N

N

Adaptation of SysML Blocks and Verification of
Temporal Properties

Hamida Bouaziz

» To cite this version:

Hamida Bouaziz. Adaptation of SysML Blocks and Verification of Temporal Properties. Other [cs.OH].
Université de Franche-Comté, 2016. English. NNT : 2016BESA2015 . tel-01428887

HAL Id: tel-01428887
https://theses.hal.science/tel-01428887v1
Submitted on 6 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01428887v1
https://hal.archives-ouvertes.fr

g

These de Doctorat

école doctorale sciences pour I'ingénieur et microtechniques
1

UFC UNINVNERSITE DEAFRA NC HE - 1€ OMM THE

Adaptation of SysML Blocks and
Verification of Temporal Properties

HaMmipA BOUAZIZ

PP | M

‘These de Doctorat

école doctorale sciences pour l'ingénieur et microtechniques

UNIVERSITE DESOFRANCHE -€ OM TE

THESE présentée par

HamipAa BOUAZIZ

pour obtenir le

Grade de Docteur de
I'Université de Franche-Comté

Spécialité : Informatique

Adaptation of SysML Blocks and Verification of
Temporal Properties

Soutenue publiquement le 03 novembre 2016 devant le Jury composé de :

Yamine AIT AMEUR Rapporteur
Franck BARBIER Rapporteur
Kuarin DRIRA Examinateur

HassaN MOUNTASSIR Directeur de thése
Samir CHOUALI Co-Directeur de thése
AuMmep HAMMAD Co-Directeur de thése

Professeur, IRIT, ENSEEIHT

Professeur, LIUPPA, Université de Pau

Directeur de Recherche CNRS, LAAS, Université de
Toulouse

Professeur, DISC, Université de Franche-Comté

MCE, DISC, Université de Franche-Comté

MCE, DISC, Université de Franche-Comté

1 Introduction

1.1 Contextand Challenges
1.2 Contributions
1.3 Publications
1.4 DocumentOutline

I Scientific Context and State of the Art

2 SE and SysML Language

21 SysML
2.1.1 TheNeedofSEtoSysML
2.1.2 WhoCreated SysML?
2.1.3 Principlesof SYML
2.2 EmergenceofSysML
2.3 SysMLDiagrams
2.3.1 Structural Diagrams
2.3.2 Behavioural Diagrams
2.3.3 RequirementDiagram
2.4 Free Platforms for SysML Modelling
241 TOPCASED
242 Papyrus
2.5 Conclusion

3 Model-Driven Development and Models Transformation
3.1 BasicConcepts
3.2 Model Transformations
3.3 Transformation of SysML Diagrams
3.4 Transformation of Sequence Diagram

3.5 Interface Automata

CONTENTS

Gl W= =

Vi

II

3.5.1 Operations on interface automata
3.5.2 Refinement of interfaceautomata
3.6 ColouredPetriNets

3.7 Conclusion

CBSE and Component Adaptation

4.1 Component-Based Software Engineering
4.2 Definition of Software Component
4.3 Abstractionof Components
4.4 ComponentInterfaces
4.5 ComponentModels
4.6 Verification of Component Compatibility
4.7 Formal Analysis of Assembled Systems
4.8 Components Adaptation

4.8.1 Adaptation Taxonomy

4.8.2 General AdaptationProcess

4.8.3 Principal Adaptation Approaches

Adaptation of n-calculus protocols

Adaptation based on LTSs and Petri nets

4.8.4 Other Approaches

4.9 Conclusion

Contributions

Formalizing SysML Diagrams

5.1 RequirementDiagram(RD)
5.2 Block Definition Diagram (BDD)
5.2.1 BDD Formal Definition
52.2 Block o o o oL
523 Portso o
52.4 Parts Lo
5.2.5 References
52.6 BDDRelations.
5.3 Internal Block Diagram (IBD)

5.4 SequenceDiagram(SD).

CONTENTS

CONTENTS

5.5 Conclusion e e

A SysML Model Driven Approach to Verify Blocks Compatibility

6.1 OurMethodology

6.2 Transforming SDs of Blocks into Interface Automata
6.2.1 Sequence Diagram Meta-Model
6.2.2 Interface Automata Meta-Model
6.2.3 BasicInteraction TransformationRules
6.2.4 ALT Combined Fragment TransformationRules

6.3 Generation of Ptolemy Specification

6.4 TheBlocks Verification

6.5 CaseStudy:CyCab

6.6 Conclusion e

Exploiting The Hierarchy to Verify Blocks Compatibility

7.1 Hierarchical Protocol State Machine (HPSM)

7.2 Hierarchical Interface Automata with Inter-Level Transitions (HIA-ILT) . .

7.3 TheProposed Approach
7.3.1 The Mapping Between HPSM and HIA-ILT
7.3.2 The Consistency Verificationof Blocks
7.3.3 The Selection of Composite StatestoFlatten
7.3.4 The Compatibility Verification BetweenBlocks

7.4 CaseStudy e

7.5 Conclusion e

SysML Blocks Adaptation

8.1 Our Incremental Approach for Adapting SysMLBlocks
8.1.1 The First Phase: Defining a Specification for the Part to Develop
8.1.2 The Second Phase: The Selection of the Reused Blocks {B;}
8.1.3 The Third Step: the Contract and the Reused Blocks Verification . .
8.1.4 The Fourth Step: Generatingthe Adapter

8.2 CaseStudy i e e
8.2.1 GeneratetheAdapters,
8.2.2 Deduce the BDD and the IBDs of the Composite Blocks

8.3 Conclusion e e

Vil

59

61
62
62
63
65
65
68
71
73
74
78

79
80
81
85
85
88
88
89
89
93

viii CONTENTS

9 Incremental Verification of System Requirements 109
9.1 OurApproach 110
9.1.1 Requirements Specification 110

9.1.2 Problemdefinition oo, 111

9.1.3 The First Case : The Low Level Verification 111

9.1.4 The Second Case : The High Level Verification 114

9.1.5 The Verification Algorithm 117

9.2 CaseStudy e e e 119
9.3 Conclusion 123

10 Adaptation with Reordering of SysML Block Services 125
10.1 Our Adaptation Approach 126
10.1.1 Computing the Global Interaction Protocol of the Reused Blocks GIR 127

10.1.2 Introducing the Specification of the Future Parent Block 130

10.1.3 DeducetheAdapter 133

10.1.4 ToolSupport 135

10.2 CaseStudy e e e e 137
10.3 Conclusion 139
III Conclusion 143
11 Conclusion and Perspectives 145
11.1 Conclusion e 145

11.2 Perspectives e e e 147

1.1

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

6.1
6.2
6.3
6.4
6.5

LiST OF FIGURES

Thesis contributions. L 4
Relation between SysML and UML [OMG12a]. 10
SysMLDiagrams ottt e e 14
A Block Definition Diagram (BDD) 15
An Internal Block Diagram (IBD) 15
Basic elements of a Sequence Diagram (SD) 16
Basic elements of arequirementdiagram 17
The abstraction levels of modelling. 21
The basic concepts of models transformation [CHo6]. 22
example of interfaceautomata. 26
User ® Comp. The illegal state of the product is depicted with dotted border. 26

User||[Comp. o it e e e e 26
The goal of software engineering. 32
Thegoalsof CBSE. 33
Black-boxcomponent. 34
UML sub-meta-model of syntactic specification of a software component. . 35
User ® Comp. The set of compatible statesisnotempty 36
Theroleoftheadapters., 39
The adaptationcontract. v it 41
Adaptation approach [CPSo6a]. 42
The difference between our approach (iii) and the existing approaches (i, ii)

ofadaptation. L. 46
Our Methodology. e 63
Papyrus Meta-Model of SysML Sequence Diagram. 64
Sequence diagramelements. o Lo 64
Interface Automata Meta-Model. 65
Generated Interface Automata Editor. 0. 66

6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

7.1
7.2
7.3
7-4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

7.13

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1
9.2

LIST OF FIGURES

Message transformation. L. oL 67
The transformation of loop and alt into interface automata 68
Alttransformations. oL o 70
Block Definition Diagramof CyCab. 74
SDofSensor. 75
SDof Computing-Unit 75
IAofSensor 75
IA of Computing-Unit 75
Parallel composition of Control Unitand Sensor. 7
RelationbetweenSDand HPSM. 80
Example of abstract synchronous product. 84
Our approach of using hierarchy to verify blocks compatibility. 86
Correspondences between HPSM and HIA-ILT. 87
Meta-Model of HPSM. e 87
Meta-Model of HIA-ILT. o i 87
RulesATL. o e 88
CaseStudy. i e e 90
IBD of assembling the receiverandroomba. 90
HPSM of thereceiverandroomba. 91
HIA-ILT of the receiverandroomba. 92
HIA-ILT of roomba after flattening no-autonomousstate. 93
A o 94
The proposedapproach. 97
Incrementalapproach. L 97
TheRobot. 104
The Controller and the Motorblocks. 104
The adapter ADcontroMore - «+ « + ¢ v v o e v e e e e e e e e e e e e 105
Thestation. e 105
The adapter AdRoposSiar « « « « o v v e e e e e e e e e e e e e 106
The Block definition diagram of thesystem. 106
Theinternal blockdiagram. 107
The first case: the low level verification. 112
Incremental adaptation. L L L 114

LIST OF FIGURES Xi

9.3 Thesecond case: The high level verification. 116
9.4 Thebasicrequirements. 119
9.5 SPIN system for the adapter Adg,pos10 and its environment. 120
9.6 T =AdRrobsS1a @ AdContrasMote « « + « o o v v e e e e e e e e e e e e e e 122
9.7 Therequirement diagramofthesystem. 122
10.1 Our approach of adaptation with reordering. 126
10.2 TransformationSD—CPN. 128
10.3 Rules for synthesizing thereusedblocks. 129
10.4 The correspondences of type one (parent)-to-one(child). 131
10.5 The correspondences of type one (parent) -to-many(child). 132
10.6 The correspondences of type one (child)-to-many(parent). 133
10.7 The specification of the robot 137
10.8 TheController. 137
10.9 Themovingsystem e 138
10.10Adaptation Contract modelled using our generated editor 139
1011 CPNydaprer + « « v v v v v e e e e e e e e e e e e 140
10.12BDDoftheRobot 141

10.13IBDoftheRobot. e e e e e 141

1

INTRODUCTION

11/ CONTEXT AND CHALLENGES

At any time, the system can express new needs to new services. However, the fact of see-
ing and developing the system as one unit constitutes a barrier for its evolution, where it
will be very difficult to specify the parts of the system which are altered by each evolution.
Also, the verification of the system after modification will be more and more complex. In
fact, the disadvantages of this approach have changed the manner of designing and de-
veloping these systems. That is what justifies the trend of the new approaches, such as
CBD (Component-Based Development) approach which takes the system as a set of com-
ponents. Developing systems by reusing and adapting a set of components constitutes the
central topic of component-based development. It allows tackling the problems of the old
approaches, but it also creates new challenges and criteria that must be taken into consid-
eration during the development.

When assembling separately designed components, there is a high probability of encoun-
tering the problem of mismatches between them. These mismatches can concern for ex-
ample the name of services, as well as the order in which the component asks (resp. of-
fers) for environment services (resp. its services). That is what justifies the introduction
of third entities or components which are used to solve these mismatches. This kind of
components are called "adapters”. A big part of the works done to adapt components start
from a formal specification of these components, which makes difficult the communi-
cation between the various stakeholder in CBD projects. This implies the introduction
of persons who are experts in the formal methods during the selection of the candidate
components to buy and thus to reuse.

To tackle this problem and to make the communication between stakeholders easier.
System engineering community proposes to use high level languages which adopts the
principle of using the component as the development unit. This appears clearly through
SysML [OMGz12b], a language which is adopted by OMG, it is used to design systems that
include software and hardware. The System Modelling Language (SysML), through its di-
agrams, fosters the view point that takes the system as a set of components. In SysML,
we call them 'blocks’. A block is a modular unit of the system description. It may include
both structural and behavioural features, such as properties and operations. To commu-
nicate with its environment, a block has a list of ports. These latter are characterised by
interfaces that present the offered and the required services of the block. The use of these
interfaces allows the preservation of the principle of black-box, where we can know what
isthe role of the component without having a need to see its implementation. SysML also

2 CHAPTER 1. INTRODUCTION

offers many diagrams to represent the behaviour of the blocks. It also puts at the disposal
of developers the requirement diagram that allows capturing the different requirements
and establishing the link between them and between the responsible blocks of their sat-
isfaction.

This privilege given to SysML doesn't mean that it will take the place of formal meth-
ods. But it replaces them at a level of system representation, where we need a heigh level
specification of the system, to allow a better communication between the CBD project
stakeholders. We must also mention that SysML lacks of formal semantic, which makes
very interesting the introduction of formal methods in component adaptation domain to
compute the adapters and their behaviour semantics, and to verify the result of assem-
bling components after the insertion of these adapters. In this context, the use of formal
methods appears worthwhile because it allows to specify formally components interac-
tions and thus to ensure component-based systems reliability by verifying components
compatibility. Regarding the advantages and disadvantages of each of them, a combi-
nation of both in the same approach is the solution that will tackle the lack of each of
them. That's what Model Driven Engineering (MDE) tries to do through the introduction
of model transformation approaches.

In this context, we have identified these challenges:

« When assembling a set of components, it's very interesting to verify their compati-
bility. In this thesis, we are placed in the context of optimistic approach. According
to the optimistic approach, two components are incompatible if it doesn't exist any
environment to assemble them without leading their composition into a livelock
situation . The verification of compatibility depends on the models used to repre-
sent the structure and the behaviour of these components. In the case where the
components are modelled using SysML, there is a big question mark about the man-
ner according to which the compatibility verification of blocks will be performed,
could this verification be applicable directly on SysML models? or must we intro-
duce SysML models into a transformation process to obtain their equivalents of for-
mal models which are more suitable for a rigorous verification?

« Generally, the high level modelling languages as SysML, adopt some principles to
manage the complexity of system representation and development. In SysML, the
decomposition and the hierarchical organization constitute the major principles
used to handle complexity. The utility of the decomposition and the hierarchy ap-
pears clearly through the structural and the behavioural specification of the system.
Thus, an hierarchical representation of the blocks interactions, and a verification
based on the abstraction introduced by this hierarchy can widely help in reducing
the state space when we compose the interaction scenarios of blocks in order to ver-
ify the compatibility of these latter.

« The adaptation of components implies the introduction of a third entity called
adapter. The major difference between the existing adaptation approaches con-
cerns the detail given to generate the adapter. In [DBM14], the authors give only
an adaptation contract that is resumed in a specification of the correspondences be-
tween blocks services. This will have an impact on the generation of the adapter,
the adapter will contain all the possible interaction scenarios between the reused
components (it can contains scenarios that are not necessary for the cooperation of
the reused components). However, in [CPSo6a, CPS08], the authors have increased

1.2. CONTRIBUTIONS 3

their adaptation contract by a specification of the adapter interactions by order-
ing the vectors of the adaptation contract using regular expressions. This requires
that the developer, before making the specification of the adapter, must thoroughly
know the interaction of each component with its environment, and he must have an
idea about the synchronous execution of the reused components. In this context, we
ask the question about the detail that will be enough to generate adapters to make a
set of components cooperate with respect of the intention behind their assembling?

 Inthe context of an incremental development of a system by reusing and adapting
components, the system, at each increment, will expose more blocks, and generally
the verification of the satisfaction of a requirement by the assembled system implies
the composition of scenarios of all components, which is considered as the source
of state explosion problem. In this context, a proposition of a method which takes
advantages from the mediator role played by the adapters, to reduce the state space
during the verification of requirements satisfaction, appears very interesting.

1.2/ CONTRIBUTIONS

In this section, we present a summary of the contributions proposed in this thesis de-
scribed in Figure 1.1:

« In the first contribution, we focus on verifying the compatibility of components
modelled with SysML diagrams. Thus, we model components interactions with
SysML sequence diagrams (SDs) and components architecture with SysML blocks.
The SysML SDs constitute a good start point for compatibility verification. However,
this verification is still inapplicable directly on SDs, because they are expressed in
informal language. Thus, to apply a verification method, it is necessary to translate
the SDs into formal models, and then verify the wanted properties. In this thesis,
we propose a high-level model-driven approach which consists of an ATL grammar
that automatizes the transformation of SDs into interface automata. Also, to allow
an easy use of Ptolemy tool to verify compatibility of blocks basing on interface au-
tomata, we have proposed some Acceleo templates that generate the Ptolemy entry
specification.

o In SysML, the interactions between blocks are modelled with Interaction Block Di-
agram (IBD) and Sequence Diagram (SD). However, these interactions are modelled
by the IBD only as architectural links. In other hand, a block can participate in multi-
ple use cases, which makesits interaction protocol divided onto a set of sequence di-
agrams. For these reasons, thereisalack of a global view on the interaction protocol
related to a given block. To allow a hierarchical representation of blocks interactions
and to benefit from the abstraction introduced by this representation, we have pro-
posed HPSM (Hierarchical Protocol State Machine) diagram. In order to permit the
compatibility verification of blocks, we perform a translation of HPSMs into HIA-
ILTs (Hierarchical Interface Automata with Inter-Level Transitions), a variant of in-
terface automata (IA) which we propose for this purpose. Our major objective is to
benefit from the hierarchy which is present in HIA-ILTs. Thus, we have adapted the
existing approaches for compatibility verification based on IAs to be applicable on
the HIA-ILTs. However, in order to avoid the flattening of the entire HIA-ILT, we pro-

CHAPTER 1. INTRODUCTION

Simple Interactions Complex Interactions Adaptation and verification

[I I I What must the composition of B1 and B2 |
offers to the environment of the parent BlockB
Mismatches

Contract-Based
Compatibility
verification

Transformation

Adaptation

del interactions and to verify blocks compatibility

(3)Adaptation (5) Adaptation
Without With
reorderin; reorderin,

S mo

.
«

(1) Meta-level model driven approach to verify blocks compatibility

“ (4)Preservation
Verification of

initial satisfied
Requirements

Figure 1.1: Thesis contributions.

pose a preliminary phase that allows selecting the composite states to flatten. The
aim behind this is to alleviate the verification phase.

In the third contribution, we propose a bottom-up approach to build systems, based
on their partial specifications. The approach is based on reusing and formally adapt-
ing SysML blocks using converter-complement blocks. Our approach is completed
by a verification phase which allows the verification of SysML requirements, for-
mally expressed by temporal properties, on SySML blocks. In this phase, we exploit
our manner of defining the adapter, to avoid the verification of the initial require-
ments, satisfied by the adapted blocks, on the whole system, and thus, we reduce the
state space explosion problem.

In the same context of the previous contribution, we have proposed a bottom-up
approach to adapt SysML blocks but with different inputs and objectives. The major
difference resides on that the adapter as we will define it in this case can solve more
problems such as the reordering of services to eliminate livelock between blocks,
it can also solve more types of mismatches (‘one-to-many’ rather than only ‘one-to-
one’).

To generate the adapters, in our approach, we are focusing on an incremental ap-

1.3. PUBLICATIONS 5

proach to construct the system. Where, at each increment the developer gives a
specification of a part of the system that he want to build. This specification rep-
resents the interaction of the parent of the reused blocks with the rest of the system.
The generation of the adapter is based on refinement relation between this specifi-
cation and the specification of the reused blocks.

1.3/ PUBLICATIONS

In the following, we list the references for the published and submitted articles:

« Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. SysML
Blocks Adaptation. ICFEM'15, the 17th International Conference on Formal Engi-
neering Methods, Springer, pages 417-433, Paris, France, 2015

o Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. A
Model-Driven Approach to Adapt SysML Blocks. ICIST, the 22nd International Con-
ference on Information and Software Technologies, Springer, pages *-*, Kaunas,
Lithuania, 2016 (To appear)

o Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. Com-
patibility Verification of SysML Blocks Using Hierarchical Interface Automata. ISPS
12th International Symposium on Programming and Systems, IEEE, pages 313--322,
Algiers, Algeria, 2015

« Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. Ex-
ploitation de la Hiérarchie pour la Vérification de la Compatibilité des Blocs SysML.
CAL 9éme conférence francophone sur les architectures logicielles, Hammamat,
Tunisie, 2015

« Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. Ex-
ploitation de la Hiérarchie pour la Vérification de la Compatibilité des Blocs SysML.
RNTI. Revue des Nouvelles Technologies de I'Information, Volume RNTI-L-8, 2016,
Pages: 99-118.

« Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. An In-
cremental Approach for Adapting and Verifying SysML Blocks. In SoSyM, Software
and Systems Modelling (Re-submitted after revisions)

« Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. On the
Use of Coloured Petri Nets to Adapt SysML Blocks. In JSS, Journal of Software and
Systems (submitted)

o Hamida Bouaziz, Samir Chouali, Ahmed Hammad and Hassan Mountassir. SysML
Model-Driven Approach to Verify Blocks Compatibility. In [JCAET. International
Journal of Computer Aided Engineering and Technology (submitted)

1.4/ DOCUMENT OUTLINE

In this section we give a summary of the content of this thesis, which is structured in three
parts as follows: In Part I, we introduce the scientific context and the related work of this

6 CHAPTER 1. INTRODUCTION

work, there, we first give, in Chapter 2, an overview of SysML language and its diagrams
that allow to model the structure the behaviour and the requirements of systems. Then
in Chapter 3, we present the transformation of models and the key concepts to describe
them. We also introduce the concept of Interface Automata and Coloured Petri Nets,
which we will use later in our approach to formally represent the behaviour protocols of
SysML blocks and to verify component compatibility. Finally, in Chapter 4, we present the
component-based domain and exactly the adaptation of components track.

In Part II, we present the contributions of this thesis regrouped in six chapters. In Chapter
5, we give a formal definition of SysML diagrams that we will used in our approaches of
adaptation. In Chapter 6, we present our model-driven approach to verify blocks com-
patibility by transforming SysML sequence diagram into interface automata. Then, in
Chapter 7, we introduce the hierarchy to model the interaction protocols of blocks, and
we define our approach which takes advantage from the hierarchy to alleviate the com-
patibility verification of SysML blocks. Next, in Chapter 8, we explain our approach for
adaptation based on the refinement relation between the blocks. After that, in Chapter 9,
we focus on our adaptation manner to alleviate the verification of requirements initially
satisfied by the adapted blocks. Finally, in Chapter 10, we extend our previous approach
of adaptation to allow the reordering of requests for services, and to solve more type of
mismatches by allowing more types of correspondences between blocks' services rather
than only one-to-one correspondences.

In Part III, we conclude our work with Chapter 11, where we present the conclusions and
perspectives of this thesis.

SCIENTIFIC CONTEXT AND STATE OF THE ART

2

SE AND SYSML LANGUAGE

he systems engineering (SE) is an approach that proposes a range of processes and

tools. This range allows controlling the development, the understanding and the
reusing of complex systems. Particularly, these processes offer for developers the steps
that they must follow to cover the different aspects related to the development of a given
system. Each step proposes the use of some models for a better representation of a system
aspect to which this step is dedicated.

The intention of creating a new community which focuses on the engineering of systems
saw the light in the great institutions of American defence. In fact, the National Aeronau-
tics and Space Administration (NASA) and the United States Air Force (USAF) have tried,
in1960s, to make a frame for the development of military programs and space exploration
systems through more rational industrial approaches. This effort has led, in 1991, to the
creation of the International Council on Systems Engineering (INCOSE), the first world-
wide organism for system engineering [wik].

In the systems engineering domain, the system is seen not only as a set of software ele-
ments, but as a range of software and hardware elements which are in a constant inter-
action. In addition to the interactions inside the system, this last can interact with the
environment. This interaction can be a request or an offer of a software service, or it can
take the form of a signal or matter circulation. By intention to set up a language which

Contents
2.1 SysML e e e 10
2.1.1 TheNeed of SEtoSysML 11
2.1.2 Who Created SysML? 11
2.1.3 Principlesof SYML 11
2.2 Emergenceof SysML 12
2.3 SysML Diagramso e e e e 13
2.3.1 Structural Diagrams 14
2.3.2 Behavioural Diagrams 16
2.3.3 Requirement Diagram 17
2.4 Free Platforms for SysML Modelling 18
241 TOPCASED 18
242 Papyrus 18
25 Conclusion e e e e e 18

10 CHAPTER 2. SE AND SYSML LANGUAGE

allows the modelling of all these aspects and sides of systems, OMG and INCOSE have uni-
fied their effort to create this language and to make it like what UML becomes for software
engineering. This language is called System Modelling Language (SysML).

In the rest of this chapter, in section 2.1, we will define SysML, the need of system engi-
neering to SysML, and the principles of this language. After that, in section 2.2, we demon-
strate the emergence and wide spreading of SysML through a collection of works that have
focused on SysML for modelling. Next, in section 2.3, we give a bref definition of SysML
diagrams by mentioning the aspect covered by each diagram. In section 2.4, we give the
example of some free platforms that allow to use SysML language for modelling. Finally,
in section 2.5, we conclude.

21/ SysML

SysML (System Modeling Language) is a modelling language that allows the representa-
tion of the system as a set of diagrams. The appearance of SysML has been motivated by
the intention of the systems engineering community to define a common modelling lan-
guage. In fact, after ten years of its appearance, SysML has succeeded to take a place in
the system engineering domain which is similar to that taken by the Unified Modelling
Language (UML) in the software engineering domain.

UML not UML SysML
required reused extensions

by SysML by SysML to UML

Figure 2.1: Relation between SysML and UML [OMG12a].

SysML can be defined as an extension of a sub-set of UML diagrams (Figure 2.1). This ex-
tension was made through the use of the profiling mechanism which is defined by UML.
SysML allows the specification, analysis, design, verification and validation of a wide
range of systems. It allows also to model the different aspects related to a given system,;
whether the requirement, the structural or the behavioural aspects. SysML is an open
source specification, it includes an open source licence for its distribution and its use, its
current version is 'OMG SysML v.1.3".

21. SYSML 11

211/ THE NEeD oF SE To SysML

The systems engineering is interested by the different sides of complex systems, whether
the software or the hardware sides. However, the development of a system, which is char-
acterized by an order of complexity, is still not obvious if there is no suitable tools which
assist and guide its development. It was due to this need that the SysML language has
seen the light as a communication language between the different members of the de-
velopment teams. It allowed to unify the visual modelling principles using a small set of
diagrams, which makes it easy to learn and to use. The introduction of SysML in this do-
main was not only for simplifying the modelling and the communication but also to offer
the development community a good pillar to analyse the requirements of the system since
the first steps of the development through a model driven process.

21.2/ WHO CREATED SYSML?

Many parts have contributed to the creation of SysML, they are all united in one associa-
tion called 'The SysML Partners'. The goal behind this union was the creation of an UML
profile that will be more adapted for the system engineering domain. This association
that is created in 2003 under the leadership of Cris Kobryn, have defined SysML as an
open source specification. On november 2005, the association 'The SysML Partner’ has
finished the draft copy of SysML specification vi.0. This specification has been revised
and adapted by Object Management Group (OMG) on july 2006([sys]. Among the contrib-
utors to the creation and the persistence of SysML, there is for example: Gentleware [Gen],
Motorola [Mot], INCOSE [INC], etc.

21.3/ PRINCIPLES OF SYML

The development of SysML has been mainly guided by these principles:

« Parsimony: SysML bases on a part of UML. This part is considered as the minimal
sub-set of UML diagrams that allows the satisfaction of the requirements of the sys-
tems engineering community. The other needed elements have been added in func-
tion of the new needs expressed by the systems engineering domain.

« Reuse: SysML reuses the concepts of UML. However, the additional requirements
have been satisfied by adding new concepts. This extension of SysML concepts has
always been guided by the principle of parsimony.

« Layering: This principle is used to organize the SysML profile in two ways. The first
way bases on the fact that SysML is defined as strict UML profile. Hence, all SysML
packages are considered as an extension layer of UML meta-model. However, the
second way concerns only the SysML constructs, where they are organized into two
levels of compliance, Basic and Advanced, which constitutes an additional layering.

« Extensibility: SysML supports the same extension mechanisms provided by UML
(metaclasses, stereotypes, model libraries), therefore the language can be further
extended for specific systems engineering domains, such as automotive, aerospace,
manufacturing and communications.

12 CHAPTER 2. SE AND SYSML LANGUAGE

o Interoperability: SysML is aligned with the semantics of the ISO data interchange
standard to support interoperability among engineering tools. It inherits the XMI
interchange from UML which makes possible the use of generated models files of a
tool by other several tools.

2.2/ EMERGENCE OF SYSML

The introduction of SysML into the systems engineering domain has opened the door
to many studies, which intend to evaluate its capacity to model the different aspects of
systems, with all necessary details, through industrial case studies [LdSdOo6, PSTV13].
In [LdASAO06], a proposition is made to model an experimental unit of a factory plant sys-
tem in Santa Catarina university. Also, the study, in [PSTV13], concerns the use of SysML
to model an industrial system, which is a part of a system that controls the power of a boil-
ing water reactor of a nuclear plant at Finland.

SysML, through its structural diagrams, tries to foster the view point that takes the sys-
tem as a set of components, where the component represents the basic unit of the devel-
opment. In [MTO"11], the authors try to benefit from the advantages of component-based
development to design a module-based software for a robot. This software must allow
for the robot to capture a target object using a camera, to move toward it, and to move it.
Regarding the compatibility between the component-based development approach and
the SysML language, the authors made their choice on SysML as language to model their
system. They have used the Internal Block Diagram (IBD) of SysML to represent the mul-
tilayer architecture of their system, where the blocks communicate using tasks, the tasks
take their entry data from the sensors, and they activate the moving material parts.

The decomposition of the system on a set of blocks reinforces the reusing of its parts, and
facilitates its adaptation over time, which increases the life time of the system. These ad-
vantages are due mainly to the interfaces which are used by the blocks to communicate
with the rest of the system (encapsulation principle). These decomposition and encapsu-
lation principles of SysML offer a better control of the models size that are used to model
the system, they allow targeting the details of the system through a succession of steps
(from a high level of abstraction to a low level), which makes the diagrams that capture
the different aspects of the system more clear. In [LWMY11], the authors show the struc-
ture and the dynamic aspects of a maintenance assistance system of the military planes.
The system is exposed at high level of abstraction through a range of SysML diagrams,
they have used the Block Definition Diagram (BDD) and the Internal Block Diagram (IBD)
to represent the architectural part, and for modelling the dynamic part, they have based
on the activity and sequence diagrams.

In [GCRJ08], an automotive driver information system of 4*4 vehicle was modelled us-
ing SysML. The objective was to present, through a case study, the capacity of SysML di-
agrams to model the different aspects of electronic systems in automotive vehicles. This
study proved the distinction of SysML in term of the capacity to model the different struc-
tural and behavioural properties. Yue et Peter, in [GJo9] try to foster their view point
on SysML, by establishing an evaluation report of SysML, where they compare it with
Simulink/MATHLAB. Contrary to Simulink/MATHLAB, SysML offers a mean to cover the
structural aspect. Concerning the functional aspect, SysML also offers more constructs
and diagrams to model this aspect (sequence diagram, activity diagram, state machine

2.3. SYSML DIAGRAMS 13

diagram) than Simulink/MATHLAB.

SysML could also take a place in the domain of physic, and exactly in the field of the devel-
opment of particle accelerators. In [GGA*08], the authors have presented a set of SysML
diagramsthat allows representing a part of LLRF (Low Level Radio Frequency) system. The
authors, through this orientation, try to prove the utility of using a model-driven language
as SysML instead of basing on documents of thousands lines that make the communica-
tion between team members difficult and slow.

There is also an attempt to integrate the reliability analysis of mechatronic systems tech-
niques into the approach of systems engineering, by focusing on the SysML models.
In [MCR*12], the authors present the utility of this integration. The idea can be resumed
on generating the failure possibilities that can arrive in a given system using structural
and behavioural models of SysML. The authors have used an electromechanical actuator
for aircraft ailerons to illustrate their approach. In [DIK09], the authors, through their ex-
perience of combining modelling languages and systems reliability analysis techniques,
have found that SysML models are more suitable then those of UML to support the relia-
bility study of systems. They have demonstrated this distinction of SysML through a study
of a system that controls the level of a tank.

SysML was also introduced in the field of Radio frequency and microwave engineering.
In [LCKBO08], the authors show how SysML diagrams (block definition diagram, internal
block diagram, requirement diagram) can be used to model a UMTS (Universal Mobile
Telecommunication Standard) transceiver system. SysML has also proved its capacity to
model the control software of complex systems, where a change in a requirement may al-
ter all the system. In [JT13], an approach was made to regulate the development of control
systems. This approach can alleviate the effect of requirements evolution. The authors
have proposed the use of SysML models to represent the controls systems IEC 61131-3.
These models can be used, later, as the start point of an MDE (Model Driven Engineer-
ing) process to generate the code for an implementation in the standard IEC 61131-3 lan-
guages. The authors have presented their approach through a control system of a motor
and a pump.

2.3/ SvysML DIAGRAMS

SysML has nine diagrams, where four diagrams (package, use case, sequence and state
machine diagrams) are directly copied from UML 2.0, three diagrams (activity, block def-
inition and internal block diagrams) are copied with some modifications, these modifi-
cations deal with the differences between the software engineering and the system engi-
neering. The last two diagrams are considered as new (parametric and requirement dia-
grams) (see Figure 2.2).

Another taxonomy decomposes the SysML diagrams on three sub-sets (see Figure 2.2). It
is based on the aspect to which each diagram is associated. It differentiates between the
structural, behavioural and requirement diagrams. In the following, we give a description
of each sub-set, with a definition of each diagram. We focus more on the diagrams that
we will use in our work.

14 CHAPTER 2. SE AND SYSML LANGUAGE

Structural Diagrams

|Block Definition Diagra%I | Parametric Diagram [{‘
~ +

| Internal Block Diagram[{_I | Package Diagram [{‘

Behavioural Diagrams

SysML Diagrams [®—

| Use Case Diagram [{‘l | Activity Diagram [{_I

| Sequence Diagram [{‘l | State Machine Diag:r:a.m[{_I

4)| Requirement Diagram [{1
+

|= copied from UML ~ copied from UML with change + new |

Figure 2.2: SysML Diagrams

2.3.1/ STRUCTURAL DIAGRAMS

In SysML language, the block represents the basic unit used to build the system archi-
tecture. It can refer to a material part as well as a software part, it can also represent a
person which uses or interacts with this system. The system structure can be modelled
using a range of SysML diagrams, which includes the block definition diagrams, the in-
ternal block diagrams, the package diagrams and the parametric diagrams. This range
of diagrams allows the decomposition of the system into a set of blocks and organizing
them inside packages, also it allows establishing the architectural links between blocs and
packages, and define the relations between their quantitative features. In the following,
we give a basic description of each architectural diagram by listing the basic constructs
of each diagram that we have used. Because SysML is a graphical language, we base on
graphical models to show the basic anatomy of these diagrams.

e The block Definition Diagram

The Block Definition Diagram (BDD), as it is captured in Figure 2.2, is a copied dia-
gram from UML with some modifications. It bases on the UML class diagram, with
exclusion of some capabilities, such as some specialized forms of associations. On
the other hand, it has modified some concepts such as the notion of class was re-
placed by the notion of block. It added also new concepts such as the blocks ports.
The BDDs allow the modelling of the system parts using blocks and they offer the
possibility to visualize the dependences between these blocks and the existed hier-
archy. This hierarchy helps to identify two groups of blocks: Atomic and composite
blocks. It is possible to obtain a flatten BDD of the system, by replacing each com-
posite block by its sub-blocks.

Each block (as it is shown in Figure 2.3) has a name, a set of values, properties, ref-
erenced blocks, parts, operations and constraints expressed on its properties. To
interact with the rest of the system, the block uses the ports which are placed on its
sides.

2.3. SYSML DIAGRAMS 15

composite block

bdd [B] /

<< block >>
B

constraints

operations

composition relation

parts | 2

references /
‘[/—‘ values ‘ﬁ,
properties

<< block >> << block >> \
; - atomic block
constraints constraints
operations operations
parts [| prl rl | parts O»2
references references ’\
values values
properties properties

port

Figure 2.3: A Block Definition Diagram (BDD)

e The Internal Block Diagram

The Internal Block Diagram (IBD) is an adaptation of UML composite structure dia-
gram. It is used to model the internal structure of each composite block. This inter-
nal structure is resumed on the set of parts and connectors. The parts represent the
instances of blocks, each part has the same ports as the block that instantiates. The
connectors specify the topology of connecting parts, they link the ports of parts. Ifa
connector links a port of the father block and one port of its parts, it will be consid-
ered as a delegation connector (see Figure 2.4).

part

composite block delegation connector

ibd B)/ \ / /
<< blgek >> / /

Partl : B1 Part2 : B2

pl pl p2

Figure 2.4: An Internal Block Diagram (IBD)

e The Parametric Diagram

The Parametric Diagram is a new diagram introduced in SysML. Its use is for ex-
pressing the constraints (equations) on the blocks properties. Thus, it constitutes a
good mean to evaluate the system performance.

16 CHAPTER 2. SE AND SYSML LANGUAGE

e The package Diagram

The Package diagram is used to organize the global model of the system, where the
other SysML diagrams will be elements of the system packages. This organization
can be done in different ways by considering some different aspects. It can be done
by considering the system hierarchy (enterprise, system, design, .., verification). It
can also be guided by the domain (requirements, use cases, structure, behaviour,...)
or by the view points.

