)

as this function is minimized for E1 ' 1/2.

On the other hand, in an optimal schedule for the NRG-MapReduce(HDF) problem,

the jobs are scheduled starting from r according to the HDF order, i.e., 〈n, 1, 2, . . . , n− 1〉.
As we can choose an ε such that ε� 1, we can assume that all jobs have the same work to

execute. Then, following similar analysis as for the NRG-MapReduce(FCFS) problem,

we have that OPTSR = nr +O(n3).

As r can be arbitrary large, the proposition follows.

3.4 A linear programming approach

Since our goal is to derive a provably good performance guarantee for the NRG-

MapReduce problem, in this section we propose a O(1)-energy O(1)-approximation algo-

rithm for the NRG-MapReduce problem. Our algorithm is based on a linear programming

relaxation of the problem and it transforms the solution obtained by the linear program to a

feasible schedule for the NRG-MapReduce problem using the technique of α-points. Note

that, by allowing energy augmentation we are able to describe a trade-off between energy

and performance. Moreover, we can derive a constant-factor approximation ratio (without

energy augmentation) for the NRG-MapReduce problem by appropriately choosing some

52

parameters.

3.4.1 Discretization of Speeds

To give a linear programming formulation of our problem, we first discretize the possible

speed values. In order to do this, we need to compute an upper and a lower bound on the

speed of each task given by the following propositions which bound the length of an optimal

schedule and the possible speed values.

Proposition 3.2 The makespan of any optimal schedule for the NRG-MapReduce prob-

lem is at most

tmax =
wmax

wmin


nrmax + n(n+ 1)

(
|T | · vβmax

E

) 1
β−1




Proof. Consider an optimal schedule for the NRG-MapReduce problem. By definition,

we have that Cmax = maxj∈J {Cj}. Hence, it holds that wminCmax ≤
∑

j∈J wjCj .

In order to give an upper bound to
∑

j∈J wjCj , consider an instance of our problem

where the weight wj and the release date rj of each job j ∈ J are rounded up to wmax

and rmax, respectively. Moreover, assume that in this instance all tasks have work equal to

vmax.

Consider now an arbitrary order {1, 2, . . . , n} of the jobs. We create a feasible schedule S

for the modified instance as follows. All tasks run with the same speed s =
(

E
|T |·vmax

)1/(β−1)
,

hence each task has a processing time p = vmax
s . Note that this speed allows us to execute

all tasks without exceeding the energy budget. As all tasks have the same processing time,

we can consider the time horizon partitioned into time slots of length p starting from rmax.

For each job j, 1 ≤ j ≤ n, we execute its Map tasks at time rmax +(2j−2)p and its Reduce

tasks at time rmax +(2j−1)p. Then, for the objective value
∑

j∈J wmaxC
S
j of this schedule

it holds that

∑

j∈J
wmaxC

S
j = wmax

n∑

j=1

(rmax + 2jp)

= wmax

(
nrmax + n(n+ 1)

vmax

s

)

The objective value of schedule S is clearly an upper bound on the objective value
∑

j∈J wjCj
of an optimal schedule for the initial instance and the proposition follows.

Proposition 3.3 For the speed si,j of any task Ti,j ∈ T in the optimal schedule it holds

that
vi,j
tmax

≤ si,j ≤
(
E

vi,j

) 1
β−1

Proof. The processing time pi,j of a task Ti,j ∈ T in an optimal schedule cannot exceed

53

the maximum completion time, that is pi,j =
vi,j
si,j
≤ Cmax and, since by Proposition 3.2 it

holds that Cmax ≤ tmax, the lower bound follows.

The energy consumption of any task cannot exceed the energy budget, that is Ei,j =

vi,js
β−1
i,j ≤ E and the upper bound follows.

Let sL = vmin
tmax

and sU =
(

E
vmin

)1/(β−1)
be an upper and a lower bound, respectively, on

the speed of any task. Given these bounds, we discretize the interval [sL, sU] geometrically.

In other words, we assume that the processors can only run according to one of the following

speeds: sL, sL(1 + ε), sL(1 + ε)2, . . . , sL(1 + ε)k, where k is the smallest integer such that

sL(1 + ε)k ≥ sU . Note that k = dlog1+ε
sU
sL
e and hence the number of possible speeds is

polynomial to the size of the instance and to 1/ε. We denote by V = {sL(1 + ε)`|ε > 0, 0 ≤
` ≤ k} the set of all possible discrete speed values. Let also smax = sL(1 + ε)k. Then, by

loosing a factor of (1 + ε) with respect to an optimal solution, we can prove the following.

Lemma 3.1 There is a feasible (1 + ε)-approximate schedule for the NRG-MapReduce

problem in which each task Ti,j ∈ T runs at a speed s ∈ V.

Proof. Let an optimal schedule for our problem and consider the speed of each task Ti,j ∈ T
rounded down to the closest sL(1 + ε)` value. As the speeds are decreased, the energy

consumption of S does not exceed E. Moreover, the execution time of all tasks, and hence

the completion time of every job and the optimal objective value increase by a factor at

most (1 + ε).

Henceforth we will consider the NRG-MapReduce problem in which each task Ti,j ∈ T
runs at a single speed s ∈ V. We call this version of the problem DS-NRG-MapReduce.

3.4.2 Linear Programming Relaxation

In what follows we give an interval-indexed linear programming relaxation of the DS-

NRG-MapReduce problem. In order to do this, we discretize the time horizon of an

optimal schedule as follows. By Proposition 3.2, in any optimal schedule, all jobs are

executed during the interval (0, tmax]. We partition (0, tmax] into the intervals (0, λ], (λ, λ(1+

δ)], (λ(1+δ), λ(1+δ)2], . . . , (λ(1+δ)u−1, λ(1+δ)u], where δ > 0 is a small constant, λ > 0 is a

constant that we will define later, and u is the smallest integer such that λ(1+δ)u−1 ≥ tmax.

Let τ0 = 0 and τt = λ(1+δ)t−1, for 1 ≤ t ≤ u+1. Moreover, let It = (τt, τt+1], for 0 ≤ t ≤ u,

and |It| be the length of the interval It, i.e., |I0| = λ and |It| = λδ(1 + δ)t−1, 1 ≤ t ≤ u.

Note that, the number of intervals is polynomial to the size of the instance and to 1/δ, as

u = dlog1+δ
tmax
λ e+ 1.

Let pi,j,s =
vi,j
s be the potential processing time for each task Ti,j ∈ T if it is executed

entirely with speed s ∈ V. For each Ti,j ∈ T , t ∈ {0, 1, . . . , u} and s ∈ V, we introduce a

variable yi,j,s,t that corresponds to the portion of the interval It during which the task Ti,j

54

(LP) : minimize
∑

j∈J
wjCj

subject to :

∑

s∈V

u∑

t=0

yi,j,s,t|It|
pi,j,s

= 1, ∀Ti,j ∈ T (3.5)

∑

j:Ti,j∈T

∑

s∈V
yi,j,s,t ≤ 1, ∀i ∈ P, 0 ≤ t ≤ u (3.6)

Ci,j ≥
1

2

∑

s∈V
yi,j,s,0|I0|

(
1

pi,j,s
+ 1

)
+

u∑

t=1

∑

s∈V

(
yi,j,s,t|It|
pi,j,s

τt +
1

2
yi,j,s,t|It|

)
, ∀Ti,j ∈ T (3.7)

Cj ≥ Ci,j , ∀Ti,j ∈ T (3.8)

∑

Ti,j∈T

∑

s∈V

u∑

t=0

yi,j,s,t|It|sβ ≤ E (3.9)

∑̀

t=0

∑

s∈V

yi,j,s,t|It|
pi,j,s

≥
∑̀

t=0

∑

s∈V

yi′,j,s,t|It|
pi′,j,s

,

∀Ti,j ∈M, Ti′,j ∈ R, 0 ≤ ` ≤ u (3.10)

yi,j,s,t = 0, ∀Ti,j ∈ T , s ∈ V, t : τt < rj (3.11)

yi,j,s,t, Ci,j , Cj ≥ 0, ∀Ti,j ∈ T , s ∈ V, 0 ≤ t ≤ u

is executed with speed s. In other words, yi,j,s,t|It| is the time that task Ti,j is executed

within the interval It at speed s, or equivalently,
yi,j,s,t|It|
pi,j,s

is the fraction of the task Ti,j that

is executed within It at speed s. Note that the number of yi,j,s,t variables is polynomial

to the size of the instance, to 1/ε and to 1/δ. Furthermore, for each task Ti,j ∈ T , we

introduce a variable Ci,j , which corresponds to the completion time of Ti,j . Finally, let Cj ,

j ∈ J , be the variable that corresponds to the completion time of job j. (LP) is a linear

programming relaxation of the DS-NRG-MapReduce problem.

Our objective is to minimize the sum of weighted completion times of all jobs. For

each task Ti,j ∈ T , the corresponding constraint (3.5) ensures that Ti,j is entirely executed.

Constraints (3.6) enforce that the total amount of processing time that is executed within

an interval It cannot exceed its length. In [93], the authors proposed a lower bound for the

completion time of a job. This lower bound can be adapted to our problem and for the com-

pletion time of a task Ti,j ∈ T leads to a corresponding constraint (3.7). Constraints (3.8)

ensure that the completion time of each job is the maximum over the completion times of

all its tasks. Constraint (3.9) ensures that the given energy budget is not exceeded. Note

that the value sβ for each s ∈ V is a fixed number. Constraints (3.10) imply the precedence

constraints between the Map and the Reduce tasks of the same job, as they enforce that

55

the fraction of a Map task that is executed up to each time point should be at least the

fraction of a Reduce task of the same job executed up to the same time point; hence, each

Map task completes before all Reduce tasks of the same job. Constraints (3.11) do not

allow tasks of a job to be executed before their release date.

In what follows, we denote an optimal solution to (LP) by (ȳi,j,s,t, C̄i,j , C̄j).

3.4.3 The algorithm

In this section we use (LP) to derive a feasible schedule for the NRG-MapReduce

problem. Our algorithm is based on the idea of list scheduling in order of α-points [61, 86].

In general, an α-point of a job is the first point in time where an α-fraction of the job has

been completed, where α ∈ (0, 1) is a constant that depends on the analysis. In this paper,

we will define the α-point tαi,j of a task Ti,j ∈ T as the minimum `, 0 ≤ ` ≤ u, such that at

least an α-fraction of vi,j is accomplished up to the interval I` to (LP), i.e.,

tαi,j = min

{
` :
∑̀

t=0

∑

s∈S

ȳi,j,s,t|It|
pi,j,s

≥ α
}
.

Algorithm EMR(α, γ): an algorithm for the NRG-MapReduce problem.

1: Compute an optimal solution (ȳi,j,s,t, C̄i,j , C̄j) to (LP).
2: for each task Ti,j ∈ T do
3: Compute the α-point tαi,j , the processing time pi,j and the speed si,j .
4: end for
5: for each processor i ∈ P do
6: Compute the priority list σi.
7: end for
8: for each time where a processor i ∈ P becomes available do
9: Select the first available task, let Ti,j , in σi which has not been yet executed.

10: Schedule Ti,j , non-preemptively, with processing time pi,j .
11: Let Ci,j be the completion time of task Ti,j .
12: end for
13: for each job j ∈ J do
14: Compute its completion time Cj = maxi∈P Ci,j .
15: end for

Thus, once our algorithm has computed an optimal solution (ȳi,j,s,t, C̄i,j , C̄j) to (LP), it

calculates the corresponding α-point, tαi,j , for each task Ti,j ∈ T . Then we create a feasible

schedule as follows: For each processor i ∈ P, we consider a priority list σi of its tasks such

that the tasks with smaller α-point have higher priority. A crucial point in our analysis is

that we consider that a task Ti,j ∈ T becomes available for the algorithm after the time

τtαi,j+1 > rj . Moreover, if Ti,j ∈ R then we need also all tasks Ti′,j ∈ M to be completed

in order Ti,j to be considered as available. For each task Ti,j ∈ T , we use a constant speed

56

si,j =
vi,j
pi,j

, where

pi,j = γ

tαi,j∑

t=0

∑

s∈V
ȳi,j,s,t|It|

is the processing time of Ti,j used by our algorithm, and γ > 0 is a constant that we

define later and describes the trade-off between the energy consumption and the weighted

completion time of jobs. In fact, speed si,j is determined by the needs of the analysis and it

serves as a tool in order to upper bound the energy augmentation used for the execution of

Ti,j and also the completion time of Ti,j in a schedule produced by the algorithm. At each

time point where a processor i ∈ P is available, our algorithm selects the highest priority

available task in σi which has not been yet executed. Note that our algorithm always create

a feasible solution as we do not insist on selecting the highest priority task if this is not

available. Algorithm EMR(a, γ) gives a formal description of our method.

Note that the processing time of a task Ti,j ∈ T to an optimal solution to (LP) is

p̄i,j =
∑u

t=0

∑
s∈V ȳi,j,s,t|It|. Hence, the energy consumption Ēi,j =

∑u
t=0

∑
s∈V ȳi,j,s,t|It|sβ

for the execution of Ti,j to an optimal solution to (LP) may be smaller or bigger than the

energy consumption Ei,j for the execution of Ti,j by the algorithm. In order to relate these

two quantities we need the following technical lemma.

Lemma 3.2 Let s1, s2, . . . , sk and q1, q2, . . . , qk be positive values and β > 2. Then, it

holds that (
1

∑k
i=1 qi

1
si

)β−1

≤
∑k

i=1 qis
β−1
i(∑k

i=1 qi

)β

Proof. The expression of the statement can be written equivalently as follows.

(∑k
i=1 qi∑k
i=1 qi

1
si

)β−1

≤
∑k

i=1 qis
β−1
i∑k

i=1 qi
(3.12)

Note that the function f(x) = xβ−1 is convex for β > 2. Thus, by the Jensen’s inequality

we have that

f

(∑k
i=1 qisi∑k
i=1 qi

)
≤
∑k

i=1 qif(si)∑k
i=1 qi

which is translated as (∑k
i=1 qisi∑k
i=1 qi

)β−1

≤
∑k

i=1 qis
β−1
i∑k

i=1 qi

Therefore, in order to show inequality (3.12), it suffices to show that

(∑k
i=1 qi∑k
i=1 qi

1
si

)β−1

≤
(∑k

i=1 qisi∑k
i=1 qi

)β−1

57

Thus, it suffices to prove that

∑k
i=1 qi∑k
i=1 qi

1
si

≤
∑k

i=1 qisi∑k
i=1 qi

An equivalent representation of the above expression is

(
k∑

i=1

qi

)2

≤
(

k∑

i=1

qisi

)(
k∑

i=1

qi
1

si

)
⇔

k∑

i=1

q2
i +

k∑

i,j=1, i6=j
2qiqj ≤

k∑

i=1

q2
i

k∑

i,j=1, i6=j
qiqj

(
si
sj

+
sj
si

)

The last inequality is always true, as

2 ≤ si
sj

+
sj
si
⇔ 2 ≤

s2
i + s2

j

sisj
⇔ 0 ≤ (si − sj)2

and hence the lemma follows.

The next lemma gives an upper bound on the energy augmentation used by Algorithm

EMR(a, γ) for the execution of Ti,j .

Lemma 3.3 Let Ēi,j and Ei,j be the energy consumption of the task Ti,j ∈ T in an optimal

solution to (LP) and in the solution of Algorithm EMR(a, γ), respectively. It holds that

Ei,j ≤ 1
γβ−1αβ

Ēi,j .

