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Abstract

Upcoming Exascale target in High Performance Computing (HPC) and disruptive achieve-

ments in artificial intelligence give emergence of alternative non-conventional many-core

architectures, with energy efficiency typical of embedded systems, and providing the

same software ecosystem as classic HPC platforms. A key enabler of energy-efficient

computing on many-core architectures is the exploitation of data locality, specifically the

use of scratchpad memories in combination with DMA engines in order to overlap com-

putation and communication. Such software paradigm raises considerable programming

challenges to both the vendor and the application developer. In this thesis, we tackle

the memory transfer and performance issues, as well as the programming challenges

of memory- and compute-intensive HPC applications on the Kalray MPPA many-core

architecture.

With the first memory-bound use-case of the lattice Boltzmann method (LBM), we pro-

vide generic and fundamental techniques for decomposing three-dimensional iterative

stencil problems onto clustered many-core processors fitted with scratchpad memories

and DMA engines. The developed DMA-based streaming and overlapping algorithm

delivers 33% performance gain over the default cache-based implementation. High-

dimensional stencil computation suffers serious I/O bottleneck and limited on-chip mem-

ory space. We developed a new in-place LBM propagation algorithm, which reduces by

half the memory footprint and yields 1.5 times higher performance-per-byte efficiency

than the state-of-the-art out-of-place algorithm.

On the compute-intensive side with dense linear algebra computations, we build a ma-

trix multiplication benchmark based on exploitation of scratchpad memory and efficient

asynchronous DMA communication. This program delivers 350 GFLOPS, or 86% of

theoretical performance of the MPPA. These techniques are then extended to a DMA

module of the BLIS framework, which allows us to instantiate an optimized and portable

level-3 BLAS numerical library on any DMA-based architecture, in less than 100 lines

of code. We achieve 75% peak performance on the MPPA processor with the matrix

multiplication operation (GEMM) from the standard BLAS library, without having to

write thousands of lines of laboriously optimized code for the same result.



Résumé

La prochaine cible de Exascale en calcul haute performance (High Performance Com-

puting - HPC) et des récent accomplissements dans l’intelligence artificielle donnent

l’émergence des architectures alternatives non conventionnelles, dont l’efficacité énergétique

est typique des systèmes embarqués, tout en fournissant un écosystème de logiciel

équivalent aux plateformes HPC classiques. Un facteur clé de performance de ces ar-

chitectures à plusieurs cœurs est l’exploitation de la localité de données, en particulier

l’utilisation de mémoire locale (scratchpad) en combinaison avec des circuits d’accès

direct à la mémoire (Direct Memory Access - DMA) afin de chevaucher le calcul et la

communication. Un tel paradigme soulève des défis de programmation considérables à

la fois au fabricant et au développeur d’application. Dans cette thèse, nous abordons

les problèmes de transfert et d’accès aux mémoires hiérarchiques, de performance de

calcul, ainsi que les défis de programmation des applications HPC, sur l’architecture

pluri-cœurs MPPA de Kalray.

Pour le premier cas d’application lié à la méthode de Boltzmann sur réseau (Lattice

Boltzmann method - LBM), nous fournissons des techniques génériques et réponses

fondamentales à la question de décomposition d’un domaine stencil itérative tridimen-

sionnelle sur les processeurs clusterisés équipés de mémoires locales et de circuits DMA.

Nous proposons un algorithme de streaming et de recouvrement basé sur DMA, délivrant

33% de gain de performance par rapport à l’implémentation basée sur la mémoire cache

par défaut. Le calcul de stencil multi-dimensionnel souffre d’un goulot d’étranglement

important sur les entrées/sorties de données et d’espace mémoire sur puce limitée. Nous

avons développé un nouvel algorithme de propagation LBM sur-place (in-place). Il con-

siste à travailler sur une seule instance de données, au lieu de deux, réduisant de moitié

l’empreinte mémoire et cède une efficacité de performance-par-octet 1.5 fois meilleure

par rapport à l’algorithme traditionnel dans l’état de l’art.

Du côté du calcul intensif avec l’algèbre linéaire dense, nous construisons un bench-

mark de multiplication matricielle, basé sur l’exploitation de la mémoire locale et la

communication DMA asynchrone. Ce programme atteint 350 GFLOPS, soit 86% de

la performance théorique de MPPA. Ces techniques sont ensuite étendues à un module

DMA générique du framework BLIS, ce qui nous permet d’instancier une bibliothèque

BLAS3 (Basic Linear Algebra Subprograms) portable et optimisée sur n’importe quelle

architecture basée sur DMA, en moins de 100 lignes de code. Nous atteignons une per-

formance maximale de 75% du théorique sur le processeur MPPA avec l’opération de

multiplication de matrices (GEMM) de BLAS, sans avoir à écrire des milliers de lignes

de code laborieusement optimisé pour le même résultat.
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Introduction

This manuscript is the fruit of a three-year PhD enduring work on optimizing scientific

applications on many-core processors. This thesis is founded by the CIFRE collaboration

(French term of Convention Industrielle de Formation par la Recherche – Industrial con-

vention of research-driven training, by the French Ministry of Research and Innovation)

between the Kalray corporate and the Grenoble Informatics Laboratory (LIG) from the

University of Grenoble Alps (UGA) and Centre for Energy and Thermal Sciences of

Lyon (CETHIL) from the National Institute of Applied Sciences of Lyon (INSA Lyon),

the National Center for Scientific Research (CNRS) and the University Claude Bernard

Lyon 1.

The first four chapters in this manuscript introduce the current High Performance Com-

puting (HPC) situation, the state-of-the-art and objectives of this thesis, and the target

many-core platform. Contribution chapters in this manuscript are then presented as two

main parts, organized in the thematic order and not in the chronological one. The first

part presents approaches in optimizing data transfer and memory footprint of the three-

dimensional Lattice Boltzmann method (LBM), which belongs to the memory-bound

category of applications. The second part focuses on Dense Linear Algebra (DLA)

operations and associated numerical libraries, belonging to the compute-bound class.

Experimental results in this document are reported on the Kalray Massively Parallel

Processor Array (MPPA) many-core architecture, as well as other latest mainstream

computing platforms such as NVIDIA Pascal Graphical Processing Unit (GPU), Intel

Xeon Haswell Non-uniform Memory Access (NUMA) Central Processing Unit (CPU)

and Intel Xeon Phi Knights Landing (KNL) processor.