2.3.2/ BEHAVIOURAL DIAGRAMS

SysML offers four behavioural diagrams. They allow modelling the behaviour of blocks
using a set of steps (actions, states, ...) provided with a set of evolution rules. They take
generally the form of oriented graphs. In the following, we give a simple definition of each
behavioural diagram, we will focus more on the sequence diagram.

e The Use Case Diagram

The Use Case Diagram models the functionalities of the system that require an in-
teraction between the system and its users. Anything that users would to do with
the system has to be made available as a use case or a part of a use case [GBBo5].

e The Sequence Diagram

The Sequence diagram (SD) is a copied diagram from UML2.0. It represents the
interactions by focusing on the observable exchange of messages between blocks.
A sequence diagram has two dimensions, where the vertical dimension represents
time and the horizontal one represents the blocks which participate in the interac-
tion ([RJBo4]).

message

actor \

sd ...)

combined fragment

operator B1 B2
msgl
guard
alt
operands >
[cond]
) msg2
[elsel
N msg3

Figure 2.5: Basic elements of a Sequence Diagram (SD)

2.3. SYSML DIAGRAMS 17

It consists of a set of lifelines which represent the interacted blocks. The temporal
execution of interactions is shown as a succession of messages. A message takes
the form of an arrow originates at the sender and ends at the receiver. A SD can also
contain a set of combined fragments (CFs). CFs are used to express different types of
control flows, such as concurrency, choice and loop ([RJBo4]). They are defined by
interaction operators (Alt, Loop, Break, etc) and corresponding interaction operands
(see Figure 2.5).

e The Activity Diagram
An activity diagram illustrates one activity. It models its fundamental elements

which are the actions, the control elements (decision, division, merge,..) and the
inputs/outputs/control flows.

e The State Machine Diagram

The State Machine Diagram captures the different states of the block to which this
diagram is associated. The transitions between states are labelled by the actions ex-
ecuted by the block to change its state. The execution of a transition can imply some
modifications of the values that describe the last state. State machine diagram didn't
know any modification from UML 2.0.

2.3.3/ REQUIREMENT DIAGRAM

The Requirement Diagram (RD) is a new diagram in SysML. It specifies the system require-
ments which are expected by the users. This diagram offers a way to model the functional
and no-functional requirements and the different links between them.

<< requirement >>
Reql
<<block>> | <_<_S_C”_"S_f{ fi ltext=...
B ID= R
<< requirement >> << requirement >>
Reqg2 Reg3
text=... text=...
[D= R1.1 [D= R1.2
1
|
1
<< derivpReqt >>
1
<< requirement >>
f Req4
. << verify >>
<< testcase >> =
___________ s text=...
TestCase ID= R4

Figure 2.6: Basic elements of a requirement diagram

It is possible to represent the existed hierarchy between requirements using the compo-
sition and the derivation (<<deriveReqt>>) relations. It is also possible to link a block to

18 CHAPTER 2. SE AND SYSML LANGUAGE

arequirement using the satisfaction relation (< <satisfy>>), or to associate a requirement
with a test case using a verification relation (<<verify>>) (see Figure 2.6). Each require-
ment is defined by its name, its description and its own and unique identifier.

2.4/ FREE PLATFORMS FOR SYSML MODELLING

2.41/ TOPCASED

TOPCASED [top] is the acronym of Toolkit in Open Source for Critical Applications and
Systems Development. It is a free computer-aided engineering software. It bases on the
Eclipse development platform [wik].

The objective of TOPCASED is to cover the set of requirements for developing software
and systems (the descending branch of the V cycle), as well as the transversal needs such
as configuration management, change management and requirements engineering. Its
development is based on a MDE (Model Driven Engineering) approach. It is based on a
global ecore meta-model which includes all the classes of SysML diagrams elements. It
provides also the elements with their graphical notations which simplify the modelling.
Based essentially on standardized language for modelling software (UML, SysML, AADL,
etc.), TOPCASED works with XMI files.

2.4.2/ PAPYRUS

Papyrus [pap] is a set of eclipse plugin that belongs to the Eclipse Modelling Project. It
aims to offer an integrated environment which is dedicated for users. Thus, Papyrus is a
new environment for editing all sorts of EMF models (Eclipse Modelling Framework), and
to particularly support UML and its profiles such as SysML, MARTE, etc.

Thus, Papyrus offers editors for diagrams of EMF based modelling languages. It offersalso
the glue for linking its editors and other tools. Its generation of XMI files, allows the use
of its models with other applications and tools. Papyrus is graphical but also textual tool.
Thus, it is possible to edit the models using textual editors which offer the assistance to
edit the model content.

2.5/ CONCLUSION

In this chapter, we have presented SysML and its diagrams, by focusing more on those
that we will base our work on. SysML can be used to simplify the modelling of systems.
However, its graphical and high level aspect constitutes a barrier in front of its use for
verification, which makes the introduction of its diagrams into a transformation chain
very essential. In the next chapter, we will present some transformation works which have
targeted SysML diagrams to generate formal specifications.

3

MODEL-DRIVEN DEVELOPMENT AND
MODELS TRANSFORMATION

The model-driven development is centred on the use of models. It is a form of gen-
erative engineering that has its own processes, where all or a part of an application
is generated from models. It covers many approaches such as: Model-Driven Architec-
ture (MDA) [MDA, Davo3], Model-Integrated Computing (MIC) [SK97] and Software Fac-
tories [GS03]. The MDA is defined and supported by Object Management Group (OMG).
MDA changed the software development style, it describes each artefact as a model, which
shifts the developers from code-oriented to model-oriented approach. It bases on three
major types of models: Computation Independent Model (CIM) involves specification of
system functionalities, Platform Independent Model (PIM), and Platform Specific Model
(PSM). MIC focuses on the formal representation, composition, analysis, and manipula-
tion of models during the design process. However, the software factories focus on the
product-line systems, where it tries to automatize the product development.

In the context of model-driven development, the notion of model transformations [CHO6]
plays a fundamental role. This transformation can concern different kinds of models (e.g.
formal or informal, graphical or textual, etc.), and it can be done for different purposes
(e.g. formalizing for verification objective, for generating application code, etc.)

In the remainder of this chapter, we will give an overview of the transformation of models
anditsapplication on SysML models, where in section 3.1, we present the basic concepts of
model-driven development. In section 3.2, we summarize the different types of transfor-
mation. After that, in section 3.3, we present some works which have been done on SysML

Contents

3.1 BasicConcepts« v it i e e e e e e e e 20
3.2 Model Transformations 21
3.3 Transformation of SysML Diagrams 23
3.4 Transformation of Sequence Diagram 24
3.5 Interface Automata 25

3.5.1 Operations on interface automata 26

3.5.2 Refinement of interface automata 28
3.6 Coloured PetriNets 28
3.7 Conclusion i i i e e e e e e e e e e e 29

19

20 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

diagrams. However, in section 3.4, we focus on the transformation works that targeted se-
quence diagram of SysML. In our contribution, we need to transform sequence diagrams
into interface automata and CPNs, that is why we reserve the section 3.5 and the section
3.6 to present the formal models: Interface automata and coloured Petri nets. Finally, in
section 3.7, we conclude.

3.1/ BAsic CONCEPTS

The model-driven development defines a toolbox that contains the necessary tools for ex-
pressing and structuring the different works in this field. These tools allow for architects
and developers to share the same vocabulary. In the following, we give an overview of the
basic notions and concepts used in this domain.

» Model and Modelling:

A model is an abstract description of the real system, this description can be con-
sidered as a simplification and a restriction of the reality according to a given view-
point. This viewpoint is controlled by the needs and objectives behind the construc-
tion of the system. Generally, in addition to the textual annotations, the model in-
cludes many more of the graphical components.

The modelling is the art of projecting the studied system on conventional diagrams.
Datamodelling is an abstract representation, where the individual values of data are
ignored [wik].

« Model-driven

The model-driven approaches are based on the notion of model, they provide a set
of models that help in understanding and steering the system design, construction,
deployment and maintenance. In these approaches, the models are seen as the base
of each activity.

o Meta-Model

A meta-model is the model that defines the expression language of other models
[OMGo6] in a high level of abstraction. A meta-model has two principal features:
firstly, it must capture the essential features of the modelling language, and sec-
ondly, it must be able to depict the concrete syntax and semantic of this language.

« Meta-meta-model

The meta-model is the model of a modelling language. Consequently, meta-model,
in turn, is expressed in a meta-modelling language specified by the meta-meta-
model.

All these concepts are represented in Figure 3.1:

« In the first level: There is the system to model with all its entities and all factors
around them.

 In the second level: There is the model which is created by projecting the system
on a given schema, and separating the elements of interest according to given ob-
jectives. It can be an UML class diagram, a conceptual model MERISE, or all other
schema that represents an abstract view of the modelled objects.

3.2. MODEL TRANSFORMATIONS 21

Fourth level

‘Meta-meta-model

VAN

Conforms to

Third level

Meta-model

Conforms to

Second level

‘ Model

Represented bylﬁ

System First level

Figure 3.1: The abstraction levels of modelling.

« Inthe third level: There is the modelling language or meta-model that specify the
classes of concepts used in the second level.

« In the fourth level: There is the meta-meta-model. It must be generic enough to
define many other languages. Also, it must be precise to express the rules that each
language must respect.

3.2/ MODEL TRANSFORMATIONS

A model transformation, regardless of each type it is, can be seen as a function that takes
as parameters (inputs) a set of models and provides as results (outputs) another set of mod-
els. The input and the output models are structured according to their meta-models. The
implementation of a transformation between a set of models is possible if there exists se-
mantic correspondences between their meta-models. These correspondences are mate-
rialized using transformation rules which can be implemented in a given language (e.g.
ATL, ATOM?, XSLT, MTL,TGG, etc.).

Generally, a transformation may take multiple source and target models. Furthermore,
in some cases, this transformation may have the same source and target meta-model. In
this case, we talk about endogenous transformation. Otherwise, when the source and the
target meta-models are different, we talk about exogenous transformation. In literature,
it exists another classification, where a transformation belongs to one of these types:

22 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

Source refers to |Transformation| refers to | Target
meta-model Definition meta-model
conforms to executes conforms to

writes

Source model Transformation engine Target model

Figure 3.2: The basic concepts of models transformation [CHO6].

 Vertical transformation: It is the type where the source and target models are de-
fined in different level of abstraction. There is two directions of transformation,
which decreases the level of abstraction (i.e. refinement) and the other which in-
creases it.

« Horizontal transformation: This trend aims to modify the presentation of the
source model with preserving the same level of abstraction. This modification can
concern for example an add or a deletion of some model elements, or merging two
source models.

« Oblique transformation: In this kind of transformation, we find a couple of the
vertical and horizontal transformations. It is used generally by compilers to gener-
ate the executable code after optimizing the source code.

In addition to the horizontal and vertical transformations, there is another classification,
which differentiates between the type of models. When the model takes the form of a
textual specification, it is called code rather than model. Thus, we can distinguish two
categories of transformation:

o Transformations Model — Code:

It consists in generating textual specifications from models. There are many lan-
guages and tools that allow us to implement this kind of transformation (i.e. AToM?,
Acceleo, etc.). AToM? allows graphical transformation where the source model and
the transformation rules are specified graphically. Acceleo, the tool that we use in
our work, is the result of several man-years of R&D started in the French company
Obeo [obe]. Acceleo is a source code generator of the eclipse foundation that imple-
ments the MDA (Model driven architecture) approach to realize application starting
from EMF (Eclipse Modelling Framework) models. Thus, Acceleo is an implementa-
tion of the norm of the Object Management Group (OMG) for transforming models
to text (M2T), where the transformations take the form of templates.

« Transformations Model — Model:

3.3. TRANSFORMATION OF SYSML DIAGRAMS 23

In this kind, the target model is not a text. Also, to perform this category of transfor-
mation, we find many languages and tools (i.e. AToM?, ATL, etc.). In this work, we
are interested to ATL (Atlas Transformation Language). ATL [atl] is a model trans-
formation language and toolkit. In the field of Model-Driven Engineering (MDE),
ATL provides a way to produce a number of target models from a set of source mod-
els. An ATL transformation program is composed of rules that define how source
model elements are matched and navigated to create and initialize the elements of
the target models. These rules are based on a mixture of declarative and impera-
tive constructs. The set of the rules constitutes the ATL grammar. Each ATL rule is
characterized by two mandatory elements:

— from: A pattern on the source model with possible constraints.

— to:Oneormoreelementsofthe target model, itindicates how target elements
must be initialized from the corresponding source elements.

In literature, the transformation is usually used to generate the source code of appli-
cations. Another use is for formalizing models of high level languages. Various re-
search works have been done to transform informal models to formal ones [RC15] [AEC14]
[GCA13] [DHJ*10]. These transformations are generally implemented and offered as tools
which can assist architects during the verification of their systems. Many of these works
are dedicated to generate formal models from UML and SysML diagrams [RC15] [AEC14]
[RKBIH15], which are considered as informal models.

3.3/ TRANSFORMATION OF SYSML DIAGRAMS

Many works (e.g. [Vaso9], [GBHP15], [JKPB12]) have been done to integrate the descriptive
power of SysML models with the analytic and computational power of Modelica models.
This integration provides a capability that is significantly greater than provided by SysML
or Modelica individually.

A mapping between SysML and Modelica, considering a small subset of the Modelica lan-
guage, has been proposed by Vasaiely [Vaso9]. This work presents a mapping between
SysML parametric diagrams and Modelica equations. A representation of Modelica mod-
els in SysML have also been processed by Johnson et al. in [JKPB12]. In this work, the au-
thors explore the definition of continuous dynamic models in SysML and the use of graph
grammar to maintain a bidirectional mapping between SysML and Modelica constructs.
In [GBHP15], Gautier et al. proposed a tooled MDE (Model Driven Engineering) approach
to validate requirements of complex systems at the earliest stages of design process. This
approach consists on generating Modelica simulation code from SysML models.

In [GBHP13], Gauthier et al. presented their approach to verify the SysML models con-
sistency with the VHDL-AMS (e.g. the naming of a component with reserved words of
the VHDL-AMS language (syntactic error) or the connection of two ports with different
types (semantic error)). They have used an ATL transformation to generate problems from
SysML models and after generating VHDL-AMS code. A test approach to validate model-
to-model transformation with EUnit [GDKR*11] has been presented there.

The authors, in [PBG14], showed a translation of SysML state machines models into a class
of non-autonomous Petri net models using ATL. The target formalism of the transforma-
tion is the class of Input-Output Place Transition Nets (IOPT), which extends the known

24 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

low-level Petri net class of Place/Transition Petri nets with input and output signals and
events dependencies. In [RKBIH15], the authors present a transformation process from
SysML diagrams into another variant of Petri nets. They proposed an approach which de-
scribes a verification methodology of SysML activity diagrams based on their transforma-
tion into RECATNet model.

In [CLY*14], the authors used SysML and requirement elicitation templates to collect and
model user requirements, and then transform requirement diagrams into other SysML di-
agrams for design and analysis (use-case and activity diagrams) using the transformation
rules which are defined using ATLAS Transformation Language (ATL).

There is another trend to transform SysML specification into UML models. The work in-
troduced in [LBLP11] is in line with this trend that tries to make possible to re-use the test
generation techniques initially developed for UML4MBT (restriction of UML for Model
Based Testing process). The introduction of SysML4MBT is justified by its capacity to
model more constructs and thus more reach semantic. The approach is a model-based
testing approach that takes as input a SysML specification of a system under test and au-
tomatically translates it into an equivalent behavioural UML model. This generated UML
model is finally used to derive test cases and executable test scripts.

3.4/ TRANSFORMATION OF SEQUENCE DIAGRAM

The sequence diagram, which is a shared model between UML and SysML, was be the mat-
ter of many transformation works. The most of the proposed approaches are based on
using transformation rules, and they essentially differ in the target model of transforma-
tion.

In [KBSB10], [RF06], we find a description of an automated transformation method, which
allows transforming sequences diagrams into their equivalents of coloured Petri nets. In
[ES09], the authors proposed some correspondences to transform sequence and use case
diagrams to Petri Net. These correspondences formalize the interactions composed of
messages and combined fragments (alternative, optional and loop). Authors in [Mer14],
basing on Meta-modelling and ATL grammars, they defined a set of ATL rules to trans-
form SDs to Petri Nets. They proposed rules for the basic constructs of SDs and for a
sub-set of combined fragments kinds (Alt, Par). In [CESK09], a grammar, which based on
graph transformation, was proposed to transform the sequence diagram into ECATNets,
avariant of Petri Net. The authors used the AToM? tool to implement the meta-models of
SDs and ECATNets, to generate the modelling tools and to implement the graph grammar
that performs the transformation. They are also some works that have as target models a
textual specification. In [AYAM11], a graph grammar was used to generate Promela code
starting from SDs. The authors used also the tool AToM? for meta-modelling and for im-
plementing the graph transformation grammar. In [MMSC13], The authors proposed a
grammar to transform the communication diagram, which has a near semantic to that of
SD, into Buchi automata.

In [CH11a], some correspondences between sequence diagram and interface automata are
given. This work was be the reference in [CCM12a] to prepare the sequence diagram of
SysML blocks for the compatibility verification phase. But, in [CCM12a], this transforma-
tion have done manually, which can be considered as a source of user errors. That is why,
we propose, later in this thesis, the correspondences for more constructs, and we propose,

3.5. INTERFACE AUTOMATA 25

also, a set of ATL rules to automatize this transformation. Contrary to the works men-
tioned before, which they don't take into consideration the case of nested combined frag-
ments, in our work, we explain the different cases, and how we deal with them. Also, ata
stage of this thesis, we need to transform the sequence diagrams into coloured Petri nets.
This transformation will be guided by our adaptation objective, and the generation of the
coloured Petri nets will be steered by the adaptation contract in a meta-model-driven ap-
proach. Thus, in the next two sections, we present the different possible operations on
Interface Automata (IAs) and Coloured Petri Nets (CPNs).

3.5/ INTERFACE AUTOMATA

Interface automata [dAHO1] were introduced by Alfaro and Henzinger to specify compo-
nent interfaces and also to verify component assembly based on their actions. The set
of actions is decomposed into three groups: input actions, output actions and internal
actions. Input actions allow to model the methods that the component exposes to its en-
vironment. These actions are labelled by the character '?". The output actions model the
methods that the component needs to invoke from other components. These actions are
labelled by the character '!'". Internal actions are methods that can be activated locally and
are labelled by the character ';".

Definition 1: Interface Automaton

An interface automaton A is represented by the tuple
(Sa, Ia, =4, 29, 24, 64)
Where:

e S, is a finite set of states.
e [y C S, is a set of initial states.

° 22,22, and Zf{, respectively denote the sets of input, output, and internal
actions. The set of actions of A is denoted by X4.

® 04 CSAXZsXS4is the set of transitions between states.

Example:

In Figure 3.3, we give the example of interface automata used in [dAHO1] to model a soft-
ware component that implements a message-transmission service. The component has
a method msg, used to send messages. Whenever this method is called, the component
returns either ok or fail. To perform this service, the component relies on an interface
to a communication channel that indicates a successful transmission, and nack, which
indicates a failure. When the method msg is invoked, the component tries to send the
message, and resends it if the first transmission fails. If both transmissions fail, the com-
ponent reports failure; otherwise, it report success.

26 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

ok! ack?
msg,__ | —
ok ! ack?

] . = msg? send
ail g B ms

fail_4 % 2 8__se —>@—>@4 e—»send
ok « ¢ e ack
fail g ecnack

failt tack?
(. J
(a) Interface automaton User (b) Interface automaton Comp

Figure 3.3: example of interface automata.

L send
ack

b nack

e ack?
|\ J

Figure 3.4: User ® Comp. The illegal state of the product is depicted with dotted border.

§
L, send

o ack

b nack

Figure 3.5: User || Comp.

3.51/ OPERATIONS ON INTERFACE AUTOMATA

The synchronous product is used to capture the parallel execution of two components rep-
resented by their interface automata. Before computing the global behaviour of the two
components, it is mandatory to verify if they can be assembled by testing their compos-
ability. Two interface automata A; and A, are composable if:

1 I _vyO O _vH — H _
o 0zl =39 nx{ =3 N3y, =34 03 =0,

3.5. INTERFACE AUTOMATA 27

Definition 2: Synchronous product

The synchronous product between two composable interface automata A; and A, is
defined as:

— 1 (0] H
A1®A2 = < SA1®A2, IA1®A2: 2A1®A2’ 2A1®A2’ 2A1®A2’ 6A1®A2 >

SA1®A2 = SA] XSA2 and IA1®A2 = IAI XIA2~

° ZA]@;AZ = (2541 U 2542) \ Shared(Ay,A>).
o 29, = U) \ Shared(A;.A).
o 3 . =ZH USH U Shared(A,Ay).

((Sl s SZ)’ a, (S; s S’z)) € 6A1®A2 If

— a & Shared(Ay,Az) A (s1,a,57) €64, A 52 =)
— a & Shared(Ay,Az) A (52,4, 5)) € 64, A S| = 8]
— a € Shared(Ay,Az) A (s1,a,57) € 64, A (52,4, 5)) € da,.

We define by: Shared(A,A;) = (Eﬁxl N 222) U (Z/?1 N 222), the set of shared actions between
Aj and A».

The synchronous product of two interface automata may contain illegal states. This can
happen when, at a given state of the parallel execution a component is ready to send a
shared action, and the other component doesn't anticipate this, and it doesn't perform a
reception of this shared action.

Definition 3: Parallel composition

The composition of two interface automata A; and A, is denoted by A; || Ay, it is
computed by eliminating from the product A; ® A; the illegal states and all states
reached from these illegal states by enabling output and internal actions.

The set of illegal states of two interface automata Ay, A; is defined as :

ac Egl(sl) ANa ¢ E‘IAZ(SQ)
Illegal(A1,Ax)= S (s1,52) € Sa, XS4, | Ja € Shared(A,, Az). \%
ace Egz(sz) Aa gz (s1)

We define by ¥/, (s;) and £ (s,), respectively, the set of input and output actions at the state
S1.

Definition 4: Compatibility

Two interface automata A; and A, are compatible iff A1[|A # 0.

From the definition of compatibility, we can deduce that two interface automata are com-
patible if the result of their parallel composition contains at least one state.

28 CHAPTER 3. MODEL-DRIVEN DEVELOPMENT AND MODELS TRANSFORMATION

3.5.2/ REFINEMENT OF INTERFACE AUTOMATA

The refinement relation can be defined as alternating simulation [dAHO1]. An interface
automaton P refines an interface automaton Q, if all input steps of Q can be simulated by
P and all the output steps of P can be simulated by Q. We need some preliminary notions:

Given an interface automaton P and a state v € Sp, the set e-closurep(v) is the smallest set
U € Sp such that:

e veUand
« ifueUand (u,a,u)edpandac:t thenu e U.

The e-closure of a state v consists of the set of states that can be reached from v by taking
only internal steps.

Consider an interface automaton P, and a state ve Sp. We let:
. ExtEng(V)= {a|3du € & — closurep(v).a € Eg(u) }, and
« ExtEnl(v)={a|3u € £ - closurep(v).a € Zh(u) }

be the sets of externally enabled output and input actions, respectively, at v.
Consider an interface automaton P and a state v € Sp. For all externally enabled input and
output actions a € ExtEn9(v) U ExtEn{ (v), we let:

o ExtDestp(v, a)={(u,a,u’)e 6p. u € & — closurep(v)}.

Using this notation, the alternating simulation on interface automata is defined as fol-
lows:
Definition 5: Alternating simulation

Consider two interface automata P and Q. A binary relation >C Sp X S¢ is an
alternating simulation from Q to P if for all states v € Sp and u € Sp such that
v > u, the following conditions hold:

e ExtEni(v) C ExtEn’Q(u) and ExtEnd(u) € ExtEnQ(v).

e For all actions a € ExtEnJID(v) U ExtEng(u) and all states u’ € ExtDestp(u,a),
there is a state v/ € ExtDestp(v,a) such that v/ > u/'.

Thus, we can define the refinement relation between interface automata as follows:

Definition 6: Refinement

There is a refinement relation between two interface automata P and Q, if there is
an alternating simulation between their initial states.

3.6/ COLOURED PETRI NETS

Coloured Petri Nets (CPNs) preserve useful properties of Petri nets and at the same time
extend initial formalism to allow the distinction between tokens [Jen96]. In CPNs, a token
has a data value attached to it. This attached data value is called token colour.

3.7. CONCLUSION 29

Definition 7: Coloured Petri Net

Formally, a CPN is defined as a tuple:
< P’ T’ A, 2’ C, N’ E’ G! I >
Where:

e P: is a set of places.
e T: is a set of transitions.
e A: is a set of arcs.

e X: is a set of colour sets defined within CPN model. This set contains all
possible colours, operations and functions used within CPN.

C: is a colour function. It maps places in P into colours in X.

N: is a node function. It maps A into (P x T)U(T x P).

e E: is an arc expression function. It maps each arc acA into the expression e.

G: is a guard function. It maps each transition te T into guard expression g.
The output of the guard expression should evaluate to Boolean value true or
false.

I: is an initialization function. It maps each place p into an initialization ex-
pression i.

3.7/ CONCLUSION

In this chapter, we have presented the transformation of models, its types and its objec-
tives, where we have seen that the major objective is to prepare system models for a verifi-
cation phase. In our work, the transformation concerns SysML models and exactly SysML
sequence diagram. In a stage of our work, we need to transform sequence diagrams into
interface automata, that is why we have reserved a section in this chapter to present the
different operations that can be done on interface automata. In another stage, we need to
transform our sequence diagrams into coloured Petrinets. Because our resulted models of
transformation will be the input of an adaptation process, we will give in the next chapter
an overview of component-based software engineering and the works have already been
done to adapt software components.

4

CBSE AND COMPONENT ADAPTATION

he software engineering (SE) is interested especially by the working methods and the
Tsystematic procedures that allow the development of large software, which respond
to customers expectations [MRo07]. It searches for reliability and good performances of
software [Jalo8], while respecting time limitation and cost constraints.

The development of large software requires a lot of effort and asks for cooperation of many
entities, which makes crucial the decomposition of the development on several phases.
The organisation of these phases is guided by the chosen development method. The com-
mon phases between these methods are essentially the analysis, the design, the imple-
mentation and the test phases. The analysis allows capturing the different requirements,
without making reference to how these requirements will be satisfied. The design phase
defines how the requirement, specified in the last phase, will be achieved. A language
must be used (such as UML, SysML) to represent the different solutions. The implemen-
tation phase allows coding the different proposed solutions, and the test phase allows ver-
ifying that the specified requirements and the searched quality are respected by the final
product (see Figure 4.1).

Another way to organize the development is by decomposing the software on a set of com-
ponents, developing from scratch some components, reusing others and adapting them.
In the remainder of this chapter, we will talk more on the notion of components and their

Contents

4.1 Component-Based Software Engineering 32
4.2 Definition of Software Component 33
4.3 Abstraction of Components 34
44 Componentlinterfaces 35
45 Component Models 35
4.6 Verification of Component Compatibility 36
4.7 Formal Analysis of Assembled Systems 37
4.8 Components Adaptation 38

4.8.1 Adaptation Taxonomy 38

4.8.2 General Adaptation Process 40

4.8.3 Principal Adaptation Approaches 41

4.8.4 Other Approaches 44
4.9 Conclusion e e e e 47

31

32 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

satisfy

Client
requireme

Software

Figure 4.1: The goal of software engineering.

adaptation.

This chapter is organized as follows: We will expose in sections 4.1, 4.2, 4.3, 4.4 and 4.5
definitions of Component-Based Software Engineering (CBSE), software component, ab-
straction of a component, the notion of interfaces, and we give examples of component
models. In section 4.6 and 4.7, we present some works which concern the verification of
assembled systems. In section 4.8, we present some works that have already been done
in the context of component adaptation, we present also a taxonomy of adaptation tech-
niques. Finally, in section 4.9, we conclude.

4.1/ COMPONENT-BASED SOFTWARE ENGINEERING

The Component-Based Software Engineering (CBSE) is a branch of the software engineer-
ing which is based on the separation of preoccupations. It has emerged in 1990 as an ap-
proach which bases on reusing entities called 'software components'".

Atanytime, the system can express new needs to new services. However, the fact of seeing
and developing the system as one unit constitutes a barrier in front of its evolution, where
it will be very difficult to specify the system parts which are altered by each evolution.
Also, the verification of the system after modification will be more and more complex,
because the totality of the system will be concerned. In fact, the disadvantages of this
approach have changed the manner of designing and developing these systems. That is
what justifies the trend of the new approaches which take a system as a set of basic units
such as CBSE approach.

Thus, the CBSE is seen as the process of defining, implementing, assembling and inte-
grating independent components or weakly coupled components. It searches essentially
to make the construction of software more easier by assembling pre-existed components.
Thus, it aims to the reuse, where a component can be used by several systems, which re-
duces the cost and the time of development. This approach also contributes to control the
evolution of the system and its maintenance, where the altered parts by maintenance can
be defined in term of components (see Figure 4.2).

4.2. DEFINITION OF SOFTWARE COMPONENT 33

Easy construction

system

Easy maintenance and evolution
replaced b
¥

*

/
E@ﬁ
:

Figure 4.2: The goals of CBSE.

4.2/ DEFINITION OF SOFTWARE COMPONENT

In literature, there is several definitions of the software component term. Among these
definitions, we choose the one cited in [Mic95], in which the component is defined as a
binary and reused piece of software which can be used and connected with other compo-
nents. In [Szy98a], Clemens Szyperski defined the software component as a unit of com-
position with contractually specified interfaces and explicit context dependences. Ac-
cording to Szyperski, a software component can be deployed independently and can be
the subject to composition by third-parties.

From the definition of Szyperski, we can extract the essential characteristics that must be
fulfilled by a software component:

o Standardized: this means that the component must conform to a model. This model
can define the interfaces of the component, its meta-data, its documentation, its

34 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

composition ad its deployment.

« Independent: The component can be composed and deployed without having need
to a specific set of components. When a component, in the new system to which it
was composed, requires a set of exterior services, this need can be specified using
the required interface of the component.

« Composable: For a component to be composable, all its external interactions must
take place through publicly defined interfaces

« deployable: To be deployable, the component must be able to operate as stand-alone
entity on some components platforms that implement the component model.

« Documented: A component must be fully documented to allow to potential users to
decide whether a component can satisfy their needs or not.

A component is considered as a black box. Thus, it must be equipped by a set of interfaces
which allow to the component to interact with its environment, it must provide essentially
a description of its interfaces set. More precisely, it has to specify what it can offer and
what it waits from its environment. Each interface must be provided with a contract that
specifies the mode of use and the constraints according to which the functionalities of the
component will be executed [Szy98a].

4.3/ ABSTRACTION OF COMPONENTS

The abstraction allows hiding the detail of implementation through the use of interfaces.
The most ideal abstraction is that where the environment doesn't need any detail about
the implementation of the component interfaces, which justifies the notion of 'black box'
component. The components interact using their input and output actions. Input actions
represents procedures or methods that can be called, and the receiving end of communi-
cation channels, as well as the return locations from such calls. Output actions are proce-
dures or method calls, message emissions, the act of returning after a call or method ter-
minates, and exceptions that arise during method execution [dAH01]. The verification of
these components consists on evaluating their outputs in function of their inputs.

Component

Figure 4.3: Black-box component.

Often, knowing some detail about the component activities is necessary to have more in-
teractive component, so called grey box component. In this case, the component can give
more detail concerning, for example, the conditions under which the exterior services are
called.

4.4. COMPONENT INTERFACES 35

4.4/ COMPONENT INTERFACES

In the approaches where the components are considered as black-boxes, the definition of
the components interfaces is very important to make them able to communicate and col-
laborate with others entities. The interfaces must be defined very clearly to give a good
description of the roles of the components. The description of interfaces must be sepa-
rated from the components implementations [Crno2, Szy98b]. This separation helps to (i)
replace the implementation without changing the interface, (ii) improve the system per-
formance rather than rebuild it, and (iii) add new interfaces without changing the existed
ones.

A component must be, at least, equipped by one type of interfaces, required interface or
provided interface. The provided interfaces of a component represent the services that the
component can offer to its environment. However, the required ones are the imported
interfaces of the other components. They summarize the services that the component
requires from its environment. Each service is represented concretely as an operation (see

Figure 4.4).
[]<§
Component

*

fferedInterfaces

*

*

Interface -
J requiredInterfaces

*

operation

*

[Operation]

Figure 4.4: UML sub-meta-model of syntactic specification of a software component.

4.5/ COMPONENT MODELS

The most fundamental problem of component-based development is how a system can be
constructed by assembling and making interoperate a set of components conceived by dif-
ferent providers. Thus, the standardization of component models, that the components
must respect, appears indispensable. That's why, many component models have seen the
light,such as CCM, EJB, etc. According to Rainer Weinreich and Johannes Sametinger
[WSo1], a component model must define the standards set that will reign the design and
the implementation of components. These standards concern the naming, interoperabil-
ity, personalisation, composition, evolution and the deployment. A component model
defines also the standards which specify the implementation of the component model on
agiven platform and the set of executable software entities which are necessary to support

36 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

the execution of a component which conforms to the model.

A component model must define at least three elements, the syntax of components (i.e.
how they are constructed and represented), their semantics (i.e. what the role of the com-
ponent in the assembled system), and their composition. There exists many component
models for different application domains. The industrial models (e.g. EJB (Entreprice
Java Beans)[Suno6], CCM (CORBA Component Model) [OMGo6], COM (Component Object
Model) et .NET [M. 07]) provide the extra-functional services in containers, such as the se-
curity and the persistence services, which discharge the developers from defining these
extra-functionnal services and allows them to concentrate on the business logic of their
applications. These component models have different views on the component notion.
Some models are used only for the architectural design without any execution support
(e.g. UML 2.0). Some models define the component as a run-time entity (i.e. COM/NET
[M. o7], Fractal[BCL*04, BCL*06]), however, there are other models that consider it as a
design entity (i.e. KobrA [ABMoo], SOFA [PVo2, BHPo6], PCM [BKRO7]).

The most well-known of such component models are CORBA and EJB [Suno6]. The tradi-
tional CORBA Component Model, as it is defined in CORBA 2.4 [OMGO00] and its anterior
versions, have many limitations. Among its major limitations, the lack of a standard to
deploy objects on the server side, it also lacks of mechanisms of managing objects life cy-
cles. In these versions, there is no separation between the functional and no-functional
requirements. To overcome these limitations, the CCM (CORBA Component Model) have
seen the light. It defines the functions and the services that allow the implementation,
the management, the configuration and the deployment of components. The most fa-
mous component model is, without doubt, CORBA, which is the most appropriate for dis-
tributed applications. However, the cumbersome and the complexity of this model con-
stitute its major disadvantages. The model EJB is more restrictive and more efficient. It
bases essentially on JAVA, and it has earned an important part of the market [Mou11].

4.6/ VERIFICATION OF COMPONENT COMPATIBILITY

Building a system by assembling a set of components implies the adoption of some pre-
cautions during the assembling time. First of all, the components must be compatible,
after that, it is necessary to check that these components fulfil the requirements to which
they are dedicated. The compatibility check of components is performed by computing
the compatible states of their parallel execution. According to the optimistic approach of

4)
ok; k?
ack? Q compatible state
_,@%@m nac "@M
illegal state
J ack?
(. J

Figure 4.5: User ® Comp. The set of compatible states is not empty

de Alfaro and Henzinger [dAHo1], which is defined on interface automata, two compo-

4.7. FORMAL ANALYSIS OF ASSEMBLED SYSTEMS 37

nents are compatible if the parallel composition of their interface automata is not empty.
This means that there is at least one compatible state in their synchronous execution. To
illustrate that (see Figure 4.6), we reuse the example presented in Figure 3.5.

A decision about the compatibility or not of components must be taken on several dif-
ferent levels. The first level concerns the signature of component services. In [CPSo6a],
the authors insist on the fact that the signature of a component is no longer sufficient to
ensure the good interaction with other components. The definition of signature, which
is resumed in a presentation of the offered and required services of components, must
be duly completed by a specification of the interaction protocol of the components with
their environment [dAHos5], [CCM12a]. Also, Bordeaux et al. in [BSBM04], have insisted
on the fact that the compatibility of web services depends not only on static properties
like the correct typing of their message parameters, but also on their dynamic behaviour,
where providing a simple description of the service behaviour, based on process-algebraic
or automata-based formalisms, can help detecting many subtle incompatibilities in their
interactions.

Teixeira in [TeS11] proposed an approach to evaluate the compatibility of components
specifid in UML, they use the state machine diagram to describe component behaviours
which are then translated to a Petri net to identify compatibility problems.

Carrillo et al., in [CCM12a], have proposed an approach that allows combining the semi-
formal models of SysML and the formal models (interface automata) to verify the consis-
tency and the compatibility of SysML blocks.

In the component domain, there is many approaches that have targeted the component
compatibility issue, and the manner to make them cooperate. The main difference lies in
the formalism which is used to model the interactions of components with their environ-
ment. The choice of a model among others, is guided and justified by the expressiveness
of the model semantic and the properties to verify. In [EPKo2] and [KEPo7a], the authors
have used PRES+ [CEP0O], which is a variant of timed Petri net. They justify this choice
by the capacity of PRES+ to capture intuitively the concurrency and real-time aspects, and
can expose both the data and the control flow of the system. The process algebra is used
into many works (e.g. [BBCosa] use a subset of Pi-Calculus [MPW92], [AG97] use CSP
[Hoa85]). This choice of process algebra is justified by its capacity to feature more expres-
sive descriptions of protocols, enable more sophisticated analysis of concurrent systems,
and support formal derivation of safety and liveness properties.

In our approach for verifying SysML blocks compatibility, we have tried to benefit from
the hierarchy present in the system models. We have based on Hierarchical Interface au-
tomata (HIAs) as formal hierarchical formalism that allows modelling the interactions of
each block with its environment using composite and nested states. After, basing on some
relations between the HIAs of blocks that we want to verify their compatibility, we select
some states to flatten and others to consider as abstract states. We have introduced this
step into our approach to alleviate the compatibility verification.

4.7/ FORMAL ANALYSIS OF ASSEMBLED SYSTEMS

Itisvery interesting to make call to formal methods to verify the result of assembling a set
of components to construct a system [KEP07a]. The use of formal methods appears worth-
while because it allows spotting the interaction gaps and the parallel execution defaults of

38 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

these components. A formal analysis can concern several errors, such as the deadlock, the
unfairness, etc. It can also target the temporal properties [CGP99, Scho4, CCM14], such as
the order of components services invocation, or verifying if when a component requests a
service, the other components can always answer this request by offering the correspond-
ing service. This verification can also concern the defaults in one component but after
its assembling with others. In this case, it targets for example the local blocking in this
component [BCS*08, CK96]. In [CK96], Cheung and Kramer present their approach for
verifying if a component contains the anomalies by using some environment hypothesis.
These hypothesis or constraints allow to enhance the verification by reducing the problem
of state explosion. Because verifying a component, without having information about its
execution context, makes the verification more difficult. This difficulty can be resumed
by analysing no interesting scenarios, or by verifying the scenarios that can never happen.