Proof. By the definition of Ei,j we have that

Ei,j = vi,js
β−1
i,j = vi,j

(
vi,j
γpi,j

)β−1

=
vi,j
γβ−1

(
vi,j

∑
s∈V

∑tαi,j
t=0 ȳi,j,s,t|It|

)β−1

Since for each speed s ∈ V, pi,j,s =
vi,j
s , the above equality can be written as

Ei,j =
vi,j
γβ−1


 1
∑

s∈V
1
s

∑tαi,j
t=0

ȳi,j,s,t|It|
pi,j,s



β−1

Hence, by using Lemma 3.2 we get

Ei,j ≤
vi,j
γβ−1

∑
s∈V s

β−1
∑tαi,j

t=0
ȳi,j,s,t|It|
pi,j,s(∑

s∈V
∑tαi,j

t=0
ȳi,j,s,t|It|
pi,j,s

)β

58

By the definition of α-points we have that
∑tαi,j

t=0

∑
s∈V

ȳi,j,s,t|It|
pi,j,s

≥ α, and thus

Ei,j ≤
1

γβ−1αβ

∑

s∈V
sβ−1

tαi,j∑

t=0

vi,j
ȳi,j,s,t|It|
pi,j,s

=
1

γβ−1αβ

∑

s∈V
sβ−1

tαi,j∑

t=0

vi,j
ȳi,j,s,t|It|
vi,j/s

=
1

γβ−1αβ

∑

s∈V

tαi,j∑

t=0

ȳi,j,s,t|It|sβ

≤ 1

γβ−1αβ

∑

s∈V

u∑

t=0

ȳi,j,s,t|It|sβ =
1

γβ−1αβ
Ēi,j

and the lemma follows.

We also need to lower bound the completion time C̄i,j of the task Ti,j ∈ T given by the

(LP). This is done by the following lemma.

Lemma 3.4 If λ < α vmin
smax

, then for each task Ti,j ∈ T it holds that C̄i,j ≥ (1− α) · τtαi,j .

Proof. Recall that tαi,j corresponds to the interval Itαi,j = (τtαi,j , τtαi,j+1]. If we select λ <

α vmin
smax

, then there is no task with α-point to the interval I0. Hence, we can consider that the

α-point of each task Ti,j ∈ T corresponds to an interval of the form (λ(1+δ)t
α
i,j−1, λ(1+δ)t

α
i,j].

Starting from constraint (3.7) we have that

C̄i,j ≥
1

2

∑

s∈V
ȳi,j,s,0|I0|

(
1

pi,j,s
+ 1

)

+
u∑

t=1

∑

s∈V

(
ȳi,j,s,t|It|
pi,j,s

τt +
1

2
ȳi,j,s,t|It|

)

≥
u∑

t=tαi,j

∑

s∈V

(
ȳi,j,s,t|It|
pi,j,s

τt +
1

2
ȳi,j,s,t|It|

)

≥
u∑

t=tαi,j

∑

s∈V

ȳi,j,s,t|It|
pi,j,s

τt

≥ τtαi,j

u∑

t=tαi,j

∑

s∈V

ȳi,j,s,t|It|
pi,j,s

≥ (1− α) · τtαi,j

where the last inequality holds by constraint (3.5) and as by the definition of α-point we

know that
∑tαi,j−1

t=0

∑
s∈V

ȳi,j,s,t|It|
pi,j,s

< α.

Using Lemmas 3.3 and 3.4 as well as Lemma 3.1, the following approximation ratio of

Algorithm EMR(a, γ) can be proved.

59

Theorem 3.1 Algorithm EMR(a, γ) is a 1
γβ−1αβ

-energy γ2+3γ+1
1−α (1 + ε)-approximation al-

gorithm for the NRG-MapReduce problem, where γ > 0 and α, ε ∈ (0, 1).

Proof. Consider the schedule S produced by Algorithm EMR(a, γ) and let Ti,j ∈ M be

any Map task. Recall that σi is the priority list of processor i. Let σi(j) ⊆ σi be the list

including the tasks with priority higher than the priority of Ti,j in σi, including Ti,j . Then,

for Ci,j it holds that

Ci,j ≤ τtαi,j+1 +
∑

k∈σi(j)
pi,k (3.13)

as Ti,j is always available after τtαi,j+1, as a Map task. For the total processing time of jobs

in σi(j) we have that

∑

k∈σi(j)
pi,k = γ

∑

k∈σi(j)

tαi,k∑

t=0

∑

s∈V
ȳi,k,s,t|It|

≤ γ
∑

k∈σi(j)

tαi,j∑

t=0

∑

s∈V
ȳi,k,s,t|It|

≤ γ
∑

k∈σi

tαi,j∑

t=0

∑

s∈V
ȳi,k,s,t|It|

= γ

tαi,j∑

t=0

|It|
∑

k∈σi

∑

s∈V
ȳi,k,s,t ≤ γ

tαi,j∑

t=0

|It| = γτtαi,j+1

where the last inequality holds by applying constraint (3.6) of the (LP). Thus, from in-

equality (3.13) we have

Ci,j ≤ (γ + 1)τtαi,j+1 (3.14)

for each Map task Ti,j ∈ T .

Consider now a job j ∈ J and let Ti,j ∈ R be a task of j. Moreover, let Ti′,j ∈ M be

the Map task of j that completes last in S, i.e., Ci′,j = max{Ci,j : Ti,j ∈ M, i ∈ P}. By

definition, Ti,j becomes available at time t = max{τtαi,j+1, Ci′,j}. Note that

t ≤ max{τtαi,j+1, (γ + 1)τtα
i′,j+1} ≤ (γ + 1)τtαi,j+1

where the first inequality holds by inequality (3.14) and the second by the constraint (3.10)

of (LP).

Let again σi(j) be the list of tasks with higher priority than Ti,j in σi, including Ti,j .

If in the schedule S the processor i at time t executes a task Ti,j′ 6∈ σi(j), then for the

completion time of Ti,j it holds that

Ci,j ≤ t+ pi,j′ +
∑

k∈σi(j)
pi,k (3.15)

60

because Ti,j is available after time t and it has higher priority than any task Ti,j′′ 6∈ σi(j).
As before, we have that ∑

k∈σi(j)
pi,k ≤ γτtαi,j+1

Moreover, for the processing time of Ti,j′ it holds that

pi,j′ = γ

tα
i,j′∑

t=0

∑

s∈V
ȳi,j′,s,t|It| ≤ γτtα

i,j′+1 < γt

as Ti,j′ is available at time t. Then, by equation (3.15) we have

Ci,j ≤ (γ + 1)t+ γτtαi,j+1 ≤ (γ2 + 3γ + 1)τtαi,j+1

As τtαi,j+1 = (1 + δ)τtαi,j , using Lemma 3.4 we get

Ci,j ≤
γ2 + 3γ + 1

1− α (1 + δ)C̄i,j ,

and by using constraint (3.8) of (LP)

Ci,j ≤
γ2 + 3γ + 1

1− α (1 + δ)C̄j

Since the above inequality holds for each processor i ∈ P, it must also hold for Cj =

maxi∈P{Ci,j} and thus

Cj ≤
γ2 + 3γ + 1

1− α (1 + δ)C̄j

If we sum up all weighted completion times in S we yield

∑

j∈J
wjCj ≤

γ2 + 3γ + 1

1− α (1 + δ)
∑

j∈J
wjC̄j

and as
∑

j∈J wjC̄j is a lower bound to the objective value of an optimal solution for the

DS-NRG-MapReduce problem, the theorem follows.

By choosing γ = 1
α β−1√α , no energy augmentation is used and Algorithm EMR(a, γ)

becomes a constant-factor approximation for the NRG-MapReduce problem, and the

following theorem holds.

Theorem 3.2 There is a (α β−1√α)2+3α β−1√α+1

(α β−1√α)2(1−α)
(1+ε)-approximation algorithm for the NRG-

MapReduce problem, where α, ε ∈ (0, 1).

In Figure 3.3 we depict the trade-off between energy augmentation and approximation

ratio for some practical values of β.

61

15 20 25 30 35
0

20

40

60

80

100

approximation ratio
en

er
gy

au
gm

en
ta

ti
o
n

(%
)

β = 2
β = 2.5
β = 3

Figure 3.3: Trade-off between energy augmentation and approximation ratio when β = {2, 2.5, 3}.

For special instances of our problem where there are no precedence constraints between

Map and Reduce tasks or even all jobs have a common release date (as in [38]) our results

are improved as follows.

Corollary 3.1 There is a α β−1√α+1

α β−1√α(1−α)
(1+ε)-approximation algorithm for the NRG-MapReduce

problem without precedence constraints between Map and Reduce tasks, and a 1
α β−1√α(1−α)

(1+

ε)-approximation algorithm for the NRG-MapReduce problem without precedence con-

straints between Map and Reduce tasks and jobs with common release dates, where α, ε ∈
(0, 1).

Our ratios are optimized by selecting the appropriate value of α for each β. Table 3.1

gives the achieved ratios for practical values of β.

β general

no
prece-
dence

no precedence
& no release
dates

2 37.52 9.44 6.75
2.2 34.89 8.84 6.29
2.4 33.01 8.41 5.97
2.6 31.59 8.09 5.72
2.8 30.50 7.84 5.53
3 29.62 7.64 5.38

Table 3.1: Approximation ratios for the NRG-MapReduce problem for different values of β.

3.5 Classical MapReduce scheduling

In this section, we turn our attention to classical MapReduce scheduling, where energy

management is not a concern while processors run at (unit) constant speed and present

constant approximation algorithms, which substantially generalize the results of [83] for

62

MapReduce scheduling on unrelated processors towards two directions, motivated by real

MapReduce systems: (i) the jobs consist of multiple Map and Reduce tasks and (ii) the

shuffle phase is incorporated into the scheduling process.

Unlike the previous model, now we consider a set J of n MapReduce jobs to be executed

on a set P of m unrelated processors. Each job is associated with a positive weight and

consists of a set of Map tasksM and a set of Reduce tasks R, which are all available at time

zero. Each task is denoted by Tk,j ∈M∪R, where k ∈ N is the task index of job j ∈ J and

is associated with a vector of non-negative processing times {pi,k,j}, one for each processor

i ∈ Pb, where b ∈ {M,R}. Let PM and PR be the set of Map and the set of Reduce

processors respectively. For convenience, we assume that PM ∩ PR = ∅, however we are

able to extend our results to the case where the two sets of processors are not necessarily

disjoint (or even are identical). As before, each job has at least one Map and one Reduce

task and every Reduce task cannot start its execution before the completion of all Map

tasks of the same job.

For a given schedule we denote by Cj and Ck,j the completion times of each job j ∈ J
and each task Tk,j ∈ M ∪ R respectively. Note that, due to the precedence constraints

between Map and Reduce tasks, Cj = maxTk,j∈R{Ck,j}. Our goal is to schedule non-

preemptively all Map tasks on processors of PM and all Reduce tasks on processors of

PR, with respect to their precedence constraints, so as to minimize the total weighted

completion time of the schedule, i.e.,
∑

j∈J wjCj . We refer to this problem as Map-Reduce

scheduling problem.

Concerning the complexity of the Map-Reduce scheduling problem, it generalizes the

FFS problem which is is known to be strongly NP-hard [50], even when there is a single

Map and a single Reduce task that has to be assigned only to one Map and one Reduce

processor respectively.

3.5.1 Map-Reduce scheduling problem

In this subsection, we present a 54-approximation algorithm for the Map-Reduce schedul-

ing problem. Our algorithm is executed in the following two steps: (i) it computes a 27/2-

approximate schedule for assigning and scheduling all Map tasks (resp. Reduce tasks) on

processors of the set PM (resp. PR) and (ii) it merges the two schedules in one, with

respect to the precedence constraints between Map and Reduce tasks of each job. Step (ii)

is performed by increasing the approximation ratio by a factor of 4.

Scheduling Map tasks and Reduce tasks. To schedule separately the Map and Reduce

tasks on the processors PM and PR, respectively, we start by formulating an interval-

indexed LP-relaxation for the minimization of the total weighted completion time. Our LP-

relaxation LP(b) is an adaptation to our problem of the standard LP-relaxation proposed

by Hall et al. [60] for the problem of minimizing the total weighted completion time on

unrelated processors.

63

For notational convenience, we use an argument b ∈ {M,R} to refer either to Map

or to Reduce sets of tasks. We define (0, tmax =
∑

Tk,j∈b maxi∈Pb pi,k,j] to be the time

horizon of potential completion times, where tmax is an upper bound on the makespan of

a feasible schedule. We discretize the time horizon into intervals [1, 1], (1, (1 + δ)], ((1 +

ε), (1 + δ)2], . . . , ((1 + δ)L−1, (1 + δ)L], where δ ∈ (0, 1) is a small constant, and L is the

smallest integer such that (1 + δ)L−1 ≥ tmax. Let I` = ((1 + δ)`−1, (1 + δ)`], for 1 ≤ ` ≤ L,

and L = {1, 2, . . . , L}. Note that, interval [1, 1] implies that no job finishes its execution

before time 1; in fact, we can assume, without loss of generality, that all processing times

are positive integers. Note also that, the number of intervals is polynomial in the size of

the instance and in 1/δ. For each processor i ∈ Pb, task Tk,j ∈ b and ` ∈ L, we introduce

a variable yi,k,j,` that indicates if task Tk,j is completed on processor i within the time

interval I`. Furthermore, for each task Tk,j ∈ T , we introduce a variable Ck,j corresponding

to its completion time. For every job j ∈ J , we also introduce a dummy task Dj with zero

processing time on every processor, which has to be processed after the completion of every

other task Tk,j ∈ b. Note that, the corresponding integer program is a (1 + δ)-relaxation of

the original problem.

LP(b) : minimize
∑

j∈J
wjCDj

subject to :
∑

i∈Pb,`∈L
yi,k,j,` ≥ 1, ∀Tk,j ∈ b (3.16)

CDj ≥ Ck,j , ∀j ∈ J , Tk,j ∈ b (3.17)
∑

i∈Pb

∑

`∈L
(1 + δ)`−1yi,k,j,` ≤ Ck,j , ∀Tk,j ∈ b (3.18)

∑

Tk,j∈b
pi,k,j

∑

t≤`
yi,k,j,t ≤ (1 + δ)`, ∀i ∈ Pb, ` ∈ L (3.19)

pi,k,j > (1 + δ)` ⇒ yi,k,j,` = 0, ∀i ∈ Pb, Tk,j ∈ b, ` ∈ L (3.20)

yi,k,j,` ≥ 0, ∀i ∈ Pb, Tk,j ∈ b, ` ∈ L

Our objective is to minimize the sum of weighted completion times of all jobs. Con-

straints (3.16) ensure that each task is completed on a processor of the set Pb in some time

interval. Constraints (3.17) assure that for each job j ∈ J , the completion of each task

Tk,j precedes the completion of task Dj . Constraints (3.18) impose a lower bound on the

completion time of each task. For each ` ∈ L, constraints (3.19) and (3.20) are validity

constraints which state that the total processing time of jobs that are executed up to an

interval I` on a processor i ∈ Pb is at most (1 + δ)`, and that if it takes time more than

(1 + δ)` to process a task Tj,k on a processor i ∈ Pb, then Tk,j should not be scheduled on

i, respectively.