Some contribution chapters in this manuscript contain principal materials from pub-

lished and submitted papers, authored or co-authored by the writer of this manuscript

as well. These papers are:

1. Minh Quan Ho, Bernard Tourancheau, Christian Obrecht, Benôıt Dupont de Dinechin,

and Jérôme Reybert. MPI communication on MPPA many-core NoC: design,

1



2

modeling and performance issues. In Gerhard R. Joubert, Hugh Leather, Mark

Parsons, Frans J. Peters, and Mark Sawyer, editors, Parallel Computing: On the

Road to Exascale, Proceedings of the International Conference on Parallel Com-

puting, ParCo 2015, 1-4 September 2015, Edinburgh, Scotland, UK, volume 27 of

Advances in Parallel Computing, pages 113–122. IOS Press, 2015.

2. Julien Hascoët, Benôıt Dupont de Dinechin, Pierre Guironnet de Massas, and

Minh Quan Ho. Asynchronous one-sided communications and synchronizations for

a clustered manycore processor. In Proceedings of the 15th IEEE/ACM Symposium

on Embedded Systems for Real-Time Multimedia, ESTImedia 2017, Seoul, Republic

of Korea, October 15 - 20, 2017, pages 51–60, 2017.

3. Minh Quan Ho, Christian Obrecht, Bernard Tourancheau, Benoit Dupont de Dinechin,

and Julien Hascoet. Improving 3D lattice Boltzmann method stencil with asyn-

chronous transfers on many-core processors. In 2017 IEEE 36th International Per-

formance Computing and Communications Conference (IPCCC) (IPCCC 2017),

San Diego, USA, December 2017.

4. Minh Quan Ho, Christian Obrecht, and Bernard Tourancheau. New parallel in-

place update algorithm for better memory usage in 3D lattice Boltzmann algo-

rithm. In submission, 2017.

5. Minh Quan Ho, Benoit Dupont de Dinechin, Bernard Tourancheau, and Christian

Obrecht. BLIS-RDMA: A portable and high performance level-3 BLAS for DMA-

based many-core architectures. In submission, 2017.



Chapter 1

High Performance Computing:

from Single-core to Many-core

Knowledge has a beginning, but no end.

– Geeta S. Iyengar.
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1.1 Introduction

Micro-processor architectures have made a considerable evolution since the first days of

computer science. Several decades ago, when the processor clock was of the same order

as the main memory speed, about hundreds of kilohertz to several megahertz, perfor-

mance concerns were mostly on the computation cycles, rather than optimizing memory

transfers. With advances in semiconductors, the transistor number and computing per-

formance has exponentially increased over the years. Moore’s law (Fig. 1.1) is a model of

the semiconductor evolution, which depicts the increasing transistor count that doubles

approximatively every 24 months for a constant circuit price. This evolution results in

a parallel increase in computing power. Despite the limit in transistor size, this law

has been nevertheless sustained by processor manufacturers since the last decade, by

increasing the clock frequency and integrating more cores into a same silicon die.

Figure 1.1: Moore’s law illustration at the Heinz Nixdorf Museum.
Credit: Paul Townend.

High Performance Computing (HPC) has become an essential field to guide and to

be guided by the moving computing architectures. Nowadays, HPC is almost used

in any scientific domain, from molecular dynamics simulation, bio-informatics, medical

drug discovery, to computational fluid dynamics (CFD), oil and gas, image and signal

processing, ocean simulation and weather forecast, and recently huge explosion in com-

puting workload for astrophysics radio telescopes (Square Kilometer Array – SKA) or

deep learning. Nonetheless, performance walls in exploiting parallelism are, were, and

will be the main challenge to computer scientists on the road of developing future HPC

systems.
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1.2 Performance walls

1.2.1 Frequency-wall

The higher the clock frequency operates, the higher the performance will be. However,

there is a physical limit between the clock frequency and the processor design. In

synchronous circuits, there exists a maximal frequency, under which the processor still

manages to synchronize its components properly with the clock signal and to maintain

an operating state. Beyond that frequency, the various distance between the clock source

to the working components introduces a micro-dephasing that is in the same order of

a single clock rate, results in erroneous synchronization and unstable circuits. That

maximal clock frequency is conventionally fixed at 10 GHz. In this case, a single clock

rate is roughly the time for the light to travel three centimeters, therefore the maximum

possible distance difference on an electronic circuit.

Energy consumption and power dissipation is also an issue. High-frequency working

system produces heat and must be accordingly cooled down. Current leakage is propor-

tional to the voltage and increases power consumption. World records in over-clocking

end-user computers are often limited at 8 GHz. To reach this level, the system is of-

ten cooled down by liquid nitrogen. An alternative to boost performance was, instead,

doubling the core count and introducing execution concurrency, which opened the era

of multi-core processors.

1.2.2 Energy-wall

In the last years, the energy-wall has emerged as the main limiting factor in designing

supercomputers. Today, we are in the age of Petascale (1015 floating-point operations

per second) within an energy budget of 20 MW. The first-ranked machine in the Top500

list (list of most powerful supercomputers in the world) delivers currently a power/energy

ratio of about 10 GFLOPS/W. To reach Exascale (1018 floating-point operations per

second), predicted to appear in the 2020s (Fig. 1.2), we need a system capable to deliver

more than 50 GFLOPS/W, with a global power load of less than 20 MW.

To lower power consumption and to increase flops count, the only solution is to embed

a large number of low-frequency cores into a same processor, sometimes up to hundreds

of cores on a same die. Such a processor would require disruptive memory and intercon-

nection technologies to feed the core cluster. This arises the question of how to write

efficient codes on those architectures, which programming model to design to expose the
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Figure 1.2: Projected performance of the Top500 list.
Source: https://www.top500.org.

massive parallelism, while ensuring ease of coding. It brings into light the challenges of

many-core design and programming.

1.2.3 Memory-wall

There is an increasing gap between the computing performance and the memory speed.

The computing performance slope is much steeper than the memory one. Since the over-

all performance amounts to the weakest part of the whole system, memory bandwidth

turns into a bottleneck for most applications.

Figure 1.3: Processor-memory performance gap.
Source: Computer Architecture: A Quantitative Approach

- David A. Patterson and John L. Hennessy.

https://www.top500.org
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In order to better understand the former issue, we will use the concept of arithmetic

intensity and the roofline model [6]. The roofline model provides an easy way to predict

performance of an application or more precisely its computation kernel. The concept

of arithmetic intensity (I) (ops/byte or flops/byte for floating-point) is defined by the

number of arithmetic operations performed on a given quantity of data loaded. Each

implementation of a numerical method possesses a proper I related to its computation

workload and data access pattern. Fig. 1.4 depicts the range of arithmetic intensity of

several well-known computation kernels, such as sparse and dense linear algebra (DLA),

lattice Boltzmann method (LBM) and fast Fourier transform (FFT).