There are several manners that allow the verification of the assembled systems. On one
hand, there is those that take the system in its totality as one unit. They base on the
traditional verification methods such as model checking [CGPo1] and theorem proving
[Sam76]. On the other hand, we find the methods which take advantage of the fact that
the system is considered as a set of components [CIPo4, XBo3, CCM14, DOP13, DOP14]. In
[CCM14], Carrillo et al. prove that if a temporal property is verified on a SysML block (a
SysML block is the equivalent of a component in the component-based paradigm), it will
be verified on the parent block which contains this block with others. There is also some
methods that put some hypothesis on some properties of some components or of envi-
ronment, to guarantee that other properties on other components will be verified. This
method is called Assume-Guarantee [DOP13, DOP14]. It bases on iterative processes to
prove that the initial hypothesis is always verified or it is verified in the context where the
system will take place.

In our case, we assemble the system parts after adapting them using special blocks called
adapters. To verify that a temporal requirement which is initially satisfied by a block, is
still satisfied after assembling it with other blocks, we base only on a sub-set of the gener-
ated adapters. Later, in chapter 9, we give more details about our approach.

4.8/ COMPONENTS ADAPTATION

When assembling separately developed components, there is a high probability of en-
countering the problem of mismatches. These latter may concern for example the name of
services, as well as the order in which the component asks for (resp. offers) environment
services (resp. its services). That is what justifies the introduction of third entities or com-
ponents that are used to solve these mismatches. These components are called 'adapters'.
Thus, the adapter plays the role of a mediator (see Figure 4.6) between the reused compo-
nents. In fact, all the interactions pass through this adapter which acts as an orchestrator
and allows the involved components to work correctly.

4.81/ ADAPTATION TAXONOMY

In [CMPo6], there is a classification of the different types of the adaptation that can be ap-
plied on software parts.This classification is based on a set of criteria, where each criterion
produces two categories. The first criterion concerns the phase in the life cycle in which

4.8. COMPONENTS ADAPTATION 39

a m
c AN c
NN
! b 27 7. B 2
O—
«adaptation contract»
(a, n)
(b, m)
L |
1
a m
{Q—Ad—Q}
Cy b o n C2

Figure 4.6: The role of the adapters.

adaptation takes place:

« Static adaptation (design time adaptation):

This category concerns the adaptation done before the execution of the system. It
can refer to both requirement (or model) adaptation, or to the adaptation of already
developed pieces of code. The first case may happen when we need to extend the
system specification by new requirements. Or, when we want to modify the require-
ments. However, the adaptation of already existed pieces concerns for example the
modification of the manner whose the services are requested or offered. In the static
adaptation, all steps are known and have been planned before proceeding with adap-
tation.

o Dynamic adaptation (runtime adaptation):

It takes place in the execution time of the software. In this case, the components to
adapt and the steps to follow are unknown before the the adaptation time.

Another classification is based on the the way in which the adaptation is managed. Ac-
cording to this criterion, the adaptation could be:

« Manual adaptation:

The adaptation steps as well as the adaptors are specified and developed by the ar-
chitects and developers involved in the development process. It can be assisted by
some tools.

« Automatic adaptation:

All adaptation steps and adaptors are automatically generated by software tools.
These tools are able to deduce if its necessary to apply an adaptation. It is also to
these tools to decide about the steps to follow for generating the adapter.

40

CHAPTER 4. CBSE AND COMPONENT ADAPTATION

Yahiaoui et al., in [YTLo4], have introduced an alternative criterion. This criterion con-
cerns the kinds of the properties concerned by the adaptation:

« Functional adaptation:

It concerns the organisation of required and offered services. It can involve both
adding new services, and modifying the existed ones.

Technical adaptation:

In this case, the adaptation intends to modify the way and the constraints under
which the services are provided. It is usually done by adding or removing con-
straints to the behaviour of these services.

Another criterion concerns the restriction of the component interaction protocol. Ac-
cording to this criterion, it is possible to distinguish two kinds of adaptation:

« Restrictive adaptation:

It bases on reducing the interaction protocol of the components to remove the be-
haviours that lead to errors (as in [IS01, ITo3a]). The idea consists on synthesizing a
controller between components. Deadlocks detected on the controller are avoided
by removing some branches. By this way, the controller enables the maximum set
of interactions between the components which do not lead to deadlock states.

Generative adaptation:

It is more general, it takes into consideration the effect that when two compo-
nents are developed separately, there is a great chance that they do not agree on
the same name for their services. It may also have a problem in the combination
of their protocols (parallel execution). Thus, it seems very essential to establish
a mapping between their services. This mapping can take the form one-to-one
[YS97, BCPo4, BBCo5a] or more complex form one-to-many [CMM10b]

4.8.2/ GENERAL ADAPTATION PROCESS

The component adaptation process contains essentially three phases:

The specification of the components interaction protocols using suitable formalism
(IDL: Interface Description Language): This formalism must be able to represent the
concerned concepts by the adaptation phase.

The specification of the adaptation contract: IDLs of components must be extended
by some adaptation rules which form the adaptation contract. When assembling
two components developed separately, there is a high probability to confront the
problem of mismatches between their services. Essentially, the adaptation contract
in CBSE is used to solve this problem of mismatches between components [CS14].
An adaptation contract is specified by a set of rules, where a rule takes the form of a
synchronous vector v; [CPS08] (see Figure 4.7). The number of elements of each vec-
tor is the number of components. A synchronous vector v; for a set of components
({Ci}ici1..m), is a tuple (ey, ..., ,) with ¢; can belong to the set of actions of the compo-
nent C;, or it can be equal to €. ¢ means that the component C; doesn't participate in

4.8. COMPONENTS ADAPTATION 41

C1 Ci Cn

vj

o

Figure 4.7: The adaptation contract.

this synchronization. For example, the vector v= (¢,..., €j,..., &,...¢) means that the
service e; of the component C; corresponds to the service e, of the component C;.

3. The generation of the adapter: It can be done automatically. Basing on the adapta-
tion contract and the IDLs of components, the adapter will be generated.

4.8.3/ PRINCIPAL ADAPTATION APPROACHES

Inliterature, there are many approaches for adaptation. The most known differ essentially
in the formalisms used to describe the interaction of components with their environment.
In this section, we will present briefly two approaches, the first one uses the n-calculus
process algebra and the second bases on the labelled transition systems and Petri nets.

ADAPTATION OF 7-CALCULUS PROTOCOLS

In [BBCo5a], the authors have proposed an approach based on process algebra to generate
automatically the adaptors. In this work, the specification of the component interfaces is
extended by a description of the interaction protocols using n-calculus. The used variant
of pi-calculus is the following:

E::=0] a.E | (s) E | [x=y]lE | E|E' | E+E'
a::=71 | x?2(d) | x!'(d)

The input and the output actions, which represent the requests of services and the re-
ception of these requests, are represented using the notation x!(d) and x?(d), where x is
the name of the action, and d represents a set of parameters or data emitted or received
through x. The internal actions (no observable actions) are represented using 7.

The actions are included in processes E where 0 represents the inaction, (x)E represents
the creation of new name x in the process E. the operator [x=y]E represent the conditional
behaviour, [x=y]E can be translated by E if x=y, and by inaction in the other case. The
choice operator + between E and E' is translated with the execution of E or E'. However the
parallel operator || indicates the parallel execution of Eand E'.

We will explain this approach through this example:

42 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

role Client={
signature request! (Data url); reply? (Data page);

behaviour request! (url) . reply? (page).O
}

role Server={
signature query? (Data url); return! (Data file);

behaviour query? (url) . return! (file).O

¥

The Client is a web browser, where the user can enter an URL and send a request to vi-
sualize the web page or to open a file. The Server is a web sites host which contains an
application that allows to receive the requests of clients and send a web page or a file. The
interaction behaviours of the Client and the Server are represented using n-calculus.

Basing on the correspondences between request! and query? and between reply? and
return!, the adapter A that satisfies this specification can be defined as follows:

A=request?(url) . query!(url) . return?(file) . reply!(page).O

ADAPTATION BASED ON LTSS AND PETRI NETS

The work presented in [CPSo6a] is based on using regular expressions and labelled transi-
tion systems to specify the component protocols. The correspondences between compo-
nent services are expressed using synchronous vectors. However, the adapter specifica-
tion is represented using regular expressions which can be represented as a LTS that has
the synchronous vectors as labels of its transitions.

Synchronous Product

LTSs of components m
\ Adapter
incompatible? ne
yes R adapter m

>

g g generation
?
v ._Q,, reorder? os
no /
O _’I‘\\
no adapter 4)—'/0

Petri net

Figure 4.8: Adaptation approach [CPS06a].

The automatic generation of the adapter can be done with two manners:

« Adaptation without reordering: In this approach, the adapter must respect the or-
der of actions, and it must deliver the received action to the concerned component
before executing any other action. In this case, the adapter is simply represented by

4.8. COMPONENTS ADAPTATION 43

the mirror of the synchronous product of the LTSs of components. The mirror con-
sists on inverting the type of actions, where the input (resp. output) actions become
output (resp. input) actions.

« Adaptation with reordering: It consists in reordering the calls for services, the idea

isto encode in a Petri net the set of the adaptations constraints. The places assigned
to the states of the components (Control states) and the places called resource-places
(the states having a label which finishes by '??" or '!!') must be created. After that, the
transitions of the Petri net, their incoming and their outgoing arcs will be created by
following the information manifested by the transitions of the LTSs of the compo-
nents. This set of incoming arcs includes also the arcs that link resource-places with
the transitions of components (they represent receptions of calls). However, the set
of ongoing arcs contains also the arcs that link the transitions of the components
with the resource-places (they represent the generation of a service call). After that,
the LTS of the adapter and a set of 'tau’ transitions will be used to links the resource-
states where the components put their calls for services with the resource-places
from where the components consume these calls. The Algorithm 1 details the cre-
ation of this Petri net.

Algorithm 1 Adaptation with reordering using Petri net

INPUT: {(4;, S;, I;, Fi, T; Y}iz1.n // the LTSs of the components
(Ar, Sg, Ir, Fr, Tg) //the LTS of the adapter specification

1:
2:
3:
4
5

© o N o

10:
11:
12:
13:
14:
15:
16:

17:

18:
19:
20:
21:
22:

for all component i do
for all s; € S; do
- create a place Control-i-s;
end for
-add a token in the place Control-i-I;, where I; is the initial state
of i
for all a! € A; do
- add a place 77a
end for
for all a? € A; do
- add a place !'a
end for
for all (s,1,s’) € T; do
- add a transition t labelled with [
- add an arc from the place Control-i-s to the transition t
- add an arc from the transition t to the state Control-i-s’
- if 1 has the form a! then add an arc from the transition t to
the place 77a
- if 1 has the form a? then add an arc from the place !'a to the
transition t
end for
end for
for all s € Sg do
- create a place Control-R-sg
end for

44 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

23: —add a token in the place Control-R-Ig

24: for all (sg,(1y,...,1,),8’g) € Tr do

25: - add a transition t labelled with tau

26: - add an arc from the place Control-R-sg to the transition t
21: - add an arc from the transition t to the place Control-R-s’p
28: for all 1; of the form a! do

290: - add an arc from the place 77a to the transition t

30: end for

31: for all 1; of the form a? do

32: - add an arc from the transition t to the place !!'a

33: end for

34: end for

The LTS of the adapter will be obtained by computing the marking graph (non recur-
sive adapters) or the recoverability graph (recursive adaptors) of the resulted Petri
net.

4.8.4/ OTHER APPROACHES

Several surveys have been done on existing works which have proposed solutions in the
software adaptation area [CMP06, SEG09]. In the literature, many approaches [KEPo7b,
CPSo6b, CMM12] have been proposed to adapt components designed separately. These
approaches can differ, for example, in the formalism used to represent the interfaces of
the components and to model their interaction protocols and the context of adaptation.
There exist many frameworks that allow modelling components and establishing links
between them such as Papyrus [pap], BIP [BBB*11], etc. Papyrus put at the disposal of de-
signers a set of SysML diagrams that allows modelling the architecture, the behaviour and
the requirements of components. BIP (Behaviour, Interaction, Priority) is a general frame-
work that supports rigorous design of components. BIP language allows building com-
plex systems by coordinating the behaviour of a set of components. The behaviour is de-
scribed with Labelled Transition Systems (LTS) extended with data and functions written
in C. In [BBJ*10], the authors have introduced the notion of dispatcher component. Their
dispatcher links the required and the provided ports of BIP components, but it doesn't im-
pose a scheduling on component execution, where the global interaction of these compo-
nentsis guided only by their execution scenarios, and the dispatcher plays its role roughly
as a connector. In fact, most of these frameworks use the concept of connector to express
the coordination between components. Nonetheless, connectors are stateless [BBB*11].
In our work, we use the connectors to express coordination between components of sys-
tems but after a stage of behaviour adaptation. In our work, the coordination between
components cannot be assured without inserting special components called adapters that
allow solving the mismatches between the name of component services, and they allow
also restricting some coordination scenarios which are not essential for assembling these
components. This restriction is allowed by respecting the specification of the interactions
of the parent (of the reused blocks) block toward its environment.

In [CMPo6], we find a census of the different methods and works that have proposed so-
lutions on the software adaptation track. The authors have addressed the different an-
tecedents and motivations that justify the interest given to this track, where the major ob-
jective is the creation of a software component market (the so called COTS : Commercial

4.8. COMPONENTS ADAPTATION 45

Off The Shelf), where the developers can find some components for their applications. The
authors opened a debate on the characteristics that must be present in a component, this
debate can be summarized into the question: How can we offer components with specifi-
cations that will serve and help in the totality of CBSE process?

In [CPSo6a], the authors insist on the fact that the component signature is no longer suf-
ficient to ensure its good adaptation with other components. The definition of signature,
which is summarized into a presentation of the offered and required services of the com-
ponent, must be duly completed by a specification of the interaction protocol of the com-
ponent with its environment. This protocol helps to order the interaction of this compo-
nent, allows defining its functional semantic and gives an idea of its behaviour towards
its environment.

Most adaptation proposals focused on solving the behavioural mismatches between ab-
stract descriptions of software components [MPS12, CPS08, TIo8, BBCosb]. In [TIo8],
Tivoli et al. present an approach that allows generating adapters by enforcing behavioural
properties. The entry of the adaptation process is the set of MSCs (Message Sequence
Charts) that represent the components to assemble, and the set of LTL properties (live-
ness and safety) that the resulted system must satisfy. The authors have adopted on a
restrictive adaptation approach to generate the adapter. This approach consists in reduc-
ing the interaction protocol of the components by removing the behaviours that lead to
errors. The idea consists in synthesizing an adapter that plays the role of a controller be-
tween components. Deadlocks detected on the controller are avoided by removing some
branches. In this way, the controller enables the maximum set of interactions between
the components which do not lead to deadlock states. Bracciali et al. in [BBCo5b], have
proposed their methodology for generative behavioural adaptation where components
behaviours are specified using a subset of the 7-calculus and composition specifications
are specified with name correspondences. In [MPS12], Mateescu et al. have presented
their on-the-fly approach to adapt a set of services initially modelled by STSs (Symbolic
Transition Systems), where these STSs are extracted from the BPEL description of the ser-
vices. A contract which contains a set of synchronization vectors is used to specify the
correspondences between the interfaces of services. They perform a verification of this
contract using CADP [GLMS13], a rich verification toolbox. They explain there, how it
is possible to represent these STSs and LTS using LOTOS process algebra. They explain
also their forward approach to eliminate, from the adapter, the states and the branches
that can cause anomalies (e.g. livelock states) in the interactions of the adapter with web
services. Canal et al. in [CPS08], show how to automatically generate a concrete adaptor
from a specification of the component interfaces and the adaptation contract (which takes
the form of a set of correspondences between the actions of components). Also in [CS14],
Canal et al. have focused on asynchronous communication between components, where
components exchanged messages via buffers. Our approach takes place in the context of
synchronous communication, where we adopt a generative-restrictive approach to con-
struct the adapter block that can solve name mismatches between blocks. We have used
interface automata to formally specify the interactions of the reused blocks, where their
parallel composition, which consists in eliminating the illegal states, allows us to generate
adapters that avoid the blocking of components. Also, our adapter is generated according
to the specification of the composite block that will contain the reused blocks (which is
not the case for the works presented above), this specification can be seen as a reflection
of the environment where the components will take place.

The approaches which intend to assemble the components can also differ in the direction

46 CHAPTER 4. CBSE AND COMPONENT ADAPTATION

of the design: bottom-up vs to-down. We find in [CCM12b], Carrillo and al. adopt a top
down approach, where they verify if a specification of a SysML composite block can be di-
vided on a set of sub-blocks specifications, the authors didn't refer to the adaptation issue.
In [ITo3b, PSTo7], the authors have adopted a bottom-up approach, they construct the
wanted system by assembling existing components. Thus, they start from existing com-
ponents which represent the leaves of the system. They take components designed sepa-
rately, hence to allow the correct interaction between them, they synthesize a third entity
called adapter. Our approach, which we present in this paper, concerns SysML blocks as
in [CCM12b], it is a bottom up approach like in [ITo3b, PSTo7]. However in our process,
we don't give only the mapping rules between actions like in [ITo3b], and we don't give
the specification of the adapter as in the works already done in [PSTo7]. But, we give the
interaction protocol of the composite block which will include the reused blocks. This
block represents the part of the system that the architect wants to develop and integrate
to the system. Thus, the interactions of this block must be specified with respect of the
role which it will play in the system where it will be integrated.

The main difference between the existing adaptation approaches concerns the detail
given to generate the adapter. In [ITo3b, CH11b, DBM14, BBCosb, TIo8, CMM10a], the au-
thors give only an adaptation contract which is resumed in a specification of the corre-
spondences between the services of the blocks (see Figure 4.9 (i)). In fact, this will have an
impact on the generation of the adapter that will contain all the possible interaction sce-
narios between the reused components, it can contain scenarios that they are not neces-
sary for the cooperation of the reused components. However, in [PSTo7, CPSo6a, CPS08,

)
\\lel-

C 2
va

G

~—————

(iii) Ad=f(C1, C2, M, C)

Figure 4.9: The difference between our approach (iii) and the existing approaches (i, ii) of
adaptation.

MPS12], the authors increment their adaptation contract by a specification of the adapter
interactions by ordering the vectors of the adaptation contract using regular expressions
or a LTS of vectors (see Figure 4.9 (ii)). This requires that the developer, before making the
specification of the adapter, must know very well the interaction of each component with
its environment, and he must have an idea about the synchronous execution of the reused
components. In this context, we ask the question about the detail that will be enough to
generate adapters to make a set of components cooperate, where this cooperation must
respect the intention behind their assembling? Therefore, in our approach (see Figure 4.9

4.9. CONCLUSION 47

(iii)), we propose to moderate the specification that must be given to generate the adapter.
In our approach, the developer gives the interactions of the part of the system to be built
and integrated to the system with its environment. The generation of the adapter is based
on the specification of this part, by taking into consideration that this last will be the box
that will include and represent the reused blocks during their interactions with the rest of
the system.

In our approach, we don't use the conditions of consistency used by Carrillo et al. in
[CCM12b] concerning the inclusion relation between the set of services offered and re-
quired by the composite block vs the set of services provided and required by its sub-
blocks, because in the present work we take into consideration the possibility of making
an adapter as a complement to achieve the specification of the parent block. In fact, our
notion of adapter differs from the notion used in the existing works. In previous works,
the adapter is defined as a protocol converter (it solves the problem of name mismatches
between components). However, in our approach the adapter has two roles. It plays the
first role as a converter between sub-blocks on the one hand, and between the reused
blocks and their environment on the other hand. It plays the second role as a comple-
ment, i.e., when the environment of the reused blocks asks for a service, and this service
is not offered by any of the reused sub-blocks, the adapter gives way thus to the developer
to implement this service. Also, when a reused block needs a service and this last can't be
offered by neither its sibling blocks nor by the environment of its parent, in this case the
adapter gives way to the developer to define this service.

We can consider that our approach introduces a new branch to the taxonomy of compo-
nent adaptation. In [BBCosb], the adapter is defined binary, and in [ITo3b] is defined
system-wide. However, in our approach, the adapter is defined as a composite-block-wide
adapter.

4.9/ CONCLUSION

In this last chapter of the state of the art part, we have presented some preliminaries con-
cerning the notion of component. We have also presented some works which have given
interest to the verification of systems developed as a set of components. We have focused
more on the adaptation and the works that have targeted this issue.

In the next part of this thesis, we will present our contributions. They concern, as we have
mentioned slightly in this chapter, the compatibility verification, the adaptation, and the
verification of the assembled systems after adaptation.

CONTRIBUTIONS

49

5

FORMALIZING SYSML DIAGRAMS

he goal of proposing and introducing SysML into the system engineering domain is
Tto put at the disposal of designers a language that allows resuming the thousands of
document lines (textual documents used to describe the requirements, the architecture
and the behaviour of the system) using a set of convivial and graphical models. Thus,
SysML was created to be a high level language that offers to designers sufficient design
flexibility. However, this flexibility and no-formal aspect of SysML have contributed to
the emergence of some ambiguities. These ambiguities can be summarized in the differ-
ent interpretations of the semantic of its concepts and diagrams (e.g. there is no indica-
tion at the level of SysML diagrams about whether the communication is synchronous or
asynchronous). In order to make the semantic of SysML diagrams that we will use more
precise and clear, we propose, in this chapter, to formalize these diagrams.

In the rest of this chapter, we will give a formal definition of four SysML diagrams: In Sec-
tion 5.1, we present the elements of the Requirement Diagram (RD). After, in Section 5.2,
we give a formal definition of the Block Definition Diagram (BDD), where we focus on its
different elements. Next, in Section 5.3, we formalize the SysML Internal Block Diagram
(IBD). However, we reserve Section 5.4 for a behavioural diagram of SysML which is the
Sequence Diagram (SD).

Contents
5.1 Requirement Diagram (RD) 52
5.2 Block Definition Diagram (BDD) 53
5.21 BDD Formal Definition L. 53
522 Block 53
523 Ports 54
524 Parts 55
525 References 55
526 BDD Relations 56
5.3 Internal Block Diagram (IBD) 57
5.4 Sequence Diagram (SD), 59
55 Conclusion e e 59

51

52 CHAPTER 5. FORMALIZING SYSML DIAGRAMS

5.1/ REQUIREMENT DIAGRAM (RD)

Therequirement diagram, asits name indicates, allows us to represent the system require-
ments and the relations between them using graphical notation. In this section, we for-
mally define the SysML requirement diagram.

Definition 8: Requirement Diagram (RD)
We formally define the requirement diagram as follows:

RD= (Req, AtReq, ExtElm, CRel, DRel, SRel, VRel)

Where:

e Req: is the set of all requirements.

e AtReq: is the set of atomic requirements, we have AtReq C Req. Each re-
quirement belongs to this set can't be decomposed into other requirements.
We have:

AtReg={re€Req | #(ry,...,r,) € Req", (r, (ri,...,r,))eCRel}.

e ExtElm: is the set of external elements. The elements of others diagrams to
which the requirements are linked. An external element can be a block, a test
case, etc.

e CRel: is the set of all containment relations between requirements. This
relationship enables a complex requirement (Y r € Req A r ¢ AtReq) to be
decomposed into its containing child requirements. We have:

CRel C Req X P(Req).

e DRel: is the set of derivation relations («deriveReqt>»). We have:
DRel C Req X Req.

e SRel: is the set of satisfaction relations («satisfy»). A satisfaction relation
specifies which block is responsible of satisfying the given requirement. We
have:

SRel C (ExtElm X Req)
e VRel: is the set of verification relations («verify»), we have:

VRel C (ExtElm X Req)

In this type of relation the external element is a set of scenarios represented by
a state machine, sequence or activity diagrams, we call it a test case.

This formalisation helps in defining our approach for adapting SysML blocks and verify-

5.2. BLOCK DEFINITION DIAGRAM (BDD) 53

ing the set of requirements. It allows us also to exploit the relations between the require-
ments and the blocks during the verification phase.

5.2/ BLOCK DEFINITION DIAGRAM (BDD)

The Block Definition Diagram (BDD) in SysML defines features of blocks and relationships
between them such as associations, generalizations, and dependencies. It captures the
definition of blocks in terms of properties and operations [OMG12b].

5.21/ BDD FORMAL DEFINITION

Definition 9: Block Definition Diagram (BDD)

Formally, we define a block definition diagram by the tuple:
BDD= (B, R)
Where:

e B: is the set of blocks that compose the system, where each block represents
a part of the system that has its own properties and behaviour. We have:

B={B;|ie€e{l..n}, ne N}

where n is the number of blocks in the BDD.

e R: is the set of relations between blocks. We have:
R={R |ie€{l..m}, me N} = Herit U Ass U Comp U Aggreg.

We will define the sets Herit, Ass, Comp and Aggreg later in this chapter.

« WehaveB # 0. This means that our system is composed at least of one block.

e ifCard(B) >1 = R # 0, where Card: B — Nis the function that returns the number
of blocks which compose our system. This relation means that our blocks are not
isolated, and there are some interactions between them.

5.2.2/ BLock

The blocks are modular units of the system description. The Block represents the basic
structural element of the BDD. It may include both structural and behavioural features,
such as properties and operations. To communicate with its environment, a block has a
list of ports.

54 CHAPTER 5. FORMALIZING SYSML DIAGRAMS

Definition 10: Block

Formally, we define a block as:

Block = (name, Values, Operations, Constraints,

Parts, References, Ports)

Where:
e name : is the name of the block.
e Values: is the set of attributes of the block.

e Operations: is the set of the operations of the block. It describes its internal
behaviour.

e Constraints: this set gives some conditions about the values. A constraint
may be a comparison or an equation for computing a value of the block.

e Parts: this set includes the list of the blocks connected with the current block
through a composition relation.

e References: this set includes the list of the blocks connected with the current
block through a navigable association. We mean by navigable association,
an association which has one direction. In our case, its direction is from the
current block to the referenced blocks.

e Ports: is the list of the ports positioned on the block used to interact with
the blocks which belong to its environment. We define by

BlockPorts:B— Ports,

the function that returns the set of ports associated to a given block.

5.2.3/ PORTS

The ports allow to block to interact with the other blocks. In SysML 1.2, we distinguish
flow ports and standard ports. SysML 1.3 has deprecated the flow specification. However,
it has focused more on standard ports. Formally, we define a standard port by its name,
its type and its direction. The type of the port is represented by a block containing a list of
operations, we call it "interface_Block". The direction specifies if the portisa required
or a provided port, it takes two different values: req or prov.

we formalize a standard port as:

port= (name, type, Direction)

A block which types a port contains a set of operations, we call it Interface_Block, it
specifies one of the interfaces associated to the block.

5.2. BLOCK DEFINITION DIAGRAM (BDD) 55

Definition 11: Interface_Block

We define an Interface_Block as follows:
Interface_Block= (name, Op)

Where:
e name: is the name of the interface_block.

e Op: is the set of provided operations by the block, which are provided through
the provided port whose type is this interface_block. It can also be the set
of required operations which are required through the required port whose type
is this interface_block.

5.2.4/ PARTS

The list of parts of a block contains the list of blocks which are connected to the current
one by means of a composition or an aggregation relations.

We have:

o The set of parts of a block is included in the set of the BDD blocks: Parts C B.

o The function BlockParts : B — B"returns the set of parts of the block passed
in parameter. It returns thus the set of blocks which are targeted by composition
relations that start at the current block.

« ¥V B;, Bj € B (B; € BlockParts(B;)

= 3 r e(Aggreg U Comp) (Sides (r) = (B; , B)))
Where, Sides is a function which affects to each relationr € Rthe two blocks which
delimit this relation.

Sides : R — B?

o The function BlockParts allows us to identify if a block is an atomic or a composite
block.

e ¥ B; € B, we have:

— BlockParts(B;) = 0 & B;isanatomic block.
— BlockParts(B;) # 0 < B;isacomposite block.

5.2.5/ REFERENCES

The compartment References represents the list of blocks that the current block interacts
with, and in the same time, it indicates the Min and Max cardinalities which specify the
minimum and respectively the maximum number of the instances of target block refer-
enced by the current block. It uses also a boolean variable to indicate if these referenced
instances blocks must be ordered or not.

We have:

56 CHAPTER 5. FORMALIZING SYSML DIAGRAMS

o The function References : B — (B X N x N x B)”returns a set of tuple,
where each tuple specifies: (1) a block which is referenced by the block passed in
parameter, (2) the min and the max of instances of the referenced block, and (3) a
boolean to specify whether this set of instances is ordered or not.

o We use the function ReferencedBlocks: B — P(B) to represent the set of blocks
which are referenced by the block passed in parameter:

ReferencedBlocks(B;)={B; | d e€ References(B;) A e(1)=B;}

 The existence of a block B in the set of references of a block B; means that it exists
areference relation between them:

V B;, Bj € B (B; € ReferencedBlocks(B;)
= 1 r € Ass (Sides (r) = (B; , Bj)))
« Ifthereisareference between two blocks B; and B}, this implies that it exists in each
of them a port which are linked, and these two ports have a different direction.
¥ B;, B; € B (B; € ReferencedBlocks(B;)
= 1 p; € BlockPorts(B;) A p» € BlockPorts(B;) A
((p;.Direction=prov) A(p;.Direction=req))V

((p;.Direction=req) A(p;.Direction=prov)))

5.2.6/ BDD RELATIONS

The set of relations in a BDD serves to construct bridges between blocks. Thus, from the
definition of the different compartments of a block, we can deduce that a relation can ex-
press composition, aggregation, heritage and associations between system blocks.

1. Heritage:

The heritage relations allow to simplify the development of system, and to create
clear models by factorizing the shared elements between blocks.

We have:

o The function Inherit : B X B — B, is aboolean function that allows us to
know if the first parameter inherits the second, where the two parameters are
blocks.

e VY B, B; € B (Inherit(Bj, B;)
= d r € Herit (Sides(r) = (B; , Bj)))

2. Composition and aggregation:

The composition and aggregation relations allow to preserve the principle of black
box vs white box, which guides the development of system through multiple phases
by transiting across abstraction levels. Aswe know, the difference between the com-
position and aggregation relations concerns the importance of the parts for their
parents, where in the composition relation, the parent block can't exists without its
parts. Hence, we can consider that the composition is a strong aggregation.

5.3. INTERNAL BLOCK DIAGRAM (1BD) 57

o Thefunction IsComponent0f : B X B — IB,isaboolean function thatallowsus

to know if the block passed in the first parameter is a component of the second
block passed in the second parameter.

« The set of all blocks linked with composition or aggregation relations which

starts from B; € Bis equal to the set of blocks which belong to the parts of B;
(BlockParts(B;)).

¥V B; € B ({B; € B| IsComponent0f(B;, B;)} = BlockParts(B;))

« if a port p; is owned by a block B;, and this port has no corresponding port in

the blocks in the same hierarchy with B;. Thus, we deduce that p; is a port of
the parent block (PB) which contains B; (i.e. it exists a delegation between the
composite block PB and the component blocks {B}).

V PB € B, V B; € B, ¥ p; € BlockPorts(B;) (
isComponent0f(B; , PB) A # p; € J BlockPorts (B;)(
Correspond(p; , p;)) = = 1 p € BlockPorts(PB) (Correspond(p; , p)))

where Correspond: Ports x Ports — B isthe function that returns true
when the ports in parameters are corresponding ports (two ports are corre-
sponding ports if they are conceived to be linked together).

3. Association:

The Block Definition Diagram uses the associations with restraint navigability. This
kind of associations expresses a directional connexion between two blocks.

5.3/

o The function Associated : B X B — Bisaboolean function that allows us

to know if the block passed in the first parameter is the target of a navigation
relation which starts from the block passed in the second parameter.

« Wehave, the set of all blockslinked to B;e Bwith an association that starts from

B; is equal to the set of references of the block B; (BlockReferences(B;)):
¥ B; € B ({Bj | Associated(B; , B;)} = BlockReferences(B;))

INTERNAL BLOCK DIAGRAM (IBD)

The Internal Block Diagram (IBD) in SysML captures the internal structure of a composite
block B (BlockParts(B) # 0) [OMG12b]. It represents the relations between the required
and the provided ports of blocks instances. These relations are represented using the con-

nectors.

58 CHAPTER 5. FORMALIZING SYSML DIAGRAMS

Definition 12: Internal Block Diagram (IBD)

Formally, an IBD can be defined as a graph, where instances of blocks (parts) are
vertexes and the connectors are edges.

IBD = (Parts, Ports, Connectors)
Where:

e Parts is a set of instances of the blocks linked to the composite block B with
composition relations.

e Ports is a set of ports. Each port is assigned to a part.

e Connectors is a set of connectors linking provided ports with required ports
of blocks instances.

We can divide the set of connectors into two sub-sets, a set of delegation connectors (DC)
and a set of standard connectors (SC). Thus, we have:

e Connectors = DC U SC

« DC: isthe set of connectors that link the composite block with its parts.

DC= { (pi , pj) | pi € Ports A p; € Ports A

((p;i.Direction= req A p;.Direction=req) V

(pi.Direction= prov A p;.Direction=prov))}

« SC: isthe set of connectors that link the parts.

SC={ (pi , pj) | pi € Ports A p; € Ports A

((p;.Direction= req A pj.Direction=prov) V

(pi.Direction= prov A pj.Direction=req))}

5.4. SEQUENCE DIAGRAM (SD) 59

5.4/ SEQUENCE DIAGRAM (SD)

Definition 13: Sequence Diagram (SD)
We specify a SysML sequence diagram by:

SD= (Blocks, Msgs, CF, Ref)

where:

e Blocks: is the set of blocks, they represents the actors involved in the inter-
action described by this SD.

e Msgs: is the set of the messages exchanged between the blocks.

e CF: is the set of combined fragment,

CF={ (operator, operands) | operator € {alt, loop, par, opt,
seq, strict, break}, operand ={msg| msgeMsgsl}}

e Ref: is like anchors which indicate that this sequence diagram includes other
sequence diagrams. Ref = {SD;}.

5.5/ CONCLUSION

In this chapter, we have formalized four SysML diagrams which are the Requirement Dia-
gram (RD), the Block Definition Diagram (BDD), the Internal Block Diagram (IBD) and the
Sequence Diagram (SD). We will use RD to represent the requirements of systems. The
BDD and IBD will be used to model the architecture of systems. However, we will focus on
the SD to model the behaviour (interaction) of the parts (blocks) of systems. The formalisa-
tion of these diagrams will help us to define our approaches of adaptation and verification
without ambiguities. Thus, this chapter will be the reference in the next chapters when
we deal with high level modelling.

6

A SysML MobDEeL DRIVEN APPROACH
TO VERIFY BLOCKS COMPATIBILITY

In the component paradigm, the system is seen as an assembly of heterogeneous com-
ponents, where the system reliability depends on these components compatibility. As
we have mentioned in chapter 2, SysML uses the Block Definition Diagram (BDD) and the
Internal Block Diagram (IBD) to model the structure of the blocks (the components) and
to establish links between them. To model the behaviour, SysML uses the State Machine
(SM), the Sequence Diagram (SD) and the Activity Diagram (AD).

In SysML, the interactions between blocks are modelled using IBDs and SDs. These in-
teractions take the form of architectural links in the IBDs. However, SDs, that interest us
in this chapter, allow us to model the scheduling of these interactions using the life lines
of blocks. Thus, the SDs constitute a good start point to verify the interactions inside the
system. Since formal verification is still inapplicable directly on SysML models [BCHM15],
therefore to apply a verification method, it's necessary to translate the SysML models into
formal ones, and then verify the wanted properties.

In this chapter, the interactions of blocks are represented using a set of SDs. Each SD is
associated with a block, and it describes the interaction scenarios of a block with its envi-
ronment. To formalize the semantic of SDs, we transform them into interface automata
(IAs) [dAHo1]. As we have mentioned in chapter 3, IAs constitute a good formal model
to represent the scenarios of requesting (output actions) and performing (input actions)
services of a block. The composition of interface automata allows verifying some rela-

Contents
6.1 Our Methodology 62
6.2 Transforming SDs of Blocks into Interface Automata 62
6.2.1 Sequence Diagram Meta-Model 63
6.2.2 Interface Automata Meta-Model 65
6.2.3 Basic Interaction Transformation Rules 65
6.2.4 ALT Combined Fragment Transformation Rules 68
6.3 Generation of Ptolemy Specification 71
6.4 The Blocks Verification 73
6.5 Case Study: CyCab 74
6.6 Conclusion e e e 78

61

62CHAPTERG6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

tions and properties on blocks such as the consistency and the compatibility (i.e. verify
the existence of an environment where it's possible to connect these blocks).

Our approach of transforming SDs into IAs is mainly based on meta-modelling [dLVA04]
and meta-model transformations [CHo3]. Such approach consists on defining the meta-
models of the source and the target models, and then specifying the correspondences be-
tween them in the meta-level. To avoid user errors during the transformation from the
SDs toIAs, we have proposed an automated ATL [atl] grammar, which performs this trans-
formation automatically. After, to verify some properties on the resulted interface au-
tomata, we have opted for Ptolemy [Pto] tool that requires as entry a textual specification.
For this purpose, we have used Acceleo [Acc] to define a templates set on our meta-model
of interface automata, that allows generating automatically the Ptolemy entry specifica-
tion. Thus, this tool chain, that we have developed, can assist the architect during the
compatibility verification phase by discharging him from doing many tasks.

The remainder of this chapter is organized as follows: In Section 6.1, we introduce our
proposed approach. After, Section 6.2 gives details of transforming sequence diagrams
into interface automata. Next, Section 6.3 presents the Acceleo templates that we have
proposed to generate Ptolemy entry specification. In Section 6.4, we present how we verify
the compatibility of the blocks. In Section 6.5, we illustrate our approach by a case study.
Finally, in Section 7.5, we conclude.