64

Our algorithm, called Algorithm TaskScheduling(b), starts from an optimal fractional

solution (ȳi,k,j,`, C̄k,j , C̄Dj) to LP(b) and, working along the lines of Section 5 in [42], rounds

it to an integral solution corresponding to a feasible 27/2-approximate schedule of the job

set J on processors Pb. The idea of Algorithm TaskScheduling(b) is to partition the

set of tasks Tk,j into classes S(`) = {Tk,j ∈ b | (1 + δ)`−1 ≤ aC̄k,j ≤ (1 + δ)`}, where

` ∈ {1, . . . , L} and a > 1 is a parameter, according to their (fractional) completion time in

the optimal solution of LP(b), and to use Theorem 2.1 in [96] for scheduling the tasks in

each class S(`) independently. In fact, Algorithm TaskScheduling(b) can be regarded as

a generalization of the approximation algorithm of Section 4 in [60], where the objective is

to minimize weighted completion time, but each job consists of a single task (see also the

discussion of Section 5 in [42]).

More specifically, we first observe that by the definition of S(`) and due to constraints

(3.5) and (3.8), for each task Tk,j ∈ S(`),
∑

i∈Pb
∑

t≤` yi,k,j,t ≥ a−1
a . Otherwise, it would be∑

i∈Pb
∑

t≥`+1 yi,k,j,t >
1
a , which implies aC̄k,j > (1+δ)`. Therefore, if we set y∗i,j,k,t = 0, for

all t ≥ `+ 1, and y∗i,j,k,t = a
a−1 ȳi,j,k,t, for all t ≤ `, we obtain a solution y∗i,j,k,t that satisfies

the constraints (3.5), (3.9), and (3.11) of LP(b), if the right-hand side of (3.9) is multiplied

by a/(a− 1). Therefore, for each ` = 1, . . . , L, the tasks in S(`) alone can be (fractionally)

scheduled on processors Pb with makespan at most a
a−1(1 + δ)`. Now, using Theorem 2.1

in [96], we obtain an integral schedule for the tasks in S(`) alone with makespan at most

(a
a−1 + 1)(1 + δ)`. By the definition of S(`), in this integral schedule, each task Tk,j ∈ S(`)

has a completion time of at most a(a
a−1 + 1)(1 + δ)C̄k,j . Therefore, if we take the union of

these schedules, one after another, in increasing order of ` = 1, . . . , L, the completion time

of each job j is at most a(a
a−1 +1+ 1

δ)(1+δ)C̄Dj . Choosing a = 3/2 and δ = 1/2, we obtain

that:

Theorem 3.3 [42] Algorithm TaskScheduling(b) is a 27/2-approximation for schedul-

ing a set of Map tasks (resp. Reduce tasks) on a set of unrelated processors PM (resp. PR),

in order to minimize their total weighted completion time.

Merging task schedules. Let σM, σR be two schedules computed by two runs of Al-

gorithm TaskScheduling(b), for b = M and b = R, respectively. Let also CσMj =

maxTj,k∈M{Ck,j}, CσRj = maxTj,k∈R{Ck,j} be the completion times of all the Map and all

the Reduce tasks of a job j ∈ J within these schedules, respectively. Depending on these

completion time values, we assign each job j ∈ J a width equal to ωj = max{CσMj , CσRj }.
Algorithm MR computes a feasible schedule by processing, in each time instant where

a processor i ∈ Pb becomes available, either the Map task, assigned to i ∈ PM in σM, with

the minimum width, or the available (w.r.t. its release time ωj) Reduce task, assigned to

i ∈ PR in σR, with the minimum width.

Extending the analysis in [83], we are able to prove that:

65

Algorithm MR: an algorithm for the Map-Reduce scheduling problem.

1: Assign the tasks in M∪R on the same processors as in schedules σM and σR respec-
tively.

2: for each job j ∈ J do
3: Fix ωj = max{CσMj , CσRj } to be the width job j
4: end for
5: for each time t where a processor i ∈ P becomes available do
6: if i = PM then
7: Among the unscheduled Map tasks in i, schedule task Tk,j ∈M with the smallest
ωj , with processing time pi,k,j .

8: else
9: Among the unscheduled Reduce tasks, which have ωj > t, schedule task Tk,j ∈ R

with the smallest ωj , with processing time pi,k,j .
10: end if
11: Let Ck,j be the completion time of task Tk,j .
12: end for
13: for each job j ∈ J do
14: Compute the completion time Cj = maxTk,j∈RCk,j .
15: end for

Theorem 3.4 Algorithm MR is a 54-approximation for the Map-Reduce scheduling prob-

lem.

Proof. First, we have to prove that the schedule computed by the Algorithm MR algorithm

is a non-preemptive one. This is obvious for the Map tasks, while in the case of Reduce

tasks the only way to have preemption is to have a task Tr1,j that is not scheduled by the

time a task Tr2,j with higher width is executed. But this cannot happen because if Tr2,j

has higher width, then it will be available after Tr1,j and our algorithm will schedule first

Tr1,j , thus, a contradiction. Therefore, by execution of Algorithm MR it is clear that all

tasks are executed non-preemptively, while all Map tasks are scheduled only on the Map

processors PM and all Reduce tasks only on the Reduce processors PR.

Now, we have to prove that the resulting schedule respects the precedence constraints

between Map and Reduce tasks. Therefore, we have to prove that a Map task with width ωj

finishes before time ωj . This means that the corresponding Reduce tasks will be executed

afterwards since their release time is ωj . For the sake of contradiction we assume that

there is a Map task Tm1,j with width ωj finishing by time t > ωj . It is obvious that the

schedule has no idle time and therefore in the time interval [0, t] the processor i of task

Tm1,j processes tasks with width at most ωj . However, by definition of width this means

that in schedule σM the processor i processes more than ωj volume of work in less than ωj

time which gives us a contradiction.

Using the same argument as in the case of Map tasks, we can prove that the completion

time of each Reduce task is upper bounded from r + ωj , where r is the release time of

the task in σ. Moreover, as we note, r ≤ ωj and thus Cσj ≤ 2ωj = 2 max{CσMj , CσRj }.

66

Now, let COPT
j be the completion time of job j in the overall optimal schedule and let

COPTM
j , COPTR

j be its completion time in the optimal schedules of only the Map or the

Reduce tasks. Applying Theorem 3.3 and using the fact that
∑

j C
OPT
j ≥∑j C

OPTM
j and∑

j C
OPT
j ≥∑j C

OPTR
j , the theorem follows.

Remark. If the two sets of processors, PM,PR, are not necessarily disjoint (or even if they

coincide with each other), then by setting ωj = CσMj +CσRj and applying a similar analysis,

we can yield the same result as in Theorem 3.4.

3.5.2 Map-Shuffle-Reduce scheduling problem

In the Map-Reduce scheduling problem, the Reduce phase of each job can start executed

once its Map phase is finished. However, in real systems there is a significant cost for the

key-value pairs with the same key to be transmitted to the corresponding single Reduce

task. In this subsection, we incorporate the data shuffle phase in our model. To this end,

inspired by [40] we introduce a number of Shuffle tasks for each Map task that simulate

this transmission of the key-value pairs from a Map to the corresponding Reduce tasks. In

contrast to [40], where the assignment of Shuffle tasks to processors is fixed, we consider

a flexible model and study two different variants. In the first variant, each Shuffle task is

executed on the same processor with its corresponding Reduce task, while in the second

one, we consider a different set of processors executing the Shuffle tasks. For both variants,

we present O(1)-approximation algorithms.

Note that the number of different keys is in general greater than the number of the

Reduce processors available, and in this case a Reduce task receives all key-value pairs

of some different keys. Although not all Reduce tasks receive key-value pairs from each

Map task, we may assume without loss of generality that this is the case by simply setting

the transmission time of the corresponding Shuffle tasks equal to zero. We also assume

that only a single key-value pair can be transferred to a Reduce processor at any time and

moreover, the transmission process cannot be interrupted. Thus, since the key-value pairs

allocated to the same Reduce task cannot be transmitted in parallel, we can assume that

all key-value pairs from a Map task that have been assigned to the same Reduce task can

be considered as a single Shuffle task. Hence, the number of Shuffle tasks per Map task

equals the number of the Reduce tasks.

The following properties summarize the above discussion for the Map-Shuffle-Reduce

scheduling problem:

Properties

(i) Each Shuffle task cannot start its execution before the completion of its corresponding

Map task.

(ii) For every Map task of a job, there are as many Shuffle tasks as the job’s Reduce tasks.

Some of them may have zero processing time, indicating that no key-value pairs are trans-

67

mitted from the corresponding Map task to the corresponding Reduce task).

(iii) Each Shuffle task is executed non-preemptively.

(iv) Shuffle tasks that are transmitting to the same Reduce processor must not overlap with

each other.

To present our results for the Map-Shuffle-Reduce scheduling problem we introduce

some additional notation. For each Map task Tk,j ∈ M of a job j ∈ J , we introduce a set

of Shuffle tasks Tr,k,j , 1 ≤ r ≤ τj = |{Tk,j ∈ R}|, where τj is the number of Reduce tasks

of job j. We denote by H the set of Shuffle tasks; note that for each Map task of a job

there is a bijection between its Shuffle tasks and the job’s Reduce tasks. Each Shuffle task

Tr,k,j ∈ H is associated with a transfer time tr,k,j , which is independent of the processor

assignment. In Figure 3.4(i) we depict a MapReduce job j, as formed after the introduction

of the Shuffle tasks.

T2,j

T1,1,j

T2,1,j

T1,2,j

T2,2,j

T1,3,j

T2,3,j

T1,j

T2,j

T1,j

T3,j

Map tasks
Shuffle tasks Reduce tasks

sj1

sj2

sj1 T1,j

sj2 T2,j

Map tasks

Shuffle-Reduce tasks

(i) (ii)

T2,j

T1,j

T3,j

t1,2,j
p(sj1)

Figure 3.4: (i) Shuffle tasks and their precedence constraints with the Map tasks and Reduce tasks
of a job j that comprises three Map tasks and two Reduce tasks and (ii) Precedence constraints
among Map tasks and Shuffle-Reduce tasks.

The Shuffle tasks are executed on the Reduce processors. When the Shuffle tasks

are executed on the same processors with its corresponding Reduce tasks, our algorithm

proceeds into steps as for the Map-Reduce scheduling problem: a) It computes a 27/2-

approximate schedule for the Map Tasks and a 27/2-approximate schedule for the Shuffle-

Reduce tasks, with respect to the task Properties (iii)-(iv) and b) it merges the two sched-

ules in a 54-approximate schedule for the Map-Shuffle-Reduce problem, with respect to the

precedence between Map, Shuffle and Reduce tasks.

The key element of our algorithm is the integration of the Shuffle phase into the Reduce

phase. In this direction, we consider a Reduce task Tr,j of a job j and let srj = {Tr,k,j | Tk,j ∈
M} be the set of Shuffle tasks that must complete before task Tr,j starts its execution. As

the tasks in srj will be executed in the same processor as Reduce task Tr,j . Then, we are

able to prove the following.

Lemma 3.5 There is an optimal schedule of Shuffle tasks and Reduce tasks on processors

68

of the set PR such that:

(i) There are no idle periods and

(ii) All Shuffle tasks in srj are executed together and complete exactly before the Reduce task

Tr,j starts its execution.

Proof. (i) Consider a feasible schedule σ, then there are three cases in which an idle time

can occur: either between the execution of two Shuffle tasks or two Reduce tasks or between

a Shuffle and a Reduce task. Since all Shuffle tasks and Reduce tasks are assumed to be

available from time zero and there are no precedence constraints among only Shuffle tasks

or only Reduce tasks, skipping the idle times in the first two cases only decreases the

objective value of σ. For the third case, it suffices to notice that since Shuffle tasks precede

their corresponding Reduce tasks, by skipping the idles we decrease the completion time

of the Reduce tasks and thus the objective value of σ. Hence, σ can be transformed into a

schedule of less or equal total weighted completion time.

(ii) Again we consider a schedule σ that violates the claim and has the last Reduce task

Tk,j of a job j completed on some processor i ∈ PR. If we fix the completion time of Tk,j

and shift all Shuffle tasks in srj to execute just before Tk,j , consecutively and in arbitrary

order, then, the completion time of j remains unchanged, while that of every task preceding

Tk,j in σ may decrease. Thus, after a finite number of shifts, σ can be transformed into a

schedule of less or equal objective value.

By Lemma 3.5 we are able to reformulate our input so as to incorporate the execution

of Shuffle tasks of each job into the execution of its Reduce tasks. More specifically, for

each Reduce task Tr,j of a job j, for 1 ≤ r ≤ τj , we increase its processing time pi,r,j , on

each processor i ∈ PR, by a quantity equal to the total processing time of the Shuffle tasks

in srj , i.e., p(srj) =
∑

Tr,k,j∈srj tr,k,j . Let p′i,r,j = pi,r,j + p(srj) be the increased processing

time for each task Tr,j ∈ R on processor i ∈ PR, referred as Shuffle-Reduce task. Let

RH be the new set of Shuffle-Reduce tasks. Then, by running Algorithm TaskSchedul-

ing(RH) and applying Theorem 3.3 we compute a 27/2-approximate schedule for scheduling

the Shuffle-Reduce tasks of RH. It is not difficult to prove that a schedule produced by

TaskScheduling(RH), satisfies Properties (iii)-(v) and thus it is feasible for scheduling

Shuffle-Reduce tasks.

In order to merge the two obtained schedules (the one for the Map tasks with the

one for Shuffle-Reduce tasks) it suffices to consider the same precedence constraints, for

Map tasks and Shuffle-Reduce tasks, as the ones among Map tasks and Reduce tasks

(see Figure 3.4(ii)). The latter dependencies are clearly more general than the precedence

constraints among Map tasks and Shuffle tasks of each job (each Shuffle task Tr,k,j cannot

start executing before the completion of Map task Tk,j) since, in order to start the execution

of all Shuffle tasks in srj , we have to wait for all Map tasks Tk,j of job j to complete. However,

69

it satisfies Property (i), and as we note, C
OPT(b)
j is a lower bound on COPT

j
2 for any kind

of precedences among Map tasks and Shuffle-Reduce tasks. Thus, by running Algorithm

MR we yield that:

Theorem 3.5 Algorithm MR is a 54-approximation for the Map-Shuffle-Reduce schedul-

ing problem.

The Shuffle Tasks may be executed on different processors. When the Shuffle

tasks are executed on different processors, we prove that we lose only a factor of 2 in the

approximation ratio of the Shuffle-Reduce schedule. We assume that for any Reduce pro-

cessor i ∈ PR, there exits an input processor which receives data from the Map processors.

Therefore, the input processor executes the Shuffle tasks that correspond to the Reduce

tasks which have been assigned to i. We call the set of input processors PS . Then, we can

prove the following.

Lemma 3.6 Consider two optimal schedules σ and σ′ of Shuffle tasks and Reduce tasks

on processors of the set PR ∪ PS and on processors of the set PR respectively. Let also

Cσk,j , C
σ′
k,j be the completion times of any Reduce task Tk,j in σ and σ′ respectively. Then,

it holds that Cσ
′

k,j ≤ 2Cσk,j.