Figure 1.4: Arithmetic intensity.
Source: https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/.

From the arithmetic intensity, one can assess the attainable performance P of an ap-

plication on a computing system with a roofline figure (see Fig. 1.5). A roofline figure

has an arithmetic intensity x-axis (flops/byte) and a performance y-axis (GFLOPS). Let

π the peak theoretical performance of the processor, β the design memory bandwidth.

With a given compiler and predefined optimization flags, the application produces a

binary code that reaches a performance π′. Running a memory bandwidth benchmark

on the system gives a sustained memory bandwidth β′ (π′ < π and β′ < β). The real

performance P of the computation kernel is equal to min(π′, β′ × I). When P = π′, the

kernel is considered compute-bound since its performance does not rely on the memory

but on the computing capacity of the processor, the applied compilation options, and

the parallelization or vectorization method. This performance is a constant for each con-

figuration variant (horizontal line in the roofline figure, see Fig. 1.5). When P = β′× I,

P follows a sloping line with a slope β′, where comes the name of roofline. In this

case, the kernel is considered memory-bound, since its performance relies on the memory

bandwidth.

Each processor architecture has its own roof lines, and every computation kernel run-

ning on that processor has a performance bounded by those two lines. This performance

model, despite being simple to characterize, allows doing a rapid comparison of com-

putation kernels on an architecture (which ones are memory-bound, which ones are

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
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compute-bound), or comparing a specific kernel across multiple architectures (if it is

memory-bound, so it should be better to use a higher memory-bandwidth system). Us-

ing the roofline model, a developer or an integration engineer can make appropriate

choice to use/port their code on a specific platform, to adopt a more aggressive opti-

mization method, or even to make architectural decisions.

Figure 1.5: Roofline model.
Source: https://alchetron.com/Roofline-model.

Nevertheless, the roofline model has some weaknesses. First, the performance is assessed

only based on the arithmetic intensity. Secondly, data locality and memory latency are

not taken into account, yet those are often crucial to the real performance in a high

concurrency context. Access pattern of applications impacts the hit or miss ratio in

each cache level, thus can result in unpredictable behavior of the underlying memory

system (latency, throughput), due to the coherency protocol, invalidation penalties and

other side-effects.

Figure 1.6: Different levels and latencies in memory hierarchy.

To overcome the memory latency and keep cores busy, computer architectures imple-

ment data prefetching. As can be seen in Fig. 1.6, near-core memory levels (caches or

scratchpad, of the order of kilobyte and megabyte) can prefetch data either by implicit

hardware mechanism or explicit built-in instructions. They were demonstrated to work

efficiently on contemporary CPUs. However, when off-chip memories (DDR, NVMe

https://alchetron.com/Roofline-model
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etc.) come up with supplementary physical media (NoC, PCIe), performing implicit

hardware prefetching is much harder and not relevant anymore, as the memory scope

is becoming too large (order of giga-byte and tera-byte). Instead, a software approach

based on asynchronous RDMA communication libraries, despite requiring additional

programming efforts, can improve data locality and deliver satisfactory performance.

1.2.4 Software-wall

Exposing parallelism while keeping the programming model simple is a hard question.

NUMA CPU processors can be programmed with Open Multi-Processing (OpenMP),

POSIX threads (Pthreads), Intel Threading Building Blocks (TBB) or Intel Cilk. With

the rise of heterogeneous systems, programming models must evolve as well. The

OpenMP 3 for shared and NUMA architecture was revised to OpenMP 4 to support

target devices. OpenACC [7], CUDA and Open Computing Language (OpenCL) [8] are

also other programming models and APIs for accelerators. Programming language for

distributed memory has longly been dominated by Message Passing Interface (MPI) [9]

with incremental features leveraging the increasing node count: from two-sided com-

munication in MPI 1 to one-sided communication since MPI 2, non-blocking collective

operation since MPI 3 as well as a re-enforced one-sided specification.

Code and performance portability is also an issue due to the hardware diversity. To

reduce the programming efforts for non-computer scientists, additional tools and meta-

languages were introduced: domain specific languages (DSL) like Halide [10], high-level

language and automatic framework (SYCL [11]), data-flow and DAG-based (Directed

Acyclic Graph) analysis tools (StarPU [12]). These high-level tools allow users to ex-

press their processing kernels and get their code automatically generated, compiled and

deployed on multiple computation units.

We believe that future high performance systems will be a combination of various com-

puting platforms. Applications (and their sub-modules), upon their arithmetic intensity

range, will be deployed and run on the most suitable platform. Such a system will

be highly heterogeneous and non-uniform in terms of performance and memory band-

width of each sub-platform, where developers sometimes need to hand-tune the code to

obtain the best performance, especially on embedded and non-conventional hardware.

Programming and running these all-in-one systems raises considerable complexity in

design, scheduling, debugging, isolation and security.

Fault tolerance will also be a big concern on large-scale systems to resist against fail-stop

failures, due to the fast decline of mean time between failure (MTBF) with the growing

system size. Hardware-based fault tolerance mechanisms tend to be vendor-dependent at
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a certain degree. Without advances in research, these mechanisms may suffer significant

overhead and would be difficult to optimize. Algorithm-Based Fault Tolerance (ABFT),

since the last few years, has achieved important results by the research community

[13, 14, 15, 16, 17]. However, relevance of following these approaches to the coming

Exascale context is still unclear as of today.

1.3 Summary

In this chapter, we briefly present the high performance computing (HPC) and its main

three performance walls: the frequency-wall, the energy-wall and the memory-wall. We

also identify software challenges for the upcoming HPC applications, that we believe to

be another obstacle to performance: the software-wall.

In the next chapter, we will introduce the first type of HPC application studied in this

thesis: the lattice Boltzmann method, a stencil-based computation, known to be one of

the most memory-bound applications.



Chapter 2

Lattice Boltzmann method

(LBM)

If you can’t explain it simply, you don’t understand it well enough.

– Albert Einstein.

11
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2.1 Background

2.1.1 Theory

Inspired from the lattice gas automata theory [18] and first introduced by McNamara

and Zanetti [19], the lattice Boltzmann method has become widely used in computa-

tional fluid dynamics (CFD) as an alternative to the solving of Navier–Stokes equations.