6.1/ OURMETHODOLOGY

Our approach aims to prepare the SysML blocks for the compatibility verification phase.
We show an overview of our methodology in Figure 6.1. Thus, we start from sequence
diagrams of the blocks that we want to verify their compatibility. After, by applying the
ATL grammar, that we will expose later in this chapter, we obtain their equivalents of in-
terface automata. For verifying the compatibility of the blocks, we use the Ptolemy tool.
Ptolemy contains a module which allows the verification and the composition of inter-
face automata. To discharge the user from redrawing the interface automata using the
Ptolemy user interface, we propose a set of Acceleo templates to automatically generate
the Ptolemy entry specification.

6.2/ TRANSFORMING SDS OF BLOCKS INTO INTERFACE AUTOMATA

In our work, the sequence diagrams are used to visualize the scheduling of the different
interactions of each block with its environment. In the sequence diagram of a block B,
the environment life line will represent the set of all blocks with which the block B can
interact.

To transform the sequence diagrams into interface automata, we give the correspon-
dences in this chapter. To implement these correspondences and to automatize the trans-
formation, we propose a set of ATL rules. Our ATL grammar doesn't deal with combined
fragments as anisolated units asin the works have already been done on Petri nets and the
other kinds of automata. It deals with the different cases of nested combined fragments.

This ATL grammar is defined on the meta-model of sequence diagram as source and the
meta-model of interface automata as target.

6.2. TRANSFORMING SDS OF BLOCKS INTO INTERFACE AUTOMATA 63

Sequence Diagram Sequence Diagram
of B/ of By

Transformation AT Lr

Interface Automaton |<(—— —”|Interface Automaton
of B/ of Bj
< Code Generation P O
Ptolemy Specification |«—— ——p»| Ptolemy Specification
of Br of Bj

YV

<\ Verification />
Figure 6.1: Our Methodology.

6.2.1/ SEQUENCE DIAGRAM META-MODEL

By intention to reuse existed modelling tools, we have used the sub-set of Papyrus [pap]
SysML meta-model and its graphical editor to draw the sequence diagrams. In Figure 6.2,
we represent the set of the classes of Papyrus meta-model that allows modelling sequence
diagrams, and in Figure 6.3, we give an example of a sequence diagram which is modelled
using Papyrus editor.

InFigure 6.2, theroot classisthe classInteraction. Sequence diagrams, that we will model,
will be the instances of this class. Each interaction can include a set of life lines, a set of
messages and finally a set of interaction fragments. The classes:

« LifeLine: each instance of this class represents an object which participates in the
interaction. It will be the support of sending (resp. receiving) events executed (resp.
intercepted) by the object.

« Message: defines the messages set interchanged between objects. Each message
has two ends; a send end and a receive end.

« InteractionFragment: is the super class of the classes: Interaction, CombinedFrag-
ment, InteractionOperand and OccurenceSpecification.

« CombinedFragment: each combined fragment includes a set of interaction
operands, and it has its own interaction operator. The interaction operator takes
a value of this list [alt, opt, break, loop, par, ...].

64CHAPTERG6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

owner 0.1[| Element
ownedElement 0..%

ifeLi K Interaction message 0.* NamedElement
| lifeLine 0 - - g —

Lifeline |covered 0..* T $ o AF Ar
| |

CI—*) IEteraction Message [endEvent \jecsageEnd

overedBy 0.. ragment
ecEvent
fragment 0..* T rectven —
message
Interaction fperand *| Combined Occurrence
perand |——| Fragment Specification
interactionOperator getCovered()

Tguard

Interaction Message
Constraint Occurrence
Specification

Figure 6.2: Papyrus Meta-Model of SysML Sequence Diagram.

Interaction Life line

S /S

¥

'] sd: Interactionl

~

4
Vs
! ! occurrence
. I : t spec1flcat10n
Combined : & msgl |
Fragment ; “
A I
Pat) ! | .
e ! & msg2 | Interaction
A : = 41/ Operand
| |
Interactl_on /Il |[cond2] | & msg3 :
Constraint [> /
I |
T T
| |

Figure 6.3: Sequence diagram elements.

 InteractionOperand: each operand is associated to a combined fragment, and it
can have a guard.

« MessageOccurenceSpecification: Each event associated to the life line is repre-
sented as a message occurrence specification. it represents an extremity of a mes-
sage. We can know thelife line, to which the specification is associated, by executing
the method getCovered() of the super class OccurenceSpecification. We can also ob-
tain the message started or finished at this specification, by navigating through the

6.2. TRANSFORMING SDS OF BLOCKS INTO INTERFACE AUTOMATA 65

6.2.2/

association message of the super class MessageEnd.

The classes MessageEnd, Message and InteractionFragment inherit the class
NamedElement which its self inherits the class Element. The association 'owner’ al-
lows obtaining the father element of the current element, however the association
'ownedElement’ allows us to obtain the children elements of the current element.

INTERFACE AUTOMATA META-MODEL

Basing on the formal definition of interface automata formalism given in section 2, we
have proposed their meta-model in Figure 6.4. The classes:

Interface
¥ outports 0..* StateType
states 0 < Automaton [@ P yP
name Initial
. . Notlnitial
transitions 0..’* ? inports 0..*
source |

State Transition Inport Outport
name target action name name
type

Figure 6.4: Interface Automata Meta-Model.

Interface Automaton: is the root. Each interface automaton hasa name which rep-
resents the name of the block to which this automaton is associated. Each instance
of this class can include a set of states, a set of transitions and a set of ports(in-ports,
out-ports).

State: Each instance of this class has aname and a type. The type allows specifying
if this instance is an initial state or not.

Transition: each instance of this class has three values to specify. The action which
is the label of this transition, the source state and the target state.

Inport: represent the ports associated with the input actions.

Outport: represent the ports associated with the output actions.

In Figure 6.5, we present an interface automaton which is modelled using our editor. We
have used the Graphical Modelling Framework (GMF) to specify and generate our graph-

ical editor of interface automata.

6.2.3/ BASICINTERACTION TRANSFORMATION RULES

An interface automaton specifies the interactions of a block 'B' with its environment,
where the environment represents all the blocks with which the block 'B' can interact.

Thus, the interface automaton will be associated to the life line of the block 'B'.

To perform the basic transformations (interactions without combined fragments), we

have three rules:

66 CHAPTERG6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

transition state

.« Paletke [

N
L
4+ Stake
] y)
4 51 4 52 4+ InPort
¢ outPort
4+ bl <4 Transition
out-port
. 4+ b
A

Figure 6.5: Generated Interface Automata Editor.

e Rule 1: LifeLine2InterfaceAutomaton

This rule allows us to initialize the interface automaton which is associated to the
block 'B'. The name of the interface automaton will be the name of the block 'B'. The
in-ports are created using the helper 'createInports’, because we need to create one
in-port for all messages having the same name, which are received by the block 'B".
To create the out-ports, we have used the helper 'createOutports’, which creates one
out-port for all messages having the same name, which are emitted by 'B".

ATL Rule 1:

rule LifeLine2InterfaceAutomaton {

from lifeline : SD!Lifeline (lifeline.name<>’ENV’)
to ia : IA!InterfaceAutomaton (

name <-lifeline.name,

states <-IA!State.allInstances(),

transitions <-IA!Transition.allInstances(),

inports <- thisModule.createlInports(lifeline),

outports <- thisModule.createOutports(lifeline)

) }

» Rule 2: MessageOccurrenceSpecification2State

We are only interested with events (sending and receiving of messages) associated
to the life line of our block 'B". These events (mos) are the instances of the class 'Mes-
sageOccurrenceSpecification', where their life line is not the environment but the
current block 'B'(mos.getCovered # ENV). Thus, must create a state for each mes-
sage occurrence specification.

ATL Rule 2:

rule MessageOccurenceSpecification2State {
from mos :SD!MessageOccurrenceSpecification(mos.getCovered() .name <> ’ENV’)

to s : IA!State (name<-mos.message.name.concat(’start’))

}

6.2.

TRANSFORMING SDS OF BLOCKS INTO INTERFACE AUTOMATA 67

Rule 3: Message2Transition

A message, which has an extremity that starts or ends at the life line of the current
block 'B, must be transformed into a transition in the interface automaton of 'B'. For
a message mos; ™ mos, (where mos1 and mos2 are message occurrence specifi-
cations), we create a new transition. This transition will be labelled with the action
'mes’, but to specify the type of this action and to fix the beginning and the end states
of this transition, we must analyse three cases:

— Only mos is associated to the life line of 'B' (see Figure 6.6 (1)): In this case, the
label will be an output action 'mes!". The transition starts at the state associated
to mos; and ends at the state associated to mos; (the next message occurrence
specification of mos; on the life line of 'B').

— Only mos; is associated to the life line of 'B' (see Figure 6.6 (2)): In this case, the
label will be an input action 'mes?'. The transition starts at the state associated
to mos; and ends at the state associated to mos; (the next message occurrence
specification of mos, on the life line of 'B').

— mos; and mos, are associated to the life line of ‘B’ (see Figure 6.6 (3)): In this

case, the label will be an internal action 'mes;". The transition starts at the state
associated to mos; and ends at the state associated to mos,.

(1) (2)
B | B | ENV
mes mes
mos;] mos, mos, mos
mes! mes?
mos;} mos;
(3)
[B]
mos,
mes; mes
mosy
oq—

Figure 6.6: Message transformation.

ATL Rule 3:

rule message2Transition {

from mes : SD!Message, mos : SD!MessageOccurrenceSpecification
. (mos .getCovered() .name <> ’ENV’)

to t : IA!Transition (

action <- mes.name.concat(
if (mes.sendEvent.getCovered()=mes.receiveEvent.getCovered())then ’;’
else if (mes.sendEvent=mos)then ’!’ else ’?’endif endif),
source <- thisModule.resolveTemp(mos, ’s’),
target <- thisModule.resolveTemp (

thisModule. NextMsgOcSpec (mos.getCovered(), mos), ’s’)

) }

68CHAPTERG6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

— NextMsgOcSpec (1fn, mos) isan ATL helper that returns the next occurrence
specification of 'mos’ on the life line 'Ifn".

6.2.4/ ALT ComBINED FRAGMENT TRANSFORMATION RULES

The alt fragment allows us to express alternative behaviours according to guards. It is
the most used of fragments. Also, the fragments loop and par, that express respectively
iterative scenarios and the parallel execution of execution scenarios, are very used in SDs.
In Figure 6.7, we give an overview about the equivalence between the fragments alt, loop

and the iterface automata.
&
cond; Cep
¢ ML .4
o o || -0
LTI .
msgin! Sgjm! .
o MBim g o MSEn g

® : O—- 4

(a) alt combined fragment (b) loop combined fragment

Figure 6.7: The transformation of loop and alt into interface automata

In the following we focus on the fragment alt. To transform the alt combined fragment,
we have proposed three rules. Two rules for the beginning of alt, and the third one is for
processing the end of alt.

For the beginning of alt, we distinguish between two cases:

 Rule 1: TransformAltWichFollowsAMsg

In the case when the combined fragment ‘alt’ follows a message 'mes’, to transform
alt, we create a state which represents the beginning of ‘alt’, and three transitions
(see Figure 6.8(1)).

— 't1'allowsusto connect the beginning of 'alt' with the previous behaviour using
the message just before ‘alt’.

— 't2' allows us to connect the beginning of ‘alt’ with the behaviour of the first
operand using guard as internal action.

— 't3'allows us to connect the beginning of 'alt’ with the behaviour of the second
operand using guard as internal action.

6.2. TRANSFORMING SDS OF BLOCKS INTO INTERFACE AUTOMATA 69

ATL Rule 1:

rule TransformAltWichFollowsAMsg {

from alt : SD!CombinedFragment (thisModule.FollowedAMessage (alt))
to

s : IA!State (name <- ’BeginAlt’),

tl : IA!Transition (

action <- thisModule.previousMessage (alt) .name.concat(...

- specify the type of action as in rule 2),
source<-thisModule.resolveTemp (thisModule.PreviousMessageOccurence (alt),’s’),
target <- s),
t2 : IA!Transition (
action <- alt.operand->at(1).guard...concat(’;’),
source <- s,
target<-thisModule.resolveTemp (thisModule.

getTheFirstElement (alt.operand->at(1)), ’s’)),
t3 : IA!Transition (
action <- alt.operand->at(1).guard...concat(’;’),
source <- s,
target<-thisModule.resolveTemp (thisModule.

getTheFirstElement (alt.operand->at(2)), ’s’)),

— FollowedAMessage (alt) isan ATLhelperthatreturnstrueif altfollowsames-
sage.

— previousMessage (alt) is an ATL helper that returns the message which is be-
fore alt.

— PreviousMessageOccurence(alt) is an ATL helper that returns the message
occurrence specification which is before alt.

— getTheFirstElement (op) isan ATL helper that returns the first element in the
operand op.

« Rule 2: TransformFirstAltInInteractionOrOperand

This rule processes ‘alt’ in case when it is the first element of the global interaction,
the first element in an operand, or when it follows a combined fragment. The dif-
ference between this rule and the last one, reside in the transition t1. In this rule, we
don't create the transition t1 because when ‘alt" is :

— the first element in the interaction (see Figure 6.8(2)): we don't need this tran-
sition.

— directly after a combined fragment 'cf’ (see Figure 6.8(4)): this transition will be
created by the rule which processes the end of 'cf".

— the first element of an operand ‘op'(see Figure 6.8(3)): this transition will be
created by the rule which processes the beginning of the combined fragment
of 'op'.

70CHAPTERG6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

ATL Rule 2:

rule TransformFirstAltInInteractionOrOperand {

from alt SD!CombinedFragment (thisModule.FirstElementOrFollowsCF (alt))
to

s : IA!State (- the same as rule 1),

t2 : IA!Transition (- the same as rule 1),

t3 : IA!Transition (- the same as rule 1),

}

— FirstElementOrFollowsCF (alt) is an ATL helper that returns true if alt is
the first element in the interaction, the first element inside an operand, or it
follows directly a combined fragment.

(2) CF the first element of SD

[B] [Env]

Message

(1) CF after a
- ENV

l/ ~\) B

A mes
mes! | GEmm— |
laly) lal)
condl/\cond2; feondif cond cond2; Jicond1]
o) [cond2] SRR [cond2]

(4) alt after a CF

ENV

(3) alt is the first element in an Operand

Y B ENV

cond; . Tcond] ! CF
aly alt
cond1l/ \cond2} Vcondif cond1l/ \cond2; licondi]
l\‘ ¥ l\’) [cond2) l\’) l\‘) [cond2)
(5) the end of alt operands

B |

ENV

. R alt] !
(:) :) [condll mles]_ |
"X "\ [cond2] 1
mes2
mes\lx ‘%(352! h >
2 Next element

o | |
.-

Figure 6.8: Alt transformations.

e Rule 3: TransformEndAlt

6.3. GENERATION OF PTOLEMY SPECIFICATION 71

This rule (see Figure 6.8(5)) allows processing the end of an ‘alt’ operand. It takes as
parameters this operand and the last message occurrence specification (mos) inside
it.

ATL Rule 3:

rule TransformEndAlt {
from op:SD!InteractionOperand, mos:SD!MessageOccurrenceSpecification
(thisModule. isTheLastMessageInOperand (mos.message, op)

and mos.getCovered () .name<>’ENV’)
to
t : IA!Transition (
action <- mos.message.name.concat(-specify the type of action as in
rule2),
source <- thisModule.resolveTemp(mos,’s’),
target <- thisModule.resolveTemp(thisModule.getNextElement (op.owner),
’s?),

}

It creates a transition between the state associated to mos and the state associ-
ated to the next element of the combined fragment to which this operand belongs
(op.owner). The next element may be a message or a combined fragment. The tran-
sition takes as label the name of message whose 'mos’ is one of its ends.

— isTheLastMessageInOperand(mes, op) returnstrue ifthe message mesisthe
last message in the operand op.

— getNextElement (cf) returns the next message or combined fragment of the
combined fragment cf.

Using the same manner of thinking, we can define rules for other combined fragments.

6.3/ GENERATION OF PTOLEMY SPECIFICATION

At this step, and to discharge the user from redrawing the interface automata using the
Ptolemy user interface, we propose a set of Acceleo templates to generate automatically
the Ptolemy entry specification.

By analysing an entry file of ptolemy interface automaton, and by eliminating informa-
tions related to the position of nodes on the ptolemy canvas, we have obtained its skeleton
and we have defined six Acceleo templates. We have eliminated the informations related
to the position of nodes on the canvas, because the ptolemy, when it doesn't find informa-
tions about the position of a node, it uses its default values.

The first Acceleo template 'generatelA’ is the main template, it creates the file of the
Ptolemy specification and its header, and calls the other templates. The templates, after
the principal one, each one has a name that corresponds to its role.

« generatelnport(inport : Inport): itallows us to generate the Ptolemy specifi-
cation of each in-port of the concerned interface automaton.

72CHAPTERG6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

» generateOutport (outport : Outport): itwillbe callediteratively (asthe previous
template) by the main template to generate the Ptolemy specification for each out-
port of the concerned interface automaton.

« generateState(state : State): itallowsusto generate the Ptolemy specification
for automaton states.

o generateRelation(transition : Transition, i:Integer) and generatelLinks
(transition : Transition, i:Integer): thesetwo templatesallow to generate
the Ptolemy specification for transitions of the automaton.

[comment encoding = UTF-8 /]

[module generate('http://www.interfaceAutomata.ecore')]
[template public generateIA(IA : InterfaceAutomaton)]
[comment @main/]

[file (IA.name.concat('.xml'), false, 'UTF-8')]
<?xml version="1.0" standalone="no"7>

<IDOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="[IA.name/]" class="ptolemy.domains.modal.kernel.ia.InterfaceAutomaton">

for (outport :Outport| IA. outports]|
enerateQutport (outport) /]
for

for (inport :Inport| IA.inports)]
enerateIlnport (inport)
for]

for (state :State| IA.states]]
enerateState(state)
for

for (transition :Transition| IA.transitions)]
fgnerateRelation(transition, i)/]
or

for (transition :Transition | IA.transitions)]
generateLinks(transition,i)

[/for]
</entity>
[/file]
[/template]

[template private generateInport(inport : Inport)]

<port name="[inport.name/]" class="ptolemy.actor.TypedIOPort">
<property name="input"/></port>

[/template]

[template private generateQutport(outport : Outport)]

<port name="[outport.name/]" class="ptolemy.actor.TypedIOPort">
<property name="output"/>

</port>

[/template]

6.4. THE BLOCKS VERIFICATION 73

[template private generateState(state : State)]

<entity name="[state.name/]" class="ptolemy.domains.modal.kernel.State">

[if (state.type=StateType::Initial)]
<property name="isInitialState" class="ptolemy.data.expr.Parameter" value="true">
</property>

[/if]

</entity>

[/template]

[template private generateRelation(transition : Transition, i:Integer)]
<relation name="relation[if (i>1)][i/][/if]"

class="ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="[transition.action/]"></property>

</relation>

[/template]

[template private generatelLinks (transition : Transition, i:Integer]]

<link port="[transition.source.name/].outgoingPort" relation="relation[if (i>1)][i/][/if]"/>
<link port="[transition.target.name/].incomingPort" relation="relation[if (i>1)][i/][/if]"/>
[/template]

6.4/ THE BLOCKS VERIFICATION

We want to verify the consistency and the compatibility of the blocks. To do that, we base
on the interface automata that describe the interaction protocols of these blocks.

Definition 14: Consistency of SysML blocks

Two blocks B; and B, are considered as consistent if their interface automata A; and
A; are composable:

T NEL =322 N2 =3 nZy, =3 nE] =0.

Definition 15: Compatibility of SysML blocks

Two blocks are compatible, if they are consistent and their interface automata are
compatible. According to the optimistic approach of Henzinger [dAH01], two inter-
face automata are compatible if their composition is not empty:

Ail|Ar £ 0

To verify the consistency and the compatibility of the blocks, we use the Ptolemy tool. We
giveit, as entry, the generated files(the files that we have generated using our Acceleo tem-
plates). Ptolemy computes the composition of interface automata and delivers the result.
If the result of composition is not empty, this means that the blocks are consistent and
compatible.

TACHAPTERG6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

bdd CyCab P
<< block >>
CyCabSys
QORI << interfaceBlock >>
operations A -
SpPOs \
parts) 1 |
references , I |
—— values o ! !
properties ’ | I
7 7 ! !
s | 1
L7 I |
s ! 1
L7 | I
<< block >> e << block >> | |
7
0 9 I I
Vehicle L7 S tation , ,
7
| l
constraints .7 constraints | |
; e 5 I I
operations . operations | |
7
I
prov] parts [~ req ”fq/D parts Ok --- :
l references e references prov |
! values L7 values |
! properties - properties |
| P s |
| e |
| e |
| < |
: << interfaceBlock >> |
V- |
t—-- I
far << block >> << block >> :
halt CompUnit Sensor |
* . . |
| constraints constraints |
: operations operations :
| rov re
————— | parts | LY - —q—|:| parts !
req 2 rov
references << interfaceBlock >> references
values I-C-S values
properties pos properties

Figure 6.9: Block Definition Diagram of CyCab.

6.5/ CAsSE STuDY: CYCAB

CyCab [BGMPG99] is a new means of electrical transportation, it is conceived basically for
free-standing port services. It is controlled by a computer system. The CyCab system has
two major parts: the station and the vehicle. The vehicle is guided by the information
received from the station, which allows situating the vehicle.

In this case study, we are only interested by the 'station’ part. The station has a sensor
that receives signals from vehicle giving the vehicle position (pos?). The station has also a
computing units that sends a signal (far! or halt!) to the vehicle to indicate if it is far from
the station or not. In Figure 6.9, we present the architecture of the Cycab System using the
SysML BDD.

The interactions of the sensor and the computing-unit blocks are represented as sequence
diagrams (see Figure 6.10 and Figure 6.11). To draw sequence diagrams, we have used the

6.5. CASE STUDY: CYCAB 75

] sd: seq_diag_Sensor E/lsd: seq_diag cU]
5 sensor T ENV
i i
i i e
| ' |
i & spos : Halt | i
] . |
: i [¥| [BDistance] i & far ‘-J:
| 4500 ; : >
!]
]
i i [+| [SDistance] ! :
! ! : @ halt i
| I 1 >
| | 1 T
: ! ! I
Figure 6.10: SD of Sensor. Figure 6.11: SD of Computing-Unit
4 SpOs - pos
0
< Far! - <4 halt!
4 50
4 pos?
4 BDistance; # 51 SDistance;
4 SpO&? 4= pos! *
& 51
3
& s2 ¥s
@ pos 4 far 4 halt
Figure 6.12: 1A of Sensor Figure 6.13: 1A of Computing-Unit

papyrus editor.

By applying our ATL rules on the sequences diagrams of the sensor and the computing
unit, we have obtained their equivalents of interface automata. In Figure 6.12 and Figure
6.13, we present the resulted interface automata in our graphical editor.

By applying the Acceleo templates, that we have defined to generate Ptolemy specifica-
tion, we have obtained these files.

« Ptolemy file of Sensor block:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML 1.dtd">

<entity name="sensor" class="ptolemy.domains.modal.kernel.ia.InterfaceAutomaton"> <port

76CHAPTERG6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

name="pos" class="ptolemy.actor.TypedIOPort">
<property name="output"/>
</port>

<port name="spos" class="ptolemy.actor.TypedIOPort">
<property name="input"/>
</port>

<entity name="s1" class="ptolemy.domains.modal.kernel.State"></entity>

<entity name="s0" class="ptolemy.domains.modal.kernel.State">
<property name="isInitialState" class="ptolemy.data.expr.Parameter"
value="true"></property>
</entity>

<relation name="relation" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="spos?"></property>
</relation>

<relation name="relation2" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="pos!"></property>
</relation>

<link port="sl1.outgoingPort" relation="relation"/>
<link port="s0.incomingPort" relation="relation"/>
<link port="s0.outgoingPort" relation="relation2"/>
<link port="sl1.incomingPort" relation="relation2"/>

</entity>

« Ptolemy file of Computing-Unit block:

<?xml version="1.0" standalone="no"?>
<IDOCTYPE entity PUBLIC "- //UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML 1.dtd">
<entity name="Computing Unit" class="ptolemy.domains.modal.kernel.ia.InterfaceAutomaton">
<port name="far" class="ptolemy.actor.TypedIOPort">
<property name="output"/> </port>
<port name="halt" class="ptolemy.actor.TypedIOPort">
<property name="output"/> </port>
<port name="pos" class="ptolemy.actor.TypedIOPort">
<property name="input"/> </port>
<entity name="s0" class="ptolemy.domains.modal.kernel.State">
<property name="isInitialState" class="ptolemy.data.expr.Parameter"
value="true"> </property> </entity>

<entity name="s2" class="ptolemy.domains.modal.kernel.State"> </entity>
<entity name="s3" class="ptolemy.domains.modal.kernel.State"> </entity>
<entity name="s1" class="ptolemy.domains.modal.kernel.State"> </entity>

<relation name="relation" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="pos?"> </property>
</relation>

<relation name="relation2" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">

6.5. CASE STUDY: CYCAB

<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="BDistance;"> </property>
</relation>

<relation name="relation3" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="SDistance;"> </property>
</relation>

<relation name="relation4" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="far!"> </property>
</relation>

<relation name="relationb5" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="halt!"> </property>
</relation>

<link port="s0.outgoingPort" relation="relation"/>
<link port="s1.incomingPort" relation="relation"/>
<link port="sl1.outgoingPort" relation="relation2"/>
<link port="s2.incomingPort" relation="relation2"/>
<link port="sl.outgoingPort" relation="relation3"/>
<link port="s3.incomingPort" relation="relation3"/>
<link port="s2.outgoingPort" relation="relation4"/>
<link port="s0.incomingPort" relation="relation4"/>
<link port="s3.outgoingPort" relation="relation5"/>
<link port="s0.incomingPort" relation="relation5"/>
</entity>

7

Using Ptolemy tool, we can use these two files to verify the consistency and the compati-

bility of the sensor and the computing unit blocks.

& C\Users\hamida\Desktop\Nouveau dossier (2)\Computing Unit_sensor.xml

==l X

File View Edit Graph Debug Help

HoQaRaARD H@» msHiht0

Find:

Library | Tree

-A= Annatation
0 state

BDistance;

Figure 6.14: Parallel composition of Control Unit and Sensor.

SDistance;

halt

78CHAPTERG6. A SYSML MODEL DRIVEN APPROACH TO VERIFY BLOCKS COMPATIBILITY

In Figure 6.14, we present the result of composing the two interface automata using
Ptolemy tool. Because the composition is not empty, we deduce that the control unit and
the sensor blocks are consistent and compatible. If we assemble them in the same sys-
tem, we obtain a system part that interacts with the rest of the system according to the
scenarios modelled as an interface automaton in Figure 6.14.

6.6/ CONCLUSION

The point that we have addressed in this chapter is how can we prepare the SysML blocks
interactions for verification. Thus, our proposed approach is based on specifying the cor-
respondences between the blocks sequence diagrams and interface automata. The goal
of this chapter is to present how it's possible to automatize the transformation from se-
quence diagrams to interface automata using ATL. We have shown the transformation
of the basic constructs of sequence diagrams. We have also given the ATL rules to trans-
form the alternative combined fragment. The second objective of this chapter concerns
Ptolemy tool, which is used to verify the interface automata compatibility, and to compute
their parallel composition. To discharge the user from redrawing the resulted interface
automata using the Ptolemy user interface, which can be considered as a source of errors,
we have proposed a set of Acceleo templates to generate the entry code of Ptolemy. We
have also given an overview of how can we use the generated files to verify the compati-
bility of blocks. To illustrate our approach, we have applied it on a CyCab case study.

7

EXPLOITING THE HIERARCHY TO VERIFY
BLocks COMPATIBILITY

enerally, the high level modelling languages as SysML, adopt some principles to man-
Gage the complexity of system's representation and development. In SysML, the de-
composition and the hierarchical organization constitute the major principles used to
handle complexity. The utility of the decomposition and the hierarchy appears clearly
through the structural and the behavioural specification of the system.

In SysML, the interactions between blocks are modelled with Interaction Block Diagram
(IBD) and Sequence Diagram (SD). However, these interactions are modelled by the IBD
only as architectural links. In other hand, a block can participate in multiple use cases,
which makes its interaction protocol divided into a set of sequence diagrams. For these
reasons, there is a lack of global view of the interaction protocol related to a given block.

In this chapter, we propose HPSM, to model the interaction protocol of a block. The pro-
posed HPSM differs from the UML Protocol State Machine (PSM). In UML, each interface
of a class can be associated with a PSM. PSM of UML presents the pre and the post con-
ditions of events allowing the enabling of transitions. However, HPSM as we define it, is
associated with a block and expresses its states and the transitions between them. Each
transition can be labelled with a reception of an ask for a service of the block, and a set
of requests that the current bock sends for asking some services of the environment. We
note that HPSM uses also the composite states to benefit from the clarity added by the
hierarchy.

Contents
7.1 Hierarchical Protocol State Machine (HPSM) 80
7.2 Hierarchical Interface Automata with Inter-Level Transitions (HIA-ILT) 81
7.3 The Proposed Approach 85
7.3.1 The Mapping Between HPSM and HIA-ILT 85
7.3.2 The Consistency Verification of Blocks 88
7.3.3 The Selection of Composite States to Flatten 88
7.3.4 The Compatibility Verification Between Blocks 89
7.4 CaseStudy i i i i i it e e e e e e 89
7.5 Conclusion e e e 93

79

80 CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

One of the advantages of proposing HPSM is to allow modelling all the interactions of
a given block in one diagram, and so enabling the verification of compatibility between
blocks. In our study, the architecture of the system is given by an IBD. The interactions
inside the system take the form of an HPSMs set, each HPSM is assigned to a block. This
permits to graphically describe the system architecture and the interaction protocols of
its blocks. However, this specification is not thoroughly formal to be adapted for verifi-
cation. That is why;, it is necessary to present the semantic of HPSM in an another model
more suitable for verification. For that, we define hierarchical interface automata with
Inter-Level Transitions (HIA-ILT), a variant of interface automata [dAHO1], we express the
HPSM semantics in term of HIA-ILT, and we use HIA-ILT to verify the compatibility be-
tween SysML blocks. In our verification approach, we avoid the flattening of the entire
HIA-ILT by proposing a preliminary phase that allows selecting the composite states to
flatten. The aim behind this is to contribute for reducing the complexity of compatibility
verification.

The remainder of this chapter is organized as follows : In section 7.1, we introduce the
HPSM. Next, in section 7.2, we present the HIA-ILT the variant of interface automata. In
Section 7.3, we present our approach for verifying blocks compatibility which benefit fro
the hierarchy of HIA-ILTs. Next, we illustrate our approach by a case study in section 7.4.
Finally, in Section 7.5, we conclude.

71/ HIERARCHICAL PROTOCOL STATE MACHINE (HPSM)

SysML uses the SD diagram to represent interaction protocols of system blocks, each SD is

i i

I I

I I

: N Lo

! \ /1 \

PR P AN
/ /
! N ! \ \
[sD uct’ l} | |sD uc2)/ K sDuc3’ | 4
I I I
-block1 ,-blockZ Y | | | |
: 1= ! blockz i block3]| | hlock1] ! block2 !block3
s o I
! | | i I 1 I | A B
i : : A ! ‘ 1 F ro
‘ oo \ e i Vo / i
= ! o | «—X—
- ! : I L/ I
i N - N
i
| | |
[I |
N i -
~< \ T
N \\ 1 //
R A
s

Collection of interaction scenarios

/ HPSM block2 \

Figure 7.1: Relation between SD and HPSM.

7.2. HIERARCHICAL INTERFACE AUTOMATA WITH INTER-LEVEL TRANSITIONS (HIA-ILT)81

associated with a use case. When a block participates in multiple use cases, its interaction
protocol will be divided into several SDs (see Figure 7.1).

We propose the model HPSM (Hierarchical protocol state machine), which allows us to
represent the interaction protocol of a block using one diagram. HPSM adopts the struc-
ture of hierarchical state machine, it bases on simple states, composite states and transi-
tions between them. This structure allows us to benefit from hierarchical aspect by hiding
details of states when we don't need to visualize it.

Definition 16: HPSM
We define an HPSM of a block B as follows :

HPSMp = (SSp, CSp, Ip, Tp, Prov_Servp, Req_Servp)

Where:

e SSp is a set of simple states.

e CSp s a set of composite states.

e We define by S = SSgp U CSp a set of all states of the HPSM.

e Ip is a set of initial states, I C Sp.

e Tp is a set of transitions.

e Prov_Servp is a set of services that the block B offers to its environment.

e Req_Servp is a set of services that the block B requires from its environment.

The set of transitions T € Sz X L X Sp, where L is the set of all transitions labels. A label
1 € Ltakes the following form:

1= REC (ps) / SND ({rs;}i=1.)

Where:

» REC represents the reception of a request, and SND represents the emission of a re-
quest to the environment.

e ps € Prov_Servp.

o { rs;}iz1.n = P(Req_Servp) is the set of a required services.

When theblock Breceives a request for its service ps from its adjacent blocks, it may have a
needto call some services of other blocks. We model the fact thatthe block B send requests
to these blocks using the directive SND.

7.2/ HIERARCHICAL INTERFACE AUTOMATA WITH INTER-LEVEL
TRANSITIONS (HIA-ILT)

In this section, we propose Hierarchical Interface Automata with Inter-Level Transitions
(HIA-ILT). The model that we use in our approach to formalize HPSMs of blocks. Compar-

82 CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

ing with IA, HIA-ILT introduces the concept of composite states, and allows the inter-level
transitions. In fact, in HIA-ILT the source state and the target state of a transition can
belong to two different composite states and to two different levels of hierarchy, which
makes HIA-ILT able to represent more complex interactions of a component with a small
model.

Definition 17: HIA-ILT

We define an Hierarchical Interface Automata with Inter-Level Transitions 'HA' by:

(SS 1A, CS A, Ina, Xhas X 04s S0 1, Oha)

where:
® SSyy4 is a set of simple states.
e CSpyy is a set of composite states.

e Ty, is a set of initial states, we have Iyq € SSya U CSpya.

ZIILIA is a set of input actions.

ZZA is a set of output actions.

S, is a set of hidden actions.

Oga is a set of transitions.

— Oga S (8S gaU CSga) X Xpga X (8S myaU CSya), where
Sha= T Y Zia Y Zha

— (s1, a, sp) is an inter-level transition if s; and s, don't belong to the
same composite state or if they belongs to two different level of hierarchy.

The HIA-ILT is as the IA, it is enclosed with a box whose ports correspond to the input and
the output actions.

The abstract synchronous product between two HIA-ILTs HA; and HA,, takes all the com-
posite states of HA| and HA; as abstract states.

Definition 18: Abstract state

An abstract state is a composite state s € CSgyga, but its internal states and relations
between them are ignored

Let HA| and HA, two HIA-ILTs, we can compute the abstract synchronous product of HA;
and HA, if they are composable.

e HAjand HA; are composable :

I I _v0 0 _vH _ H _
2HA1 N ZHAZ - ZHA] N ZHAZ - EHA1 N Xpa, = Xpa, N ZHAZ =0.

« Any composite state of HA; or HA, have inside a transition labelled with a shared
action.

7.2. HIERARCHICAL INTERFACE AUTOMATA WITH INTER-LEVEL TRANSITIONS (HIA-ILT)83

Definition 19: Abstract Synchronous Product of HIA-ILT

we define the abstract synchronous product of HA| and HA; as:

- i
HA| ®, HAy = (SSHae,HA,» CSHA\@.HA,» THAI®HA s Zyae,HA,

20

s 5)
HA\®,HA, > “HA1®,HA,> YHA18.HA;

SS HA®.HA, = SSHA; XSS HaA,-
° CSHA1®HHA2 = CSHAl X CSHA2 U CSHAl X SSHA2 U SSHAl X CSHAZ-
b IHA1®uHA2 = IHA1 X IHAZ'

o 2 aomn, = Cha, YZha) \ Shared(HA |, HAy).

o 20 oo, = o, YZ04,) \ Shared(HA;, HAy).
o oA, = Zia, Y Zia, U Shared(HA1, HAy).

((s1, $2), a, (57, 53)) € OHA 0HA, if
— a ¢ Shared(HA|, HA2) A (s1,a, s]) € Opa, A s2 =5
— a ¢ Shared(HA|, HA2) A (s2,a, 5)) € Opa, A S1 = 5]
— a € Shared(HA, HA2) A (s1,a, 57) € Opa, A (52,4, 8)) € Oha,.

We define by Shared (HA; ,HAy) = (2], NZ§, JU(Z]), NZ},)thesetof the shared actions
between HA| and HA,.

We deduce the synchronous product HA;®HA, of HA; and HA, from the abstract syn-
chronous product HA|®,HA; as follows (an example is given in Figure 7.2):

t
® V(S], SZ) — (SI’ slz) € O-HA1®,1HA2
if 51 € CS ga, = replace the transition (sy, s2) BN (s1, s5) by this set of transitions:

.. t
Y(s1i, 52j) € (51, 52) create new transition (sy;, s2;) — (s1;, Sék)

This means that when the state of the block B, is changed from s, to s} by crossing
the transition t, the block B; must still in the same composite state s; and also in the
same simple state sy;. If the state 5’2 is a composite state, then the state s;, must be
the initial state of s/, otherwise the state s/, is the state .

If tis an inter-level transition in HA2 :
. t
— if An(s2, —) € THA, = 52 = 520)

. t
= ifIm(sy — 5}, € oHA, = 85, = 5,)

’

. t
— if In,m(sy, —), € OHA, = $2j = S0 A Sy, =55)
4 4
o Y(s1,52) — (57, 52) € OHA ®,HA,
. .. t . ..
if s € CS ya, = replace the transition (s, s2) — (s7, 52) by this set of transitions:

.. t
Y(s1i, 52j) € (51, 52) create new transition (sy;, s2;) — (s’lk, 525)

84 CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

HA2

HA1 ®, HA2
' N\
[
f\w

w>@‘y

A\ J

HA1 & HA2

Figure 7.2: Example of abstract synchronous product.

This means that when the state of the block B, is changed from s, to s} by crossing
the transition t, the component B, must still in the same composite state s, and also
in the same simple state s,;. If the state 5’1 is a composite state, then the state s/,
must be the initial state of s}, otherwise the state s}, is the state .