Proof. We start with optimal schedule σ on the PR ∪ PS processors. We fix a Reduce

processor ir, the corresponding input processor is and a Reduce task Tk,j ∈ R of a job

j ∈ J . We build the schedule σ′ on the ir processor by executing the Reduce tasks in the

same order as in σ and just before a Reduce task, we execute the corresponding Shuffle

tasks. Let B(k) be the set of Reduce tasks executed on processor ir, before Tk,j and Sh(k)

the set of the shuffle tasks that correspond to the Reduce tasks B(k) ∪ {Tk,j} . Then, we

have that

Cσ
′

k,j =
∑

Tl,j∈B(k)

pir,l,j +
∑

Tq,l,j∈Sh(k)
1≤q≤τj

tq,l,j ,

which holds since in σ′ there is no idle time, as already shown in Lemma 3.5. Moreover,

since both B(k) and Sh(k) have to complete before Tk,j in σ, we have that

Cσk,j ≥ max





∑

Tl,j∈B(k)

pir,l,j ,
∑

Tq,l,j∈Sh(k)
1≤q≤τj

tq,l,j





and therefore Cσ
′

k,j ≤ 2Cσk,j .

2. Where COPT
j is the completion time of job j in the overall optimal schedule and C

OPT(b)
j the completion

time in optimal schedules of either the Map tasks or the Shuffle-Reduce tasks separately.

70

Therefore, if we assume the existence of the PS processors then, combining Lemma 3.6

with Theorem 3.3 we yield a 27-approximation algorithm for scheduling the Shuffle-Reduce

tasks.

Then, by running Algorithm MR in order to combine this schedule with the schedule

of the Map tasks, using the same analysis as before, we get the next corollary. Note that

the Shuffle tasks here form a special third stage in the FFS problem.

Corollary 3.2 Algorithm MR is a 81-approximation for the Map-Shuffle-Reduce schedul-

ing problem, when the Shuffle tasks run on different processors of the Reduce tasks.

3.6 Concluding remarks

We presented a constant-factor approximation algorithm based on a linear programming

formulation of the problem of scheduling a set of MapReduce jobs in order to minimize their

total weighted completion time under a given budget of energy. Moreover, in the direction

of exploring the efficiency of standard scheduling policies, we experimentally evaluated their

performance, using a convex programming relaxation of the problem, when a prespecified

order of jobs is given. It has to be noticed that our results can be applied also in the

case where multiple Map or Reduce tasks of a job are executed on the same processor.

Furthermore, they can also be simplified, to apply for an aggregated objective where the

goal is to minimize a linear combination of energy plus weighted completion times.

We also presented constant-approximation algorithms, when energy is not our concern,

for scheduling a set of MapReduce jobs on unrelated processors in order to minimize their

total weighted completion time. These are the first constant-approximation algorithms for

a general setting of the FFS problem while also, according to our knowledge, this is the

most general theoretical model for MapReduce scheduling that have been studied so far.

For the energy-aware setting of MapReduce scheduling an intersting direction for future

work concerns the online case of the problem. In fact, it can be proved that there is no

an O(1)-competitive deterministic algorithm (see Theorem 13 in [26]). However, a possible

way to overcome this is to consider energy augmentation, or to study the closely-related

objective of a linear combination of the sum of weighted completion times of the jobs and

of the total consumed energy.

As already mentioned, a special case of the MapReduce scheduling model proposed

in [38] is the concurrent open-shop problem (see [80]). Actually, our 1
α β−1√α(1−α)

(1 + ε)-

approximation algorithm for the NRG-MapReduce problem, with common release dates

and without precedence constraints between Map and Reduce tasks, where α, ε ∈ (0, 1)

(see in Corollary 3.1) applies also for the concurrent open-shop problem in the speed-

scaling setting, for a given budget of energy. As shown in Table 3.1, for practical values

of β ∈ [2, 3] this ratio ranges from 6.75 to 5.38. So, another direction for further study is

to improve the latter ratio for the energy-aware concurrent open-shop problem; recall that

71

in the classical setting there is an efficient (primal-dual) 2-approximation algorithm [80].

An idea to this direction is to investigate the structure of an optimal schedule, by applying

the KKT conditions in a convex programming formulation of the problem. As we noted,

a number of useful properties can be deduced, by using the convex program proposed in

Subection 3.3.1 (ignoring constraints (3.3)). However, the difficulty to find a good ratio is

due to the fact that these properties depend on the jobs’ order of execution.

In terms of classical MapReduce scheduling, a promising direction for future work is the

online case of the MapReduce scheduling problem under resource (speed) augmentation,

when preemption is allowed. As noticed in [83], even when preemption is allowed, resource

augmentation is essential for a reasonable competitive ratio. An idea towards this goal is to

extend the techniques used in Subsections 3.2 and 5.2 of Moseley et al. [83] for jobs having

multiple Map and Reduce tasks.

Moreover, an obvious question that arises is whether our analysis can be improved

to provide a better approximation ratio. An interesting idea is to try to improve the

27/2-approximation ratio of Algorithm TaskScheduling(b), by extending the analysis of

Section 4 in [60] for jobs consisting of multiple tasks. Recall that the authors of [60] proposed

a 16/3-approximation algorithm for the minimization of the total weighted completion time.

Another question concerns the extension of our model in the case where the jobs have

arbitrary release dates. However, it seems difficult to incorporate the release dates into our

analysis, since the merging procedure becomes complicated.

72

Chapter 4

Temperature-aware scheduling for

throughput maximization

We consider a set J = {1, 2, . . . , n} of n unit-length jobs to be scheduled on a single

processor, each one having a heat contribution hj ∈ Q+. All jobs are considered to be

released at time zero and have a common deadline D. Jobs are executed in some time

interval of the form [t− 1, t), which we call the time slot t, for some positive integer t.

Based on the thermal and cooling mechanism [41], described in Section 1.1, we assume

that the processor’s thermal behavior obeys the following rule: At time 0 its temperature

is T0; when a job j is executed in time slot t, the processor’s temperature at time t is equal

to Tt =
Tt−1+hj

2 , where 2 is the processor’s cooling factor and Tt−1 its temperature at time

t − 1. The processor’s temperature is not allowed to exceed a given thermal threshold,

which we assume to be Θ = 1 by normalization. Therefore, w.l.o.g. we assume that the

heat contribution of each job belongs to the interval [0, 2]. This means that at some time

slot t, we can schedule only jobs of heat contribution h such that (Tt−1 + h)/2 ≤ 1. Idle

slots can be treated as executing jobs of heat contribution 0, that is, after an idle slot the

temperature is divided by 2. For the sake of simplicity, we refer to a job of heat contribution

0 ≤ h ≤ 2 as an h-job. Moreover we say that this job is hot if h > 1 and cool if h ≤ 1.

1 1 1 1 1 1 1/2 5/6 1 1/2 5/6 1 1/2 1 1/2 1

1 1 1 1 7/6 7/6 7/6 7/6 3/2 3/2

Temperature:

Heat
Contribution: idle idle idle idle

time

1

D = 15

· · ·

Figure 4.1: A schedule of unit-length jobs, with a common deadline D = 15 and heat contributions
of the set {1, 7/6, 3/2}, to a processor for thermal and cooling management. The temperature at
time zero as well as the thermal threshold are equal to 1. The throughput of the schedule is equal
to 11.

73

Our goal is to maximize the throughput, i.e., the number of jobs that complete their

execution before the common deadline D. The problem has been already proved to be

strongly NP-hard [41] and we focus on analyzing the approximation factor of a natural

list scheduling algorithm, proposed for it, so called CoolestFirst: at any time slot, if the

current temperature is cool enough to allow a job to be scheduled, then it schedules the one

with the smallest heat contribution — the coolest job — otherwise the processor remains

idle in that slot. A feasible schedule according to Algorithm CoolestFirst is presented

in Figure 4.1, where five 1-jobs, four 7/6-jobs and two 3/2-jobs are executed before the

common deadline D = 15, resulting to a throughput equal to 11.

4.1 Related work

The first theoretical approach that models the temperature and cooling management

of processors was presented by Bansal et al. [25]. The authors proposed a model which is

based on the Newton’s law of cooling and uses speed scaling to decrease the processor’s tem-

perature, and they studied the preemptive case of the problem of minimizing the maximum

temperature of a set of jobs with arbitrary deadlines and release dates, with respect to the

deadline feasibility QoS criterion. They showed that the problem can be solved optimally

in polynomial time, using the Ellipsoid algorithm and proposed a eβ2β+1(6(β
β−1)β + 1)-

competitive algorithm for the online case of the problem, where e ≈ 2.718 is the Euler’s

number. Recently, Atkins et al. [17] proposed an optimal algorithm of running time O(n2)

and gave a e
e−1(2 + 3eββ)-competitive algorithm, which improves the one in [25] for some

values of β (e.g., for β = 3).

As the above online strategies for minimizing the maximum temperature, compute a

peak temperature that exceeds the optimal (offline) temperature by some constant fac-

tor, it seems more realistic to study temperature-aware scheduling for thermal and cooling

management in terms of keeping the processors’ temperature low by avoiding to exceed a

thermal threshold (as its violation reduces the lifetime or even damages the processor). In

this context, Chrobak et al. [41] proposed a model for thermal and cooling management

(see in Section 1.1) for scheduling a set of unit-length jobs, with arbitrary release dates

and deadlines, in order to maximize the throughput of the schedule. They proved that the

problem is strongly NP-hard, even when jobs are released at time zero and have common

deadlines, by a reduction from Numerical-3D-Matching [51]. Moreover, they studied the

online case of the problem and, based on a charging scheme which maps the jobs executed

by the algorithm to the jobs executed by the adversary, they proved a 1/2-competitive

ratio for a class of reasonable greedy list scheduling algorithms, like Coolest First and Ear-

liest Deadline First, Moreover, the authors showed that no deterministic online algorithm

achieves a better factor than 1/2.

Generalizations of the thermal and cooling management model [41] have been studied by

74

Birks et al. [31, 30, 33], considering different cooling factors and different processing times or

objectives. More specifically, in [30] they extended the latter result for all possible values

of the processor’s cooling factor, proposing an optimal competitive ratio that increases

as the cooling factor decreases, while it is constant for any fixed cooling factor. In [31]

they studied the maximum weighted throughput objective and proved that there is no

constant competitive deterministic online algorithm. Instead, they proposed an O(logW)-

competitive randomized online algorithm, whereW is the ratio of maximum to minimum job

weights. They also proposed a constant competitive algorithm, whose ratio is O(log 1/ε), for

ε > 0, under (1 + ε) augmentation of the thermal threshold. Moreover, they considered the

problem in a multi-processor environment and gave a O(mW 1/m)-competitive algorithm,

where m is the number of processors, that matches their proposed lower bound. In [33]

the authors proved upper and lower bounds on the competitive ratio of all deterministic

online algorithms in the case where the jobs have equal, not necessarily unit, lengths. They

studied both non-preemptive and preemptive versions and showed that in both cases the

competitive ratio depends on the cooling factor and the common length of jobs. Especially

for the CoolestFirst algorithm they showed that it gives a matching upper bound with

the corresponding lower bound for all deterministic online algorithms.

Different QoS criteria have been also studied under the same model. Bampis et al. [19]

proposed approximation results for a multi-processor environment under the thermal and

cooling management model, for both the makespan minimization objective as well as the

minimization of the maximum temperature when the threshold constraint is removed. For

makespan minimization, they showed that it cannot be approximated within a factor less

than 4/3 − ε, for ε ∈ (0, 1) and proposed a 2ρ-approximation algorithm, where ρ is the

approximation factor of the classical makespan minimization problem on identical parallel

processors [56, 57, 62]. For minimizing the maximum temperature, they proposed a 4/3-

approximation algorithm which is tight. They also studied the problem of minimizing

the average temperature and showed that it can be solved optimally in polynomial time.

Finally, Birks and Fung [32] studied the minimization of the total flow time and proposed

a 2.618-approximation algorithm in the case where all jobs are released at time zero while,

for arbitrary release dates, they showed that it cannot be approximated within a factor less

than Ω(n
1
2
−ε), where ε > 0.

4.2 Contribution

As aptly stated by Bansal et al. [25] “If the processor in a mobile device exceeds its

energy bound, then the battery is exhausted. If a processor exceeds its thermal threshold,

it is destroyed.” Over the last decade there has been an increased interest concerning

temperature-aware algorithmic models integrated into the scheduling theory and focused

on the operating systems level. Actually, it seems important for the job scheduler at the

75

operating system level to keep the computational overhead for the scheduler low, since

it could deteriorate the performance and generate additional heating. Therefore, we are

particularly interested in natural algorithms, which at every time slot schedule the job with

the highest priority among those available for execution. The priority could depend on the

heat contribution of the job as well as on its deadline.

For this purpose, we focus on the natural goal of throughput maximization and we

adopt the thermal and cooling management model [41]. Here, we are interested in the

offline setting of the above problem and more specifically in the NP-hard case, where all

jobs are available at time zero and have a common deadline [41].

We analyze the approximation factor of CoolestFirst based on the following rounding

procedure. First, we assume that in an optimal schedule, all the jobs are executed on-

time, and the common deadline D coincides with the makespan of the optimal schedule.

So, we simply ask how many jobs can be executed by CoolestFirst within time D.

Then, we partition all jobs into classes according to their heat contributions and we round

the heat contributions of each class so as to make it harder for the algorithm and more

easy for the optimal schedule. The main advantage of this technique is that the rounded

instances contain only a small number of different jobs, and permit to describe the optimum

schedule. We apply this technique in two different ways and derive two lower bounds on

the approximation factor of CoolestFirst.

For the first lower bound, in Section 4.4, we discretize the heat contribution scale in

geometrically decreasing intervals and partition jobs into classes corresponding to intervals,

according to their heat contributions. The rounding scheme is quite standard: round down

the heat contributions of the jobs in each class so as to obtain an upper bound on OPT,

then test how many jobs can be scheduled by CoolestFirst. This gives a lower bound

equal to k
k+1 , where k is the class of the last job executed by CoolestFirst.

For the second one, in Section 4.5, we manage to refine our partition with smaller

intervals, so as to improve the previous ratio. The key for this refinement is to partition the

jobs in terms of a new concept, called density of the schedule, i.e., the average number of

jobs executed per unit-time slot. As we note, the schedule produced by CoolestFirst on

a rounded instance can be partitioned in blocks according to the jobs’ heat contributions. In

each of these blocks the schedule consists only of jobs of some heat contribution — say h —

and some idle slots. Each block has density equal to the proportion of non-idle slots among

the time interval. Consider for instance the schedule of CoolestFirst in Figure 4.1 and

in particular the block of 7/6-jobs (it starts with the first idle slot after the last 1-job), its

density is equal to 2
3 . Clearly, for the analysis we are interested in density and its relation to

the heat contribution. Our main contribution is a theorem stating (roughly-speaking) that

for every density –say ρ – there is a heat contribution hρ such that CoolestFirst produces

a schedule with density ρ when the instance consists only of jobs with heat contribution

hρ. In addition, we show that the values hρ are increasing with ρ, as one would expect.

76

The proof of this theorem is presented in Section 4.5, following the analysis of the rounding

procedure. For the rounding scheme, we consider a given set of densities which, by the

above theorem, correspond to a set of heat contributions and thus, we are able to partition

jobs into intervals of different densities, according to their heat contributions. The jobs are

rounded in a similar (but little more rough) manner as in the first case: we round to lower

density jobs for the algorithm and to higher density jobs for the optimal schedule. Now,

the analysis becomes more subtle, using a linear programming formulation of the rounded

instance. Actually, we formulate a linear program whose objective value corresponds to

a lower bound on the approximation ratio of CoolestFirst. Then, by solving the dual

of this linear programm we yield a lower bound on the approximation factor of at least

0.72. Finally, in Section 4.6, we propose ideas for improving our results, as well as some

interesting open questions.