Belonging to the structured grid-based discrete method, the LBM is known for its advan-

tages such as straightforward meshing, ability to model complex geometries, and most

of all its inherent parallelism, well-suited to massively parallel computing architectures.

An LBM model is characterized by a stencil type, denoted DdQq, where d is the number

of space dimensions (one, two or three) and q is the number of particle distribution

functions (PDFs) [20]. Particle distribution functions describe the interaction between a

lattice node and its surrounding neighborhood. More precisely, q relates to the number of

neighboring nodes that will be involved into interaction with the lattice node of interest.

In most cases, the node itself is taken into account and the number of neighboring

nodes equals q − 1. The most used stencil types for LBM are D2Q5 and D2Q9 for

two-dimensional domains, or D3Q19 and D3Q27 for three-dimensional domains (see

Fig. 2.1).
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Figure 2.1: LBM D3Q19 stencil.

Three-dimensional LBM often operates on D3Q19 or D3Q27 stencils. The LBM spatial

domain is represented by a grid of nodes, discretized with a mesh size δx. The simulation

duration is discretized in constant time steps δt. The LBM updating rule for each node

at each time step is defined by the following equation:

∣∣fi(x+ δtξi, t+ δt)
〉
−
∣∣fi(x, t)〉 = Ω

∣∣fi(x, t)〉 (2.1)

in which Ω is a pre-defined collision operator. The collision operator implements the

time evolution of particle distribution functions fi (i ∈ {0, ..., q − 1}) of a given node
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towards its nearest neighbors with respect to the ξi velocities. For better presentation

in LBM codes, Eq. 2.1 is often split into two sub-steps:

∣∣f∗i (x, t+ δt)
〉

=
∣∣fi(x, t)〉+ Ω

∣∣fi(x, t)〉 (2.2)

|fi(x+ δtξi, t+ δt)〉 = |f∗i (x, t+ δt)〉 (2.3)

in which, Eq. 2.2 applies the Ω operator to the current state
∣∣fi(x, t)〉 – a ket vector

containing q PDFs of the lattice node. This reduces to local computations (also known

as collision step), translated into floating-point arithmetic operations. Results of this

sub-step are new PDFs of the next time step
∣∣f∗i (x, t+ δt)

〉
, which temporarily remain

within the local node. Eq. 2.3 then streams these PDFs into neighboring nodes (also

known as streaming step), with the notation of spatial directions x+δtξi. This sub-step

is translated into memory load/store instructions.

2.1.2 Memory requirement

At each time step, the whole spatial domain must be updated before being able to start

the next iteration. This spatio-temporal dependency of the LBM (shared by other stencil

numerical schemes) compels developers, for the sake of code simplicity, to allocate two

instances of the computational array, one as input of Eq. 2.2 (read-only) and one as

output of Eq. 2.3 (write-only). This technique is usually known as two-lattice [21] (see

the next section), whose the main drawback is the doubled memory consumption which

significantly reduces the maximal reachable spatial resolution. It requires scientists to

run their code on more machines with a larger aggregate memory space, thus resulting

in larger cost and energy consumption.

From a programming point of view, LBM kernels are easy to implement and well-suited

for parallelization on recent multi-/many-core platforms. However, lattice Boltzmann

methods are known for their low arithmetic intensity and particularly high memory

bandwidth requirement. Taking the example of a basic LBM solver, depending on

collision operator, between 200 and 400 floating-point operations are performed on a

lattice node per time step. Most D3Q19 LBM implementations require storing all the

19 distribution values for each lattice node. A lattice domain L×L×L contains 19×L3

single- or double-precision floating-point numbers. Updating this lattice grid in a single

time-step requires 19 × 2 × L3 load/store memory operations for less than 400 × L3

arithmetic operations. Thus, simulating the whole lattice domain through T time-steps

will generate a huge amount of data movement of 19×2×L3×T floating-point numbers

for 400×L3×T floating-point operations. Fig. 2.2 illustrates the memory-bound aspect

of a D3Q19 LBM model.
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Figure 2.2: D3Q19 LBM applied on MPPA2 roofline model.

While recent architectures gain computing performance by increasing the clock speed

and multiplying the number of cores, evolution of memory systems still cannot fetch

enough data to keep cores busy. The dataset cannot always fit in caches and must be

stored in the main (even remote) memory with much higher latency. The low arithmetic

intensity of stencil kernels like LBM is thus the limit of performance, as well as their poor

data-locality which reduces significantly the cache-reuse ratio. Previous studies in [22]

and [23] show that LBM implementations are memory-bound and hardly obtain good

performance on CPU or Xeon Phi processors. GPU-based accelerators, thanks to their

graphics-dedicated high-bandwidth memory, appear to be the most suitable platforms

for LBM today.

2.2 Propagation algorithms

2.2.1 One-step two-lattice (OT)

One-step two-lattice (also known as two-lattice) is the most employed algorithm in LBM

implementations on massively parallel architectures. The collision and streaming steps

are fused into one compute kernel, either in pull or push scheme (see Fig. 2.3). This

kernel loops on all lattice nodes and updates the whole domain at each time step. The

two lattice arrays (A and B) which are swapped at the end of each time step, differ

from each other by their access type within the compute kernel: one is read-only and

one is write-only. Using non-temporal streaming store to perform the write operation in

the streaming step is thus a good reason to use this algorithm. But this feature is not

widely available on all architectures, due to its hardware cost.
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(a) Push propagation.

(b) Pull propagation.

Figure 2.3: Propagation schemes of LBM in the D2Q9 sketch.

2.2.2 One-step one-lattice (OO)

Different approaches, known as one-lattice algorithms, were introduced to reduce the

memory footprint by working on only one lattice array and to improve data locality

of the LBM. Most of them operate elaborate exchange of PDFs between neighboring

lattice nodes in the parallel execution context.

Pohl et al. [24] proposed compressed-grid (also known as shift, see Fig. 2.4) approach to

reduce the memory requirement of the two-lattice algorithm. With the same objective,

Mattila et al. [25] developed a swap algorithm that requires almost half of memory space

compared to the two-lattice algorithm. Comparisons of these algorithms with varying

lattice-indexing and data layouts were carried out in [26, 27]. These studies show equiv-

alent computational efficiency of compressed-grid and swap algorithm compared to the

two-lattice approach, while consuming less memory. However, these two approaches

both require definite iteration order and complex index calculations for shifting the two

lattice grids (shift) or swapping distribution values between neighbors (swap). These de-

pendencies make it very hard to implement shift and swap algorithms on highly parallel

GPUs and accelerators in offloading mode (CUDA, OpenCL). Today, they are imple-

mented only as sequential CPU code inside a subdomain and are scaled up by using MPI

for inter-domain halo exchange [27]. This configuration yields satisfactory weak-scaling

but cannot enable strong-scaling, since execution of each shared-memory subdomain

cannot be parallelized by either OpenMP or Pthreads.