If tis an inter-level transition in HA1 :
. t
— if In(s1, — s} € THA, = 510 = S1a)
1
- ’ ’ — ’
— if Am(s; — Sim € OHA, = 81 = S,

t
7 7 — ’ — ’
- 1f3n,m(s1n — 81, EOHA = S1j = Sin A Sk = Slm)

Definition 20: Abstract Parallel Composition

The abstract parallel composition of HA; and HA, (HA|||,HA;) bases on eliminating
from the product HA| ®, HA, the illegal states and all states reached from these
illegal states by enabling output and internal actions.
We define illegal states as follows:
(Sl, Sz) € OHA,8,HA> | da € Shared(HAl,HAg).

ae€ ZgAl(sl) Aa ¢ quAz(sz)

V
a€x, (s AagZy, (s1)

lllegal(HA |, HA»)=

7.3. THE PROPOSED APPROACH 85

Definition 21: Compatibility of HIA-ILTs
HA; and HA; are compatible iff HA; || HAy, # 0

Theorem 1:

If we have an abstract state (x,y) € Sua,e,H4, Where (x,y) is an illegal state, this
implies that all states insides are illegal states.

proof:

a. (x,y) € SHa,e,HA, is an abstract state = x is an abstract state in HA; or y is an abstract
state in HA,.

| 2
b. (x,y) is an illegal state = Ja € Shared(HA;, HA) A (x Sye Sga, Ay AN Y’ € 6Ha, O

| 9
dy i>y’ € Opa, A ﬂx Sxe OHA,)

« If we suppose that x is an abstract state in S y4,, and (x,y) is an illegal state because

a! a?
dx — X" € 6pa, A By >y e OHA,:
a! a!
dx — x' € 6HA1 =Vsex,ds — x € dflatten(HAl)

! ?
= Y(s,y) € (x,),ds —> ¥’ € 8 flaten(HA,), and we have fly 5y € S,

= Y(s,y) € (x,y), (s,y) is an illegal state.

« If we suppose that x is an abstract state in S y4,, and (x,y) is an illegal state because

al a?
y—y €§HA2AEX—>X E(SHA1:
a? al
Bx — ¥ ¢ Sua, = Vs € x, s — X € S framren(iay)

9 |
= VY(s,y) € (x,y), Bs e O flatten(HA,)» and we have Jy N Y € 6Ha,

= Y(s,y) € (x,y), (s,y) is an illegal state.

7.3/ THE PROPOSED APPROACH

Our approach includes four steps (Figure 7.3): The first step is a mapping from HPSM to
HIA-ILT of the two blocks to verify their compatibility, the second step is to verify the
consistency between HIA-ILTs associated with blocks, the third step is to select composite
states to flatten, and the last step is for verifying the compatibility between the two blocks.

7.31/ THE MAPPING BETWEEN HPSM AND HIA-ILT

In this section, we give the rules to translate HPSM to HIA-ILT. During this transforma-
tion, each simple state in the HPSM must be transformed to a simple state in the HIA-ILT
and each composite state in the HPSM must be copied as a composite state in the HIA.
The difference between HPSM and HIA-ILT resides in the labels of the transitions. A tran-
sition in HPSM can be decomposed into a set of HIA-ILT transitions. In Figure 7.4, we see

that a provided service on a transition of HPSM (ﬁ>) must be translated into a transition

5?
in HIA-ILT, labelled with an input action (L). The set of required services on an HPSM

86 CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

HPSM B, HPSM B,
I I

Mapping between HPSM and HIA-ILT

] I

\d \d
HIA-ILT B, HIA-ILT B,
>

Bland B, are
Consistency verification *

!

\4

o not consistent

Selection of states to flatten

I

\4

- . B and B
Compatibility verification *— (And B, are

!

\J

not compatible

Band B, are
compatible

Figure 7.3: Our approach of using hierarchy to verify blocks compatibility.

transition (/rslifs”) must be translated to a sequence of HIA-ILT transitions, labelled with

. rsy! rsy,!

output actions (—...—).

To implement the correspondences, we have defined the meta-model of the HPSM (Figure
7.5) and the meta-model of the HIA-ILT (Figure 7.6) using EMF (Eclipse Modelling Frame-
work). Figure 7.5 presents the HPSM as a set of states, a set of transitions, a set of provided
services and a set of required services. A state can be simple or composite, it includes
other states only if it is a composite state. A transition may be labelled with a reception
of request and a set of required services. It must have a source state and a target one. The
meta-model of HIA-ILT in Figure 7.6, describes the hierarchical interface automata as a
set of states, a set of transitions, a set of in-ports and a set of out-ports. If a transition takes
as label an input or an output action, the input action must correspond to an in-port and
the output action must correspond to an out-port.

We have implemented the correspondences as an ATL grammar "TransformHPSM2HIA-
ILT'. This ATL grammar takes as source the meta-model of HPSM and it has as target the
meta-model of HIA-ILT. It includes a set of rules.

In Figure 7.7, we give an extract of the grammar 'TransformHPSM2HIA-ILT". The first rule
creates the HIA-ILT element from the HPSM element. However, the second rule initializes

7.3. THE PROPOSED APPROACH

87
1) (2)
C]REC <QS>D [] / SND <rsiC]
| 1 |

() 25?)0 O rs!)O

(3)

REC<PS> [SND <I'S_>,...,,<I'S >
) =]
P>

OZ O 250 - OO0

Figure 7.4: Correspondences between HPSM and HIA-ILT.

states 0..* o Hpsv lecauiredServices 0..* | StateType
ame Initial
transitions 0__*? pr?videdServices 0.% Ordianry
source
State oraet Transition | REC 0..1 | Prov_Serv Req_Serv
nestedStates 1..* name 26 name name
| I
T T SND 0.*
(ompositeState |SimpleState
mother 0..1
Figure 7.5: Meta-Model of HPSM.
states 0. * ° HIA e OutPorts 0% StateType
mame Initial
Ordi
transitions 0..*? ? inPorts 0..* raanty
source
State careet Transition InPort OutPort
nestedStates 1..* name e action name name
type

[—

(ompositeState |SimpleState
mother 0..1

Figure 7.6: Meta-Model of HIA-ILT.

88 CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

the simple states of HIA-ILT from the simple states of HPSM.

ATL Rule 1: HPSM2HIA

rule HPSM2HIA {

from hpsm : HPSM!HPSM

to hia : HIA!HIA (

name <-hpsm.name,

states <-HIA!State.allInstances(),
transitions <-HIA!Transition.allInstances(),
inports <- HIA!InPort.allInstances(),
outports <- HIA!OutPort.allInstances()

) }

ATL Rule 2: SimpleState2SimpleState

rule SimpleState2SimpleState {

from s1 : HPSM!SimpleState

to s2 : HIA!'SimpleState (

name <-sl.name,

type <-if sl.type=#Initial then sl.type else #Ordinary endif,
mother <- thisModule.resolveTemp(sl.mother, ’cs2’);

) }

Figure 7.7: Rules ATL.

7.3.2/ THE CONSISTENCY VERIFICATION OF BLOCKS

This step must ensure that the two blocks B1 and B2 associated with respectively HA| and
HA,, their HIA-ILTs, respect the condition of composability. This means that the block B1
and B2 haven't shared provided services and shared required services, and there aren't an
overlap between the hidden actions of a block and the set of actions of the other block.
The relation of composability { between two blocks B1 and B2 is defined as follows:

B1(B2 &

1 1 —yO0 o _
Z:HA| N z:HAZ - z:I‘IA] N Z[{Az -
T4, NV Zra, = Zaa, N 2], = 0.

7.3.3/ THE SELECTION OF COMPOSITE STATES TO FLATTEN

In this step, we must construct the set of shared actions between HA; and HA, of B1 and
Ba.

Shared(HA1,HA2)=(Z!,, NnZ

HAl 2) U (20 N 25-1142)

o
HA HAl
The existence of a shared action means that there is an interaction between these two
blocks. Thus, we look over all composite states in HA1 and HA?2, if there is a compos-

ite state C having inside a transition labelled with an action which belongs to the set

7.4. CASE STUDY 89

Shared(HA1,HA2) then this composite state C must be flattened. It is mandatory to flatten
these composite states to allow the synchronization of their transitions with the transi-
tions of the other HIA-ILT.

For flattening, we refer to works which have been already proposed for this purpose (i.e
[KCo9, DMo1]).

7.3.4/ THE COMPATIBILITY VERIFICATION BETWEEN BLOCKS

The compatibility verification between two blocks B1 and B2 is obtained by verifying the
compatibility between their interface automata HA; and HA,. To verify the compatibility
between two blocks B1 and B2, we adopt the approach in [dAHo1] which verifies if there
is an environment where it is possible to correctly assemble B1 and B2. Thus, we assume
that this environment will never led one of the blocks B1 or B2 to a deadlock state, means
that the environment will never allow to the parallel execution of B1 and B2 to reach an
illegal state.

The relation of compatibility om between two blocks B1 and B2 have as interaction pro-
tocol models HA| and HA; is defined by:

Bi1/omB2 & HA ||, HA; has at least one reachable state.

7.4/ CASE STUDY

In this section, the case study concerns a robotic vacuum called Roomba. In our case
study, we consider that Roomba is controlled by human operator. To allow this control,
we consider that a kinect is placed between them. It is used to communicate the oper-
ator positions to the coordinator in the form of images. Then, the coordinator analy-
ses these images and extracts actions required by the operator and conveys them to the
Robot.The Robot includes a receiver and Roomba vacuum. The receiver captures actions
wanted by the operator, transmitted through a WIFI connection, and codes them in the
form of sci commands. Roomba can work using two methods: autonomous(SAFE) or non-
autonomous(FULL).

In the autonomous method (SAFE), there are essentially three modes : Clean mode is the
normal cleaning program, starting in a spiral and then following a wall, until the room is
determined to be clean. Spot mode cleans a small area. Max mode runs the standard
cleaning algorithm until the battery is depleted.

In manually method (FULL), the operator specifies the direction and movement of roomba
in real time. He can ask for these actions : ADVANCE is to forward, LEFT is a counter-
clockwise rotation, and RIGHT is the same like Left but the rotation is in the other sens.

We focus on the part Robot of the system. We consider that the receiver ensures only a
manual control of roomba. The IBD of assembling the receiver and roomba is given in
Figure 7.9, and the protocols of interaction of the receiver and roomba are exposed in the
form of HPSMs in Figure 7.10.

In Figure 7.9, we have two blocks : Receiver and Roomba. The block receiver has two ports:
a provided port 'robotServices' and a required port 'sci-cmd-Req’. The provided port in-
cludes services that the receiver can perform to the coordinator, and the required port

90 CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

Coordinator

Receiver

Robot

Operator

Figure 7.8: Case Study.

represents the services that the receiver can request from the block Roomba. The block
Roomba has one provided port 'sci-cmd-Prov', through this port roomba offers its services.

<<Block>> <<Block>>
Receiver Roomba
Prov sci-cmd-Prov

1 r
“Req sci-cmd-Req
\ /

Prov rebotServices

\ /
I

<<BlockInterface>>

! A sci-cmd-Prov
<<BlockInterface>> <<BlockInterface>> POWER
robotServices sci-cmd-Req SAFE
turnOn POWER FULL
turnOff FULL MAX
GoRight RIGHT SPOT
GolLeft LEFT CLEAN
GoStraight ADVANCE RIGHT
LEFT
ADVANCE

Figure 7.9: IBD of assembling the receiver and roomba.

In Figure 7.10, we present the HPSM of the receiver in the top and the HPSM of roomba
in the bottom. The receiver plays the role of a converter between the coordinator and
roomba. Initially, roomba is in state "OFF". When it receives the ' POWER' command, it
goes to state "Wait". At this state, if roomba receives the 'SAFE’' command, its state will be
changed to "Autonomous". However, if it receives the 'FULL command, it passes to the
state "No-autonomous" and exactly to the state "Adv". At the state "Adv", if the receiver
passes the ADVANCE' command to roomba, roomba remains in the same state. If it re-
ceives the 'LEFT' command, it changes its movement to a counter-clockwise rotation and
it goes to state "LRot". Otherwise, by receiving the 'RIGHT' command, roomba leaves the
state "Adv" and it goes to state "RRot". The same reactions will happen, when roomba is
in the state "LRot" or in the state "RRot".

7.4. CASE STUDY 91

/ HPSM Receiver \
0*
REC turnOn / SND POWER, FULL
51
A REC GoRight / SND RIGHT
Y
[s2
REC turnOff / SND POWER

REC GoLeft / SND LEFT
\ REC GoStraight / SND ADVANCE /
4 HPSM Roomba N

0*
»| OFF <«
REC POWER REC POWER E EC POWER REC POWER
Wait
REC iAFE " RECFULL l
4 Autonomous N 4 No-autonomous N
o W REC ADVAN(E
R E CLEAN - H
»
REC MAX EC LEFT
e A
SPOT wj [] RECRIGHT RRot
- / - /

. /

Figure 7.10: HPSM of the receiver and roomba.
The 1 step : Mapping between HPSM and HIA-ILT

Figure 7.11 shows the result of transforming HPSMs of the receiver and roomba into theirs

. . .. ADVANCE? LEFT? RIGHT?
equivalents of HIA-ILTs. The use of inter-level transitions — , — , — makethe

model obvious and small. For example, if we don't have the possibility of using inter-level

oy . oy ADVANCE?
transitions, the inter-level transition No — autonomous " — "~ 6 must be replaced by three

transitions 6 " s "’ 6,7 ADVANCE? 6 and 8 "2 6. the same for the two other inter-level

transitions.

For clarity, we don't show the detail of the state Autonomous. Because it has the same
structure like the No-autonomous state.

The 2" step :Consistency verification between blocks

o X = {turnOn, turnOff, GoRight, GoLeft, GoStraight}

receiver ™

. X0 = { POWER, FULL ,RIGHT, LEFT, ADVANCE}

receiver

92 CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

HIA-ILT RECEIVER

2 _POWER! 3 GoRight 2 7
turnOn (: POWER
o> rnOn ? 4 RIGHT ! >
turnQff _ | °\ 1 F;JLL
> eft? 7
GoStright DX ADVANCE
o> turnOff ?, T! >
GoRigEt RIGHT
> POWER! Gosfaright? ° 1 >
GolLeft 8 J J.)EFT
5
HIA-ILT Roomba
4 Y A
POWER? % - POWER ?
POWER » <
~ > 4
SATe > POWER? QPOWER ?
FULL
*— P 2
ch&» SAHE ? _/ FULL?
e . ™
SPOT Ve S — N\ No-autonomous
* > CLEAN A
ADVANCE > 6 ADVANCE ?
* | max
RIGHT | smTH» .
LEFT Ll LEFT ? O
>)
RIGHT ? O 8
- J J
.)
Figure 7.11: HIA-ILT of the receiver and roomba.
. E£ vomba = {POWER, SAFE, FULL, MAX, SPOT, CLEAN, RIGHT, LEFT, ADVANCE}
o _
¢ z:roomba =0
1 1 _vO0 0 _vH _ . H —
receiver Zrm)mba - Z:receiver Zroamba - Z:receiver 0 Lroomba = Lreceiver N Zroomba =0.

= receiver { roomba , The receiver and roomba are composable.

The 37" step : The Selection of Composite States to Flatten

Shared(receiver,roomba) =
&N yUES . NE)=
eceiver roomba receiver roomba

{POWER,FULL,RIGHT, LEFT,ADVANCE}

In HA, ,omba, We see that the composite state "autonomous” has no transition labelled with
an action belong to Shared(receiver,roomba), so it will not be flattened. However, it is not
the case for the composite state "no-autonomous”. In Figure 7.12, we expose the result
of flattening state "no-autonomous” of roomba. For visibility, we don't show the inter-
nal detail of the composite state 'autonomous'. By considering the state "autonomous" as

7.5. CONCLUSION 93

LEFT?

RIGHT?

RIGHT?

Figure 7.12: HIA-ILT of roomba after flattening no-autonomous state.

an abstract state, we avoid adding three states and nine transitions to the automaton of
"roomba" which alleviates the next step of compatibility verification.

The 4" step : Compatibility verification between blocks

In Figure 7.13, we show the abstract synchronous product HA . civer ® HAoompq- The state
'3-auto), is an abstract state, it contains all the internal interaction of the composite state
‘autonomous'. This abstraction allows handling simultaneously all internal states of 'au-
tonomous' with their mother. To compute the composition HA,..civer lla HAroompa, We must
delete the state 3-auto because it is a deadlock state for the parallel execution of the re-
ceiver and roomba and it's an illegal state because full € Shared(receiver,roomba) and full

€ x{ and full ¢ 5/ . All the internal states of 3-auto are illegal states (see theorem 1)

HA, cceiver lla HAroompa has at least one reachable state, so HA,,,mp, is compatible with
HA,cceiver- Therefore, this receiver and this roomba can be assembled together.

7.5/ CONCLUSION

We have presented in this chapter the HPSM, a new convivial model for representing the
interaction protocol of a SysML block. We have also presented HIA-ILT, a variant of IA,
which allows the use of the composite states and the inter-level transitions. We have given
rules to formalize the HPSM using HIA-ILT, and we have shown how to exploit the hierar-
chy and the abstraction present in the HIA-ILT to verify the compatibility between blocks.

94 CHAPTER 7. EXPLOITING THE HIERARCHY TO VERIFY BLOCKS COMPATIBILITY

Figure 7.13: HAreceiver Qg HAroomba-

This verification allows the detection of the anomalies during the interaction. Our ma-
jor objective was to alleviate the verification phase, by considering abstract states in HIA-
ILT and flattening only some ones. The states to flatten are those having inside transi-
tions that must synchronize with the other blocks transitions. So we gain, compared with
the classical interface automata approach, on the size of the product automata HIA-ILT
to analyse when we verify the compatibility between blocks. Two blocks are considered
compatibles if the composition of their HIA-ILTs is not empty.

3

SYysML BLOCKS ADAPTATION

How to assemble components designed in isolation? That is the major question on
which CBSE domain tries to give more precise and adequate answers. As we have
mentioned before, CBSE is considered as a natural consequence to the object oriented
paradigm and the emergence of platforms of components (i.e CORBA, CCM). Its major
goal is to build a market of software components (the so called COTS: Commercial-Off-
The-Shelf), in which the developer finds the adequate components to integrate to its ap-
plication.

System engineering also adopts the principle of using the component as the development
unit. This appears clearly through SysML [OMG12b], a language that is used to design
systems that include software and hardware. The System Modelling Language (SysML),
through its diagrams, fosters the view point that takes the system as a set of components
(the so called blocks). The Block Definition Diagram (BDD) of SysML can be seen as a tree
of blocks, where the leaf nodes are the concrete blocks and the rest nodes until the root
are abstract blocks. The abstract ones are called composite blocks, they are composed by
assembling a set of blocks located in a less level of hierarchy.

In this chapter, we propose a bottom-up approach to build the system by adapting SysML
blocks. Starting from a specification of a system part, which we consider as a SysML com-
posite block 'B' to be built, the architect selects some SysML blocks, and adapts them using
our method to meet the specification of B. In the next step of the development, the com-
posite block B and another set of blocks will be used to achieve the specification of their
parent. Thus, in our approach, we build an adapter per a composite block, the sub-blocks
use this adapter to interact with the rest of the system.

Contents
8.1 Our Incremental Approach for Adapting SysML Blocks 96
8.1.1 The First Phase: Defining a Specification for the Part to Develop . 96
8.1.2 The Second Phase: The Selection of the Reused Blocks {B;} 98
8.1.3 The Third Step: the Contract and the Reused Blocks Verification . 99
8.1.4 The Fourth Step: Generating the Adapter 99
8.2 CaseStudy 103
8.2.1 Generate the Adapters 103
8.2.2 Deduce the BDD and the IBDs of the Composite Blocks 106
8.3 Conclusion e e 107

95

96 CHAPTER 8. SYSML BLOCKS ADAPTATION

The adaptation concerns the interaction protocols of the blocks. In this chapter, we start
from the SysML Sequence Diagrams (SDs) that model the interactions of each block with
its environment. Due to the fact that SysML SDs are not formal, we can't base on them
to define the adaptation rules. Thus, we propose to translate SDs on their equivalents of
Interface Automata (IA). Thus, we use the interface automata [dAHO01] as formalism to
formally specify the interaction protocol of the reused blocks (sub-blocks), the adapter
block and the specification of the part to be built (the parent block).

Aswe have mentioned in the related works part, our notion of the adapter differs from the
notion used in the existing works [ITo3b, PSTo7, CMM12, CPSo6a, BBCo5a], which define
the adapter as a protocol converter. In fact, in our approach the adapter has two roles. It
plays its role as a converter between the reused blocks on the one hand, and between the
reused blocks and their future parent block on the other hand. It plays the second roleasa
complement by performing to the reused blocks what they require and it's not planned to
berequired by their parent, and to offer what the parent must provide and it's not provided
by any part of it.

The remainder of this chapter is organized as follows: In section 8.1, we present our ap-
proach of adapting SysML blocks, starting from the selection of the reused blocks until
the generation of the adapter, and in section 8.2, we illustrate our approach through a
case study.

8.1/ OURINCREMENTAL APPROACH FOR ADAPTING SYSML BLOCKS

In this section, we explain our bottom-up approach to assemble and adapt SysML blocks
which are designed separately. In Figure 8.1, we give the different steps of our method.

« We start by specifying the interaction protocol of the part of the system that we want
to develop and integrate to our system. We model this part as a SysML composite
block B which will contain the reused blocks and their adapter.

« After that, we can select the set of blocks {B;} to reuse. During the selection of these
blocks, we take into consideration the specification that we want to fulfil.

« Next, basing on the reused blocks and the specification modelled by the composite
block B, we can deduce if it is possible that these blocks may participate in meeting
the specification of B. If it is the case, we compute the interaction protocol of the
adapter and its structure.

« Finally, we integrate the adapter block with the selected blocks to build the BDD and
the IBD of the parent block B.

In the next step of the system development (see Figure 8.2), the composite block B will
be used to meet the specification of its parent block. Thus, the unit used to construct the
system is the composite block, and we build an adapter per a composite block.

8.1.1/ THE FIRST PHASE: DEFINING A SPECIFICATION FOR THE PART TO DEVELOP

At this phase, we must specify the structure and the interaction protocol of the part B that
we want to develop. Structurally, we model this part as a SysML block. On other hand,

8.1. OUR INCREMENTAL APPROACH FOR ADAPTING SYSML BLOCKS 97

The sequence diagram of B

g sd B)

the part \
7 still B ENV
7/
to develop N msgi
| the | thePart B rys interaction protocol of B
| developed | || todevelop [/~~~ """ TTTTTTTTTT >

\,p,art,,j—' N I |
[Select the blocks to]
reuse
Can’t generate
Verification the adapter
v
[Generate the adapter
v
[Integrate the part B J
to the system _
- “the part still to
develop o -
the developed part :
[Bi]--[Bi] [Ad]
Figure 8.1: The proposed approach.
Block E
Ad_
Block C
Block B Block D
Aq, ﬁﬂﬂj
B1 Bn C1 Cn

Figure 8.2: Incremental approach.

we make use of the SysML Sequence Diagram (SD) to specify the different interactions of
our part with its environment. It is easy to model these interactions with SD. However,
formal verification is still inapplicable directly on SDs, because they are expressed in a

98 CHAPTER 8. SYSML BLOCKS ADAPTATION

semi-formal modelling language. Hence, to apply a verification method, it is necessary to
transform the SysML SDs to formal models. In our work, we have used as formal model
Interface Automata (IAs). To perform this transformation, we make reference to chapter
6, where we have defined the correspondences between these two models.

8.1.2/ THE SECOND PHASE: THE SELECTION OF THE REUSED BLOCKS {B;}

In this phase, the architect can select a set of blocks {B;} that will participate to meet the
specification of the composite block B (constructed in the previous phase). Each selected
block must be equipped with a sequence diagram describing its interactions with its envi-
ronment. The result of this phase will be a set of SysML blocks to reuse with their sequence
diagrams and a contract C that specifies the correspondences between the services of the
blocks.

To specify some conditions on these blocks and the contract format, we need to define
each block B; by three sets. To define these sets, we have based on the formalization of
SysML diagrams given in chapter 5.

« PSp,: the set of provided services,

PSp,={ps |3 pe Ports(B;), ps € p.type.Op A p.Direction=provided}

» RSp,: the set of required services,

RSp={rs |31 pe Ports(B;), rs € p.type.Op A p.Direction=required}

« I0pp,: the set of internal operations,

I0pg= {o | o€ operations(B;)}

The adaptation contract C is constructed incrementally. After adding a new block B, the
architect must specify the correspondences between the services of B; and the services of
the specification of B on the one hand, and between the services of B; and the services of
the blocks already chosen ({B,} ;<;) on the other hand. These correspondences represent
the contract C = {v;}i=1_-

Each element v; of the adaptation contract C takes the format of a synchronous vector: ¢
aj, ap, ... , ay, s)y ,where:

s € PSgpec U RSgpec U {e} N a; € PSp. U RSp, U {&}.

Each vector contains two elements ¢; and a; which are different from epsilon, this means
that the service q; of the block B; corresponds to the service a; of the block B;. We can see
that the adaptation contract C is the union of two sub-contracts elements: C= Cyuppi0cksYU
Cypec , Where:

o CuubBlocks: Specifies the correspondences between the reused sub-blocks {B;},
CsubBlocks={(a1, az, ..., a,, s)},wheres=¢ A a;ePSp, U RSp, U {&}

o Cypec: specifies the correspondences between the reused sub-blocks {B;} and the
specification of the parent block,
Cspec={(ar, az, ..., an, s)},wheres#es A a;ePSp, U RSp U {&}

8.1. OUR INCREMENTAL APPROACH FOR ADAPTING SYSML BLOCKS 99

8.1.3/ THE THIRD STEP: THE CONTRACT AND THE REUSED BLOCKS VERIFICATION

The contract C must respect some validity conditions. The contract C is valid if its sub-
contracts are valid as well:

Because in our approach, we are interested with mapping of type one-to-one, our sub-
contract Cy,pi0cks must verify the condition 1 and the sub-contract Cy,.. must verify the
condition 2.

condition 1 (C,,; /o5 validity):

condition 1.1: A required service of a block corresponds at most to one provided service of
another block.
Y vi=(€1, ..., €n, €) € Conplocks (eix = a, a € RSp,
=> Vv Vij#i= (€jl, -+.5 €jp, & > € CsubBlocks » ejk # a)

condition 1.2: A provided service of a block corresponds at most to one required service of
another block.
YV vi=(€1, ..., €ins €) € ConBiocks (eix = a, a€ PSBk
=V Vj#i= (€jls ---5 €jn, & > € CuubBlocks » ejk # a)

The sub-contract C,.. must verify condition 2:
condition 2 (C;,.. validity):

condition 2.1: A provided service a of the specification can correspond at most to one
provided service b of the sub-blocks.

YV oace PSspec s Y vi=(€1, ..., €pn, a) € Cspec (ejx=Db

:>b€PSBk/\VVj¢i=<ej1, cees €, c)yecC, cia/\ejkqtb)

condition 2.2: A required service a of the specification can correspond at most to one
required service b of the sub-blocks.

Y a e RSspec » Y vi=(€1, ..., ey, a) € Cspec (ejr=b

ﬁbERSBk/\VVjii=<ej1, cees €jp, c)yeC, Cia/\ejkib)

The reused blocks and the specification must also verify the conditions of consistency.

condition 3 (Consistency verification of the selected sub-blocks and the parent
block): This condition must be verified by the parent block (B) that represents the speci-
fication of the part to develop and the reused blocks ({B;}), that will be children blocks of
B.

« A provided service of a sub-block can not be a required service of the parent block:
¥V a € PSp,, a ¢ RS,

spec

« Arequired service of a sub-block can not be a provided service of the parent block:
¥ a € RSp,, a ¢ PSy

spec

8.1.4/ THE FOURTH STEP: GENERATING THE ADAPTER

To generate the adapter, we need to compute the global interaction protocol of the reused
blocks. To do that, we need to transform the sequence diagrams of blocks into their equiv-
alents of interface automata. To compute the parallel composition of interface automata
the reused blocks, we need to adapt the notions of synchronous and parallel composi-
tion to take into consideration the contract and the corresponding actions instead of the

100 CHAPTER 8. SYSML BLOCKS ADAPTATION

shared actions. Thus, we have defined in [BCHM15], the notions of contract-based syn-
chronous product (®.) and contract-based parallel composition (||).

Definition 1 (Contract-based synchronous product):

The contract-based synchronous product is possible between two interface automata A;
and A}, if they are composable (£} N 2’ =2¢n 20 =2 NZs =240 ZH = (), and the
adaptation contract is valid (it Ver1ﬁes the cond1t10n 1).

Before defining the contract-based synchronous product between two interface automata
A; and A;, we need to define Corresponding(A;,A;), the set of corresponding actions
between the interface automata A; and A}, and the function corresp(a) that returns the
action that corresponds to the action a by referring to the adaptation contract:

Corresponding(A;,A;)=
{aEZ(IA[_ U Zgi V] 2114] U Zgj | 3V:<el 5o e ,en’8>ecsubBlocks’ ek=a}

corresp(a)={a'lAveC, I (i, j)e N?, v=(ai,...,a,) A a;=aA aj=a'’}

Definition 22: Contract-based synchronous product

We define the contract-based synchronous product of A; and A; as:

. = I 0 H
AL®CAJ_<SA,'®CAJ': IAi®(-Aj1 ZA[®0A_/’ 2Ai®cAj’ ZA@A 5 6Ai®cAj>

SaiA; = Sa; X Sa; and Igea; = Ia, X Ia;;

I
z:A®A

—(Zix,-uz,{x_,) \ Corresponding(4;, A;);

20®A —(ZgiUEgj) \ Corresponding(A;, A;);

l

Zf]\{@cA_,- = ZZ_ UEX/ U Corresponding(A;, A;);

((si,8)),2a, (8;°,8;°)) € daea; if:

— a ¢ Corresponding(A;,A;)) A (s;,a,s’;)) €0aA s; = 87

— a ¢ Corresponding(A;,A;)) A (sj,a,s’;) € 0a,N Si

]
[}

— a € Corresponding(A;,A;)) A a GEO
A (si,a,s’;) €064, A (sj,corresp(a) s’ ;) € 04,

a € Corresponding(A;,A;)) A a EZO
A (sj,a,s’;) €04; A (s,,corresp(a) S’;) €04,

. .. ! (a) ..
This product absorbs the transitions (s;, 5;) N (s%,55) o (s7, s’.) and the transitions

(i, 55) - (s, s}) wrm[}(a) (s, s)by replacing them by a single transition (s;, 5;) iR (sl, s)

This absorption is helpful When we need to compute the synchronous product between
multiple IAs having corresponding actions. It allows the atomic execution of the emission
of an action and the reception of its corresponding action.

The contract-based parallel composition between two interface automata A; and A; is de-
fined as:

8.1. OUR INCREMENTAL APPROACH FOR ADAPTING SYSML BLOCKS 101

Definition 23: Contract-based parallel composition

Aill.Aj= A;®:A; after removing illegal states and all states reached from these illegal
states by enabling output and internal actions. The set of illegal states is defined as:

(5i»87) € Sa;, X Sa; | da € Corresponding(A;, Aj).
ae Zgi(s,-) A corresp(a) ¢ EQj(sj)
\Y
ace ZXj(sj) A corresp(a) ¢ Zii(s,')

Illegal(A;,A))=

Thus, the global interaction protocol Ag of the sub-blocks {B,};-; , is obtained by compos-
ing their interface automata {A;};=1., using the contract based parallel composition:

Ag = Ay e Ao lle + v e An

At each given stage i of computing the composition, we must compute the composition
between the interface automaton A, (where A. = A; ||c ... |l A;1)and the interface
automaton A; of the block B,. At each stage i, we must verify the condition 4.

Condition 4: (The blocks must be compatible) A, must be not empty.

Now, we can deduce the interaction protocol of the adapter by using the interface automa-
ton Ag and basing of this relation:

Aspec = Ag ”c Agd

It means that the automaton resulting from composing interface automata of the blocks
{B;} with the adapter automaton, must refine the interface automaton of the part B. Thus,
to deduce A4, we refer to the formula proposed in [BR08|. To compute the most general
solution R where Q > P||R, the authors in [BR08] prove that R = mirror(P|mirror(Q)),
where P,R and Q are interface automata, and mirror(Q) is the interface automaton Q with
inputs and outputs interchanged. We define formally the notion of mirror as follows:

mirror(Q)={Q' |V (s, a!, s') €dg, I (s, a?, s') €dyp A
Y (s, a?, s') €6g, 4 (s, a!, s') €dp A
Y (s, a;, s') €6g, 4 (s, a;, s') €dp}

Thus, in our case, because we have corresponding actions between automata instead of
shared actions, the A,; must be computed as follows:

Ay = mirror(Ag |[lc mirror(Agpec)) =
mirror(Ay [l ...llc Ay lle mirror (Agpec))

Condition 5: (A and mirror(A;p..) must be compatible) A,, is not empty

If the condition 5 is verified, we can deduce the real interaction protocol of the adapter
by applying the algorithm 2, which allows to return transitions absorbed in the contract
based synchronous product.

102 CHAPTER 8. SYSML BLOCKS ADAPTATION

Algorithm 2 Deduce the interaction protocol of the adapter
INPUT: Ava = Sads Taas Zéd, ng’ ZZ{: 0ad) C

. = / o H
OUTPUT: Aadapter _<Sadapter’ Iadapter: Zadapter’ Zadapter’ Eadapter’ 6adapter>

1: - Create a copy Audaprer Of Aud.

a
2: - Construct the set T of all transitions (s—s’ € Oudaprer) » Where a

appears in the contract C.

4 ’ a; , al? corresp(a)!
3: - Replace all s — §" € Oudaprer Where s — s' €T, by s — s — 5.

According to the contract based synchronous product, the transitions labelled with inter-
nal actions a; in A,4, which appear in the contract, represent the transitions where the
adapter plays the role of a converter: so each transition of this set must be replaced by
two transitions. The first is labelled with the input action a? and the second by the cor-
responding action corresp(a)!. This means that the adapter receives the action a? from a
block, after that, it converts it to the suitable input of another block and it conveys it using
an outputaction corresp(a)!. The transitions which aren't selected by the algorithm 2are
those where the adapter plays the role of a complement and not a converter.

Now, we can construct the architecture of the SysML adapter block Bsprer. We use the
algorithm 3 to deduce the set of ports of B,juprer. To build the BDD and the IBD of the part
B,we apply the Algorithm 3 and the algorithm 5. The role of algorithm 4 is to establish the
composition relations between the parent block B and its sub-blocks {B;}, and a composi-
tion relation between the parent block B and the adapter block B,;. We use the algorithm
5 to generate the IBD of the block B. It bases on relying the adapter block ports with the
ports of the sub-blocks {B;} and the parent block B.

Algorithm 3 Construct the SysML adapter block

. — 1 o H
INPUT: Aadapter—<sadaptery I“d“l”e”'zadapter ’Zadapter yzadapterv(sadapter>

OUTPUT: Buiaprer = 'Adapter’, V, O, C, P, Ports)
1: -Create the adapter block Bujuper=('Adapter’, 0, 0, 0, 0, 0)
2: // CREATE THE LIST OF PORTS OF THE ADAPTER THAT MUST BE LINKED TO THE PORTS
OF THE PARENT BLOCK.

; I)4
if e O Zipec # 0 then
—-create a new provided port p which offers the services walapmﬂf.f_pec

—gdd P toO the ports list of Buiuprer
if ¥ Nnxy .. #0 then

adapter spec
create a new required port p which requires the services X
add p to the ports list of Buprer
// CREATE THE LIST OF PORTS OF THE ADAPTER THAT MUST BE LINKED TO THE PORTS
OF SUB-BLOCKS 1B}
10: for all B; in the list of sub-blocks {B;} do

o o
adapter spec

11: if X, 0 NZG #0 then

12: create a new provided port p which offers the services ZidapterﬁZg[
13: add p to the ports list of Buguprer

14: if X0, NZL #0 then

15: create a new required port p which requires the services ngamrﬁzgi

16: add p to the ports list of Bugaprer

8.2. CASE STUDY 103

Algorithm 4 Construct the BDD of the parent block B

INPUT: B, {Bi}, Budapier

OUTPUT: BDDp =(B, R)
- Set the value of the blocks set of the BDDg to: B= {Bj}i=1., U
{B, Badapter}
- Create a composition relation r; between the parent block B and each
block B; where: Source0f(r;) = B, Target0f(r;) = B;
- Create a composition relation r,; between the parent block B and the
adapter block Buguprer where: Source0f(r,q) = B, TargetOf (rus) = Budaprer
- Set the value of the relations set of BDDpg to: R= {ri}izi.n YU {ru}

Algorithm 5 Construct the IBD of the parent block B
INPUT: B, {B,‘}, Badapter
OUTPUT: IBDg =(Parts, Ports, Connectors)

- Create instances {part;}i=1., of the blocks Set {B}i=1.n-
- Create an instance ’ad’ of the adapter block Buguprer-
- Set the set Parts of IBDp to: ({part}i=1., U {ad}
- Set the set Ports of IBDp to: ({Ports(part))}i=1., U Ports(ad)
//CREATE CONNECTORS BETWEEN THE ADAPTER AND {parti}i-i., -
for all part; € {part;}i=;., do
for all port p € Ports(ad) do
if Ap’ € Ports(part;) A (p.type.Op N p’.type.Op # 0) then
create a connector between p and p’
//CREATE DELEGATION CONNECTORS BETWEEN THE ADAPTER AND THE PARENT BLOCK B.
for all port p € Ports(ad) do
if Ap’ € Ports(B) A (p.type.Op N p’.type.Op # 0) then
- create a connector between p and p’

8.2/ CASE STUDY

To illustrate our SysML blocks adaptation approach, we give a simple example of a robot
which is guided by a station. To simplify, we consider that the corresponding actions have
the same name and we differentiate between them by adding the first letter of the block’s
name to each action.

Remark:

In each figure of the reused blocks, we present the architecture of the block with its
interfaces, its sequence diagram, and the result of transforming its sequence diagram
into an interface automaton.