4.3 Preliminaries

As already mentioned, in our analysis we will partition the schedule produced by

CoolestFirst into time intervals containing only jobs of identical heat contributions,

scheduled as soon as it is admissible. Therefore, it is useful to define G(h, T) as the schedule

of jobs of heat contribution h with initial temperature T0 = T . For notational convenience

we describe the schedule G(h, T) as a binary sequence ω = (w0, w1, . . . , wt) ∈ {0, 1}?, t ∈ N,

where wt = 0 if time slot t is idle and wt = 1 otherwise (see Figure 4.2 for an example).

The critical part of our analysis is based on the concept of density of a schedule G(h, T),

which is the proportion of 1’s in the infinite sequence G(h, T).

· · ·idle idle idle idleh h h h h h

1 0.5 0.846.. 0.423.. 0.808.. 1

Figure 4.2: Example: a prefix of the infinite schedule generated by h = 31/26-jobs, obtaining
G(h) = (01011)∗ for a density of 3/5.

The following proposition analyses the sensibility of the optimal schedule to the initial

temperature. According to it we can assume w.l.o.g. that T0 = 1 and we write G(h) as a

shortcut for G(h, 1).

Proposition 4.1 For the optimum throughput OPTT when the initial temperature is T ,

0 ≤ T < 1, it holds that OPT1 ≤ OPTT ≤ OPT1 + 1.

Proof. First, we observe that any schedule which is feasible with some initial temperature,

is also feasible for any cooler initial temperature. This implies the first inequality.

For the second inequality, let S be a schedule with throughput OPTT . If S is also feasible

77

when the initial temperature is 1, then we have OPTT = OPT1. Otherwise there is a

time t, where S schedules an h-job, which cannot be scheduled with initial temperature 1.

Therefore h > 1. Let t be minimal and let S′ be a schedule that is identical at all time

points with S, except that it is idle at t. We claim that S′ is feasible when the initial

temperature is 1, which implies OPTT ≤ OPT1 + 1.

By the choice of t, S′ is feasible up to time t. Now by h > 1, S has a temperature greater

than 0.5 at t+ 1. Since S′ is idle at time t, it has a temperature not more than 0.5 at t+ 1.

Our first observation in this proof applies again, implying that S′ is feasible from time t+1

on as well.

4.4 A first analysis

In this section we propose a rough lower bound on the approximation factor of the

Algorithm CoolestFirst. This is done by performing a rounding procedure, based on a

partition of all possible jobs’ heat contribution values into intervals that are geometrically

decreasing as the heat contribution approaches the hottest job of the instance.

For every i ∈ N we define the number hi := 2−21−i and let H := {hi : i ∈ N}. Then, the

hot jobs can be divided into classes, where the i-th job class, i ≥ 1 consists of the interval

(hi, hi+1] (see Figure 4.3). Extending our definition, we call the [0, 1] interval as the 0-th

class, consisting of all cool jobs.

0 1 1.5 1.75 1.825

0-th 1-st 2-nd 3-rd · · ·Class:

Heat Contribition: 2

Figure 4.3: A partition of scheduled jobs into classes.

The next lemma describes an optimal schedule for instances with heat contributions

from H.

Lemma 4.1 Let I be a set of jobs of heat contributions from H. Then, the following steps

produce an optimal schedule.

(i) Run CoolestFirst on all jobs from H\{h0}.
(ii) Schedule greedily the 0-jobs in the idle time slots left by the previous step.

Proof. We will prove this by an exchange argument. Consider an optimal schedule and

let t, t + 1 be two time slots such that the schedule is either idle or executes a 0-job at t

and executes an h-job, with h > 0, at time t + 1. Suppose that the temperature at time

slot t is cool enough to execute h and then exchange the two time slots. This can lower

the temperature at t + 1 by h/4 and will preserve feasibility of the schedule. In such a

schedule all h-jobs, having h > 0, are scheduled earliest possible, and in an arbitrary order.

78

In particular any hi-job, for i ≥ 1, is preceded by exactly i − 1 time slots, being idle or

scheduling a 0-job, and the temperature right after their execution is exactly 1.

Therefore, every scheduled hi-jobs form a block of i consecutive time slots, and these

blocks can be reordered freely, while preserving feasibility of the schedule. This completes

the proof.

The previous lemma permits an output sensitive analysis of the approximation factor

of CoolestFirst.

Theorem 4.1 Let k be the largest integer such that CoolestFirst schedules some hot job

from the k-th class on some instance. Then, the approximation factor of CoolestFirst

on this instance is at least k/(k + 1).

Proof. Let S be the schedule produced by CoolestFirst on the instance. Let ni be the

number of jobs in S from the i-th class with 0 ≤ i ≤ k. By this notation the throughput

obtained by the algorithm is at most
∑k

i=0 ni. Note that by definition of the algorithm all

jobs not scheduled by CoolestFirst have heat contribution more than hk.

In order to provide an upper bound for the optimal schedule, we round the jobs down.

For i = 0, . . . , k every job from the i-th class is rounded down to hi and all remaining jobs

are rounded down to hk. Since by replacing jobs by cooler jobs in a schedule, it preserves

its feasibility, this does not decrease the optimal throughput.

What is the optimal throughput of the rounded instance? Since all jobs now belong

to H, we can apply Lemma 4.1. Therefore, the optimal schedule can be produced by first

applying CoolestFirst on all hot jobs, resulting in a schedule S′ in which later the n0

0-jobs are filled. Then S′ consists of two parts. The first part contains all the jobs scheduled

by S and ranges over some interval [0, v], while the second part consists of hk-jobs, scheduled

in the remaining interval [v + 1, D]. In order to upper bound the jobs of the second part,

we need to bound D − v.

The schedule S is partitioned into intervals of the form [ti, ui] for every i: it is defined

as the interval with minimal ti and minimal ui such that it contains exactly all the i-th

class jobs scheduled in S and no other job. The last interval of this form might not end at

time D, but then it is followed only by idle time slots.

Clearly, ui − ti ≤ ni(i + 1). The rounded version of these ni jobs use at least nii time

slots in S′ including the leading idle time slots. From this we deduce that

D − v ≤ n0 +

k−1∑

i=1

[ni(i+ 1)− nii] + nk(k + 1)

Therefore, D− v ≤∑k
i=0 ni + knk. In the interval [v+ 1, D] at most (D− v)/k hk-jobs

79

are scheduled in S′. Hence, the total number of jobs scheduled in S′ is at most

k∑

i=0

ni +
1

k

k∑

i=0

ni =
k + 1

k

k∑

i=0

ni.

This concludes the k
k+1 -approximation factor of CoolestFirst.

The above analysis is not tight. Consider the instance consisting of two 0-jobs and two

1.5-jobs with common deadline 4. The optimal schedule contains all four jobs alternating

between their heat contributions, while CoolestFirst ends with an idle slot, and therefore

has factor 3/4. Theorem 4.1 gives approximation factor 1/2, creating the need for a refined

analysis.

4.5 A finer analysis

To refine the analysis of the previous section, we want to partition the heat contribution

scale at heat contributions that are not necessarily from H.

First, we note that the output of CoolestFirst for a rounded instance (as the one in

Theorem 4.1) results in a schedule that can be expressed as the concatenation of prefixes

of schedules G(h), one for each different h value. In fact, it consists of blocks of jobs with

the same heat contribution where every block has some density ρh. Recall that a schedule

G(h) is formulated as a binary sequence (w0, w1, . . . , wt−1), wt ∈ {0, 1}?, where a job is

executed at time t− 1 if wt = 1, otherwise t is an idle time slot.

As mentioned in Section 4.3, an important measure of a schedule G(h) is its density,

representing the proportion of 1’s in the infinite word G(h). The following theorem provides

a relation between the density of G(h) and the heat contribution h.

Theorem 4.2 For every ρ ∈ Q∩ [0, 1] there is a heat contribution hρ ∈ [0, 2] such that the

following property holds: For every integer `, the `-length prefix {w0, w1, . . . , w`} of G(hρ)

satisfies

b` · ρc ≤
∑̀

t=1

wt ≤ d` · ρe.

Moreover for ρ < ρ′ we have hρ > hρ′.

Before actually proving this theorem, which is done in Section 4.5, we will show it can

help to improve the analysis of the previous section.

LetR = {ρ0, ρ1, . . . , ρl}, where ρi ∈ Q∩[0, 1], i = 0, 1, . . . l, be a set of a constant number

of densities with 1 = ρ0 > ρ1 . . . > ρl > 0. These densities partition the interval [0, 1]. By

Theorem 4.2 the set R defines a sequence of heat contributions 1 = hρ0 < . . . < hρl which

partition the hot jobs further into the intervals (hρ0 , hρ1], . . . , (hρl−1
, hρl], (hρl , 2]. Again we

want to analyze the approximation factor of CoolestFirst in the case that the algorithm

80

schedules at least some job of heat contribution at least hρl−1
. For an arbitrary instance,

let xi, 0 ≤ i ≤ l, be the number of jobs with heat contribution from the interval (hρi−1 , hρi].

We proceed in a similar manner as in the previous section, but we cannot simply round

for every interval its jobs to its lower bound, because we do not know any good upper bound

on the number of jobs in the optimal schedule. Instead for every ρj , j = 1, 2, . . . , l there

is a rough upper bound, based in the following rounding. Every cool job is rounded to a

0-job, every hot job of heat contribution less or equal than hρj−1 is rounded to a 1-job, and

all the remaining jobs are rounded to hρj−1-jobs. This permits us to apply the following

lemma.

Lemma 4.2 Consider an instance where all jobs have a heat contribution 0, 1 or h and can

all be completed before the deadline D. Then, there is an optimal schedule that is produced

by the following steps.

(i) Run CoolestFirst on the 1- and h-jobs.

(ii) Schedule greedily the 0-jobs in the time slots left idle by the previous step.

The proof uses the same exchange argument used to show Lemma 4.1 and is omitted.

Now, by using Lemma 4.2 for the rounded instance, we have the inequality

j−1∑

i=1

xi +

l∑

i=j

xi
ρj−1

6 D, ∀j = 1, 2, . . . , l − 1, l. (4.1)

With the previous statements in mind we can analyse the performance of Coolest-

First based on a rounding scheme using densities rather than heat contributions.

Theorem 4.3 Fix an arbitrary positive integer constant l. Suppose that on some instance,

the last job executed by CoolestFirst has heat contribution at least hρ, for some density

ρ ≥ (
√
l − 1)/(l − 1). Then, the approximation factor of CoolestFirst is at least

l − 1

l
− l − 2

l
ρ+

l − 1

l
ρ2,

up to an additive term of 2lρ.

Proof. Let I be an arbitrary instance. In order to lower bound the approximation factor

of CoolestFirst we round the jobs to lower density jobs for the algorithm and to higher

densitity jobs for the optimal schedule as described before. For this purpose we define the

set of densities R = {ρ0, ρ1, . . . , ρl}, with

ρi := 1− 1− ρ
l

i, i = 0, . . . , l,

and we consider the linear programming formulation (P-LP).

81

(P-LP): minimize
l−1∑

i=0

xi + (D − v) ρ

subject to
l−1∑

i=0

xi/ρi − v = 0 (a)

D − v > 0 (b)

D −
l∑

i=0

xi > 0 (c)

D −
j−1∑

i=1

xi −
l∑

i=j

xi
ρj−1

> 0 ∀j = 1, 2 . . . , l (yj)

l∑

i=0

xi = 1 (e)

x0, . . . , xl, v,D ≥ 0

(D-LP): maximize e

subject to e− c+ a ≤ 1 (x0)

e− c+ a/ρi −
i∑

j=1

yj/ρj−1 −
l∑

j=i+1

yj ≤ 1 ∀i = 1, . . . , l − 1 (xi)

e− c−
l∑

j=1

yj/ρl−1 ≤ 0 (xl)

b+ c+

l∑

j=1

yj ≤ ρ (D)

b+ a ≥ ρ (v)

y0, . . . , yl, b, c ≥ 0, e, a ∈ R

The first part of the proof consists in showing that the optimum value of this linear

program lower bounds the asymptotic approximation of CoolestFirst.

First, we can assume w.l.o.g. that the optimal schedule contains all jobs and only jobs

not hotter than hρ, and in addition has makespan exactly the deadline. Let D̄ be the

deadline of instance I and x̄0, x̄1, . . . , x̄l ∈ N be the number of jobs in I belonging to each

of the jobs’ intervals defined by R. Namely, x̄0 is the number of cool jobs, while x̄i is the

number of jobs belonging to (hρi−1 , hρi] for i = 1, . . . , l. Now for the CoolestFirst we

round the heat contribution of each job to the higher value of the interval it belongs to.

82

We call v̄ the last time the algorithm schedules some job from [0, hρl−1
] in this rounded

instance. Then, by Theorem 4.2 we have the equality

v̄ = x̄0 +

⌈
l−1∑

i=1

x̄i
ρi

⌉
.

and the number of jobs schedule by CoolestFirst are

l−1∑

i=0

x̄i +
⌊
(D̄ − v̄)ρ

⌋
. (4.2)

Clearly v̄ ≤ D̄. Also, since we assumed that the optimum schedule contains all jobs, we

have
l∑

i=0

x̄i ≤ D̄.

The next step in our proof is to round the jobs for the optimum schedule. For every

j = 1, . . . , l we use the rounding mentioned earlier. So, by Lemma 4.2 we have

j−1∑

i=1

x̄i +




l∑

i=j

x̄i
ρj−1



6 D̄.

Now, the approximation factor of CoolestFirst is upper bounded by the factor

between (4.2) and the sum
∑
x̄i. Note that, by removing the integer roundings in the

(in)equalities above could result in a decrease of at most 2l of the difference D − v. This

means that the expression (4.2) would be decreased by at most 2lρ.

The last step in our proof consists in relaxing the integrality constraint of x̄0, . . . , x̄l, v̄, D̄,

and normalizing the sum
∑l

i=0 xi to 1. So let x0, . . . , xl, v,D, be the result of dividing the

above numbers respectively by
∑l

i=0 x̄i. Clearly, all the inequalities on the linear program

are satisfied by these values, and the objective value lower bounds the approximation factor

of CoolestFirst. This concludes the first part of our proof.

It remains to lower bound the objective value of this linear program. This will be done

by providing a specific solution to the dual linear program, as described by (D-LP).

It is not difficult to verify that the following values provide a solution to (D-LP), in

particular the lower bound on ρ of the statement ensures that c ≥ 0.

83

a = ρ

b = 0

c = e+ ρ− 1

yj = 0 ∀j = 1, . . . , l − 1

yl = 1− e

e =
l − 1

l
− l − 2

l
ρ+

l − 1

l
ρ2.

This completes the proof of the theorem.

By using the first derivative of e in ρ, we can show that minimum is obtained at

ρ =
l − 2

2l − 2

and has value

emin =
3l − 4

4l − 4
.

For example, for l = 10 this would show a lower bound on asymptotic approximation factor

of CoolestFirst of 0.722 . . . while, for large values of l, the ratio goes to 0.75. However,

we cannot use the limit of emin, when l tends to +∞, in order to provide a bound on the

asymptotic approximation factor because the additive constant (2ρl) is increasing with l.