Bailey et al. [28] presented the AA-pattern which overwrites read input PDFs by new

collided data via two different kernels (even and odd time steps) (see Fig. 2.5). Geier and

Schönherr [29] introduced Esoteric twist (shortened to Esotwist) as an improvement of
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(a) Even step. (b) Odd step.

Figure 2.4: Compressed-grid (shift) propagation algorithm.
Source: Wittmann et al. [27].

AA-pattern, by interacting only with neighboring nodes in positive xyz-direction. These

two later algorithms work on one lattice array, are inherently asynchronous and thus are

attractive for GPU and similar parallel architectures. However, they are more complex

to implement than other algorithms mentioned above. Compressed-grid, AA-pattern

and Esotwist need two kernels for even and odd time steps respectively. Esotwist can be

implemented with one kernel, but requires imperatively the SoA (structure of arrays)

storage layout to swap the Q pointers to their opposite direction after each collision,

thus mostly only interesting for GPU architectures.

Figure 2.5: D2Q9 version of AA-pattern with two kernels at odd and even time
steps. The odd step reads local PDFs in their opposite order, collides and stores back

locally in natural order. The even step performs reads of PDFs from neighboring
nodes (pull), collides and writes back (push) to the same place on these nodes, with

opposite PDFs.

2.3 Summary

The lattice Boltzmann method is one of the most memory-bound applications among

other iterative stencil-based methods, such as image processing and computer vision.

Improving LBM performance lies on optimizing data-locality for better utilization of

cache memories, as well as reducing the global memory footprint by inventing new

implementation methods.

The fundamental challenge of any one-lattice algorithm is that memory accesses (read

and write) must be performed carefully on the same lattice buffer to enforce the spatio-

temporal dependency between nodes and time steps. More over, implementation often
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requires two versions of kernel code, adding more programming effort and reducing

the maintainability of the application. On another hand, LBM boundary conditions

on new physical models tend to be more and more elaborate. Typical LBM bound-

ary conditions, such as simple bounce-back or interpolated bounce-back [30], imposes

specific exchange rules of PDFs between adjacent nodes. Combining these conditions

with existing one-lattice algorithms raises considerable complexity in implementation

and validation, especially for 3D domains.

Other clustered many-core processors, despite a much lower global memory bandwidth

with respect to GPUs, embed significant amount of fast local memories [31, 32]. They

also provide more predictability in both computing time and data transfer. This enables

using explicit and efficient user buffers for elaborate optimizations, such as software

prefetching and streaming, based on local memories and asynchronous DMA engines.





Chapter 3

Basic Linear Algebra

Subprograms (BLAS)

Today, most software exists, not to solve a problem,

but to interface with other software.

– I. O. Angell.
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3.1 Background

3.1.1 Introduction

Since its first release in the 1980s, the Basic Linear Algebra Subprograms (BLAS) [33, 34]

has been widely used as the de facto foundation of high-level dense linear algebra libraries

such as Linear Algebra PACKage (LAPACK) [35] and Scalable LAPACK (ScaLA-

PACK) [36], as well as in many inter-disciplinary scientific software. BLAS was designed

to provide an unified and portable interface of numerical linear algebra operations on

various computer architectures. Along other must-have software tools and libraries,

BLAS is the first numerical API to be implemented and optimized on any architecture

that targets high-performance computing.

The BLAS API 1 defines three levels of numerical operations: (1) level-1 within or

between scalar vectors, (2) level-2 between vector and matrix, and (3) level-3 between

matrix and matrix. A typical example of a level-1 operation is the vector-vector addition

(AXPY) (equivalent Triad in the STREAM benchmark [37]). The level-2 performs, for

instance, vector-matrix multiplication (GEMV), or the well-known solver of linear system

of equations A · x = b (TRSV). For level-3, one should mention the General matrix

multiplication (GEMM) operation C ← α ·A ·B+ β ·C, which is used as the core block

of many computation-intensive benchmarks and applications. The High Performance

Linpack (HPL) benchmark [38, 39] from which the Top500 list is built, as well as many

other scientific applications are designed to map on this operation as much as possible

to reach the maximal computing capacity of the target platform. In the latest years,

GEMM has also become the kingpin of machine learning and deep learning advances.

Nevertheless, implementing and optimizing BLAS (typically level-3) on a given archi-

tecture has never been a trivial task. Straightforward implementations seldom deliver

satisfying performance without advanced tiling and blocking techniques. To fill up the

core pipeline, eliminate stall cycles and reach near-peak performance, developers compul-

sorily need to understand the low-level functionality of the hardware and write optimal

assembly-level kernels. Multiplicity of BLAS parameters and their combinatorial cases

yield up to several hundreds of assembly kernels to hand-tune and to maintain; in which

to add extensions of instruction set architecture (ISA) and cache size evolution through-

out processor generations. Developing and maintaining such an optimal library requires

substantial time and expertise, that sometimes can only be afforded by the processor

manufacturers or specialized research groups.

1http://www.netlib.org/blas/blasqr.pdf

http://www.netlib.org/blas/blasqr.pdf
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Conventional CPUs are shipped with proprietary libraries that implement BLAS, sparse

BLAS routines, and BLAS-like extensions, such as: Intel Math Kernel Library (MKL) [40],

AMD Core Math Library (ACML) [41] and IBM Engineering and Scientific Subroutine

Library (ESSL) [42]. Open-source options for BLAS-like functionality include the hand-

optimized GotoBLAS [43] [44] and its derivative OpenBLAS [45], auto-tuning solution

such as Automatically Tuned Linear Algebra Software (ATLAS) [46], and projects that

target modern multi-core processors such as Parallel Linear Algebra Software for Mul-

ticore Architectures (PLASMA) [47]. The BLAS-like Library Instantiation Software

(BLIS) framework [48] is a recent development in the area of open-source and portable

BLAS solutions for CPU-based architectures.