8.21/ GENERATE THE ADAPTERS

To build this system, we start by building the robot (see Figure 8.3). We want that our robot
receives a request to move. After that, it can either receive a request to stop, or to commu-
nicate its location. In this last case, the robot send the location data to its environment.

Thus, to build this robot, we have reused a motor and a controller (see Figure 8.4). At this
step, we use the contract Cconresmor=

104

prov pr2 : RPro

{(C.on, M.on, &), (C.off, M.off,

CHAPTER 8. SYSML BLOCKS ADAPTATION

Figure 8.3: The Robot.

g), (C.move,

<< block >> << interfaceBlock >> .,. oc]
RProv .
Robot - L
5 R.move | 00 1 1
constraints '<_B...JIIQJE_'
- R.stop 1 i
operations A oop, 1 L
R.getLocation Regetlocation
parts 1 1
references . << interfaceBlock >> ! . !
1 values Ofreq pr1 - RRe RReq :_B...lma.iug.n,:
properties . R.sto \
R.location ! ¢ !
(Y
R-movg R.move?R.getLocation? :
R.sto]
op,) lgcation
R.getLocation . Transformation
—> R.stop? R.location!
.

g, R.move), (C.stop, &, R.stop)}

< [Hlaah 55 << integfa)ceBlnck >> << inte]{'j}zjceBl{)ck >> < Bl 5>
rov rov
Controller Motor
- C.move M.0On -
constraints C.stop M. 0ff constraints
operations << interé:aceBlock o> operations
parts parts
. references . references
prov pcl: CPr alues C.0On prov pml: MPrdfr] values
req pc2: CRe properties C.0ff properties
< block > < block > 4 p 4 p
Z.oopj 1 1 :_oop] 1 1
X C ;| e T . .
: e C.Stop : : M. of f :
1 1 1 1
IJ..Qif-)I 1 1
' ' 1 1
4
C .movg < } .move g;.on M.on M.on?
B T > >
C.olf f! Al(ifz; g
C.stop Coff Mof]’
= 4—76> —> -
C.stop

Basing on the contract Cconromor, We adapt these two blocks to meet the specification
of the robot by introducing the adapter (a converter-complement) Adconsrsmor (S€€ Figure
8.5), where the interaction protocol of the adapter Adconiromor 1S represented using an in-
terface automaton and it is computed by applying the algorithm 2 on the result of this

formula:

IAAdCon[rHMnt

Figure 8.4: The Controller and the Motor blocks.

= mirror (IAconrolier lle IAMotor e mirror (TAgopor))

8.2. CASE STUDY 105

<< block >>

ADContrHMot

constraints

operations

prov prl : RRed[] parts Ol req pcl : CProv
references O
values
prov pc2 : CRed[] properties | req pr2 : RProv

req pml : MProv

R.move? C.move! R.getLocation?
R.move | C.move
R.stop l ' C.stop
~ >M.off! C.on?|R.location! —>
R.getLocation M.on
C.on M;-Of f
COJl, C.of f? N/Q) % R.location
L C.stop! R.stop? R.location!

Figure 8.5: The adapter ADconsroMot-

Our robot must be guided by a station. That is why, we have reused the station at Figure
8.6, which is modelled using SysML and interface automata.

< gk > << interfaceBlock >> < block > < block >
. S Prov iila-‘P-ﬂt I_EJ}BLI
Station , ; .
- S.location loop) 1
constraints 1 S . Move 1
| |
operations << interfaceBlock >> L OOD, :) :
parts S Req . S.location
. references 1 1
prov pr2: SPr values S.move : :
req prl: SRe properties S.stop) S sto |
I ! >
) Y
S.move! z Move :
S .locatig S :
i} B SR
g|S.stop Transformation
S.stop! Y
J

Figure 8.6: The station.

To adapt the station and the robot, we have used the contract Cropessisa:
{ (R.move, S.move, &), (R.stop, S.stop, €), (R.location, S.location, &)}

At this step, we have a closed system, which cannot interact with its environment. Thus,
the interface automaton which specifies the interactions of our station and our robot with
their environment will be empty. Thus, to compute the adapter Adr,ps:4 (Se€ Figure 8.7),
we need just the contract Crypess14, Where, in Figure 8.7, the interaction protocol of the

106 CHAPTER 8. SYSML BLOCKS ADAPTATION

<< block >>

AdR0b<—>S ta

constraints

operations

prov ps2 : SReq[] parts Ofreq pr1 : RProv

references
prov pr2 : RRed[] prvoﬁgftsies Olreq ps1 : SProv
(S.move?)
S .move | &llwve
R joiit%mle'swp! ' Sv -el!Ocaf ion! If;éiiz];cation
—=>
S .lacation
R.location?
. y

Figure 8.7: The adapter Adgropessia-

adapter Adgopos1q 1S represented using an interface automaton and it is computed by ap-
plying the algorithm 2 on the result of this formula:

TAddrpporsa = mirror (TAropor lle TASiation)

8.2.2/ DebpuUCE THE BDD AND THE IBDS OF THE COMPOSITE BLOCKS

Y Y Y

AdRoboSia] [Station]

Y Y Y

[Controller] [Adcontres Mot] [Motor]

Figure 8.8: The Block definition diagram of the system.

)

p=v)

(]

o

o

ct
N——
)

InFigure 8.8, we represent the blocks of the system and the composition relations between
them, we have used Algorithm 4 to generate this BDD. However, we have applied Algo-
rithm 5 to generate the internal structure of each composite block: the system and the
robot blocks (see Figure 8.9).

8.3. CONCLUSION 107

(1) IBD of the System

«Block»
System

prov psl «party

O
«party Ereq psl req ps2 DStation

prov ps2

O
AdR0b<—>S taE req pri

prov pr2 prov pril «party

2
re r
qPp 0O Robot

(2) IBD of the Robot

«Blocky
Robot
prov psl O «party
prpv prl ((part» req pSl req pS2 Ef')ntroller
0—O =
|7_Jarov ps2
Adc
T r2 ontoMoT |req pri
e g o2 - ,
brov pr Tov pr
p p P2 O “party
req pr
qp O Motor

Figure 8.9: The internal block diagram.

8.3/ CONCLUSION

We have presented in this chapter, a bottom-up approach to build a system, based on its
partial specifications. The approach is based on reusing and adapting SysML blocks us-
ing a converter-complement block. Starting from a specification of a system's part that
we consider as a SysML composite block, the architect tries to meet this specification by
reusing existing blocks. In our present work, we have given a set of conditions that this
set of blocks must verify, and also, we have given some constraints to be respected by the
contract specified by the architect. We have used the interface automata as formalism to
specify formally the interaction protocols of blocks. By defining the new notion of con-
tract based synchronous product and basing on the relation of refinement between inter-
face automata, we deduce the interaction protocol of the converter-complement block,
when the reused blocks respect the adaptation conditions. In our approach the adapter
has two roles. It plays its role as a converter between the reused blocks on the one hand,
and between the reused blocks and their future parent block on the other hand. It plays
the second role asa complement by performing to the reused blocks what they require and
itsnot planed to be required by their parent, and to offer what the parent must provide and
its not provided by any part of it.

9

INCREMENTAL VERIFICATION OF
SYSTEM REQUIREMENTS

tis very interesting to make call for formal methods to verify the result of assembling a
I set of components to construct a system. In our context, the verification of the resulted
system after adaptation targets the temporal properties as in [CCM14]. These properties
can concern the order of components services invocation, or it can verify if when a compo-
nent requests a service, the other components can always answer this request by offering
the corresponding service.

In our approach, we take advantage from our adaptation method, to tackle the problem
of state explosion. For a given requirement, we must know its location in the system hi-
erarchy to specify the blocks involved in the verification of this requirement. The set of
selected blocks will be the minimal set that allows ensuring that if the property, which
represents the requirement, is verified on this set, it will be verified on the whole of the
system.

In this chapter, we extend the adaptation (presented in chapter 8) by a verification ap-
proach which allows verifying SysML requirements on only a partial part of a system in
order to decide on its verification on the whole system. In this phase, we exploit our man-
ner of defining the adapter, to avoid the verification of the initial requirements satisfied
by the adapted blocks on the totality of the system, and thus, we avoid the state space ex-
plosion. To allow the verification of the properties that specify these requirements, we
have based our work on SPIN model checker, we have generated the Promela code start-
ing from the interface automata of blocks, and we have expressed the set of requirements
using LTL properties.

Contents
9.1 OQur Approach 110
9.1.1 Requirements Specification L. 110
9.1.2 Problem definition o 111
9.1.3 The First Case : The Low Level Verification 111
9.14 The Second Case : The High Level Verification 114
9.1.5 The Verification Algorithm 117
9.2 CaseStudy i i i i i e e e e e e 119
9.3 Conclusion e e e e e e 123

109

110 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

In the remainder of this chapter, we expose our approach for requirement verification,
where we present how we represent the requirements and how we verify them. Next, we
illustrate our approach through an extended version of the case study presented in chapter
8.

9.1/ OURAPPROACH

9.11/ REQUIREMENTS SPECIFICATION

In this work, we consider that each functional requirement is related to the provided (PS)
and required (RS) services of the block (B) on which is defined, and it expresses constraints
and the order of executing these services.

To model the behaviour of our blocks, we have used interface automata. We have men-
tioned, early in this paper, that the required services (RS) of a block correspond to the out-
put actions of its interface automaton, and the provided services (PS) correspond to the
input actions. This means that, we can consider that each requirement ¥ which is defined
on a Block Bis also specified using the input and output actions of interface automaton of
B.

In our work, we will translate the interface automata of blocks to Promela processes, and
we will write the requirements using LTL in order to verify these requirements using SPIN
model checker as in [CCM14]. Thus, a block B satisfies a requirement r if the Promela pro-
gram describing the block behaviour (interface automaton) satisfies the LTL property p
specifying the requirement r.

In order to verify whether a component satisfies a LTL property, which describes the or-
der of executing a component services, in [LTM*09], the authors have proposed to use a
series of flags in Promela processes to keep track of who is sending/receiving what mes-
sage to/from whom at any time of the execution. These flags are updated together at each
send /receive event using a d_step statement. After defining the flags to track the execu-
tion state of the system, LTL properties can be written as boolean expressions over the
flags.

Thus a property p which is defined on the block B can be expressed as a formula defined
with the flags (the flags takes the value true or false) belonging to this set:

{send, receive} U {actionFlag(a)| a € =4 U =9} U {blockFlag(B), blockFlag(ENV)}
where:

« actionFlag() isthe function that returns the flag which is associated to a given ac-
tion.

« blockFlag() is the function that returns the flag which is associated to a given
block, or to the environment.

Thus, for example, if we want to express that, when the block Bi receives a request to ex-
ecute the service y or the service z, it must send a call for the service x, as a LTL property
using flags, we do it as follows:

9.1. OUR APPROACH 111

O ((f_Bi && f_receive && (f_y || f_2)) —
O (f_Bi && f_send && f_x))

where:

« f Biisthe flag associated to Bi, it takes the value true or false.
« f x,f yandf zarethe flags associated to services x, y and z.

« f send and f receive are the flags that specify if the executed action is an emission
or areception.

All the flags must be updated after each action of a block. Where, the flags that represent
the executed action, its type (send or receive) and the block which executes this action,
must be updated to true. However, the other flags must become equal to false.

9.1.2/ PROBLEM DEFINITION

Our approach aims to alleviate the verification phase of functional requirements of the
adapted system by exploiting our manner of adapting system blocks. Through our ap-
proach, we will explain how can we reduce the problem of the state explosion during the
verification, by benefiting from our adaptation approach and the composition relations
between blocks and between requirements. Our adaptation mechanism, presented be-
fore, generates for each set of reused blocks an adapter block. This adapter plays the role
of an orchestral conductor for the adapted blocks.

We can resume our problem of verification as follows:

If we have a LTL property p which is verified on a block B, how can we check whether p is
verified or not on the result of assembling B; and adapting it with other blocks {B,};=>_,-

The first idea that comes to the mind is to verify p on the parallel execution of the blocks
{Bi}i=1.,» and their adapters {Ad;} (we can't verify p only on the interaction protocol of B;
because, after adaptation, there is a possibility that some interaction scenarios of B; will
be eliminated and others will be created due to the parallel composition). This first idea
is constrained with the problem of the state explosion because the system behaviour ob-
tained after the composition of several blocks is generally complex and voluminous. For
this reason, in our approach, to verify p, we focus on only the generated adapters {Ad}
and the mirror of the property p . We generate the mirror of the property p because p is
initially defined on the input and output actions of the reused block B;, while we want to
verify it on the adapter, and we also know that the input (resp. output) actions of B, are
the output (resp. input) actions of the adapter.

In our approach, we distinguish between two cases:

9.1.3/ THEFIRST CASE: THE LOW LEVEL VERIFICATION

We mean by low level verification (see Figure 9.1), the stages where we verify a property p
on a block B containing a set a blocks {B;};=1., and an adapter Ad, where the property p is
initially defined on a child block B; € {B;}i=1.x.

112 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

Taking into account that the adapter Ad mediates all interactions between the blocks
{Bi}i=1.n, we can only focused on its interaction protocol to verify if a property p which is
verified on B; before adaptation steals verified after adapting B; in the new system, instead
of verifying p on the parallel execution of the blocks {B;};=;., and the adapter Ad.

XAfter adaptation, verify p on B

B 5 :

| | B | |

LAd | RS S . |
EZBI_'_E---;BE---[E%&] G[ad] ¢ (B B
S : '

p is defined and satisfied initially by B; ¥ After adaptation, verify p on Ad
Figure 9.1: The first case: the low level verification.

Theorem 2:

V B= By|l” ...I” B, II” Ad, V B;e{B;}i ,, V peProperties(B;),
V p’=PropertyMirror (p)
(BiEpPpAAEP = BEDp

Theorem 3:

V B= By’ ...I” B, II” Ad, V B;e{B;}1 ,, V peProperties(B;),
¥ p’=PropertyMirror (p)
(BiFpAAdIFE P = BIfp

We define by:

« |I”: the blocks assembling operation.

« B, F p: meansthatall the execution scenarios of B; satisfy the temporal order spec-
ified at the level of the property p.

e Properties(B;): is the set of all properties defined and satisfied initially by B, be-
fore the adaptation.

o PropertyMirror(p): isthe function that transforms each input action in p into an
output action and each output action into an input action.

Proof:

« We have p is a property satisfied by the block B;. B, =p

o we have X, 3, ..., X, represent the sets of shared actions between the interface au-
tomaton of the adapter A4, and, respectively, the interface automata of the blocks
A1, Apy, ...,Apn: Zi = {a € Zp; | da € Zyq}.

9.1. OUR APPROACH 113

e wehaveX=JX,.
i=1

o The Traces set of an automaton A represents the set of all execution scenarios {o} of
this automaton, where each o € Traces(A) = ajas...a;...a,(¥i = 1.m,a; €).

o TraceMirror(c) is the function that takes a trace o- and transforms each input action
into an output action, and each output action into an input action (e.g. TraceMir-
ror(a'b?c!)=a?b!c?).

« reduce(o, X)isthe function that takes a trace o- and eliminates from it all the actions
which do not belong to the set X.

« Our definition of the adapter as a converter-complement in a synchronous system
implies that:

— all emission of a message a! by the adapter Ad (where a € %;) must be followed
directly (synchronous system) by its reception a? by the block B;, and each re-
ception of a message a? by the adapter (where the adapter waits this message
from B;) must be preceded directly by an emission of this message a! by a block
B;... (1)

Proof1:
« We consider that the property p'= PropertyMirror(p) is satisfied by the adapter Ad.

Ad E p'...(2)

« From (1), we have:

— VYo € Traces(Apg ® A1 ® ... ® Ap,) = Jo”’ € Traces(Aaq),
o’ = TraceMirror(reduce(c, X)) ...(3)

« We interest only with the actions of the block B; because p is defined on B;, thus we
can restrict (3) as follows:

— VYo € Traces(Apg ®Ap1 ® ... ® Ap,) = Jo”’ € Traces(Aayq),
o’ = TraceMirror(reduce(c,%;)) ...(4)

« Our properties specify the order of executing the actions...(5)

« From (4) and (5), we can deduce that: if an action a € Z; is followed (resp. is not
followed) by an action be %, in all the executions o’ of Ad, then it will be the case for
all executions o of B (because according to (4), Traces(B) are included in Traces(Ad)
by considering only actions that belong to T; : Traces(Ap) < Traces(Aag))...(6)

Thus, from (2) and (6), we can deduce that B = p.

Proof 2:

We consider that the property p'= PropertyMirror(p) is not satisfied by the adapter Ad.
Ad ¥ p'...(2)

114

CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

From (1), we deduce that:

— Yo € Traces(Aag) = Ao’ € Traces(Apg ® A1 ® ... ® Agy),
o’ = TraceMirror(reduce(c, X)) ...(3)

We interest only with the actions of the block B; because p is defined on B;, we can
thus restrict (3) as follows:

— Yo € Traces(Aag) = Ao’ € Traces(Apg ® A1 ® ... ® Agy),
o’ = TraceMirror(reduce(c, %)) ...(4)

Our properties specify the order of executing the actions...(5)

From (4) and (5), we can deduce that: The scenarios of the adapter are included in
the scenarios set of the father block B by considering only actions which belong to
Y. Thus, if an actions order is not verified by at least one of the scenarios of adapter
then this implies that this order will not be verified by at least one scenario of the
father block B...(6)

Thus, from(2) and (6), we can deduce that B |~ p.

9.1.4/ THE SECOND CASE: THE HIGH LEVEL VERIFICATION

We mean by high level verification, the stages where a property p is initially satisfied by a
block B;; (where i is the level of the block in our system hierarchy and j is the identifier of
this block in its level), and we try to verify it on B,, (the ancestor m-i of B;;) (see Figure 9.2).

B

Ad
L

Bin-1y1 |» = = | Bun-1)g » = w [Biu-1yfm-1)

Bii+p

Figure 9.2: Incremental adaptation.

We can define the problem as follows: We have a temporal property p satisfied by the block
B;j, wherethis property concerns the actions ofthe block B;;. We have applied a succession
of adaptations on this block. For example, at the first stage of adaptation of B;; (we are at
the level i of our system hierarchy) the block B;; interacts with the adapter Ad;,;, where
B;j and Ad, has the same father block B(;;1),. when we are at the stage m of adaptation
of B;;, we will have the adapter Ad,, which adapts a set of blocks and the block B,,—1)p (the

9.1. OUR APPROACH 115

ancestor,_; of B;;). According to our method of adaptation, the block Ad,, interacts with the
sub-blocks of B(,-1)p through the adapter Ad,,_;.The question here is how can we verify p
at the level m without taking into account the parallel execution of all blocks inside the
ancestor block B,, of B;;?

Theorem 4:

YV i=1..m, YV j=1..£(1), Bu=Adul® Buu-nll® ... 1I” Bon-tyson-1)»
¥ p € Properties(B;;), Y p’=PropertyMirror(p)
(Bij |: P A ”Z:(Hl)..mAdk ': P’ = By |: p)

Theorem 5:

Voi=1..m, V j=1..£(i), Bu=Adull® Beutnll® ... I° Bon—1yfon-1)>
¥ p € Properties(B;;), Y p’=PropertyMirror(p)
(Bij IZ 1Y A ”Z=([+1)“mAdk bé P’ = Bm V: p)

Where:

o |’ is the blocks assembling operation.
« iistheidentifier of the hierarchy level,
« jistheidentifier of the block inside the level,

o f(i) is the function that returns the number of the children blocks at the level i,

B, is the ancestor m — i of B;;.

Proof:

To simplify, we consider two levels, the level 1 and the level 2. This means that we have
adapted the block B;; and after we have adapted its father. So the problem will be as in
Figure 9.3.

« we have X represents the sets of shared actions between the interface automaton of
the block B;; and the interface automaton of the adapter Ad2. ¥ = {a € Zp,, | Ja €

Zadaz}-
« Wehave Ap; = Aasz ® Ap,, ® ... ®A32P ®..®Ap,

« So (we mean by o 5 o’ that o = 0/ when we consider only the actions belong to X):
Traces(Aps) < Traces(Aua3 ® Apy ® ... ® Ap,, ® ... ® Ag,,)---(1)

 In Our adaptation mechanism:

— the adapted blocks are in interaction only with their adapter. Thus, the block
B, interacts only with the adapter Ads...(2)

— the other adapted blocks by Ad3 can't block the interaction of the adapter Ad3
with the block B, ...(3)

116 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

d3 | XAfter adaptation, verify p on B3

|521 | ||32p|...||32m|

DA B (B

BZp L : 4 X
[Ad, | X 5 5
X Ad, ! | Bij | | Bl |!

[

[But =+ [Bij | ==+ [Bin | Fafter adapiation, verify p on Ad2 ©Ad3

p is defined and satisfied initially by B;

Figure 9.3: The second case: The high level verification.
 from (1), (2) and (3), we can deduce that:

Traces(Ag3) 5 Traces(Axa3 ® Ag,),) -.-(4)

« We have also:

— the block B;; interacts only with the adapter Ad2...(5)

— the other adapted blocks by Ad2 can't block the interactions of the Ad2 with the
block BIJ(6)

 from (3), (5) and (6), we can deduce that:

Traces(Aagz ® Asz) ; Traces(Apaz @ Aaan ® ABi_i) (7)

 from (4) and (7), we deduce that:

Traces(Ap3) 5 Traces(Aaa3 ® Aaar ® Ag,)) ...(8)

« Our definition of our adaptor implies that: all emission of a message a! by the
adapter Adz (wherea € X;) must be followed directly (synchronous system) by its re-
ceptiona? by the block By ;, and each reception of a message a? by the adapter (where
the adapter waits this message from B ;) must be preceded directly by an emission
of this message a! by a block Bj;... (9)

« from (8) and (9), we deduce that:

9.1. OUR APPROACH 117

Yo € Traces(Apz) = o’ € Traces(Aagn @ Apgz)

o’ = TraceMirror(reduce(c, X)) ...(10)

« Ifthe mirror of a property p which concerns the actions order of the block By is sat-
isfied by each execution of A4 ® Aag3, from (10), we can deduce that this order will
be preserved in all traces of Ap3, and thus, p will be satisfied by the block B3.

The same for a property p, when its mirror is not satisfied by at least one scenario of
Ad2 ® Ad3, then from (10), we can deduce that this property will not be satisfied by
B3.

9.1.5/ THE VERIFICATION ALGORITHM

Our verification algorithm takes respectively as inputs the block B,, and the requirement
diagram ReqD. B,, represents the block on which we want to verify the properties defined
and satisfied initially by its children. However, RegD represents the requirement diagram.
RegD helps us to deduce the properties satisfied by the children blocks of B,. We must
mention that at the beginning of the adaptation, the requirement diagram takes the form
of separated requirements sets, where each set is satisfied by a reused block. Thus, the role
of this algorithm is to synthesize the verification steps described above. Firstly, it extracts
all the requirements satisfied by the sub-blocks of the input block B,,. After, for each sub-
block, it constructs the set of its ancestors until arriving to B,,. Next, Basing on this last
set, it can decide if it will apply the low level or the high level verification. The output
of the verification phase is a set of requirements which are satisfied by the new system
B,,. Next, we use this set, the hierarchy of blocks and the composition relation between
requirements to update the requirement diagram.

118 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

Algorithm 6 verification of temporal properties
INPUT: B,,, ReqD

1: //Pv REPRESENTS THE SET OF PROPERTIES SATISFIED BY B,

2: Pv « 0

3: //Sub_Blocks(Bm) REPRESENTS THE BLOCKS SET THAT HAVE B,

4: //IN THEIR ANCESTORS SET, INCLUDING B,

5: for all B; € Sub_Blocks(Bm) do

6: // SELECT, FROM THE REQUIREMENT DIAGRAM, ALL THE ATOMIC REQUIREMENTS
7 //satisfied by B

8: REQ«— {req] 3 r € SRel(RegD) A r.source= B; A r.target=p}

9: -P represents the properties set specifying the requirements set REQ
10: // Ancestors(B;) REPRESENTS THE ANCESTORS LIST OF THE BLOCK B;
11: Ancestors(B;)=[Bjs1, ..., Byl

12: //Ad_of Ancesters(B;) REPRESENTS THE LIST OF ADAPTERS OF THE

13: //ANCESTORS BLOCKS OF B

14: Ad_of Ancesters(B;)=[Ad;y;1, ..., Ad,l]

15: forallp € P do

16: //CREATE THE MIRROR PROPERTY OF P

17: -Create p’ a copy of p

18: -Replace all the flags ’send’ in p’ with the flags ’receive’.
19: -Replace all the flags ’receive’ in p’ with the flags ’send’.
20: if size (Ancestors(B;))=1 then //THE LOW LEVEL VERIFICATION

21: -Verify p’ on the Adapter Adi,;.

22: else//THE HIGH LEVEL VERIFICATION

23: T =®j=(i+1).mAd;

24: -Verify p’ on the Adapter .

25: end if

26: if p° is verified then

27: Py « Pv U {p}

28: end if

29: end for

30: end for

31: //MODIFY THE REQUIREMENT DIAGRAM

32: -RE(}_S represents the requirements set specified by the properties in Pv
33: //REPLACE SOME ATOMIC REQUIREMENTS IN RS BY THEIR ANCESTORS

34: for all r € REQ_S do

35: -R_Sibl represents the set of the sibling requirements of r,

36: including r.

37: if R_Sibl c REQ_S then

38: -delete all requirements in R_Sibl from REQ_S and replace them by
30: parent (r)

40: end if

41: end for

42: -Create a new requirement regq.

43: for all req; € REQ_S do

44: -Create a composition relation cr between req and the

45: requirement req;, where : source(cr)=req A targets(cr)=reg;

46: end for

47: -Create a satisfaction relation <«satisfy® sr between the block B, and the

requirement req, where: source(sr)=B, A target(sr)= req

9.2. CASE STUDY 119

9.2/ CASE STUDY

We extend the case study of the previous chapter as follows:

During the selection of the blocks to reuse for building our system, we have verified if these
blocks satisfy our initial requirements. For example in Figure 9.4, we give the require-
ments on those we have based to select the controller, the motor and the station blocks.
During the construction of the robot, we have taken into consideration that the reused
controller must satisfy the requirement R.;. However, during the adaptation of the robot
with the station to construct the global system, we have verified that the station satisfies
the requirement R;;. Also, from the specification of the robot, we have deduced that the

robot satisfies the requirement R, .
<< block >> << block >> << bloc_k >>
Controller Robot S tation
I I
<< satisfied >>: << satisfied >>:
I I
I I

|
. i

<< satisfied >>
|

|

<< requirement >> << requirement >> << requirement >>

I?CI }?rl 1?31
text: textithe station

after it
text: the

controller activates
the motor after it
receives a request
to move

receives a request
ito move the robot
can receive a

command to stop or

must stop the robot
after it makes it

moving

id: R.s.1

ito give its location

id: R.c.1

id: R.r.1

Figure 9.4: The basic requirements.

After the adaptation (adapting the controller and the motor), we must verify if the require-
ments still verified in the parallel execution of our system blocks.

The requirements specified on the station and on the robot can be verified directly on the
their adapter Adgypess14 by following these steps (low level verification):

1. we must write the interface automaton of Adg,pes:s @s @ Promela process. We must
also specify its environment ,which is the mirror of Adg,p.s:, interface automaton,
as a Promela process.

2. weadd the processes flags f proc, which are the flag associated to the adapter f_ad,
and another flag which is associated to the environment f_env.

3. weaddsend f send and receive flags f_rec.

4. we add the actions flags f_act, where each flag f act is associated to an action of
the adapter Adg,»o514- This action must belong to the shared actions between this
adapter and the concerned blocks (robot and station).

5. wewrite therequirements as LTL properties, which are specified on the flags already
mentioned, as follows:

120 CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS

/*Variable global#/
bit near=0;
/*Messages declaration*/
mtype={S_move, R_move, S_location, R_location, R_getLocation, S_stop, R_stop };
/*Channels declarationx/
chan ch_Ad_Env[10]=[0] of {mtypel};
/***FLAGS***/
/*Last performed action by the adapter block*/
bit send=0;bit receive=0;
/*process that performed last action*/
bit f_ad=0; bit f_Env=0;
/*action performed at a given execution step*/
bit f_S_move=0; bit f_R_move=0; bit f_S_location=0; bit f_R_location=0;
bit f_R_getLocation=0; bit f_S_stop=0; bit f_R_stop=0;
proctype Ad_Rob_Sta() {
do
::atomic{ ch_Ad_Env[0]?S_move;
d_step{send=0;receive=1; Ad=1; Env=0; f_S_move=1; f_R_move=0; f_S_location=0;
f_R_location=0; f_R_getLocation=0; f_S_stop=0; f_R_stop=0; 1}}
::atomic{ ch_Ad_Env[0]!R_move;
d_step{send=1;receive=0; Ad=1; Env=0; f_S_move=0; f_R_move=1; f_S_location=0;
f_R_location=0; f_R_getLocation=0; f_S_stop=0; f_R_stop=0; 1}}
do
::near=0 ->
::atomic{ ch_Ad_Env[0] !R_getLocation;
d_step{send=1;receive=0; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=0;
f_R_location=0; f_R_getLocation=1; f_S_stop=0; f_R_stop=0; }}
::atomic{ ch_Ad_Env[0]?R_location;
d_step{send=0;receive=1; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=0;
f_R_location=1; f_R_getLocation=0; f_S_stop=0; f_R_stop=0; 1}}
::atomic{ ch_Ad_Env[0]'!S_location;
d_step{send=1;receive=0; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=1;
f_R_location=0; f_R_getLocation=0; f_S_stop=0; f_R_stop=0; }}
::else —>break
od;
::atomic{ ch_Ad_Env[0]7S_stop;
d_step{send=0;receive=1; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=0;
f_R_location=0; f_R_getLocation=0; f_S_stop=1; f_R_stop=0; 1}}
::atomic{ ch_Ad_Env[0]!R_stop;
d_step{send=1;receive=0; Ad=1; Env=0; f_S_move=0; f_R_move=0; f_S_location=0;
f_R_location=0; f_R_getLocation=0; f_S_stop=0; f_R_stop=1; 1}}
od;}
proctype Env() {
do

od;}
/*System Instantiationx/
init{atomic{run Ad_Rob_Sta(); run Env();}}
/*LTL properties*/
1tl Mirror_R_s1 {[]((f_ad && f_receive && f_S_move) ->
<> (f_ad && f_receive && f_S_stop))}

1tl Mirror_R_r1 {[]((f_ad && f_send && f_R_move) ->

<> (f_ad && f_send && (f_R_stop || f_R_getLocation)))}

Figure 9.5: SPIN system for the adapter Adgopessre and its environment.

e Ry : O ((f_station && f_send && f_S.move) —
Q (f_station && f_send && f_S.stop))

e R : O ((f_robot && f_receive && f_R.move) —

9.2.

CASE STUDY 121

O (f_robot && f_receive && (f_R.stop || f_R.getLocation)))
we must specify the mirror of these properties:

e Mirror Ry : O ((f_ad && f_receive && f_S.move)—
O (f_ad && f_receive && f_S.stop))
e Mirror_ R, : O ((f_ad && f_send && f_R.move)—
O (f_ad && f_send && (f_R.stop || f_R.getLocation)))

we verify the properties Mirror_Ry; and Mirror_R,; on the SPIN system composed
of the two Promela process of the adapter and the environment.

To verify the requirement, which is specified on the controller, on the global system, we
need to follow these steps (high level verification):

1.

We must compute the synchronous product (r)of the two adapters Adgopessia ®
AdcontreMot-

we write the resulted interface automaton r as a Promela process PI. We must also
specify its environment ,which is the mirror of = interface automaton, as a Promela
process.

we add the process flag f _proc, which are the flag associated to the adapter product
f_PI, and another flag which is associated to the environment f_env.

we add send f_send and receive flags f_rec.

we add the actions flags f_act, where each flag f_act is associated to an action of the
adapter n. This action must belong to the shared actions between 7 and the con-
troller.

we write the requirement R, as an LTL property, which is specified on the flags al-
ready mentioned, as follows:

e Ry ¢ O ((£_PI && f_receive && f_C.move) —
O (f_PI && f_send && f_C.on))

we must specify the mirror of this property:

e Mirror R, : O ((f_PI && f send && f C.move) —
O (f_PI && f_receive && f_C.on))

we verify the properties Mirror_R,; on the SPIN system composed of the two
Promela process of PI and the environment.

In Figure 9.6, we show the synchronous product of the two adapters Adropesia ®
Adconresmor- After translating it into Promela code and verifying the property Mirror_R.
using SPIN model checker, we found that the SPIN system satisfies this property. Thus,
according to theorem3, the global system satisfies the property R,;.

Thus, the new requirement diagram will be as it is shown in Figure 9.7.

122

C.offgb Coff?

M.of% Mofé Sstop?/_\

C.stop! C.stop! C.on? .
.move’!
R.stop;

CHAPTER 9. INCREMENTAL VERIFICATION OF SYSTEM REQUIREMENTS
R.getLogtrtion:
R.location
S move? R.move; C.move!
_) Jocatio
C.on?

C.move!

R.location

Figure 9.6: m = AdRobHSta ® AdContm—)Mot-

<< block >>
Robot

I
<< satisfy >>
I

<< satisfy >>
FTTT oo << block >>
| System

<< requirement >>
ReqS ystem
text: ReqgRobot
c Rsl
id: R.2

<< requirement >>

- ReqRobot R

<< requirement >>

id: R.1

text: R. & R

text:the station
must stop the robot

after it makes it

moving

id: R.s.1

<< requirement >>

T x
<< requirement >>

|
<< satisfy >>

activates the motor
after it receives a
request to move

id: R.c.1

!
<< satisfy >>

<< block >> !
Controller

Figure 9.7: The

Rei Ry
text: after it
text: the receives a request
controller to move the robot

!
!
|
<< block >> - -
, S tation
can receive a
command to stop

or to give its
location

id: R.r.1

requirement diagram of the system.

9.3. CONCLUSION 123

9.3/ CONCLUSION

Our approach of verification presented in this chapter, is proposed to complement the
adaptation approach presented in the previous chapter. Its objective is to alleviate the
verification of functional requirements of the adapted system by exploiting our manner
of adapting system blocks. Thus, we have proposed a verification approach that tackles
the state explosion problem by reducing the state space of the verification of SysML re-
quirements, thanks to the adapters blocks. To allow a verification of these requirement on
the interaction protocol of blocks modelled using interface automata, we have proposed
to write the interface automata as SPIN processes and to specify the requirements using
LTL properties. Our verification is performed using SPIN model-checker.

10

ADAPTATION WITH REORDERING OF
SYSML BLOCK SERVICES

hen assembling two components developed separately, there is a high probability
W of encountering the problem of mismatches between them. These mismatches can
concern the name of services (as the problem processed in chapter 8), as well as the order
in which the component asks (resp. offers) for environment services (resp. its services).
In this chapter, we propose our approach for adapting a set of reused blocks to meet an ini-
tial specification given by the designer to solve the problems mentioned before. During
our process, this specification will become the parent block that will include the reused
blocks. The interactions of each block with its environment are modelled using SysML
Sequence Diagrams (SDs), an adaptation contract is defined and used to guide the adap-
tation by specifying atomic and no-atomic correspondences between block services.

In the previous chapter 8, in the same context of this work, we have proposed a bottom-
up approach that bases on interface automata [dAHO1] to adapt SysML blocks, but with
different inputs and objectives. The major difference resides on that the adapter as we
will define it in this chapter can solve more problems such as the reordering of services
to eliminate livelock between blocks, it can also solve more types of mismatches (‘one-to-
many' rather than only 'one-to-one’). In fact, in our adaptation approach, the system can
consider the messages of blocks as resources, where it is possible to capture a message
call of a block and deliver it to the concerned block when this last can receive this call.
Thus, our adapter must authorize the reordering of the service calls and deliver them to
the concerned blocks when they will be ready. Representing this information and imple-
menting these operations using interface automata will be very difficult. We have taken
that into consideration during the adaptation phase, that is what justifies our choice of

Contents
10.1 Our Adaptation Approach 126
10.1.1 Computing the Global Interaction Protocol of the Reused Blocks GIR 127
10.1.2 Introducing the Specification of the Future Parent Block 130
10.1.3 Deduce the Adapter 133
10.1.4 Tool Support 135
10.2 Case Study i e e e e e e e e e e 137
10.3 Conclusion L e e e e 139

125

126 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

Petri Nets (PNs). The Petri nets are characterized by their richness compared with inter-
face automata. They easily allow to represent the reordering of service calls.

However, using simple PNs (as in [CPSo6a, DBM14]) implies the introduction of many
empty transitions (tau transitions that serve just for connecting places) that increase the
state space of the system. That's why we have opted for Coloured Petri Nets(CPNs) where
the colours represent the services of blocks. In our method, we use tau transitions only in
some cases when we have no-atomic correspondences between blocks services. Thus, in
this chapter, we will analyse the different correspondences between the blocks by taking
into account the existed hierarchy relation between the reused blocks and the specifica-
tion of the parent block made initially by the designer, and we will define a CPNs rule for
each kind of correspondences.

Unlike the works already done which rely only on formal models, our method bases on
SysML models as inputs, which allows for designers to deal with graphical convivial mod-
els. After, to generate the formal models that we will use for adaptation, we have proposed
a meta-level approach which bases on meta-modelling and models transformation.

In the remainder of this chapter, we will present our approach in Section 1. After that, in
Section 2, we will show how we apply our approach through a case study.

10.1/ OUR ADAPTATION APPROACH

Our approach is an incremental bottom-up approach. It consists in constructing the sys-
tem by developing a part of the system at each increment. In our approach this part is
considered as SysML composite block B. After that, the developer selects some blocks to
build B. These blocks will become the sub-blocks of B, but they need to be adapted to fulfil
the tasks expected from the environment of B.

® ®

Q

e Diagram Seq e Diagram Sequence Diagram
of Bi of Bj of Spec (B)

|

Transformation Transformation

Coloured Petri Net <}—— L——>1 Coloured Petri Net

of Bi . of Bj Coloured Petri Net
of B

Compute the Global
Interaction

v

CPN of GIR

3

BDD and IBD 4 Deduce the Internal 1 Coloured Petri Net | 1 Deduce the CPN of
of B Structure of B of Adapter the Adapter

Figure 10.1: Our approach of adaptation with reordering.