4.6 Discrete lines

In this section we investigate the relation between the density and the heat contribution

of a set of h-jobs, aiming to provide a detailed proof of Theorem 4.2.

The first of the following two procedures, called CoolestFirst(h) for the sake of

uniformity, produces a binary sequence for a given value of h. In fact it produces only

the part of the sequence that spans between two consecutive temperatures equal to one.

For notational convenience, we force CoolestFirst(h) to return the digits of ω in reverse

order i.e., (wt−1, wt−2, . . . , w0). However, a sequence ω produced by the CoolestFirst(h),

seems to be very similar with a sequence that corresponds to the discretization of a line

with rational slope and zero offset (see Figure 4.4).

The procedure Staircase(p, q), shown below, produces the reverse of such a sequence

for a slope equal to p
q−p , where p, q are considered to be co-prime integers.

Suppose now that q equals the length of ω, i.e., Tq·k = 1, k ∈ N. Then, the density of

the schedule produced will be equal to ρh =
∑

twt/q. Let also int(ω) =
∑q−1

t=0 wt2
t be the

decimal expansion of ω.

The following proposition establishes a very interesting (monotone) relation between

84

0 0

1
0

1

0 0

1
0

1

Figure 4.4: A discrete line with (slope, offset)= (2
3 , 0)

Algorithm Two procedures that produce a binary sequence.

1: CoolestFirst(h)
2: T = 1;
3: t = 0;
4: repeat
5: if (T + h)/2 > 1 then
6: wt = 0;
7: T = T/2
8: else
9: wt = 1;

10: T = (T + h)/2
11: end if
12: t = t+ 1
13: until T = 1
14: return ω = (wt−1, wt−2, . . . , w0)

1: Staircase(p, q)
2: y = 0;
3: t = 0;
4: repeat
5: if y < p/(q − p) then
6: at = 1;
7: y = y + 1
8: else
9: at = 0;

10: y = y − p/(q − p)
11: end if
12: t = t+ 1
13: until y = 0
14: return α = (a0, a1, . . . , at−1)

the heat contribution h, the sequence ω and the density ρh of a schedule.

Proposition 4.2 For a heat contribution h it holds that h = 2q−1
int(ω) .

Proof. During the execution of CoolestFirst(h), the digits of the sequence ω are pro-

duced in the order w0, w1, . . . , wq−1 and span between temperatures T0 = 1 and Tq = 1. It

holds that Tq =
T0+h

∑q−1
t=0 wt2

t

2q and hence, h = 2q−1
int(ω) .

We shall prove that for a given density p
q the procedure CollestFirst(h), for a heat

contribution h = 2q−1
int(α) , produces the same sequence with Staircase(p, q), i.e., ω = α.

The following proposition summarizes the properties of the sequence α.

Proposition 4.3 The sequence α produced by Staircase(p, q) starts with a0 = 1, contains

exactly p ones, has length equal to q, i.e., α = (a0, a1, . . . , aq−1), finishes with aq−1 = 0 and

it is non-periodic.

Proof. Algorithm Staircase(p, q) starts with y = 0 and, hence, a0 = 1. During its

execution the value of the variable y is bounded by 0 ≤ y < 1+ p
q−p , that is 0 ≤ y·(q−p)

q < 1.

Moreover, each step t = 0, 1, 2, ... of the procedure starts with y = `− (t−`)·p
q−p = `·q−t·p

q−p , where

85

` is the number of ones produced so far. Hence, when the t starts we have ` = p·t
q + y·(q−p)

q

and since ` is an integer and y·(q−p)
q < 1, it holds that ` =

⌈
p·t
q

⌉
+
⌊
y·(q−p)

q

⌋
=
⌈
p·t
q

⌉
.

When step (q − 1) starts we have ` =
⌈
p·(q−1)

q

⌉
= p. Hence, this step starts with

y = p·q−(q−1)·p
q−p = p

q−p and the procedure sets aq−1 = 0, reduces y to 0 and stops after

having executed q steps. Therefore, α contains exactly p ones, has length equal to q, i.e.,

α = (a0, a1, . . . , aq−1), and finishes with aq−1 = 0.

As p, q are co-primes, there is no integer k > 1 such that q can be divided to k groups

(periods), each one having p
k ones and q−p

k zeros. Therefore, α is non-periodic.

We fix now αk = (ak0, a
k
1 . . . , a

k
q−1), 0 ≤ k ≤ q − 1, to be the k-th left circular shift of

α, with α0 = α. The next proposition is derived by the definition of the circular shifts and

the non-periodicity of α.

Proposition 4.4 For two circular shifts, αk, αk
′
, k 6= k′ mod q of α, it holds that

(i) akt = ak
′

(t+k−k′) mod q, t = 0, 1, . . . , q − 1.

(ii) αk 6= αk
′
.

Proof. (i) Follows directly from the definition of the k-th left circular shift.

(ii) Assume, by contradiction, that there exist k, k′ ≤ q−1, where k 6= k′, such that αk = αk
′
,

i.e., wki = wk
′
i , for each i, 0 ≤ i ≤ q − 1. From (i), it holds that wki = wk

′

(i+k−k′) mod q, and

thus wk
′
i = wk

′

(i+k−k′) mod q. This implies that α has a period equal to |k − k′| < q, a

contraction, by Proposition 4.3.

Let us denote the lexicographic relation between two binary sequences by �. Let also

1αk = (1, ak0, a
k
1 . . . , a

k
q−1) and α1 = (a0, a1, . . . , aq−1, 1).

The following proposition gives two useful relations between the output α of the Algo-

rithm Staircase(p, q) and its circular shifts.

Proposition 4.5 For each k, 1 ≤ k ≤ q − 1, it holds that

(i) α � αk.

(ii) If ak0 = 0, then 1αk � α1.

Proof. Let yk, 0 < k ≤ q − 1, be the intermediate values of y at the beginning of the

step k of Algorithm Staircase(p, q). First, we consider the procedure Staircase(p, q)

initiated not by y = 0, but by one of those intermediate values, say y = yk. Then, if the

procedure is allowed to iterate until y becomes again yk, it will produce again a sequence

of length q. In fact, this sequence will be the k-th circular shift of α, as the procedure in

the first k steps, will produce the last q − k − 1 digits of α and in the next k + 1 steps the

first k + 1 digits of α. Next, we claim that if yk < yk′ , k 6= k′, then αk � αk
′
. To see this

assume, by contradiction, that yk < yk′ and αk � αk
′

and let u be the minimum index,

such that aku 6= ak
′
u and ak

′
u = 1. As aki = ak

′
i , 0 ≤ i ≤ u− 1 it follows that the difference of

86

the y values, after those first u − 1 steps, of the two runs of the procedure initiated with

yk and yk′ , is equal to yk − yk′ . At step u, the procedure produces a aku = 0 (for yk) and

ak
′
u = 1 (for yk′). Hence, this step starts with y ≥ p

q−p and y′ < p
q−p , respectively. However,

y − y′ = yk − yk′ < 0, a contradiction.

For the point (i) of the proposition just observe that α and αk are produced by two

runs of the procedure initiated by y0 = 0 and yk > 0, respectively.

For the point (ii), observe first that a0 = 1 (by Proposition 4.3) and a1
q−1 = 1 (by

Proposition 4.4). Therefore, 1α1 = α1. Thus, it suffices to prove that if akq−1 = 0, then

αk � α1 for each k, 2 ≤ k ≤ q − 1. To produce α1 and αk the procedure starts with y1

and yk respectively. As y0 = 0, we have that y1 = y0 + 1 = 1. As akq−1 = 0, it follows that

yk = yk−1− p
q−p and since yk−1 < 1 + p

q−p (recall that this inequality holds for all values of

yk) we get yk < 1. Therefore, by the claim above the relation in point (ii) holds.

The following lemma together with Proposition 4.3 provides a proof for Theorem 4.2.

Lemma 4.3 For a given density p
q the binary sequences, α produced by Staircase(p, q)

and ω produced by CoolestFirst(h), with h = 2q−1
int(α) , are equal.

Proof. Let Tt, 0 ≤ t ≤ q−1, be the temperature in the beginning of each execution step of

CoolestFirst(h). Recall that T0 = 1 and by CoolestFirst it follows that Tt ∈ [1− h
2 , 1].

In order to produce a digit wt, the procedure examines whether Tt + h > 2. By setting

h = 2q−1
int(α) , the latter inequality can be written as

Tt · int(α) + 2q > 2int(α) + 1. (4.3)

As each Tt is calculated by a division by 2, the quantity Tt·int(α) corresponds to the decimal

expansion of the left circular shift α(q−t) mod q, t = 0, . . . , q − 1. Let k = (q − t) mod q. By

converting (4.3) to its binary equivalent, we yield that

1αk � α1. (4.4)

and by Lemma 4.5, if akq−1 = 0 then CoolestFirst(h) produces wt = 0, otherwise it

produces 1. Hence, at each step of the procedure we have that wt = akq−1. By applying

Proposition 4.4, we yield that akq−1 = a(q−1+q−t) mod q = aq−t−1.

4.7 Concluding remarks

We proposed two different rounding procedures to lower bound the approximation factor

of CoolestFirst algorithm and proved that it is between 0.72 and 0.75. Our main

contribution is not the rounding procedure itself, which is rather standard, but the technical

lemmas behind it.

87

The main question that remains open is whether our throughput maximization problem

accepts a PTAS or not. However, for further improvements on the approximation ratio, a

useful note is that it seems better to use cool jobs in order to fill idle times between hot

jobs, instead of processing them in the beginning of the schedule. Indeed, this suggests an

algorithm that gives higher priority to hot jobs over cool jobs. However, we don’t have the

right tools to analyze this new algorithm.

Another direction is to investigate different discretizations for the rounding scheme while

also consider different cooling factors. Furthermore, it is of special interest to deal with

the multi-processor case when we are allowed to shift jobs from hotter to cooler processors

(i.e., to allow migration).

Finally, recall that in the thermal and cooling management model [41], the processor

runs at constant (unit) speed, so that the scheduler is allowed to leave an idle time slot

whenever any of the jobs (released but not yet scheduled) violate the given thermal thresh-

old. So, a more realistic direction for future work is to study the case where several different

speed levels are available for the scheduler, which, instead of being idle before some possible

violation of the thermal threshold, it can reduce its speed to an appropriate speed level.

88

Chapter 5

Conclusions

In this thesis we proposed approximation and online algorithms for scheduling prob-

lems that are motivated by aspects of energy and temperature management in comput-

ing environments and large-scale data processing models. The methodology followed was

strongly supported by analytical tools, including formal modeling of discrete and opti-

mization problems, mathematical programming techniques, established combinatorial ar-

guments and computational complexity reductions. In the following we give an overview of

some interesting future directions, based on the research conducted under this thesis.

Speed Scaling scheduling. In their seminal paper, Yao et al. [111] proposed an ele-

gant optimal greedy algorithm for the single processor preemptive problem of energy min-

imization. On the other hand the non-preemptive case of this problem was proven to be

NP-hard [15] while, the authors proposed a 25β−1-approximation algorithm. Since then,

interesting LP-based approximation algorithms have been proposed, improving the latter

ratio: (i) to (1 + ε)βB̃β-approximation [22], for ε ∈ (0, 1), where B̃β a generalization of

the Bell number that is also valid for fractional values of β, and (ii) to (12(1 + ε))β−1-

approximation [1], for ε ∈ (0, 1). In fact, the first one gives better results for any β < 77,

and thus, for all practical values of β(1, 3]. Therefore, an intriguing algorithmic question

that remains open is the design of a polynomial time approximation scheme (PTAS) for

this problem.

Another interesting question deals with the single processor scheduling problem for min-

imizing the total weighted completion time of a set of jobs, where each job has an arbitrary

release date and a budget of energy is given as input. In a recent paper by Megow and

Verschae [82], a PTAS was proposed in the case where all jobs are released at time zero.

They also gave a (2 + ε)-approximation, for ε ∈ (0, 1), for arbitrary release dates when

preemption is allowed. Thus, it is of great interest to ask for a PTAS in the latter case,

either when preemption is allowed or not.

89

Power-down with Speed Scaling. Speed scaling is one of the main technologies used

for saving energy. As mentioned in Section 1.1, another common technique is power-down,

which involves switching devices into sleep, idle, and/or off states when not needed, intro-

ducing some delay issues and energy cost for switching back to the active state. However, in

practice both speed scaling and power-down are applied to reduce the energy consumption

of computing devices, thus it is more realistic to study algorithmic problems that combine

both. The first theoretical work on this setting was due to Irani et al. [65] while much

progress was recently made by Albers et al. [8], showing that the problem of minimizing

the energy consumption on a single processor, with respect to a combined model of a single

speed-scalable processor that is equipped with a sleep state is NP-hard. Moreover, Anto-

niadis et al. [9] proposed a FPTAS for the latter case. These results provide evidence that

the problems under the combined model are difficult to tackle with whilst attempting to

solve them opens a challenging future direction.

MapReduce scheduling. Most of the theoretical models proposed for MapReduce schedul-

ing (see e.g. [83, 40, 38]) involve the design of LP-based algorithms with LPs consisting

of a large (polynomial) number of variables. As a result, the time complexity of such al-

gorithms, although polynomial, appears almost not applicable for practical applications.

A promising direction is to focus on the design of efficient combinatorial algorithms for

MapReduce scheduling problems, by developing for example algorithmic techniques based

on the duality paradigm of mathematical programming or on a charging scheme description.

In [83], Moseley et al. formulated MapReduce scheduling as a generalization of the

classical two-stage flexible flow shop (FFS) problem for both identical and unrelated pro-

cessors. As we show, in Section 3.5.2, the latter was generalized for a special third stage

(formed due to the data shuffle in MapReduce framework). To this direction it would be

of independent interest to improve upon these results and derive constant approximations

for variants of multi-stage flow scheduling problems related to MapReduce scheduling.

In the online version of the MapReduce scheduling problem, constant-competitive al-

gorithms have been proposed under resource (speed) augmentation, when preemption is

allowed [83]. However, task preemption in MapReduce is usually quite different from that

in classical CPU scheduling: when a task is suspended, it does not resume at a later time,

but it is forced to start over again (see e.g., [113]). Therefore, it seems reasonable to

study these problems under different online scheduling models (e.g. preemption-restart

model [95]).

When designing scheduling strategies for MapReduce jobs one critical issue that must

be taken into account by the scheduler is the skew management i.e., the load imbalance

among map tasks (map skew) or reduce tasks (reduce skew). Usually in such techniques

the unprocessed data (of tasks with the longest time-remaining) are scanned either locally

or in parallel in order to collect information for repartitioning (see e.g. in [73]). An inter-

esting direction for future work is to incorporate a skew mitigation technique together with

90

a preemptive scheduling policy into the MapReduce scheduling process.

Temperature-aware scheduling. Most of the theoretical study on temperature-aware

scheduling problems aims to model the thermal and cooling behavior of processors. As

mentioned in Section 1.1, the first approach to this direction was proposed by [25]. In fact,

they studied the offline and online version of speed scaling scheduling with preemptions to

minimize the maximum temperature. In the offline case, they proved that minimizing the

maximum temperature, with respect to the deadline feasibility QoS measure, can be stated

as a convex program and thus, can be solved optimally in polynomial time with arbitrary

precision, applying the Elipsoid algorithm. An open question is the design of an efficient

polynomial time combinatorial algorithm for this problem.