Vendors of GPU and other CPU accelerators also develop proprietary BLAS implemen-

tations adapted to their heterogeneous computing context: NVIDIA’s CuBLAS [49],

AMD’s clBLAS[50] and rocBLAS [51]. Open-source projects for such architectures in-

clude MAGMA [52], clBLAST [53], and KAUST-BLAS [54]. These libraries, written

in C-like languages (CUDA, OpenCL), rely on the vendor compiler and runtime API

to generate executable code and offload computation onto the device. In order to ab-

stract the hardware complexity and reduce programming effort, scheduling and memory

management is hidden as much as possible to the developer and is managed by the de-

ployment runtime and the device driver. Despite facilitating usage by non-expert users,

the application portability and performance crucially depends on the vendor’s or the

open-source community’s ability to implement and maintain an optimized BLAS library

across multiple architectural generations.

3.1.2 General Matrix Multiplication (GEMM)

3.1.2.1 Basic implementation

Figure 3.1: Matrix multiplication.

The GEMM operation is the most widely used func-

tion in the BLAS API. Fig. 3.1 depicts the GEMM

function which performs matrix product between

a matrix A of size m × k and a matrix B of size

k × n. This product is then scaled by an α scalar

and is accumulated into a matrix C of size m× n,

pre-scaled by a β scalar: C ← α ·A ·B + β · C.

Let us assume that matrices are square (m = n =

k). The basic implementation of GEMM is based on
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the following the loop-based approach:

Ci,j = α×
( n−1∑

t=0

Ai,t ×Bt,j

)
+ β × Ci,j i, j, t ∈ [0, n) (3.1)

Eq. 3.1 performs, per each Ci,j element, 2n + 2 floating-point operations (flops),2 for a

data traffic of 2n + 2 words.3 Commonly, those floating-point operations can be per-

formed within n+1 fused multiply-add (FMA) instructions.4 This naive implementation

has a poor arithmetic intensity. Spatial and temporal locality of data accesses in cache

levels are not optimal either.

3.1.2.2 Blocked (Tiled) implementation

Goto et al. [43] revisited GEMM algorithms with multi-layer blocking (or tiling), in which

each layer is corresponding to a memory level. For simplicity, let consider a two-layer

configuration between a slow memory (DDR) and a fast memory (scratchpad or L1

cache). The matrix C on the slow memory is divided into N ×N blocks, each block is

of size b × b (N = n
b ). The blocksize b is chosen so that the fast memory, whose size is

S, can hold at least one block A and one block B (S ≥ 2b2 words), or preferably one

block C as well (S ≥ 3b2 words). Let consider that three blocks A, B and C can fit

into S, the communication cost between the slow and fast memory, the I/O traffic and

arithmetic intensity (AI) of the blocked algorithm are written as follows:

I/O traffic = N2b2 ×N (read every block of A (N) times)

+ N2b2 ×N (read every block of B (N) times)

+ 2N2b2 × 1 (read and write every block of C once)

= 2N3b2 + 2N2b2 =
2n3

b
+ 2n2 = 2n3

(1

b
+

1

n

)
Complexity = 2n3

AI =
Complexity

I/O traffic
=

nb

n+ b
=

b

1 + b
n

≈ b (n� b) (3.2)

2n + 2 multiplications and n additions
32n loads for Ai,t and Bt,j , one load and one store for Ci,j
4Included in the IEEE 754-2008 standard and largely available on modern CPU and GPU archi-

tectures. The FMA instruction has advantage of significantly reducing the number of CPU cycles and
minimizing the accumulated error due to successive rounding steps.
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As can be seen from Eq. 3.2, we can improve performance of the blocked algorithm

between two successive memory levels by increasing b. Applying recursive tiling on con-

temporary CPU and GPU architectures is apparently the optimal approach for GEMM.

Furthermore, Goto et al. [43] also proposed an additional packing step before inner com-

putations, which consists in reordering A and B data blocks into a pre-defined contiguous

layout,5 in order to maximize cache hit ratio and minimize penalty of Translation Looka-

side Buffer (TLB) misses. Through the packing step, the implementation will also be

able to handle multiple parameter combinations (transa, transb, uplo, sidea etc.) with

only several well-defined inner micro-kernels. This allows implementing BLAS func-

tions without tuning hundreds of assembly kernels, produces well-structured and highly

maintainable code, whose a successful example is the BLIS framework.

3.2 BLAS-like Library Instantiation Software (BLIS)

BLIS, stands for BLAS-like Library Instantiation Software [48], is a sub-project of

libflame [55]. The libflame project implements LAPACK-like features and lies closely

on BLIS for the BLAS support. Both BLIS and libflame are developed by the Science

of High-Performance Computing (SHPC) group at the University of Texas at Austin.

They are released under the open-source BSD 3-clause license, facilitating adoption by

industry.

During many years, the research community was missing a well-structured, open-source,

light-weight, portable and high performance BLAS library. Proprietary implementa-

tions are considered as black-boxes and platform-specific. Open-source libraries like

ATLAS and OpenBLAS appear too bloated or difficult to port and to optimize on a

new architecture. Researchers and vendors need an easy and extensible framework as

an experimental tool, not only to implement and tune new linear algebra algorithms,

but also to maintain and optimize easily BLAS functions on next-generation architec-

tures. These crucial points have been tackled and successfully solved within the BLIS

framework for conventional cache-based CPUs.

Inspired from GotoBLAS [43], BLIS is designed with fundamental principles in dense

linear algebra, including incremental and recursive construction of BLAS operations

for code-reusability, data-packing and cache/register blocking for optimal locality, as

well as ability to integrate platform-specific assembly code. Fig. 3.2 depicts the global

algorithm of the GEMM operation in BLIS. The three matrices A, B and C are partitioned

and traversed through five loops around a micro-kernel. The micro-kernel performs a

5This layout is similar to the row-major GEMM TN format: A transposed and B non-transposed.
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Figure 3.2: Cache-based layer design of BLIS.
Courtesy of: Field G. Van Zee and Robert A. Van de Geijn.

rank-k update and constitutes the sixth loop. Other level-3 operations are then built on

top of GEMM and this partioning method.

Main advantages of BLIS can be mentioned as follow:

• BLIS introduces a reduced set of micro-kernels (gemm, trsm, gemmtrsm), written

in the portable C99 standard by default, as a reference implementation.

• BLIS defines a reduced set of execution parameters (cache sizes, memory align-

ment, memory allocator), largely used by the internal algorithms, but can differ

significantly from one architecture to another.

• BLIS provides a user-defined configuration header which allows arbitrary mod-

ification of these execution parameters and easy plug-and-play of ISA-specific

micro-kernels to generate a nearly optimized BLAS library on any cache-based

architecture, without touching the core functions of BLIS.
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This abstract design enables a custom fit on any cache-based system implementing any

instruction set with straightforward portability and high-performance. Cache-blocking

and packing implementation techniques in BLIS have been proved to be analytically

optimal [56] on multi-core and NUMA memory hierarchies, delivering competitive per-

formance to other vendor libraries [57].