10.1. OUR ADAPTATION APPROACH 127

Our approach of adaptation can be divided into three phases (see Figure 10.1). The first
phase consists in computing the global interaction protocol of the reused blocks (future
sub-blocks). During this computation, we authorize the reordering of receiving the ser-
vice calls. To do that, we need to transform the sequence diagrams that describe the inter-
action protocols of the reused blocks into their equivalents of Coloured Petri Nets (CPNs),
and synthesize them basing on the adaptation contract, where the contract helps to define
the correspondences between the block services.

The second phase, which can be done in parallel with the first one, consists in transform-
ing the sequence diagram, that specifies the interactions of the future parent block B with
its environment, into Coloured Petri Net (CPNg). After computing the global interaction
protocol of the reused blocks ({B;}) by synthesising their Petri nets using the adaptation
contract, we synthesize this resulted CPN with the CPN of the specification (CPN) basing
always on the adaptation contract. We apply some modifications on the resulted CPN and
we obtain the CPN of the adapter (CPNygqprer). Finally, we model the internal structure of
the new part B using the SysML BDD and IBD.

10.1.1/ COMPUTING THE GLOBAL INTERACTION PROTOCOL OF THE REUSED BLOCKS
GIR

As we have mentioned before, the objective of this phase is for deducing the different sce-
narios of the parallel execution of the reused blocks. To do that, we need to transform
their sequence diagrams (SDs) into Coloured Petri Nets (CPNs). This transition from SDs
to CPNs is necessary, because sequence diagrams are informal models, and they do not
offer the necessary tools to execute the wanted operations. However, in our adaptation
method, we need to synthesis the interactions of the blocks and to integrate the informa-
tions presented in the adaptation contract using one CPN. We want also that the system
can consider the messages of blocks as resources, where it is possible to capture a message
call ofablock and deliver it to the concerned block when thislast can receive this message.
All these informations can be represented easily using coloured Petri nets.

Transformation SD — CPN:
In the first step (see Figure 10.2),

We associate to each event on the life line of each reused block a place. Each emission and
reception of a message is transformed into a transition labelled with the message name
and a mark that specifies the type of the event (! for emission, ? for reception, and ; for
emitting and receiving the same message by the same block). At this stage, we need just
one colour 'idle’. The existence of a token idle in a place of a block means that this block
is ready to execute the next actions.

The algorithm 7 ensures the transformation of the basic interaction of sequence diagrams.
Its takes as inputs the block B and its sequence diagram SD, and it generates as output
its CPN. We represent by EventSet(B) the list of the all events of emission and reception
associated to the life line of B.

The complexity of Algorithm 7 is computed in function of the number of messages in the

12

8 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

idle 1 . . B; ENV

~
~

msg;! == AN msg;

idle 1 .",—(————0
idle 1 .

-<
MSE ;7 mm N
idle 1 .E_/‘"‘
idle 1 . —
~ 4
msgx
idle 1 .__*_,—4'

Figure 10.2: Transformation SD—CPN.

msg;
-—
-9

Algorithm 7 SD2CPN

INPUT: B, SDg
OUTPUT: CPNp

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

1
2
3
4
5:
6
7
8
9

. procedure SD2CPN(B, S Dg)
: -create an empty CPNp
for all evt; € EventSet (B) do
-Create a place p_evt_t in CPNp
if evt; is the first event in EwentSet (B) then
-add a token %dle to the place p_evt_<
end if
end for

for all message evt; iy evt;> € SDp do
if (evt; € EventSet(B) A (evt;’ € EventSet(B)) then
-create a transition ¢ with the label ’mes;;’
-create an arc from the place p_evt_< to ¢
—-create an arc from ¢ to the place p_evi_i+2
else
if (evt; € EventSet(B) then
-create a transition ¢ with the label ’mes;!’
-create an arc from the place p_evt_< to ¢
-create an arc from ¢ to the place p_evt_t+1
else
-create a transition ¢ with the label ’mes;?’

-create an arc from the place p_evt’_7 to t
-create an arc from ¢ to the place p_evt’_<i+1
end if
end if
end for

return CPNg
end procedure

10.1. OUR ADAPTATION APPROACH 129

sequence diagram of the block B passed in parameters (mg). Thus, C(Algorithm 7) =
(7(m3).

Synthesizing the CPNs of the reused blocks:

To compute the global interaction protocol of the reused blocks, we synthesize their CPNs
basing on the adaptation contract. In this case, we consider the services (messages) as
resources, where each service (message) will be represented using a token colour. To do
this synthesis, we create a place called store that plays the role of a store for service calls.
When a block sends a call for a service, its corresponding services (according to the adap-
tation contract) will be automatically created as tokens, and they will be stored in the store
place. However, to be able to receive a call for a service, the block needs to verify that this
call (message) is available in the store place.

B rule 1 B, B rule 2 B,
1 1
idle 1 y 1 idle 1 idle 1 vk 1 idle 1
store store
x! ﬁ\/m y? x! ﬁ\/m V7
idle 1 y 1 idle 1 idle 1 yi 1 idle 1
14 < 14 y'nl 1 <
(2) one(required)-to-one(provided) (b) one(required)-to-many(provided)
) rule 3)
B, store Bj
tau
idle 1 N idle 1
x 1 N\
x? - yi 1 '!i. ye!
idle 1 o 1\ /' idle 1
y - /Y/ 1 g

pre-store-x

(c) one(provided)-to-many(required)
Figure 10.3: Rules for synthesizing the reused blocks.

Thus, the CPNs, which schedule the actions of the reused blocks, are glued using the store
place and a set of transitions (which translate the adaptation contract). In the following,
through these rules, we explain how we glue them.

o rule 1: one(required)-to-one(provided). We apply the rule 1 (presented in Figure
10.3(a)), if we have in the adaptation contract, a vector:

v=(ey, ...,e,, €), where e¢={x!}, e;={y7?}

and Y f=1..n, f# i, f#¥ j, we have ey = &.

130 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

v specifies that the required service x of block B; corresponds to the provided service
y of block B;. In this case, when the block B, executes the transition x!, it generates
the corresponding action y as a token, which will be consumed later by the block B},
when it tries to execute the action y?.

« rule 2: one(required)-to-many(provided). We apply the rule 2 (presented in Fig-
ure 10.3(b)) if we have, in the adaptation contract, a mapping vector:

v=(ey, ...,e,, €), where ¢; ={x'}, e;={y1?7,...,yu7}
and V f= 1..n, f# i, f# j , we have ¢ = ¢€.

v specifies that the required service x of block B; corresponds to the provided ser-
vicesyi,...,ym of block B;. In this case, when the block B; executes the transition x!,
it generates the corresponding actions yjy,...,y,, as tokens, which will be consumed
later by the block B; when it tries to execute an action yi € {y1,...,ym}.

« rule 3: one(provided)-to-many(required). A correspondence of type One(prov
ided)-to-many(required) between B; and B; means that the block B; can execute the
service mentioned in 'one(provided)' only after when the block B; sends requests
for all services specified in 'many(required). This correspondence can be specified
at the level of the adaptation contract by a vector:

v=(e1, ...,e;, &), where e; ={x7}, e;={yi!,...,yn'}
and Y f=1..n, f# i, f#¥ j , we have e; = ¢.

To represent this vector using CPNs, we apply the rule 3 (see Figure 10.3(c)). Thus, we
create a place 'pre-store-x'. This place stores calls for the services that correspond to
x. Then, we link all transitions labelled by y;! where k=1..m to the place "pre-store-
x'. After, we must create a transition tau that has an incoming arc which starts from
the place 'pre-store-x'. This arcislabelled by [yx 1]4=1 . We must also create an arc
which starts from transition tau and ends at the store place, where this arc must be
labelled by 'x 1". Finally, to allow to the block B; to execute the service x, we link the
store state with the transition x?.

10.1.2/ |INTRODUCING THE SPECIFICATION OF THE FUTURE PARENT BLOCK

Inthis phase, we mustintroduce the rules thatlink the reused blocks and the future parent
block. The specification of the parent block B allows to define what the environment ex-
pects (resp. offers) from (resp. to) the parts of B. Because we have reused the sub-blocks
of B, we must adapt them to the specification of their future parent which is made ini-
tially with respect to the part of the system already developed. So, to represent the part of
the adaptation contract that specifies the relations between B and their sub-blocks, using
CPNs, we need firstly to apply Algorithm 1 on the SD of the future parent block B to obtain
its CPN. After, we apply the delegation rules (presented later) to synthesize the CPN of B
and the CPN which represents the global interactions of the reused blocks.

Because we will represent the delegation between the set of blocks {B;} and their father,
in these rules the correspondences are expressed between services of the same type. This
means that a required service can not correspond to a provided service.

« The correspondences of type one(parent)-to-one(child). This correspondence
can be specified at the level of the adaptation contract by a vector:

10.1. OUR ADAPTATION APPROACH 131

rule 4 rule 5
Bi x! arent Bi x? arent
idle 1 I idle 1» P idle 1 g idle 1~ P
x 1
idle 1 idle 1 y1
. oyt
y! store y7 . store
idle 1 x 1 idle 1
14 14
(a) one(parent)-to-one(child) [required] (b) one(parent)-to-one(child) [provided]

Figure 10.4: The correspondences of type one (parent)-to-one(child).

v=(e;, ...,e,, s), where (s={x!'} A e={y!}) V (s={x?}Ire;={y?}H)
and Y f=1..n, f# i, we have ey = &.

In this case where we have v=(¢,..., {y},...,&, {x}), it means that the environment rec-
ognizes the service y ofthe block B; as service x. Thus, we can differentiate two cases:

— rule 4: one (parent)-to-one (child)[required]. This correspondence can be
specified at the level of the adaptation contract using a vector:
v=(ey, ...,e,, s), where (s = {x!}) A (¢, = {y'D),
and Y f=1..n, f# i, we have ey = &.
To represent this vector using CPNs, we apply the rule 4 presented in Figure

10.4(a). This rule consists in transforming the call for the service y of the block
B; to a call for the service x of the environment.

— rule 5: one (parent)-to-one (child)[provided]. This correspondence can be
specified at the level of the adaptation contract by a vector:
v=(e;, ...,e;, s), where (s = {x7}) A (e = {y7?})
and Y f=1..n, f# i, we have ey = &.
To represent this vector using CPNs, we apply the rule 5 (see Figure 10.4(b)).
This rule plays its role in the other direction of rule 4 (i.e. when the block B;

offers the service y, the environment recognizes this service as x). In this case,
we must rename each reception of x to y to be received after by the block B;.

« The correspondences of type one(parent)-to-many(child). We distinguish two
cases:

— rule 6: one (parent)-to-many (child)[required]. Inthiscase, we have one re-
quired service of the parent (which is a provided service of the environment),
corresponds to many required services of the child block B;. This correspon-
dence is represented in the contract using a vector v:
v=(e1,..., e,, s), where (s={x!}A e ={y1!,...,ym!}P)
and Y f=1..n, f# i , we have e; = ¢.

132 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

rule 6
rule 7
B x!
idle 1 I idle 1, ~ Pparent
Bi - x? " parent
x 1 - idle 1 g idle 1~ P
idle 1 . . le 1 1dle _
Vi! [] store
. idle 1. ¥k 1 vl
idle 1/ \ , . 1
RN [V7 - ym
‘ y/]l idle 1. store
Ly
. y]” 1
pre_store_x
(a) one(parent)-to-many(child) [required] (b) one(parent)-to-many(child) [provided]

Figure 10.5: The correspondences of type one(parent)-to-many(child).

To represent this vector using CPNs, we apply the rule in Figure 10.5(a). The
block B, sends calls for the services y; (Y k=1..m) at the level of k different transi-
tions. These calls will be stored in the place 'pre-store-x'. When, we have all the
tokenyy,..., y,, present in the place 'pre-store-x/, the parent block can consume
them to pass a call for the service x which is implemented by the environment.

rule 7: one (parent)-to-many (child)[provided]. In this case, we have one
provided service of the parent (which is a required service of the environment)
corresponds to many provided services of the child block B,. This correspon-
dence is represented in the contract using a vector:

v=(e1,..., e,, s), where (s = {x?}) A (e ={y17,...,yu7}),

and Y f=1..n, f# i , we have ey = ¢.

To represent this vector using CPNs, we apply the rule in Figure 10.5(b). When
the parent block receives a call for the service x, we transform it to a call for the
services y;?,...,y,»? which are implemented by the block B;, and we store them

in the store place. when the block B; will be ready to execute a service y; € {yxl
k=1..n}, it consumes the corresponding token from the store place.

« The correspondences of type one(child)-to-many(parent). In this case, we can
also distinguish two sub-cases:

— rule 8: one (child)-to-many (parent)[required]. In this case, we have one

required service of the child block B; corresponds to many required services
of its parent block B (which are provided services of the environment). This
correspondence is represented in the contract using a vector:

v=(e1,..., e, S8), where (s = {x1!,...,xx!'}) A (e = {y'D),
and V f=1..n, f# i, we have ey = &.

To represent this vector using CPNs, we apply the rule in Figure 10.6(a). When
the block B; sends a call for the service y, we generate calls for its corresponding
services Xxi,..., X,;, and we store them in the store place. When the parent block

10.1. OUR ADAPTATION APPROACH 133

rule 8 rule 9
B; X! B, X7
idle 1 I idle 1, ~ parent idle 1 I idle 1, ~ parent
x; 1) Xk 1

idle 1 idle 1 y1

wmp\rejstore-}’
y! — store y? m ‘
idle 1 x 1 idle 1 S‘Corey\l !

; L

. 14 XU/
Xm 1 tau

(a) one(child)-to-many(parent) [required] (b) one(child)-to-many (parent) [provided]

Figure 10.6: The correspondences of type one(child)-to-many (parent).

will be able to send the request for a service x; which is implemented by the
environment, the corresponding token will be consumed from the store place.

— rule 9: one (child)-to-many (parent)[provided]. In this case, we have one
provided service of the child block B, corresponds to many provided services
of its parent block B (which are required services of the environment). This
correspondence is represented in the contract using a vector:

v=(e1,..., €, s), where (s = {x17,..., 247} A (e; = {y?}H),
and V f=1..n, f# i, we have ey = &.

To represent this vector using CPNs, we apply the rule in Figure 10.6(b). When
the parent block receives a call for the service x;, we store this call in the pre-
store-y place. When we have all the calls for services (x,7,...,x,,?) present as
tokens in the place pre-store-y, we consume them and we transform them to a
token y, after we store y in the store place. The token y will be consumed later
by the block B;.

10.1.3/ DEDUCE THE ADAPTER

The adapter will play the role of a mirror between the reused sub-blocks {B;}. So each call
for a service by a sub-block B; will be received by the adapter, and each reception of a call
for a service by a sub-block B; must be preceded by a call for this service, this call must be
emitted by the adapter. Thus, to generate the adapter, we base on the CPN synthesized in
the last phase. Thus, we take this CPN, and we apply the mirror function on some tran-
sitions, we transform each call for a service (x!) by a reused block B; into a reception of
this call (x?), and each reception of a call for a service (x?) by a reused block B; must be
transformed to an emission of this call (x!). Therefore this transformation concerns only
the transitions of the reused blocks, because the adapter plays the role of mirror only be-
tween the reused sub-blocks. Concerning the relation between the adapter and the parent
block, itis a delegation relation. Thus, the adapter will delegate the parent to interact with
the environment, that's why, we don't need to inverse the actions done at the level of the
parent transitions.

At this stage, we have the CPNqp..- Which represents the interactions of the adapter with

134 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

the reused blocks and their environment. To generate the different scenarios of interac-
tion, we compute the reachability graph of CPN4qp:.- using CPNtool.

Algorithm 8 resumes all the previous steps. It takes as parameters the reused blocks
{Bi}i=1.» with their future parent block B. The other parameters are the SDs that model
the interaction protocol of these blocks and the adaptation contract C. The role of the al-
gorithm is to compute the coloured Petri net of the adapter.

Algorithm 8 Construct the CPN of the adapter
|NPUT {B,‘}izlnn, {SD,‘},‘=1“n, B, SDB, C
OUTPUT: CPNugaprer

: for all i € [1...n] do

CPN; « SD2CPN(B;, SD;)
end for
CPNp « SD2CPN(B, SDg)
CPNadaprer < concatenation of {CPN;}i—;_, and CPNg
-create and add the store place to CPNygaprer
for all v € C do

apply the rule that corresponds to v
end for
for all t € CPNggqprer do

if 3t € CPN;, t.name=t".name then

change the name of t to mirror(t.name)

13: end if
14: end for

COoNOA RN

= e
NP o

Algorithm 9 generates the structure of the adapter block basing on its CPN, and the other
reused blocks.

Finally, we use algorithm 9 to generate the structure of the new part B that we will integrate
to our system. The algorithm 10 constructs the blocks definition (BDDg) diagram and the
internal block diagram (IBDg) of the part B. It takes as parameters the reused blocks ({B;}),
the parent block B and the adapter block.

The complexity of Algorithm 8 is computed as follows: The first loop [lines 1-3] calls the
algorithm 7 n-times, where n is the number of the reused blocks. Thus, this loop will have
a complexity equal to: O(Z | mp,), where mp, is the number of messages in the sequence
diagram of the block B;.

In line 4, there is a call for Algorithm 7 to construct the CPN of the parent block B. Thus,
line 4 has a complexity equal to: O (mp).

The second loop [lines 7-9] has a complexity equal to O (w), where w represents the num-
ber of mapping vector in the adaptation contract.

The complexity of the lastloop [lines 10-14] is computed in function of the number of tran-
sitions (tn) in the synthesized CPN. Thus, the complexity will be equal to O(tn).

Thus, C(Algorithm 8) = O(Zf:1 mp,) + O(mp) + O(w) + O(tn)=

0]

i, mp * mp + W + tn)

The complexity of Algorithm 9 is computed as follows: C(Algorithm 9) = O(n), where
n is the number of the reused blocks.

The complexity of Algorithm 10 is computed as follows: The first loop [lines 10-16] has a
complexity equal to: O (n*nport), wherenisthe number of instances of the reused blocks,

10.1. OUR ADAPTATION APPROACH 135

Algorithm 9 Construct the architecture of the block adapter
INPUT: {B;}izi.n, B, CPNaguprer=(P, T, A, X, C, N, E, G, I)
OUTPUT: Buuaprer

1: -Create the adapter block Bugapier=('Adapter’, 0, 0, 0, 0, 0)

2. //CREATE THE LIST OF PORTS OF THE ADAPTER THAT MUST BE LINKED TO THE PORTS OF
THE PARENT BLOCK.

3:if PSp N X # 0 then

4: -create a new provided port p which offers the services

5: PSpnX

6: —add p to the ports list of Buuuprer

7. end if

8: if RSp N X # 0 then

o: create a new required port p which requires the services

10: RSN X

11: add p to the ports list of Buyuprer

12: end if

13: //CREATE THE LIST OF PORTS OF THE ADAPTER THAT MUST BE LINKED TO THE PORTS OF
SUB-BLOCKS {B;}
14: for all B; in the list of sub-blocks {B;} do

15: if RSp, N X #0 then

16: -create a new provided port p which offers the services
17: RSg NZ

18: end if

19: if PSp;, N X #0 then

20: -create a new required port p which requires the

21: services PSp N X

22: end if

23: —add p to the ports list of Buyuprer

24: end for

and nport is the number of ports of the adapter.
The second loop has a linear complexity equal to: O (nport)

Thus, C(Algorithm 10)= O(n*nport).

10.1.4/ TOOL SUPPORT

Modelling. To model the interactions of the blocks with their environment, we base
on papyrus tool [pap]. Papyrus offers a set of graphical editors to model systems using
UML and SysML diagrams. The editor of sequence diagrams bases on a SysML ecore meta-
model part that defines the classes of lifelines, messages, etc.

Transformation. To generate the CPNs that correspond to the sequence diagrams
of blocks, we have defined a meta-level model-driven approach which bases on meta-
modelling and ATL transformation. Thus, firstly, we have defined the meta-model (.ecore)
for CPNs using EMF [EMF]. After, we have defined an ATL grammar that performs the
transformation SDs—CPNs. In our adaptation approach, we don't need to show the re-
cursive messages (messages that start and end at the same lifeline). Because the adapter

136 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

Algorithm 10 Construct the BDD and the IBD of B
INPUT: {Bi}izl..nv B, Badapter
OUTPUT: BDDg, IBDp

1: //ConsTRUCT THE BDD OF B
2: — Set the value of the blocks set of the BDDpg to: B= {Bj}i=1., U
{B, Badapter}
3: — Create a composition relation r; between the parent block B and each
block B; where: Source0f(r;) = B, Target0f(r;) = B;
4: - Create a composition relation r,s between the parent block B and the
adapter block Buguprer Where: Source0f(ryq) = B, TargetOf (rus) = Budaprer
- Set the value of the relations set of BDDpg to: R= {ri}izin YU {rau}
//CoNSTRUCT THE IBD OF B
- Set the set Parts of IBDp to: {parti}iz1., U {partudaprert
- Set the set Ports of IBDp to: ({Ports(part;)}i=1., U Ports(partagaprer)
//CREATE CONNECTORS BETWEEN THE ADAPTER AND THE PARTS THAT INSTANTIATE THE

© o N a

REUSED BLOCKS
10: for all part; € {part;}i=1., do

11: for all port p € Ports(partuduprer) do

12: if dp’ € Ports(part;) A (p.type.Op N p’.type.Op # 0) then
13: -create a connector between p and p’

14: end if

15: end for

16: end for

17: //CREATE DELEGATION CONNECTORS BETWEEN THE ADAPTER AND THE PARENT BLOCK B.
18: for all port p € Ports(ad) do
19: if dp’ € Ports(B) A (p.type.Op N p’.type.Op # 0) then

20: - create a connector between p and p’
21: end if
22: end for

can't see this kind of actions (messages), thus, we have transformed only the entered and
exited messages and we have ignored the recursive messages. To implement this trans-
formation we have defined three ATL rules. The first rule allows initializing the CPN, the
second rule is used to generate the places of the CPN, and the third one creates transitions
and arcs that link these transitions with the places generated by the previous rule. These
ATL rules implement the algorithm 7.

Synthesising the adapter. To synthesis the CPN of the adapter, we have also defined a
meta-level model-driven approach which base on meta-modelling and ATL transforma-
tion rules. We have defined a meta-model of the adaptation contract using EMF [EMF],
and we have generated its graphical editor using GMF [Pro]. Next, basing on the meta-
model of CPNs and the meta-model of the adaptation contract, we have defined an ATL
grammar that generates the CPN of the adapter.

Generate the scenarios of the adapter. To obtain the interaction scenarios of the
adapter, we compute the reachability graph of its CPN. The reachability graph can be com-
puted using CPNtool[too]. We plan to develop an Acceleo [Acc] transformation to gener-
ate the entry files of the CPN tool from our CPN meta-model.

10.2. CASE STUDY 137

10.2/ CASE STUuDY

We give an example of a specification of a simple robot which moves according to a spe-
cific path. This robot (see Figure 10.7) can receive a command to fix its speed (R_setSpeed)
and after a command to move (R_move). Next, it sends a request to the environment (e.g. a
remote control) to display its initial location (R_DisplayInitialLoc). After, it is still mov-
ing until it receives a request to stop (R_stop). Finally, it sends a request to the environ-
ment (e.g. a remote control) to display the final report (R_DisplayReport) about its final
location and the travelled distance. The interaction of this robot with its environment is
modelled using the sequence diagram in Figure 10.7.

<< block >> << interfaceBlock >> E’fiﬁfﬁr < block S|
RProv I—EMLI

Robot . L ! .

move oop] I 1

constraints - ! & setSpeed 1

R_stop | i

operations 1 1

R_setSpeed IR move 1

parts 1 |

prov prl : RProj[] references << interfaceBlock >> ! R InitLoc :

values RReq I‘—>I

req pr2 : RReq|[] properties - — . R sto .

R_DisplayInitiallog¢ S0P

1 1

R_DisplayReport —R report

Figure 10.7: The specification of the robot

In our case study we want to build this robot. To do that, we have reused two blocks 'Con-
troller’ (see Figure 10.8) and 'Moving_System' (see Figure 10.9), their interaction protocols
are modelled using sequence diagrams. Thus, the Robot will be the parent block and the
reused blocks ('Controller' and 'Moving System') will be its children.

<< block >> << inter faceBlock >> w < block >
CProv I—EMLI
Controller : :
C_move Loog) 1 i
constraints 1 C_move 1
- C_stop i
()pEI’all())‘LY C setSpeed : C Setspeed 1
parts - 1 1
e erences C_setBatteryLevel Con .
prov pcl : CProyf[] “Values c tStat | |
) setStatus
req pc2 . CReq|[] properties — :<—C BatLevel :
1 PN 1
<< interfaceBlock >> |C Initiallo
CReq :E C stop :
1 1
C_on '__C off !
C_off ' ¢ stat '
status
C_DisplayInitiallog¢ <
C_DisplayLocation :Mﬁ
C_DisplayTravDist C distTrav,

Figure 10.8: The Controller

In Figure 10.8, we can see that our reused controller receives a request to move (C_-
move) before receiving the request to fix the speed (C_setSpeed). After, it asks the mov-
ing system to go on (C_on), and so it receives an information about the battery level
(C_setBatteryLevel) from the moving system. Next, it communicates the initial lo-
cation (C_DisplayInitialLoc) to the environment (e.g. a remote control). The con-
troller waits for a request to stop (C_stop). After receiving this request, it asks the mov-
ing system to turn off (C_off), and so this last will communicate its status to the con-

138 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

Mov_Syst [!

M_On : X

constraints M _Of £ @pj '(M¢'

1 i

Gregauny << interfaceBlock >> : batLevel !

parts MReq ! !

. references ! M off !

prov pul: MProv | values M_setBatteryLevel < |
req pm2: MReq |[[J Properties M setStatus 1. M status 1
<«—-Status

1 i

Figure 10.9: The moving system

troller (C_setStatus). Finally, the controller asks the environment to display the loca-
tion of the engine to which is belong (C_DisplayLocation), and the travelled distance
(C_DisplayTravDist).

To simplify, we consider that the corresponding services (one-to-one) have the same
names, and we differentiate between them by adding the first letter of the block’'s name to
each service. Thus, to adapt and assemble the controller and the moving system to meet
the specification of our robot, we use the following contract (Figure 10.10 represents the
contract modelled using our generated editor).

C={(C_on!, M_on?, &), (C_off!, M_off?, &), (C_status?, M_status!, &), (C_-
batLevel?, M_batLevel!, &), (C_move?, &, R_move?), (C_setSpeed?, &, R_-
setSpeed?), (C_stop?, &, R_stop?), (C_Initialloc!, &, R_InitialLoc!), ((C_-
location!,C_disTrav!), &, R_report!)}

Thus, The adaptation contract C includes nine vectors, where:
e vi=(C_on!, M_on?, &)
o vV;=(C_off!, M_off?, &)
e v3=(C_status?, M_status!, &)
e v4=(C_batLevel?, M_batLevel!, &)
e vs=(C_move?, &, R_move?)
e V5=(C_setSpeed?, &, R_setSpeed?)
e v;=(C_stop?, &, R_stop?)
e vg=(C_InitialLoc!, &, R_InitialLoc!)

e v9=((C_location!,C_disTrav!), &, R_report!)

By applying the algorithm 8, we have obtained the CPN presented in Figure 10.11.

1. we have transformed the sequence diagrams of the robot (parent block), the con-
troller and the moving system to coloured Petri nets (we have applied the algorithm
7). In Figure 10.11, by ignoring the coloured arcs, and applying the mirror on the
transitions of this cpn,we can see that the right part of the cpn represents the cpn of
the moving system, the left part represents the cpn of the controller, and the bottom
part represent the cpn of the robot.

10.3. CONCLUSION 139

|d] contract.contract_diagram 2 = A
4 Robot if Palette 4
& &l By

+ Block

< Vector

< VectorEnd1
< VectorEnd2

@N E2_ONE_PROV

+ Service

4 Cotroller @NELONE,PROV

,. NE2_ONE_PROV

f SN E2_ONE_REQ
4 Motor

##QNE_P2_MANY_CREQ

@NEZ_ONE
$

@N E2_ONE
@NELON E

Figure 10.10: Adaptation Contract modelled using our generated editor

2. we have applied the rule 1 to represent the vectors 1, 2, 3 and 4 of the contract.
3. we have applied the rule 5 to represent the vectors 5, 6 and 7 of the contract.
4. we have applied the rule 4 to represent the vector 8 of the contract.

5. we have applied the rule 6 to represent the last vector of the contract.

6. we haveinverted the actions of the controller and the moving system (each emission
becomes a reception, and each reception become an emission).

By applying the algorithm 10, we obtain the BDD of the robot (in the Figure 10.12) and its
IBD (in the Figure 10.13).

10.3/ CONCLUSION

In this chapter, we have presented a bottom-up approach to adapt SysML blocks for build-
ing systems. Our adaptation process takes a part of the system to develop, and gener-
ates an adapter for the SysML blocks which are reused to meet the specification of this
part. During the adaptation process, we consider the part to develop as a SysML com-
posite block. After, we select a set of blocks to fulfil the specification of this composite
block (the specification of the block that will include these reused blocks). We have re-
lied on sequence diagrams of SysML to model the interactions of each block with its en-
vironment. Due to the informal aspect of SysML, we have proposed to transform the se-
quence diagrams of blocks into coloured Petri nets, and we have implemented this trans-
formation using EMF and GMF for meta-modelling and ATL language for transformation.
This transformation was guided by our objective of adaptation. After, to generate the
adapter, starting from an adaptation contract, we have proposed the staple rulesto link the
coloured Petri nets of blocks. Our adaptation contract can specify atomic or non-atomic

140 CHAPTER 10. ADAPTATION WITH REORDERING OF SYSML BLOCK SERVICES

1" "idle"

L tidle” STRING STRING STRING STRING

STRING 1 "idle" 1" "idle! @ Ctidle” 1 idle @ snigler 1 "idle @ el Midle @ 1" "idle"
R_setSpeed? R_InitialLoc!

1" "idle"

(c0) STRING

1" "idle"

1" "r_ifiitialLoc"
1 "idle" STRING

1" "idle"
store STRING

1'"c_setSpeed"

STRING
“tidle"
1" "c_batLevel"

N 1" "|dle"
"idle"

M_batLevel?

1" "idle"

(2 STRING
1" "idle"
1" "idle”
(3 STRING
1" "idle”

1'"r_report"

1 Jlidle"

1'"c_status" 1" "c_location"++1" "c_distTrav"

pre_§ eport
7

STRING
1" "idle”
(c8) STRING

1" "idle"

C_location?

1" "idle"

1" "idle"

C_distTrav?

Figure 10.11: CPNagaprer

correspondences between the reused blocks or between the reused blocks and their fu-
ture parent block (the specification of the adapter built in function of the developed part
ofthe system and its part still to develop). To let the designer deal with graphical elements
for modelling, we have proposed a meta-model for the adaptation contract, and we have
developed its graphical editor using GMFE. We have also implemented the ATL rules that
represent our rules of adaptation (translation of the contract).

10.3. CONCLUSION

bdd Robot /
<< block >>
Robot
constraints
operations
prov prl : RPrifv] parts Oleq pr2 : RReq
references
h‘ values ‘ﬁ
properties
<< block >> << block >>
Mov_S yst Controller
constraints constraints
operations << block >> operations
plov pml : MPr parts Adapter parts prov pel : CSer
references - ; references
eq pm2 : MRe values Corsiiguly values [jreq pc2 : CReq
properties operations properties
prov pl :CReq(] parts Opeq p4 :CProv
prov p2 :MRef("] re{z;;:ges [Keq p5 :MProv
prov p3 :RProl] properties [lreq p6 :RReq
Figure 10.12: BDD of the Robot
ibd Robot S
Robot
c : Controller
prov pcl I:l
req pc2 0
ad : Adapz‘eil’j req ph
proy prl |:| prov pl
prdv p3 D req p5 m: Mov_Syst
req|pr2 pirov pml
| Of-ee2 O
req p
req pm2 I

Figure 10.13: IBD of the Robot

141

CONCLUSION

143

11

CONCLUSION AND PERSPECTIVES

111/ CONCLUSION

The component-based development (CBD) focuses on the decomposition of the system
into individual functional components that represent well-defined communication inter-
faces. The primary objective of CBD is to ensure component re-usability. CBD techniques
involve procedures for developing systems by choosing ideal off-the-shelf components,
adapting and assembling them using well-defined adapters.

The main purpose of this thesis is the proposition of a formal approach to build incre-
mentally complex systems by assembling and adapting a set of components, where their
structure and behaviour are modelled using SysML diagrams. When assembling these
blocks, we must take into consideration the fact that these components may present some
incompatibilities. A decision about the compatibility or not of these blocks must be taken
onto several different levels. The first level concerns the signature of component services.
When the blocks expose a problem of mismatches between the name of corresponding
services, this problem can be easily solved by inserting an adapter that aligns the names
of block services and thus allows the communication between the reused blocks. How-
ever, the incompatibility at the level of the interaction protocols cannot be solved in some
cases. The feasibility of solving this kind of incompatibility depends on the authorized op-
erations during the adaptation (reordering the calls for services of blocks or not). It may
depend also on the requirements that we want to satisfy by reusing and composing these
blocks.

In our thesis, we have exploited the SysML diagrams to specify the requirements, the ar-
chitecture and the interactions of the blocks, and we have applied the transformations on
them in a model-driven process to extract their equivalents of formal models. This pro-
cess is based on meta-modelling and model transformations. We have also adapt the ex-
isting approaches of adaptation of components to be applied in an incremental approach
by exploiting the notion of SysML blocks refinement.

Thus, the main contributions of our thesis are the followings:

1. We have introduced SysML sequence diagrams that model component protocols,
into a model-driven process, that is based on meta-modelling and model transfor-
mations, to obtain their equivalent of interface automata. Thus, we have based on
the part of UML/SysML meta-model, that concerns the constructs of the sequence
diagrams, as source meta-model of the ATL grammar that we have defined. To
draw sequence diagrams, we have based on the graphical editor of Papyrus which

145

146

CHAPTER 11. CONCLUSION AND PERSPECTIVES

is built on the UML/SysML meta-model. The target meta-model concerns interface
automata formalism. Thus, we have used EMF (Eclipse Modelling Framework) to
define its meta-model, and GMF (Graphical Modelling Framework) to generate its
graphical editor. We have established the mapping rules between the source and
the target meta-models and we have implemented them using ATL (Atlas Transfor-
mation Language). Since the objective was to verify the compatibility of blocks bas-
ing on the optimistic approach of Hizenger that is defined on interface automata,
we have used Ptolemy tool that implements the parallel composition of interface
automata to decide on the compatibility or not of interface automata. To discharge
the user from redrawing the interface automata using the Ptolemy user interface,
we have proposed a set of Acceleo templates to generate automatically the Ptolemy
entry specification.

When a block has a complex interaction with its environment, a use of an hierar-
chical model appears worthwhile. In our thesis, we have proposed to use HPSM (Hi-
erarchical Protocol State Machine), the model that we have defined basing on the
notions of provided and required services of the blocks and that allows us to estab-
lish a scheduling of the interactions of the block with its environment. This model
uses the composite states to hide the details of some block's states. Since our ob-
jective was to alleviate the verification of the compatibility of blocks basing on the
abstraction manifested by their interaction models, we have proposed to transform
the HPSMs of blocks to hierarchical interface automata. After that, by analysing
the relation between the provided services (input actions) and the required services
(output actions) of the blocks, we can decide on the set of composite states of inter-
face automata that must be considered as abstract states, i.e., the composite states
that we will ignore their contained actions, and thus we consider them as simple
states. The rest of composite states will be flattened, and the compatibility verifica-
tion will be applied using Ptolemy tool.

In this stage, we process the problem of name mismatches between the services of
the interacting blocks. Thus, we proposed an approach to define ablock adapter that
allows the interaction between the blocks that present mismatches on their proto-
cols. We have adapted the synchronous product and the parallel composition of in-
terface automata to consider corresponding actions of automata rather than shared
actions. Thus, we have defined the notions of contract-based synchronous product
and contract-based parallel composition. It is at the level of the adaptation contract
where we define the corresponding actions. Thatis what justify the introduction the
adaptation contract as a third parameter of these operations. In this case an intro-
duction of an adapter block is mandatory, but it is not always possible. That is why
we have defined some conditions on these blocks. Also, our adaptation is defined as
an incremental approach, where we give the specification of the future parent block
of the reused blocks. The generation of the adapter is based on the refinement rela-
tion that exists between these reused blocks and their parent. But, in this stage we
haven't authorized the reordering of services calls, i.e., we cannot adapt the block
that asks for services, implemented by sibling blocks or the environments of its par-
ent, in a given order, however these latter offer there services in another order that
is different from the first one.

Toverify the preservation of the requirements initially satisfied by the reused blocks,
we have defined our approach to focus only on the generated adapters to perform

11.2. PERSPECTIVES 147

the verification, which allows to avoid the problem of state explosion. Our approach
prevents the computation of the synchronous product of all the system blocks, and
focus only on the interaction protocol of a sub-set of adapters. We have used SPIN
model checker and Promela, its input specification, to verify the properties that
specify the SysML requirements. Thus, we were inspired from the works proposed
by V. Lima et al. to generate Promela-based models from UML interactions ex-
pressed in Sequence Diagrams, and uses conjointly the SPIN model checker in order
to simulate and verify properties written in Linear Temporal Logic(LTL) on a set of
flags that represent the exchanged messages.

5. Inthesame context (incremental adaptation), to make the adapter able to solve more
type of mismatches (not only one-to-one), and to allow the reordering of the calls
for services, we have defined another approach which bases on Coloured Petri Nets
(CPNs). The Petri nets are characterized by their richness compared with interface
automata. They easily allow to represent the reordering of service calls. Thus, we
have analysed the different relations that may exist between the reused blocks and
their parent, and we have defined a CPN rule for each relation. We have based on
EMF, GMF and ATL to implement our approach.