Another approach is the thermal and cooling mechanism that we adopt in Chapter 4,

proposed by Chrobak et al. [41]. In this context, only a few results are known for the single

processor case where jobs have arbitrary processing volumes (i.e., non unit-length). In fact,

only recently Birks and Fung [33] studied the special case of equal-length jobs and proved

upper and lower bounds on the competitive ratio of all deterministic online algorithms

that depend on the cooling factor and the common length of jobs. Moreover, according

to the thermal and cooling mechanism [41], the processor runs at constant speed, and the

scheduler can leave an idle time unit whenever the execution of any available job violates

the thermal threshold. However, instead of idling when the threshold is violated, it would

be interesting to consider an extension of a model allowing speed scaling on a range of

continuous or discrete speeds.

91

92

Bibliography

[1] Vincent Cohen-Addad, Zhentao Li, Claire Mathieu, and Ioannis Milis. Energy-

efficient algorithms for non-preemptive speed-scaling To appear in Proceedings of

12th Workshop on Approximation and Online Algorithms (WAOA), 2014.

[2] Foto N. Afrati, Dimitris Fotakis, and Jeffrey D. Ullman. Enumerating subgraph

instances using MapReduce. In Proceedings of the 29th IEEE Conference on Data

Engineering, (ICDE ’13), pages 62–73, 2013.

[3] Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. Upper

and Lower Bounds on the Cost of a MapReduce Computation. In Proceedings of the

39th International Conference on Very Large Data Bases, 6(4):277–288, 2013.

[4] Foto N. Afrati and Jeffrey D. Ullman. Optimizing multiway joins in a map-reduce

environment. IEEE Transactions on Knowledge and Data Engineering, 23(9):1282–

1298, 2011.

[5] Susanne Albers. Energy-efficient algorithms. Communications of ACM, 53(5):86–6,

2010.

[6] Susanne Albers. Algorithms for dynamic speed scaling. In Proceedings of the 28th

Symposium on Theoretical Aspects of Computer Science (STACS), pages 1–11, 2011.

[7] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time min-

imization. ACM Transactions on Algorithms, 3(4):49, 2007.

[8] Susanne Albers and Antonios Antoniadis. Race to idle: New algorithms for speed

scaling with a sleep state. ACM Transactions on Algorithms, 10(2):9, 2014.

[9] Antonios Antoniadis, Chien-Chung Huang, and Sebastian Ott. A Fully Polynomial-

Time Approximation Scheme for Speed Scaling with Sleep State. To appear in Pro-

ceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2015.

[10] Lachlan LH. Andrew, Adam Wierman, and Ao Tang. Optimal speed scaling under

arbitrary power functions. ACM SIGMETRICS Performance Evaluation Review,

37(2):39–41, 2009.

[11] Eric Angel, Evripidis Bampis, and Fadi Kacem. Energy aware scheduling for unrelated

parallel machines. In Proceedings of the International Green Computing Conference

(IGCC), pages 533–540, 2012.

93

[12] Eric Angel, Evripidis Bampis, and Vincent Chau. Throughput maximization in the

speed-scaling setting. In Proceedings of the 31st International Symposium on Theo-

retical Aspects of Computer Science (STACS 2014), pages 53–62, 2014.

[13] Eric Angel, Evripidis Bampis, Vincent Chau, and Dimitrios Letsios. Throughput max-

imization for speed-scaling with agreeable deadlines. In Proceedings of the 10th In-

ternational Conference Theory and Applications of Models of Computation (TAMC),

pages 10–19, 2013.

[14] Eric Angel, Evripidis Bampis, Vincent Chau, and Nguyen K. Thang. Throughput

maximization in multiprocessor speed-scaling. To appear in Proceedings of the 25th

International Symposium on Algorithms and Computation (ISAAC), 2014.

[15] Antonios Antoniadis and Chien-Chung Huang. Non-preemptive speed scaling. Jour-

nal of Scheduling, 16(4):385–394, 2013.

[16] Apple Inc. OS X Mavericks: core technologies overview. October, 2013.

[17] Leon Atkins, Guillaume Aupy, Daniel Cole, and Kirk Pruhs. Speed scaling to manage

temperature. In Proceedings of the 1st International Theory and Practice of Algo-

rithms in (Computer) Systems (TAPAS), pages 9–20, 2011.

[18] Kenneth R. Baker. Introduction to Sequencing and Scheduling. Wiley, 1974.

[19] Evripidis Bampis, Dimitrios Letsios, Giorgio Lucarelli, Vangelis Markakis, and Ioan-

nis Milis. On multiprocessor temperature-aware scheduling problems. Journal of

Scheduling, 16(5), 2013.

[20] Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli. Green scheduling, flows

and matchings. In Proceedings of the 22nd International Symposium on Algorithms

and Computation (ISAAC), pages 106–115, 2012.

[21] Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli. A note on multiprocessor

speed scaling with precedence constraints. In Proceedings of the 26th ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA), pages 138–142, 2014.

[22] Evripidis Bampis, Dimitrios Letsios, and Giorgio Lucarelli. Speed-scaling with no

preemptions. To appear in Proceedings of the 25th International Symposium on Al-

gorithms and Computation (ISAAC), 2014.

[23] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary

power function. In Proceedings of the 20th ACM-SIAM Symposium on Discrete Al-

gorithms (SODA), pages 693–701, 2009.

[24] Nikhil Bansal and Subhash Khot. Inapproximability of hypergraph vertex cover and

applications to scheduling problems. In Proceedings of the 37th International Collo-

quium on Automata, Languages and Programming (ICALP), pages 250–261, 2010.

[25] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and

temperature. Journal of the ACM, 54(1), 2007.

94

[26] Nikhil Bansal, Kirk Pruhs, and Clifford Stein. Speed scaling for weighted flow time.

SIAM Journal on Computing, 39(4):1294–1308, 2009.

[27] Nikhil Bansal, David P. Bunde, Ho-Leung Chan, and Kirk Pruhs. Average rate speed

scaling. Algorithmica, 60(4):877–889, 2011.

[28] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary

power function. ACM Transactions on Algorithms (TALG), 9(2):18, 2013.

[29] Nikhil Bansal, Ho-Leung Chan, Kirk Pruhs, and Dmitriy Katz. Improved bounds for

speed scaling in devices obeying the cube-root rule. In Proceedings of the 36th In-

ternational Colloquium on Automata, Languages, and Programming (ICALP), pages

144–155, 2009.

[30] Martin Birks and Stanley P. Y. Fung. Temperature aware online scheduling with a

low cooling factor. In Proceedings of the 7th International Conference in Theory and

Applications of Models of Computation (TAMC), pages 105—-116, 2010.

[31] Martin Birks, Daniel Cole, Stanley P. Y. Fung, and Huichao Xue. Online algorithms

for maximizing weighted throughput of unit jobs with temperature constraints. Jour-

nal of Combinatorial Optimimization, 26(2):237–250, 2013.

[32] Martin Birks and Stanley P. Y. Fung. Temperature aware online algorithms for

minimizing flow time. In Proceedings of the 10th International Conference in Theory

and Applications of Models of Computation (TAMC), pages 20–31, 2013.

[33] Martin Birks and Stanley P. Y. Fung. Temperature aware online algorithms for

scheduling equal length jobs. Theoretical Computer Science, 508:54–65, 2013.

[34] David M. Brooks, Pradip Bose, Stanley E. Schuster, Hans Jacobson, Prabhakar N.

Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor Zyuban, Manish Gupta,

and Peter W. Cook. Power-aware microarchitecture: Design and modeling challenges

for next-generation microprocessors. IEEE Micro, 20(6):26–44, 2000.

[35] David P. Bunde. Power-aware scheduling for makespan and flow. Journal of Schedul-

ing, 12(5):489–500, 2009.

[36] Rodrigo A. Carrasco, Garud Iyengar, and Clifford Stein. Energy aware scheduling

for weighted completion time and weighted tardiness. arXiv preprint abs/1110.0685,

2011.

[37] Ho-Leung Chan, Wun-Tat Chan, Tak Wah Lam, Lap-Kei Lee, Kin-Sum Mak, and

Prudence W. H. Wong. Energy efficient online deadline scheduling. In Proceedings

of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

795–804, 2007.

[38] Hyunseok Chang, Murali S. Kodialam, Ramana R. Kompella, T. V. Lakshman,

Myungjin Lee, and Sarit Mukherjee. Scheduling in mapreduce-like systems for fast

completion time. In IEEE Proceedings of the 30th International Conference on Com-

puter Communications (INFOCOM), pages 3074–3082, 2011.

95

[39] Chandra Chekuri and Sanjeev Khanna. Approximation algorithms for minimizing

the weighted sum of completion times. In Joseph Y-T. Leung, editor, Handbook of

Scheduling: Algorithms, Models, and Performance Analysis. Chapman & Hall/CRC,

2004.

[40] Fangfei Chen, Murali S. Kodialam, and T. V. Lakshman. Joint scheduling of pro-

cessing and shuffle phases in mapreduce systems. In IEEE Proceedings of the 31st

International Conference on Computer Communications (INFOCOM), pages 1143–

1151, 2012.

[41] Marek Chrobak, Christoph Dürr, Mathilde Hurand, and Julien Robert. Algorithms

for temperature-aware task scheduling in microprocessor systems. Sustainable Com-

puting: Informatics and Systems, 1(3):241–247, 2011.

[42] José R Correa, Martin Skutella, and José Verschae. The power of preemption on

unrelated machines and applications to scheduling orders. Mathematics of Operations

Research, 37(2):379–398, 2012.

[43] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large

clusters. In Proceedings of the 6th Symposium on Operating System Design and Im-

plementation (OSDI), pages 137–150, 2004.

[44] James Donald and Margaret Martonosi. Techniques for multicore thermal manage-

ment: Classification and new exploration. In Proceedings of the International Sym-

posium on Computer Architecture (ISCA), pages 78–88, 2006.

[45] Carla Schlatter Ellis. The case for higher-level power management. In Proceedings of

the 7th IEEE Workshop on Hot Topics in Operating Systems, pages 162–167, 1999.

[46] Ericsson. Mobility report: on the pulse of networked society. June 2014.

[47] Eugen Feller, Lavanya Ramakrishnan, and Christine Morin. On the performance and

energy efficiency of hadoop deployment models. In Proceddings IEEE International

Conference on Big Data, pages 131–136, 2013.

[48] Boliang Feng, Jiaheng Lu, Yongluan Zhou, and Nan Yang. Energy efficiency for

mapreduce workloads: An in-depth study. In Proceedings of the Twenty-Third Aus-

tralasian Database Conference-Volume 124, pages 61–70, 2012.

[49] Amos Fiat, and Gerhard J. Woeginger. Online algorithms: The state of the art.

LNCS, Springer-Verlag 118, 1998.

[50] Michael R. Garey, David S. Johnson, and Ravi Sethi. The complexity of flowshop

and jobshop scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

[51] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to

the Theory of NP -Completeness. W.H. Freeman and Company, New York, 1979.

[52] Naveen Garg, Amit Kumar, and Vinayaka Pandit. Order scheduling models: Hard-

ness and algorithms. In Foundations of Software Technology and Theoretical Com-

puter Science (FSTTCS), pages 96–107, 2007.

96

[53] Ínigo Goiri, Kien Le, Thu D. Nguyen, Jordi Guitart, Jordi Torres, and Ricardo Bian-

chini. Greenhadoop: leveraging green energy in data-processing frameworks. In Pro-

ceedings of the 7th ACM European Conference on Computer Systems (EUROSYS),

pages 57–70, 2012.

[54] Michael A. Gomaa, Mohamed D. Powell, and T. N. Vijaykumar. Heat-and-run:

leveraging smt and cmp to manage power density through the operating system.

SIGPLAN Not., 39(11):260–270, 2004.

[55] Teofilo Gonzalez and Sartaz Sahni. Flowshop and jobshop schedules: complexity and

approximation. Operations research, 26(1):36–52, 1978.

[56] Ronald L. Graham. Bounds for certain multiprocessor anomalies. Bell System Tech-

nical Journal, 45:1563–1581, 1966.

[57] Ronald L. Graham. Bounds on multiprocessing anomalies. SIAM Journal of Applied

Mathematics, 17:263–269, 1969.

[58] Leslie A. Hall. Approximation algorithms for scheduling. In D. S. Hochbaum, editor,

Approximation Algorithms for NP-hard problems, pages 1–45. PWS, Boston, 1997.

[59] Leslie Hall and David B. Shmoys. Jackson’s rule for single machine scheduling: mak-

ing a good heuristic better. Mathematics of Operations Research, 17:22–35, 1992.

[60] Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to

minimize average completion time: Off-line and on-line approximation algorithms.

Mathematics of Operations Research, 22:513–544, 1997.

[61] Leslie A. Hall, David B. Shmoys, and Joel Wein. Scheduling to minimize average

completion time: Off-line and on-line algorithms. In Proceedings of the 7th ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 142–151, 1996.

[62] Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for

scheduling problems: theoretical and practical results. Journal of the ACM, 34:144–

162, 1987.

[63] Wiebke Höhn and Tobias Jacobs. On the performance of smith’s rule in single-

machine scheduling with nonlinear cost. In Proceedings of the 11th Latin American

Symposium on Theoretical Informatics (LATIN), pages 482–493, 2012.

[64] Sandy Irani and Kirk Pruhs. Algorithmic problems in power management. SIGACT

News, 36(2):63–76, 2005.

[65] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power savings. ACM

Transactions on Algorithms, 3, 2007.

[66] James R. Jackson. Scheduling a production line to minimize maximum tardiness.

Research Report 43, Management Science Research Project, UCLA, 1955.

[67] S. M. Johnson. Optimal two- and three-stage production schedules with setup times

included. Naval Research Logistics Quarterly, pages 61–68, 1954.

97

[68] Nikolai Joukov and Josef Sipek. Greenfs: Making enterprise computers greener by

protecting them better. In ACM SIGOPS Operating Systems Review, volume 42,

pages 69–80, 2008.

[69] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computa-

tion for MapReduce. In Proceedings of the 21st ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 938–948, 2010.

[70] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K. Vishnoi. On

lp-based approximability for strict csps. In Proceedings of the 22nd ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 1560–1573, 2011.

[71] Amit Kumar, Li Shang, Li-Shiuan Peh, and Niraj K Jha. Hybdtm: a coordinated

hardware- software approach for dynamic thermal management. In Proceedings of the

43rd Annual Conference on Design Automation, pages 548–553, 2006.

[72] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy

algorithms in MapReduce and streaming. In Proceedings of the 25th ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA), pages 1–10, 2013.

[73] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skewtune:

mitigating skew in mapreduce applications. In Proceedings of the ACM SIGMOD

International Conference on Management of Data (PODS), pages 25–36, 2012.

[74] Tak-Wah Lam, Lap-Kei Lee, Isaac K-K. To, and Prudence W.H. Wong. Online

speed scaling based on active job count to minimize flow plus energy. Algorithmica,

65(3):605–633, 2013.

[75] Eugene L. Lawler, Jan Karel Lenstra, Alexander H. G. Rinooy Kan, and David B.

Shmoys. Sequencing and scheduling: Algorithms and complexity. In S. C. Graves,

A. H. G. Rinnooy Kan, and P. H. Zipkin, editors, Handbooks in Operations Research

and Management Science, Vol 4., Logistics of Production and Inventory, pages 445–

522. North-Holland, 1993.

[76] Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, and Peter Brucker. Complexity of

machine scheduling problems. Annals of Discrete Mathematics, 1:343–362, 1977.