3.3 Summary

New multi- and many-core architectures keep appearing and are moving fast. On these

systems, writing library and software are becoming more and more challenging. More-

over, code-portability sometimes counters performance, due to the hardware diversity.

The BLIS framework has emerged as a promising solution for instantiating a light-weight

and high-performance BLAS library for cache-based architectures.

However, both HPC design strategy and modern embedded and intelligent computing

are coming up with more and more power-efficient and non-conventional architectures,

on which, writing a BLAS library in pace with the hardware represents a big soft-

ware challenge. They often do not have a hardware-assisted cache coherency, whereas

a software-based cache protocol would suffer significant overhead. Hardware prefetcher,

out-of-order execution and advanced branch prediction are commonly discarded to re-

duce power consumption (and fortunately avoid security vulnerabilities 6).

On those architectures, computation-intensive parts of code are expected to perform

software-managed data-prefetching, by leveraging Direct Memory Access (DMA) en-

gines and operating on scratchpad memories, instead of the traditional cache-based

load/store scheme. Support of the asynchronous programming model based on Remote-

DMA (RDMA), considered the key enabler of performance on DMA-based architectures,

is currently the missing point of any BLAS-like library on these later platforms.

6https://meltdownattack.com/

https://meltdownattack.com/




Chapter 4

Kalray Massively Parallel

Processor Array (MPPA)

Any sufficiently advanced technology is indistinguishable from magic.

– Arthur C. Clarke.
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4.1 Introduction

4.1.1 Company

Kalray is a fabless semiconductor company, founded in France in 2008 after a spin-off

from the CEA (French Alternative Energies and Atomic Energy Commission). Kalray is

specialized and pioneering in developing a new family of many-core processors, namely

Massively Parallel Processor Array (MPPA). The MPPA architecture offers unique par-

allel computing capacity, low latency and low-power consumption. The Very Long In-

struction Word (VLIW) core architecture, distributed non-coherent memory system and

dual control-plane and data-plane Network-on-chip enable time-predictability necessary

to embedded, mixed-critical and real-time systems. The MPPA massively parallel ar-

chitecture is also suitable for modern and energy-efficient HPC workloads, typically in

the area of image processing, computer vision and autonomous vehicles.

4.1.2 MPPA architecture overview

The second generation of Kalray MPPA-256 processor, codenamed Bostan (see Fig. 4.1)

embeds 256 VLIW compute cores grouped into 16 compute clusters (CC) and 16 system

cores in two unified I/O subsystems (IOS). The sixteen compute clusters are organized in

a 4 x 4 grid connected by a 2D torus Network-on-Chip (NoC). The processor delivers peak

performance of 634 GFLOPS in single precision and 317 GFLOPS in double precision

at a frequency 600 MHz, within a power consumption of 20 W.

Figure 4.1: MPPA2-256 processor overview. (Source: Kalray).

Each compute cluster features 2 MB of local memory (SMEM) shared between 16 user

cores (Processing Elements-PEs). One system core, known as Resource Manager (RM),

is reserved for running operating system, resources management and performing DMA
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jobs. Each of these core features 8 KB of level-1 instruction cache (L1-I) and 8 KB of

level-1 data cache (L1-D). DMA engines of each compute cluster and I/O subsystem

provide high bandwidth and low latency transfers between SMEM-SMEM (symmetric

inter-cluster) and SMEM-DDR memory (asymmetric cluster-IO).

Each I/O subsystem (North and South) contains two quad-core CPUs (also known as

Master Cores) and 4 MB of SMEM. A Master Core contains four private 32 KB of L1-I

per core and 128 KB of coherent L1-D (4 × 32 KB) and four DMA interfaces (one per

CC column). Each I/O subsystem integrates an off-chip DDR3 memory, a 8-lanes Gen3

PCI-Express and 10G Ethernet interfaces, as well as an Interlaken interface to extend

the NoC links across multiple MPPA-256 processors. The main goal of I/O subsystems

is to deploy user applications, to provide system and software services to CCs and to

act as gateways to the outside world.

4.2 Programming models

The complete Kalray Software Development Kit (SDK) features standard C/C++ and

Fortran compilers, OpenMP/Pthreads support, low-level programming and communi-

cation libraries, as well as an OpenCL offloading runtime. They are divided into two

main programming model:

1. A low-level distributed and inter-process communication (IPC) POSIX environ-

ment, supporting Fortran and C/C++.

2. A high-level host-based acceleration runtime based on the standard OpenCL 1.2

specification.

4.2.1 Distributed-memory POSIX-C

In the distributed POSIX programming model, an MPPA2-256 processor is exposed as

a distributed multi-process system. Each compute cluster is considered as an individual

computing unit with a main function and a proper memory space (SMEM). Each main

function can be written in standard C/C++ or Fortran. It has direct access to the

CC’s SMEM in load/store model, and to the SMEM of other CCs or the DDR of

IOS by explicit NoC communication, mainly based on software-triggered DMA engines

to perform asynchronous transfers. Programming multiple clusters on MPPA in the

POSIX model is similar to the one-sided message-passing model, largely used in HPC

applications via the Message-Passing interface (MPI2) [9].
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The MPPA asynchronous library (namely mppa-async) implements DMA-based asyn-

chronous one-sided put/get, remote atomic operations, peek, poke and two-sided queues.

These features enable high-throughput data-plane communication, and low-latency control-

plane signal and synchronization. This programming model requires high design and

development efforts, but can offer parallel applications great performance improvement

over conventional platforms.

4.2.2 Host-based OpenCL acceleration

The Kalray SDK also allows programming MPPA as a compute-accelerator based on

the OpenCL 1.2 Data-Parallel model [8]. A software-based cache protocol, so called

Distributed Shared Memory (DSM), is used to implement a globally coherent cache

between the 256 cores, on which OpenCL kernels are deployed.

Figure 4.2: OpenCL Data-Parallel: execution mapping. (Source: Kalray).
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Figure 4.3: OpenCL Data-Parallel: memory mapping. (Source: Kalray).