11.2/ PERSPECTIVES

Our approach is suitable for systems where the temporal order of actions is important.
These actions can represent either a request or a reception of a request for component
services. This information represents the interface of the components and it is available
at the level of the contract (here we don't talk about the adaptation contract, but the con-
tract that specify the information related to the input/output of the component) offered
with the component. This contract respects the principle of black-box components, thus
it mentions only the manifested information from the component to its environment. To
adapt our approach to other types of systems, the contract must perform more informa-
tion. For example, Timed interface automata was proposed by Hinzinger, thus it will be
interesting to consider this formalism with our approach which is based on SysML mod-
els.

Our approach of verification is suitable for temporal properties because the contract as-
sociated with components mentions only the temporal order of executing the actions. To
allow a verification of the functional properties that concern for example the value of a
variable, we must enrich the contract (i.e. the model used to represent the behaviour of
components). We can for example extend the contract of the component by pre and post
conditions . After that, using these information, we associate to each state of the com-
ponent a set of flags that specify the value of component variables. Because the adapter
is generated from the parallel composition, we can deduce the values of each variable of
the adapted blocks at the level of the adapter states. Then, when we generate the Promela
code, we extend the set of flags associated to actions by the set of flags associated to the
variables.

We can consider these two points as perspectives of our work.

[ABMoo]

[Acc]

[AEC14]

[AGo7]

[at]]

[AYAM11]

[BBB*11]

[BBCo5sa]

[BBCosb]

[BBJ*10]

[BCHM15]

[BCL*04]

BIBLIOGRAPHY

Colin Atkinson, Joachim Bayer, and Dirk Muthig. Component-based prod-
uctline development: The kobra approach. In Patrick Donohoe, editor, Soft-
ware Product Lines, volume 576 of The Springer International Series in En-
gineering and Computer Science, pages 289--309. Springer US, 2000.

Acceleo. http://www.eclipse.org/acceleo/.

Mouna Aouag, Raida Elmansouri, and Allaoua Chaoui. From uml 2.0 di-
agrams to aspect oriented diagrams using graph transformation. Interna-
tional Journal of Computer Aided Engineering and Technology, 6(2):200--
233, 2014.

Robert Allen and David Garlan. A Formal Basis for Architectural Connec-
tion. ACM Trans. Softw. Eng. Methodol., 6(3):213--249, July 1997.

ATL: Atlas Transformation Language. https://eclipse.org/atl/.

Mouna Ait_Oubelli, Nadia Younsi, Abdelkrim Amirat, and Ahcene Menas-
ria. From uml 2.0 sequence diagrams to promela code by graph transforma-
tion using atom 3. CIIA'11, 2011.

Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad
Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous component-based
system design using the BIP framework. IEEE Software, 28(3):41--48, 2011.

Andrea Bracciali, Antonio Brogi, and Carlos Canal. A Formal Approach to
Component Adaptation. J. Syst. Softw., 74(1):45--54, January 2005.

Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach to
component adaptation. Journal of Systems and Software, 74(1):45--54, 2005.

Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and
Joseph Sifakis. From high-level component-based models to distributed im-
plementations. In Proceedings of the 10th International conference on Em-
bedded software, EMSOFT 2010, Scottsdale, Arizona, USA, October 24-29,
2010, pages 209--218, 2010.

Hamida Bouaziz, Samir Chouali, Ahmed Hammad, and Hassan Mountas-
sir. Formal Methods and Software Engineering: 17th International Confer-
ence on Formal Engineering Methods, ICFEM 2015, Paris, France, November
3-5, 2015, Proceedings, chapter SysML Blocks Adaptation, pages 417--433.
Springer International Publishing, Cham, 2015.

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. An open component model and its support in java.

149

http://www.eclipse.org/acceleo/
https://eclipse.org/atl/

150

[BCL*06]

[BCPo4]

[BCS*08]

[BGMPG99]

[BHPO6]

[BKRoO7]

[BROS8]

[BSBMo4]

[CCM12a]

[CCM12b]

[cCM14]

BIBLIOGRAPHY

In Proceedings of the 7th International Symposium on Component-based
Software Engineering, Lecture Notes in Computer science, pages 7--22, Ed-
inburgh, UK, 2004. Springer.

Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support in java:
Experiences with auto-adaptive and reconfigurable systems. Softw. Pract.
Exper., 36(11-12):1257--1284, September 2006.

Antonio Brogi, Carlos Canal, and Ernesto Pimentel. Behavioural types and
component adaptation. In Algebraic Methodology And Software Technol-
ogy, pages 42--56. Springer, 2004.

Nikola Benes, Ivana Cerna, Jiri Sochor, Pavlina Varekova, and Barbora Zim-
merova. A case study in parallel verification of component-based systems.
Electr. Notes Theor. Comput. Sci., 220(2):67--83, 2008.

G. Baille, P. Garnier, H. Mathieu, and R. Pissard-Gibollet. The INRIA Rhone-
Alpes CyCab', INRIA, 1999.

T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0: Balancing advanced features
in a hierarchical component model. In Software Engineering Research,
Management and Applications, 2006. Fourth International Conference on,
pages 40--48, Aug 2006.

Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based perfor-
mance prediction with the palladio component model. In Proceedings of
the 6th International Workshop on Software and Performance, WOSP '07,
pages 54--65, New York, NY, USA, 2007. ACM.

Purandar Bhaduri and S. Ramesh. Interface synthesis and protocol conver-
sion. Formal Asp. Comput., 20(2):205--224, 2008.

Lucas Bordeaux, Gwen Salaiin, Daniela Berardi, and Massimo Mecella.
When are two web services compatible? In Technologies for E-Services, 5th
International Workshop, TES 2004, Toronto, Canada, August 29-30, 2004,
Revised Selected Papers, pages 15--28, 2004.

Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Formalizing and ver-
ifying compatibility and consistency of SysML blocks. In UML & FM 2012,
5-th Int. workshop on UML and Formal Methods, volume 37-4 of ACM Soft-
ware Engineering Notes, pages 1--8, Paris, France, August 2012.

Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Formalizing and Ver-
ifying Compatibility and Consistency of SysML Blocks. ACM SIGSOFT Soft-
ware Engineering Notes, 37(4):1--8, 2012.

Oscar Carrillo, Samir Chouali, and Hassan Mountassir. Incremental mod-
eling of system architecture satisfying SysML functional requirements. In
José Luiz Fiadeiro, Zhiming Liu, and Jinyun Xue, editors, FACS 2013, 10th
Int. Symposium on Formal Aspects of Component Software, Revised Se-
lected Papers, volume 8348 of LNCS, pages 79--99, Nanchang, China, 2014.
Springer.

BIBLIOGRAPHY 151

[CEPOO]

[CESKo9]

[CGP99]

[CGPo1]

[CHo3]

[CHo6]

[CH11a]

[CH11b]

[CIPO4]

[CKo96]

[CLY"14]

[CMM1o0a]

[CMM1o0b]

L.A. Cortes, P. Eles, and Zebo Peng. Verification of embedded systems using
a Petri net based representation. In System Synthesis, 2000. Proceedings.
The 13th International Symposium on, pages 149--155, 2000.

Allaoua Chaoui, Raida ElMansouri, Wafa Saadi, and Elhillali Kerkouche.
From uml sequence diagrams to ecatnets: a graph transformation based ap-
proach for modelling and analysis. In proceedings of The 4th International
Conference on Information Technology ICIT, 2009.

Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, Cambridge, MA, USA, 1999.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
Press, 2001.

K. Czarnecki and s. Helsen. Classification of model transformation ap-
proaches. In OOPSLA Workshop on Generative Techniques in the Context
of the Model Driven Architecture, Anaheim, USA, 2003.

Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621--645, 2006.

Samir Chouali and Ahmed Hammad. Formal verification of components
assembly based on sysml and interface automata. ISSE, 7(4):265--274, 2011.

Samir Chouali and Ahmed Hammad. Formal Verification of Components
Assembly Based on SysML and Interface Automata. ISSE, 7(4):265--274,
2011.

M. Caporuscio, P. Inverardi, and P. Pelliccione. Compositional verification
of middleware-based software architecture descriptions. In Software Engi-
neering, 2004. ICSE 2004. Proceedings. 26th International Conference on,
pages 221--230, May 2004.

Shing Chi Cheung and Jeff Kramer. Context constraints for compositional
reachability analysis. ACM Trans. Softw. Eng. Methodol., 5(4):334--377, Oc-
tober 1996.

Chih-Hung Chang, Chih-Wei Lu, Wen Pin Yang, W.C.-C. Chu, Chao-Tung
Yang, Ching-Tsorng Tsai, and Pao-Ann Hsiung. A sysml based requirement
modeling automatic transformation approach. In Computer Software and
Applications Conference Workshops (COMPSACW), 2014 IEEE 38th Interna-
tional, pages 474--479, July 2014.

Samir Chouali, Sebti Mouelhi, and Hassan Mountassir. Adaptation des Pro-
tocoles des Composants par les Automates d'Interface. In AFADL10, Con-
grés Approches Formelles dans I'Assistance au Développement de Logiciels,
pages 253--266, Poitiers, France, June 2010.

Samir Chouali, Sebti Mouelhi, and Hassan Mountassir. Adapting compo-
nent behaviours using interface automata. In Software Engineering and Ad-
vanced Applications (SEAA), 2010 36th EUROMICRO Conference on, pages
119--122. IEEE, 2010.

152

[CMM12]

[CMPo6]

[CPSo6a]

[CPSo6b]

[CPSo8]

[Crno2]

[CS14]

[dAHo1]

[dAHo5]

[Davo3]

[DBM14]

[DHJ*10]

[DIKo9]

BIBLIOGRAPHY

Samir Chouali, Sebti Mouelhi, and Hassan Mountassir. Adaptation séman-
tique des protocoles des composants par les automates d'interface. TSI,
Technique et Science Informatiques, 31(6):769--796, 2012.

Carlos Canal, Juan Manuel Murillo, and Pascal Poizat. Software adaptation.
L'OBJET, 12(1):9--31, 2006.

Carlos Canal, Pascal Poizat, and Gwen Salaiin. Adaptation de composants
logiciels une approche automatisée basée sur des expressions réguliéres de
vecteurs de synchronisation. In CAL, pages 31--39, 2006.

Carlos Canal, Pascal Poizat, and Gwen Salaiin. Synchronizing Behavioural
Mismatch in Software Composition. In Formal Methods for Open Object-
Based Distributed Systems, 8th IFIP WG 6.1 International Conference,
FMOODS 2006, Bologna, Italy, June 14-16, 2006, Proceedings, pages 63--77,
2006.

Carlos Canal, Pascal Poizat, and Gwen Salaiin. Model-based adaptation of
behavioral mismatching components. IEEE Trans. Software Eng., 34(4):546-
-563, 2008.

Ivica Crnkovic. Building Reliable Component-Based Software Systems.
Artech House, Inc., Norwood, MA, USA, 2002.

Carlos Canal and Gwen Salaiin. Adaptation of asynchronously communi-
cating software. In Service-Oriented Computing - 12th International Con-
ference, ICSOC 2014, Paris, France, November 3-6, 2014. Proceedings, pages
437--444, 2014.

Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC /
SIGSOFT FSE, pages 109--120, 2001.

Luca de Alfaro and ThomasA. Henzinger. Interface-based design. In Man-
fred Broy, Johannes Grunbauer, David Harel, and Tony Hoare, editors, En-
gineering Theories of Software Intensive Systems, volume 195 of NATO Sci-
ence Series, pages 83--104. Springer Netherlands, 2005.

Frankel S David. Model driven architecture: applying mda to enterprise
computing, 2003.

Djaouida Dahmani, Mohand Cherif Boukala, and Hassan Mountassir. A
petri net approach for reusing and adapting components with atomic and
non-atomic synchronisation. In Proceedings of the International Workshop
on Petri Nets and Software Engineering, Tunis, Tunisia, pages 129--141, 2014.

Mourad Debbabi, Fawzi Hassaine, Yosr Jarraya, Andrei Soeanu, and Luay
Alawneh. Verification and validation in systems engineering: assessing
UML/SysML design models. Springer Science & Business Media, 2010.

P. David, V. Idasiak, and F. Kratz. Improving reliability studies with sysml.
In Reliability and Maintainability Symposium, 2009. RAMS 2009. Annual,
pages 527--532, Jan 2009.

BIBLIOGRAPHY 153

[dLVAo4]

[DMo1]

[DOP13]

[DOP14]

[EMF]

[EPKo2]

[ESo9]

[GBBos]

[GBHP13]

[GBHP15]

[GCA13]

J. de Lara, H. Vangheluwe, and M. Alfonseca. Meta-modelling and graph
grammars for multi-paradigm modelling in atom3. Software and System
Modeling, 3(3):194--209, 2004.

Alexandre David and M. Oliver Mo6ller. From HUPPaal to Uppaal : A Transi-
tion from Hierarchical Timed Automata to Flat Timed Automata. Technical
report, BRICS, University of Aarhus, Denmark, 2001.

Iulia Dragomir, Iulian Ober, and Christian Percebois. Integrating verifiable
assume/guarantee contracts in uml/sysml. In Proceedings of the 6th Inter-
national Workshop on Model Based Architecting and Construction of Em-
bedded Systems co-located with ACM/IEEE 16th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2013), Mi-
ami, Florida, USA, September 29th, 2013., 2013.

Iulia Dragomir, Iulian Ober, and Christian Percebois. Safety contracts for
timed reactive components in sysml. In SOFSEM 2014: Theory and Prac-
tice of Computer Science - 40th International Conference on Current Trends
in Theory and Practice of Computer Science, Novy Smokovec, Slovakia, Jan-
uary 26-29, 2014, Proceedings, pages 211--222, 2014.

Eclipse Modelling Framework EME http://www.eclipse.org/modeling/
emf/.

Petru Eles, Zebo Peng, and Daniel Karlsson. Formal Verification in a
Component-Based Reuse Methodology. In Proceedings of the 15th Inter-
national Symposium on System Synthesis (ISSS 2002), October 2-4, 2002,
Kyoto, Japan, pages 156--161, 2002.

Sima Emadi and Fereidoon Shams. Mapping annotated use case and se-
quence diagrams to a petri net notation for performance evaluation. In
Computer and Electrical Engineering, 2009. ICCEE'09. Second International
Conference on, volume 2, pages 68--71. IEEE, 2009.

Patrick Graessle, Henriette Baumann, and Philippe Baumann. UML 2.0 in
Action. Pearson Higher Education, 2005.

Jean-Marie Gauthier, Fabrice Bouquet, Ahmed Hammad, and Fabien
Peureux. Verification and validation of meta-model based transformation
from SysML to VHDL-AMS. In MODELSWARD 2013, 1st Int. Conf. on Model-
Driven Engineering and Software Development, pages 123--128, Barcelona,
Spain, February 2013.

Jean-Marie Gauthier, Fabrice Bouquet, Ahmed Hammad, and Fabien
Peureux. Tooled process for early validation of SysML models using Model-
ica simulation. In FSEN'15, 6th IPM Int. Conf. on Fundamentals of Software
Engineering, volume 9392 of LNCS, pages 230--237, Tehran, Iran, April 2015.
Springer.

Faycal Guerrouf, Allaoua Chaoui, and Ali Aldahoud. A graph transforma-
tion approach of mobile activity diagram to nested petri nets. International
Journal of Computer Aided Engineering and Technology, 5(1):44--57, 2013.

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

154

[GCRJ08]

[GDKR*11]

[Gen]

[GGA*08]

[GJog]

[GLMS13]

[GSo3]

[Hoa8s]

[INC]

[ISo1]

[ITo3a]

[ITo3b]

[Jalo8]

[Jeng6]

BIBLIOGRAPHY

Yue Guo, A. Chakrapani Rao, and R.P. Jones. Architectural and functional
modelling of an automotive driver information system using sysml. In
Mechtronic and Embedded Systems and Applications, 2008. MESA 2008.
IEEE/ASME International Conference on, pages 552--557, Oct 2008.

Antonio Garcia-Dominguez, Dimitrios S Kolovos, Louis M Rose, Richard F
Paige, and Inmaculada Medina-Bulo. Eunit: A unit testing framework for
model management tasks. In Model Driven Engineering Languages and Sys-
tems, pages 395--409. Springer, 2011.

Gentleware. http://www.gentleware.com/.

M. Grecki, Zheqiao Geng, Gohar Ayvazyan, S. Simrock, and Bahtiar Aminov.
Application of sysml to design of atca based llrf control system. In Nuclear
Science Symposium Conference Record, 2008. NSS '08. IEEE, pages 44--52,
Oct 2008.

Yue Guo and R.P. Jones. A study of approaches for model based development
of an automotive driver information system. In Systems Conference, 2009
3rd Annual IEEE, pages 267--272, March 2009.

Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. Cadp
2011: a toolbox for the construction and analysis of distributed processes.
International Journal on Software Tools for Technology Transfer, 15(2):89--
107, 2013.

Jack Greenfield and Keith Short. Software factories: assembling applica-
tions with patterns, models, frameworks and tools. In Companion of the
18th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 16--27. ACM, 2003.

C. A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1985.

INCOSE. http://www.incose.org/.

Paola Inverardi and Simone Scriboni. Connectors synthesis for deadlock-
free component based architectures. In Automated Software Engineering,
2001.(ASE 2001). Proceedings. 16th Annual International Conference on,
pages 174--181. IEEE, 2001.

Paola Inverardi and Massimo Tivoli. Deadlock-free software architectures
for com/dcom applications. Journal of Systems and Software, 65(3):173--183,
2003.

Paola Inverardi and Massimo Tivoli. Software Architecture for Correct Com-
ponents Assembly. In SFM 2003, Bertinoro, Italy, pages 92--121, 2003.

Pankaj Jalote. A concise introduction to software engineering. Springer,
2008.

Kurt Jensen. Coloured Petri Nets (2Nd Ed.): Basic Concepts, Analysis Meth-
ods and Practical Use: Volume 1. Springer-Verlag, London, UK, UK, 1996.

http://www.gentleware.com/
http://www.incose.org/

BIBLIOGRAPHY 155

[JKPB12]

[JT13]

[KBSB10]

[KCo9]

[KEPo7a]

[KEPoO7b]

[LBLP11]

[LCKBo8]

[LdSdOo6]

[LTM*o09]

[LWMY11]

[M. o7]

Thomas Johnson, Aleksandr Kerzhner, Christiaan JJ Paredis, and Roger
Burkhart. Integrating models and simulations of continuous dynamics
into sysml. Journal of Computing and Information Science in Engineering,
12(1):011002, 2012.

Marcin Jamro and Bartosz Trybus. An approach to sysml modeling of iec
61131-3 control software. In MMAR, pages 217--222, 2013.

Marouane Kessentini, Arbi Bouchoucha, Houari Sahraoui, and Mounir
Boukadoum. Example-based sequence diagrams to colored petri nets trans-
formation using heuristic search. In Modelling Foundations and Applica-
tions, pages 156--172. Springer, 2010.

Elhillali Kerkouche and Allaoua Chaoui. A Formal Framework and a Tool for
the Specification and Analysis of G-Nets Models Based on Graph Transfor-
mation. In Vijay Garg, Roger Wattenhofer, and Kishore Kothapalli, editors,
Distributed Computing and Networking, volume 5408 of Lecture Notes in
Computer Science, pages 206--211. Springer Berlin Heidelberg, 2009.

Daniel Karlsson, Petru Eles, and Zebo Peng. Formal verification of
component-based designs. Design Automation for Embedded Systems,
11(1):49--90, 2007.

Daniel Karlsson, Petru Eles, and Zebo Peng. Formal Verification of
Component-based Designs. Design Autom. for Emb. Sys., 11(1):49--90, 2007.

Jonathan Lasalle, Fabrice Bouquet, Bruno Legeard, and Fabien Peureux.
Sysml to uml model transformation for test generation purpose. SIGSOFT
Softw. Eng. Notes, 36(1):1--8, January 2011.

S. Lafi, R. Champagne, A. B. Kouki, and J. Belzile. Modeling radio frequency
front ends using sysml: a case study of a umts transceiver. In First Interna-
tional Workshop on Model Based Architecting and Construction of Embed-
ded Systems, Toulouse, France, pages 115--128, 2008.

Marcos Vinicius Linhares, Alexandre Jose da Silva, and Rémulo Silva
de Oliveira. Empirical evaluation of sysml through the modeling of an in-
dustrial automation unit. In ETFA, pages 145--152, 2006.

Vitor Lima, Chamseddine Talhi, Djedjiga Mouheb, Mourad Debbabi, Lingyu
Wang, and Makan Pourzandi. Formal verification and validation of UML 2.0
sequence diagrams using source and destination of messages. Electr. Notes
Theor. Comput. Sci., 254:143--160, 2009.

LeiLi, Naichao Wang, Lin Ma, and Qingwei Yang. Modeling method of mili-
tary aircraft support process based sysml. In Reliability, Maintainability and
Safety (ICRMS), 2011 9th International Conference on, pages 1247--1251, June
2011.

M. Corporation. COM: Component Object Model Technologies. http://
www.microsoft.com/com/, 2007.

http://www.microsoft.com/com/
http://www.microsoft.com/com/

156

[MCR*12]

[MDA]

[Mer14]

[Micos]

[MMSCa13]

[Mot]

[Mou11]

[MPS12]

[MPWo2]

[MRo7]

[MTO"11]

[obe]

[OMGoo]

[OMGo6]

[OMG12a]

[OMG12b]

[pap]

BIBLIOGRAPHY

E Mhenni, J. Choley, A. Riviere, Nga Nguyen, and H. Kadima. Sysml and
safety analysis for mechatronic systems. In Mechatronics (MECATRONICS)
, 2012 9th France-Japan 7th Europe-Asia Congress on and Research and Edu-
cation in Mechatronics (REM), 2012 13th Int'l Workshop on, pages 417--424,
Nov 2012.

The Model-Driven Architecture. http://www.omg.org/mda/specs.htm.

Elkamel Merah. Design of atl rules for transforming uml 2 sequence dia-
grams into petri nets. International Journal of Computer Science and Busi-
ness Informatics, 8(1), 2014.

microsoft Microsoft. The component object model specification-version
0.9,1995.

Elkamel Merah, Nabil Messaoudi, Halima Saidi, and Allaoua Chaoui. Design
of atl rules for transforming uml 2 communication diagrams into biichi au-
tomata. International Journal of Software Engineering and Its Applications,
7(2):19--34, 2013.

Motorola. http://www.motorola.com/.

Sebti Mouelhi. Contribution a la vérification de la stireté de I'assemblage et
a l'adaptation de composants réutilisables. PhD thesis, Franche comté uni-
versity, 2011.

Radu Mateescu, Pascal Poizat, and Gwen Salaiin. Adaptation of service
protocols using process algebra and on-the-fly reduction techniques. IEEE
Trans. Software Eng., 38(4):755--777, 2012.

Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-
cesses, I. Inf. Comput., 100(1):1--40, September 1992.

Maryléne Micheloud and Medard Rieder. Programmation orientée objets en
C++: une approche évolutive. PPUR presses polytechniques, 2007.

Yasushi Mae, Hideyasu Takahashi, Kenichi Ohara, Tomohito Takubo, and
Tatsuo Arai. Component-based robot system design for grasping tasks. In-
telligent Service Robotics, 4(1):91--98, 2011.

Obeo. http://www.obeo.fr.
OMG. CORBA, Version 2.4. http://www.omg.org/spec/CORBA /2.4/, 2000.

OMG. Corba Component Model 4.0 Specification. Technical Report Version
4.0, 2006.

OMG. OMG Systems Modeling Language (OMG SysML™) Version 1.3, 2012.

OMG. OMG Systems Modeling Language (OMG SysML™) Version 1.3. http:
//www.omg.org, 2012.

PAPYRUS. https://eclipse.org/papyrus/.

http://www.omg.org/mda/specs.htm
http://www.motorola.com/
http://www.obeo.fr
http://www.omg.org/spec/CORBA/2.4/
http://www.omg.org
http://www.omg.org
https://eclipse.org/papyrus/

BIBLIOGRAPHY 157

[PBG14]

[Pro]

[PSTo7]

[PSTV13]

[Pto]

[PVo2]

[RC15]

[RFo6]

[RJBoa]

[RKBIH15]

[Sam76]

[Schog]

[SEGo9]

[SKa7]

[Suno6]

[sys]

Rui Pais, Jodo Paulo Barros, and Luis Gomes. From sysml state machines to
petri nets using ATL transformations. In Technological Innovation for Col-
lective Awareness Systems - 5th IFIP WG 5.5/SOCOLNET Doctoral Confer-
ence on Computing, Electrical and Industrial Systems, DoCEIS 2014, Costa
de Caparica, Portugal, April 7-9, 2014. Proceedings, pages 227--236, 2014.

Graphical Modelling Project. Graphical modelling framework (gmf). http:
//www.eclipse.org/modeling/gmp/.

Pascal Poizat, Gwen Salaiin, and Massimo Tivoli. An adaptation-based ap-
proach to incrementally build component systems. Electr. Notes Theor.
Comput. Sci., 182:155--170, 2007.

Pekka Pihlanko, Seppo Sierla, Kleanthis Thramboulidis, and Mauri Vi-
itasalo. An industrial evaluation of sysml: The case of a nuclear automation
modernization project. In ETFA, pages 1--8, 2013.

Ptolemy. Ptolemy Project. http://ptolemy.eecs.berkeley.edu/.

E Plasiland S. Visnovsky. Behavior protocols for software components. Soft-
ware Engineering, IEEE Transactions on, 28(11):1056--1076, Nov 2002.

Seidali Rehab and Allaoua Chaoui. Tgg-based process for automating the
transformation of uml models towards b specifications. International Jour-
nal of Computer Aided Engineering and Technology, 7(3):378--400, 2015.

Oscar R Ribeiro and Jodo M Fernandes. Some rules to transform sequence
diagrams into coloured petri nets. In 7th Workshop and Tutorial on Practi-
cal Use of Coloured Petri Nets and the CPN Tools (CPN 2006), pages 237--56.
Citeseer, 2006.

James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Lan-
guage Reference Manual, The (2Nd Edition). Pearson Higher Education,
2004.

Messaoud Rahim, Ahmed Kheldoun, Malika Boukala-Ioualalen, and Ahmed
Hammad. Recursive ecatnets-based approach for formally verifying system
modelling language activity diagrams. Software, IET, 9(5):119--128, 2015.

JeffreyR. Sampson. Theorem proving. In Adaptive Information Processing,
Texts and Monographs in Computer Science, pages 160--174. Springer Berlin
Heidelberg, 1976.

Klaus Schneider. Verification of Reactive Systems: Formal Methods and Al-
gorithms. SpringerVerlag, 2004.

R. Seguel, R. Eshuis, and P. Grefen. An overview on protocol adaptors for
service component integration, 2009.

Janos Sztipanovits and Gabor Karsai. Model-integrated computing. Com-
puter, 30(4):110--111, 1997.

Sun Microsystems. Enterprise JavaBeans 3.0 Specification, May 2006.

SYSML. https://sysml.org/.

http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://ptolemy.eecs.berkeley.edu/
https://sysml.org/

158

[Szy98a]

[Szy98b]

[TeS11]

[TIo8]

[too]

[top]

[Vaso9]

[wik]

[WSo1]

[XBo3]

[YS97]

[YTLo4]

BIBLIOGRAPHY

Clemens Szyperski. Component software: beyond object-oriented program-
ming. Pearson Education, 1998.

Clemens A. Szyperski. Component software - beyond object-oriented pro-
gramming. Addison-Wesley-Longman, 1998.

Nara Sueina Teixeira and Ricardo Pereira e Silva. Compatibility evaluation
of components specified in UML. In 30th International Conference of the
Chilean Computer Science Society, SCCC 2011, Curico, Chile, November 9-11,
2011, pages 90--99, 2011.

Massimo Tivoli and Paola Inverardi. Failure-free coordinators synthesis
for component-based architectures. Science of Computer Programming,
71(3):181 -- 212, 2008.

CPN tool. http://cpntools.org/.
TOPCASED. https://www.polarsys.org/topcased.

Parham Vasaiely. Interactive simulation of sysml models using modelica.
Bachelor Thesis, Dept of Computer Science, Hamburg University of Applied
Sciences, 2009.

WIKIPEDIA. https://fr.wikipedia.org/.

Rainer Weinreich and Johannes Sametinger. Component-based software
engineering. chapter Component Models and Component Services: Con-
cepts and Principles, pages 33--48. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

Fei Xie and James C Browne. Verified systems by composition from veri-
fied components. In ACM SIGSOFT Software Engineering Notes, volume 28,
pages 277--286. ACM, 2003.

Daniel M. Yellin and Robert E. Strom. Protocol specifications and compo-
nent adaptors. ACM Trans. Program. Lang. Syst., 19(2):292--333, March 1997.

Nesrine Yahiaoui, Bruno Traverson, and Nicole Levy. Classification and
comparison of adaptable platforms. In Proceedings of the First International
Workshop on Coordination and Adaptation Techniques for Software Enti-
ties (WCAT'04), Oslo , Norway, pages 55--61, 2004.

http://cpntools.org/
https://www.polarsys.org/topcased
https://fr.wikipedia.org/

Document generated with IATgX and:
the IXTEX style for PhD Thesis created by S. Galland --- http://www.multiagent.fr/ThesisStyle
the tex-upmethodology package suite --- http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

The work presented in this thesis takes place in the component-based development domain, it is a contribution to the specification,
adaptation and verification of component-based systems. The main purpose of this thesis is the proposition of a formal approach to
build incrementally complex systems by assembling and adapting a set of components, where their structure and behaviour are modelled
using SysML diagrams. In the first stage, we have defined a meta-model driven approach which is based on meta-modelling and models
transformation, to verify the compatibility of blocks having their interaction protocols modelled using SysML sequence diagrams. To verify
their compatibility, we perform a transformation into interface automata (IAs), and we base on the optimistic approach defined on IAs. This
approach consider that two components are compatible if there is a suitable environment with which they can interact correctly. After
that, we have proposed to benefit from the hierarchy, that may be present in the interaction protocol models of the blocks, to alleviate the
verification of blocks compatibility. In the next stage, we have taken into consideration the problem of names mismatches of type one2one
between services of blocks. At this stage, an adapter is generated for a set of reused blocks which have their interaction protocols modelled
formally by interface automata. The generation of the adapter is guided by the specification of the parent block which is made initially
by the designer. Our approach is completed by a verification phase which allows us to verify SysML requirements, expressed formally
by temporal properties, on SySML blocks. In this phase, we have exploited only the generated adapters to verify the preservation of the
requirements initially satisfied by the reused blocks. Thus, our approach intends to give more chance to avoid the state space explosion
problem during the verification. In the same context, where we have a set of reused blocks and the specification of their parent blocks, we
have proposed to use coloured Petri nets (CPNs) to model the blocks interactions and to generate adapters that solve more type of problems.
In this case the adapter can solve the problem of livelock by enabling the reordering of services calls.

component-based development, SysML, adaptation, verification, Compatibility, interface automata, coloured Petri nets,
Requirements

Le travail présenté dans cette thése a lieu dans le domaine de développement basé sur les composants, il est une contribution a la
spécification, l'adaptation et la vérification des systémes a base de composants. Le but principal de cette thése est la proposition dune
approche formelle pour construire progressivement des systémes complexes en assemblant et en adaptant un ensemble de composants,
otl leur structure et leur comportement sont modélisés a l'aide de diagrammes SysML. Dans la premiére étape, nous avons défini une
approche basée sur la méta-modélisation et la transformation des modéles pour vérifier la compatibilité des blocs ayant leurs protocoles
d'interaction modélisés a 'aide de diagrammes de séquence SysML. Pour vérifier leur compatibilité, nous effectuons une transformation
en automates d'interface (IAs), et nous utilisons l'approche optimiste définie sur les IA. Cette approche considére que deux composants
sont compatibles s'il existe un environnement approprié avec lequel ils peuvent interagir correctement. Aprés cela, nous avons proposé
de bénéficier de la hiérarchie, qui peut étre présente dans les modeles de protocole d'interaction des blocs, pour alléger la vérification de
la compatibilité des blocs. Dans l'étape suivante, nous avons pris en considération le probléme des incohérences de noms de type onez2one
entre les services des blocs. A ce stade, un adaptateur est généré pour un ensemble de blocs réutilisés qui ont leurs protocoles d'interaction
modélisés formellement par des automates d'interface. La génération de I'adaptateur est guidée par la spécification du bloc parent qui est
faite initialement par le concepteur. Notre approche est complétée par une phase de vérification qui nous permet de vérifier les exigences
SysML, exprimées formellement par les propriétés temporelles, sur les blocs SySML. Dans cette phase, nous avons exploité uniquement
les adaptateurs générés pour vérifier la préservation des exigences initialement satisfaites par les blocs réutilisés. Ainsi, notre approche
a l'intention de donner plus de chance d'éviter le probléme de l'explosion de l'espace d'état au moment de la vérification. Dans le méme
contexte, oll nous avons un ensemble de blocs réutilisés et la spécification de leurs blocs parents, nous avons proposé d'utiliser des réseaux
de Petri colorés (CPN) pour modéliser les interactions des blocs et générer des adaptateurs qui résolvent plus de types de problémes. Dans
ce cas, l'adaptateur peut résoudre le probléme de blocage en permettant le réordonnancement des appels de services.

développement basé sur les composants, SysML, adaptation, vérification, compatibilité, automates d'interface, réseaux
de Petri colorés, exigences

W Ecole doctorale SPIM 16 route de Gray F - 25030 Besangon cedex

W tél. +33 (0)3 81 66 66 02 M ed-spim@univ-fcomte.fr M www.ed-spim.univ-fcomte.fr u U

FC

UNIVERSITE
DE FRANCHE-COMTE

	1 Introduction
	1.1 Context and Challenges
	1.2 Contributions
	1.3 Publications
	1.4 Document Outline

	I Scientific Context and State of the Art
	2 SE and SysML Language
	2.1 SysML
	2.1.1 The Need of SE to SysML
	2.1.2 Who Created SysML?
	2.1.3 Principles of SYML

	2.2 Emergence of SysML
	2.3 SysML Diagrams
	2.3.1 Structural Diagrams
	2.3.2 Behavioural Diagrams
	2.3.3 Requirement Diagram

	2.4 Free Platforms for SysML Modelling
	2.4.1 TOPCASED
	2.4.2 Papyrus

	2.5 Conclusion

	3 Model-Driven Development and Models Transformation
	3.1 Basic Concepts
	3.2 Model Transformations
	3.3 Transformation of SysML Diagrams
	3.4 Transformation of Sequence Diagram
	3.5 Interface Automata
	3.5.1 Operations on interface automata
	3.5.2 Refinement of interface automata

	3.6 Coloured Petri Nets
	3.7 Conclusion

	4 CBSE and Component Adaptation
	4.1 Component-Based Software Engineering
	4.2 Definition of Software Component
	4.3 Abstraction of Components
	4.4 Component Interfaces
	4.5 Component Models
	4.6 Verification of Component Compatibility
	4.7 Formal Analysis of Assembled Systems
	4.8 Components Adaptation
	4.8.1 Adaptation Taxonomy
	4.8.2 General Adaptation Process
	4.8.3 Principal Adaptation Approaches
	Adaptation of -calculus protocols
	Adaptation based on LTSs and Petri nets

	4.8.4 Other Approaches

	4.9 Conclusion

	II Contributions
	5 Formalizing SysML Diagrams
	5.1 Requirement Diagram (RD)
	5.2 Block Definition Diagram (BDD)
	5.2.1 BDD Formal Definition
	5.2.2 Block
	5.2.3 Ports
	5.2.4 Parts
	5.2.5 References
	5.2.6 BDD Relations

	5.3 Internal Block Diagram (IBD)
	5.4 Sequence Diagram (SD)
	5.5 Conclusion

	6 A SysML Model Driven Approach to Verify Blocks Compatibility
	6.1 Our Methodology
	6.2 Transforming SDs of Blocks into Interface Automata
	6.2.1 Sequence Diagram Meta-Model
	6.2.2 Interface Automata Meta-Model
	6.2.3 Basic Interaction Transformation Rules
	6.2.4 ALT Combined Fragment Transformation Rules

	6.3 Generation of Ptolemy Specification
	6.4 The Blocks Verification
	6.5 Case Study: CyCab
	6.6 Conclusion

	7 Exploiting The Hierarchy to Verify Blocks Compatibility
	7.1 Hierarchical Protocol State Machine (HPSM)
	7.2 Hierarchical Interface Automata with Inter-Level Transitions (HIA-ILT)
	7.3 The Proposed Approach
	7.3.1 The Mapping Between HPSM and HIA-ILT
	7.3.2 The Consistency Verification of Blocks
	7.3.3 The Selection of Composite States to Flatten
	7.3.4 The Compatibility Verification Between Blocks

	7.4 Case Study
	7.5 Conclusion

	8 SysML Blocks Adaptation
	8.1 Our Incremental Approach for Adapting SysML Blocks
	8.1.1 The First Phase: Defining a Specification for the Part to Develop
	8.1.2 The Second Phase: The Selection of the Reused Blocks {Bi}
	8.1.3 The Third Step: the Contract and the Reused Blocks Verification
	8.1.4 The Fourth Step: Generating the Adapter

	8.2 Case Study
	8.2.1 Generate the Adapters
	8.2.2 Deduce the BDD and the IBDs of the Composite Blocks

	8.3 Conclusion

	9 Incremental Verification of System Requirements
	9.1 Our Approach
	9.1.1 Requirements Specification
	9.1.2 Problem definition
	9.1.3 The First Case : The Low Level Verification
	9.1.4 The Second Case : The High Level Verification
	9.1.5 The Verification Algorithm

	9.2 Case Study
	9.3 Conclusion

	10 Adaptation with Reordering of SysML Block Services
	10.1 Our Adaptation Approach
	10.1.1 Computing the Global Interaction Protocol of the Reused Blocks GIR
	10.1.2 Introducing the Specification of the Future Parent Block
	10.1.3 Deduce the Adapter
	10.1.4 Tool Support

	10.2 Case Study
	10.3 Conclusion

	III Conclusion
	11 Conclusion and Perspectives
	11.1 Conclusion
	11.2 Perspectives