[77] Joseph Y.-T. Leung, Haibing Li, and Michael Pinedo. Scheduling orders for mul-

tiple product types to minimize total weighted completion time. Discrete Applied

Mathematics, 155(8):945–970, 2007.

[78] Jacob Leverich and Christos Kozyrakis. On the energy (in)efficiency of hadoop clus-

ters. ACM SIGOPS Operating Systems Review, 44(1):61–65, 2010.

[79] Minming Li and F. Frances Yao. An efficient algorithm for computing optimal discrete

voltage schedules. SIAM Journal of Computing, 35(3):658–671, 2005.

[80] Monaldo Mastrolilli, Maurice Queyranne, Andreas S. Schulz, Ola Svensson, and Nel-

son A. Uhan. Minimizing the sum of weighted completion times in a concurrent open

shop. Operations Research Letters, 38(5):390–395, 2010.

98

[81] Nicole Megow and José Verschae. Scheduling on a machine with varying speed:

Minimizing cost and energy via dual schedules. arXiv preprint abs/1211.6216, 2012.

[82] Nicole Megow and José Verschae. Dual techniques for scheduling on a machine with

varying speed. In Proceedings of the 40th International Colloquium on Automata,

Languages, and Programming (ICALP), pages 745–756, 2013.

[83] Benjamin Moseley, Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. On scheduling

in map-reduce and flow-shops. In Proceedings of the 23rd ACM Symposium on Parallel

Algorithms and Architectures (SPAA), pages 289–298, 2011.

[84] Arkadii Nemirovski, and Yurii Nesterov. Interior Point Polynomial Algorithms in

Convex Programming. Society for Industrial and Applied Mathematics, 1994.

[85] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[86] Cynthia A. Phillips, Clifford Stein, and Joel Wein. Minimizing average completion

time in the presence of release dates. Mathematical Programming, 82:199–223, 1998.

[87] Michael Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

[88] Chris N. Potts. Analysis of a heuristic for one machine sequencing with release dates

and delivery times. Operations Research, 28:1436–1441, 1980.

[89] Apache Hadoop Project. Powered by hadoop. In

http://wiki.apache.org/hadoop/PoweredBy, 2011.

[90] Kirk Pruhs, Patchrawat Uthaisombut, and Gerhard J. Woeginger. Getting the best

response for your erg. ACM Transactions on Algorithms, 4, 2008.

[91] Kirk Pruhs, Rob van Stee, and Patchrawat Uthaisombut. Speed scaling of tasks with

precedence constraints. Theory of Computing Systems, 43:67–80, 2008.

[92] Thomas A. Roemer. A note on the complexity of the concurrent open shop problem.

Journal of Scheduling, 9:389–396, 2006.

[93] Andreas Schulz and Martin Skutella. Scheduling unrelated machines by randomized

rounding. SIAM Journal on Discrete Mathematics, 15:450–469, 2002.

[94] Petra Schuurman and Gerhard J. Woeginger. A polynomial time approximation

scheme for the two-stage multiprocessor flow shop problem. Theoretical Computer

Science, 237(1):105–122, 2000.

[95] David B. Shmoys, Joel Wein, and David P. Williamson. Scheduling parallel machines

on-line. SIAM Journal on Computing, 24(6):1313–1331, 1995.

[96] David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized

assignment problem. Mathematical Programming, 62:461–474, 1993.

[97] Martin Skutella. Convex quadratic and semidefinite programming relaxations in

scheduling. Journal of the ACM, 48(2):206–242, 2001.

99

[98] Martin Skutella. List scheduling in order of a-points on a single machine. In Evripidis

Bampis, Klaus Jansen, and Claire Kenyon, editors, Efficient Approximation and On-

line Algorithms: Recent Progress on Classical Combinatorial Optimization Problems

and New Applications, volume 3484 of Lecture Notes in Computer Science, pages

250–291. Springer, 2006.

[99] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search trees. Journal

of the ACM , 32(3):652–686, 1985.

[100] Wayne E. Smith. Various optimizers for single-stage production. Naval Research

Logistics Quarterly, 3:59–66, 1956.

[101] Sebastian Stiller and Andreas Wiese. Increasing speed scheduling and flow scheduling.

In Proceedings of the 21st International Symposium on Algorithms and Computation

(ISAAC), pages 279–290, 2010.

[102] Vivek Tiwari, Deo Singh, Suresh Rajgopal, Gaurav Mehta, Rakesh Patel, and

Franklin Baez. Reducing power in high-performance microprocessors. In Proceed-

ings of the ACM 35th annual Design Automation Conference, pages 732–737, 1998.

[103] Jeffrey D. Ullman. Designing good mapreduce algorithms. XRDS: Crossroads, The

ACM Magazine for Students, 19(1):30–34, 2012.

[104] Oscar C. Vásquez. Energy in computing systems with speed scaling: optimization

and mechanisms design. arXiv preprint abs/1212.6375, 2012.

[105] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2003.

[106] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S.J. Pister. Smart dust:

Communicating with a cubic-millimeter computer. IEEE Computer, 34(1):44–51,

2001.

[107] Adam Wierman, Lachlan L.H. Andrew, and Ao Tang. Power-aware speed scaling in

processor sharing systems. In Proceedings of The 33rd Annual IEEE International

Conference on Computer Communications (INFOCOM), pages 2007–2015, 2009.

[108] David P. Williamson and David B. Shmoys. The design of approximation algorithms.

Cambridge University Press, 2011.

[109] Thomas Wirtz and Rong Ge. Improving mapreduce energy efficiency for computation

intensive workloads. In Proceedings of the International Green Computing Conference

(IGCC), pages 1–8, 2011.

[110] Jun Yang, Xiuyi Zhou, Marek Chrobak, Youtao Zhang, and Lingling Jin. Dynamic

thermal management through task scheduling. In Proceedings of the IEEE Inter-

national Symposium on Performance Analysis of Systems and Software (ISPASS),

pages 191–201, 2008.

[111] Frances F. Yao, Alan J. Demers, and Scott Shenker. A scheduling model for reduced

cpu energy. In Proceedings of the 36th Annual IEEE Symposium on Foundations of

Computer Science (FOCS), pages 374–382, 1995.

100

[112] Dongjin-J. Yoo and Kwang M. Sim. A comparative review of job scheduling for

mapreduce. In IEEE Proceedings of the International Symposium on Cloud Comput-

ing and Intelligece Systems (CCIS), pages 353–358, 2011.

[113] Matei Zaharia, Dhruba Borthakur, Joydeep S. Sarma, Khaled Elmeleegy, Scott

Shenker, and Ion Stoica. Job scheduling for multi-user mapreduce clusters. EECS De-

partment, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-55, 2009.

101

102

Appendix A

General form of KKT conditions

A useful tool throughout our analysis is the well-known Karush, Kuhn, Tucker (KKT)

conditions, which are first order, necessary and sufficient conditions, for a solution in convex

programming to be optimal.

Assume that we are given the following convex program:

min f(x)

gi(x) ≤ 0, 1 ≤ i ≤ q
hj(x) = 0, 1 ≤ j ≤ r

x ∈ <n

Suppose that the program is strictly feasible, i.e. there is a point x such that gi(x) < 0

and hj(x) = 0 for all 1 ≤ i ≤ q and 1 ≤ j ≤ r, where all functions gi and hj are differentiable

at x. Let λi and µj be the dual variables associated to the constraints gi(x) ≤ 0 and

hj(x) = 0, respectively. The Karush-Kuhn-Tucker (KKT) conditions are:

gi(x) ≤ 0, 1 ≤ i ≤ q (1)

hj(x) = 0, 1 ≤ j ≤ r (2)

λi ≥ 0, 1 ≤ i ≤ q (3)

λigi(x) = 0, 1 ≤ i ≤ q (4)

∇f(x) +

q∑

i=1

λi∇gi(x) +
r∑

j=1

µj∇hj(x) = 0 (5)

KKT conditions are necessary and sufficient for solutions x ∈ <n, λ ∈ <q and µ ∈ <r
to be primal and dual optimal, where λ = (λ1, λ2, . . . , λq) and µ = (µ1, µ2, . . . , µr). We

refer to the conditions (1) and (2) as primal feasible, to (3) as dual feasible, to (4) as

complementary slackness and to (5) as stationarity conditions, respectively.

103

104

List of Figures

1.1 (i) The energy consumption over time and (ii) the work volume accomplished

by a job. 3

1.2 The thermal and cooling mechanism of a processor during (i) the execution

of a unit-length job of heat contribution h and (ii) an idle unit-time slot. . . 4

1.3 (i) The precedence graph of an instance of four jobs. Each job j is specified

by an ordered triple, (vj , rj , dj), where vj is its work volume, rj its release

date and dj its due date. (ii) A schedule of the jobs on a single processor.

The jobs’ work volumes vj correspond to their actual processing times pj

and their completion times are displayed on the time axis. (iii) A schedule

of the jobs on a single speed-scalable processor. Both the jobs’ completion

times and the speeds are displayed on the time and speed axes, respectively. 10

1.4 A feasible schedule of four jobs on a processor equipped with the thermal and

cooling mechanism, for a thermal threshold Θ = 1. Each job j is specified by

an ordered triple (hj , rj , dj), where hj is its heat contribution, rj its release

date and dj its deadline. The instance comprises of jobs: 1 → (0.1, 0, 2),

2→ (0.2, 0, 2), 3→ (1.3, 3, 5), 4→ (1.5, 2, 3). The initial temperature is zero. 11

1.5 The structure of a MapReduce job . 12

2.1 A feasible schedule of the Bud-Lateness problem for three jobs with zero

release dates, work volumes 10, 2, 2, delivery times 5, 4, 2, β = 2 and E = 20.

The total energy consumption is equal to 18, while the maximum lateness

equals Lmax = 15, and it is attained by all jobs. 18

2.2 The execution of Algorithm BUD for an instance of 3 jobs without release

dates, work volumes 10, 2, 2, delivery times 5, 4, 2, β = 3 and E = 20. . . . 27

2.3 A feasible schedule σ for the Bud-Lateness problem that attains maximum

lateness equal to Lmax = (2n− 1)B. 31

2.4 The structure of a schedule computed by Algorithm ALE. 36

3.1 The precedence graph among tasks of a MapReduce job j consisting of 3

Map tasks and 2 Reduce tasks. 41

3.2 Comparing solutions for FCFS and HDF (scaled down by a factor of 103). 50

105

3.3 Trade-off between energy augmentation and approximation ratio when β =

{2, 2.5, 3}. 62

3.4 (i) Shuffle tasks and their precedence constraints with the Map tasks and

Reduce tasks of a job j that comprises three Map tasks and two Reduce

tasks and (ii) Precedence constraints among Map tasks and Shuffle-Reduce

tasks. 68

4.1 A schedule of unit-length jobs, with a common deadline D = 15 and heat

contributions of the set {1, 7/6, 3/2}, to a processor for thermal and cooling

management. The temperature at time zero as well as the thermal threshold

are equal to 1. The throughput of the schedule is equal to 11. 73

4.2 Example: a prefix of the infinite schedule generated by h = 31/26-jobs,

obtaining G(h) = (01011)∗ for a density of 3/5. 77

4.3 A partition of scheduled jobs into classes. 78

4.4 A discrete line with (slope, offset)= (2
3 , 0) 85

106

List of Algorithms

BUD: an algorithm for the Bud-Lateness problem, when jobs have common

release dates. 28

ALE: an online algorithm for the Aggr-Lateness problem. 36

EMRσ: a heuristic for the NRG-MapReduce problem. 49

EMR(α, γ): an algorithm for the NRG-MapReduce problem. 56

MR: an algorithm for the Map-Reduce scheduling problem. 66

Two procedures that produce a binary sequence. 85

107

Georgios Zois Thèse de doctorat 2014

Problèmes algorithmiques dans les systèmes informatiques sous contraintes

d’énergie

Resumé: Cette thèse se focalise sur des algorithmes efficaces en énergie pour des problèmes

d’ordonnancement de tâches sur des processeurs pouvant varier la vitesse d’exécution ainsi

que sur des processeurs fonctionnant sous un mécanisme de réchauffement-refroidissement,

où pour un budget d’énergie donné ou un seuil thermique, l’objectif consiste à optimiser

un critère de Qualité de Service. Une partie de notre recherche concerne des problèmes

d’ordonnancement de tâches apparaissant dans des environnements de traitement de grandes

données. Dans ce contexte, nous nous focalisons sur le paradigme MapReduce en con-

sidérant des problèmes d’ordonnancement efficaces en énergie sur un ensemble de pro-

cesseurs, ainsi que pour la version classique.

D’un côté, nous proposons des résultats de complexité, des algorithmes optimaux ou

approchés pour différentes variantes du problème de la minimisation du retard maximal

d’un ensemble de tâches sur un seul processeur pouvant varier la vitesse d’exécution. En-

suite, nous considérons le problème d’ordonnancement MapReduce dans les versions avec

la consommation d’énergie ou non sur des processeurs non-reliés où le but est de minimiser

le temps d’achèvement pondéré. Nous étudions deux cas spéciaux et les généralisations de

ces deux problèmes en proposant des algorithmes d’approximation constante. Enfin, nous

étudions le problème d’ordonnancement sous contraintes thermiques sur un seul processeur

fonctionnant en-dessous d’un seuil de température stricte où chaque tâche a sa propre

contribution thermique et le but est de maximiser le nombre de tâche exécutée. Nous con-

sidérons le cas où les tâches ont des durées unitaires et ayant la même date d’échéance.

Mots clés : Ordonnancement, algorithme d’approximation, processeur de variation de

vitesse, seuil thermique, énergie, gestion de température, ordonnancement MapReduce,

algorithme en-ligne.

Algorithmic problems in power management of computing systems

Abstract: This thesis is focused on energy-efficient algorithms for job scheduling problems

on speed-scalable processors, as well as on processors operating under a thermal and cooling

mechanism, where, for a given budget of energy or a thermal threshold, the goal is to

optimize a Quality of Service criterion. A part of our research concerns scheduling problems

arising in large-data processing environments. In this context, we focus on the MapReduce

paradigm and we consider problems of energy-efficient scheduling on multiple speed-scalable

processors as well as classical scheduling on a set of unrelated processors.

First, we propose complexity results, optimal and constant competitive algorithms for

Georgios Zois Thèse de doctorat 2014

different energy-aware variants of the problem of minimizing the maximum lateness of a set

of jobs on a single speed-scalable processor. Then, we consider energy-aware MapReduce

scheduling as well as classical MapReduce scheduling (where energy is not our concern) on

unrelated processors, where the goal is to minimize the total weighted completion time of

a set of MapReduce jobs. We study special cases and generalizations of both problems and

propose constant approximation algorithms. Finally, we study temperature-aware schedul-

ing on a single processor that operates under a strict thermal threshold, where each job

has its own heat contribution and the goal is to maximize the schedule’s throughput. We

consider the case of unit-length jobs with a common deadline and we study the approx-

imability of CoolestFirst scheduling, i.e., the job with the smaller heat contribution is

scheduled first.

Keywords: Scheduling, approximation algorithm, speed-scalable processor, thermal thresh-

old, energy-efficiency, temperature management, MapReduce scheduling, online algorithm.