Fig. 4.2 and Fig. 4.3 depict respectively the execution mapping and memory hierar-

chy of the OpenCL Data-Parallel model on MPPA cores. Work-items within a work-

group is linearized and mapped on one PE. Collective operations like barrier() and

async work group copy*() are accordingly handled by the runtime compiler to com-

ply with desired execution order. Each work-group has load/store access to the global

DDR memory with coherence based on DSM, and a private local memory ( local),
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configurable in a range of 8, 16, 32 or 64 KB per PE. The work-group local memory can

be used to prefetch data by asynchronous primitives (async work group copy() and

async work group strided copy()) defined in the OpenCL 1.2 specification.

As part of contributions of this thesis, an extended set of OpenCL asynchronous prim-

itives, including general strided, 2D and 3D copy, was introduced and implemented in

the Kalray OpenCL toolchain and is discussed in Chapter 8 on page 85.

4.3 Summary

The Kalray MPPA processor family is a highly parallel computing platform. Program-

ming the MPPA processor requires careful segmentation of data and explicit transfers

onto local memories.

This section closes the introduction part of the dissertation. In this opening segment, we

have presented the thesis context, the challenges of current and future HPC trends and

the potential as well as problematics of clustered many-core architectures. Application

focus was given to (1) the lattice Boltzmann method as a memory-bound context with

high bandwidth requirement, and (2) the BLAS library as a compute-bound scenario

(level-3) with its intrinsic complexity and portability issues.

In the following chapters, we present approaches and contributions to address these

two typical fields of the HPC domain, revised and shaped for the clustered DMA-based

many-core architectures. We also implement, demonstrate and report analysis of each

of those solutions on the Kalray MPPA2-256 processor, as well as other mainstream

computing architectures whenever applicable.
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Chapter 5

Optimizing 3D LBM on

Many-core Processors

However difficult life may seem, there is always something

you can do and succeed at.

– Stephen Hawking.
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5.1 Introduction

As discussed in Chapter 2, Section 2.1.2 (page 13), LBM implementations are memory-

bound and hardly obtain high performance on CPU or Xeon Phi processors. GPU-

based accelerators, thanks to their graphics-dedicated high-bandwidth memory, appear

to be the most suitable platforms for LBM today. However, their low capacity of local

memory prevents from using optimization techniques for data prefetching (to reduce

transfer time) and data sharing between cores (for stencil neighboring dependencies).

Although other clustered many-core processors have much less global memory bandwidth

than GPUs do, they embed significant amount of fast local memory, see [31] and [32],

and provide more predictability in both computing time and data transfer. This enables

using explicit and efficient user buffers for elaborate optimizations, such as software

prefetching and streaming. This motivates our approach in developing a pipelined 3D

LBM algorithm on the Kalray MPPA processor, based on local memory exploitation

and asynchronous communications. Our algorithm is described in every detail and can

be used on similar many-core architectures.

Our key contributions are as follows:

1. Introduction of a new parallel algorithm for decomposing and streaming 3D stencil

domains on local-memory-centric clustered many-core processors, by user-buffers

and asynchronous software-prefetching to build a pipelined 3D stencil kernel. The

proposed approach is implemented from the LBM compute kernel of OPAL [23]

and delivers 33% performance gain compared to its original OpenCL code on the

Kalray MPPA-256 Bostan many-core processor.

2. This work provides fundamental responses and methods to further domain decom-

position algorithms on clustered many-core processors (2D/3D stencils, image pro-

cessing). An API proposal is also given in designing simple 2D/3D asynchronous

copy functions on DMA-based platforms.

3. Detailed description of the use of generic equations to calculate decomposition

indexes dynamically, subdomain dimension and halo size, usable with or without

ghost layer as in [26].

The remainder of this chapter is structured as follows. Section 5.2 presents some related

works that are relevant for our contributions. Section 5.3 introduces some low-level

asynchronous transfer primitives required for building 3D stencils streaming algorithm

on the MPPA processor. Section 5.4 presents an overview and technical details of the
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new LBM streaming algorithm using these asynchronous transfers. Experimental results

are presented in Section 5.5, and we conclude in Section 5.6.

5.2 Related work

The straightforward method for implementing LBM is to use two instances of the lattice

grid. Collision is carried out on data read from the first grid and propagation consists

in writing the new distribution values to the second one. At the next time step, the two

grids are swapped and the same procedure is repeated. One-step two-lattice method

with collision and propagation fused in a same kernel was first introduced by Massaioli

and Amati [21]. In the fused kernel, propagation can be done either before (pull scheme)

or after collision (push scheme). In spite of its implementation simplicity, the two-lattice

method results in substantial memory allocations with large domains.

Most existing LBM implementations on GPU employ the fused two-lattice approach as

the easiest and most computationally efficient method. In particular, OpenCL Processor

Array LBM (OPAL) from [23] implements a one-step two-lattice 3D LBM solver based on

the D3Q19 stencil. OPAL is designed to be simple and portable on GPUs, accelerators

and other OpenCL-enabled devices.

In the related work on porting a 3D seismic wave propagation on the MPPA processor,

Castro et al. [58] developed a 2D-prefetching algorithm for anticipating data transfers

between global memory and local memory. The 3D domain is decomposed in small 2D

slices. These slices are copied to the local memory such that transfers overlap with

computations. The authors observed important waiting time for data arrival without

identifying clearly the DDR bandwidth limitation of the MPPA. The impingement of

halo slices on data throughput was not studied either.

Raase and Nordstrom [59] presented a 2D and 3D LBM implementation on Epiphany,

a clustered many-core architecture very similar to MPPA. The LBM domain is dis-

tributed on 16 cores with user local memory of 24KB per core. Subdomain distribution

is done by static mapping of a 4x4 topology on the 16 cores. This 2D mapping is also

used on the 3D problem where the third dimension of subdomains is assigned with one

global domain dimension, giving rectangular parallelepiped subdomains. These choices

allow simulating only very small problem sizes (e.g. 12× 35× 12) and cannot be scaled

to large simulations. The authors declined using the DRAM memory to implement a

streaming algorithm for large LBM domains. Neither memory bandwidth optimization

nor possibility of using DMA to perform asynchronous transfer on Epiphany was dis-

cussed. In this work, we aim to provide a generic and scalable 3D decomposition with
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its cuboid distribution function and asynchronous subdomain streaming to reduce data

transfer time. Such algorithm can be used as a reference point to implement further

high performance LBM or stencil applications on clustered many-core architectures.

Nagar et al. [60] implemented a similar cube-based decomposition and distribution

function which maps on CPU threads in the shared-memory context of large-memory

multi-socket systems. Halo exchange between threads is done by writing directly into

the memory zone of the respective cube owners, protected by mutual locks thanks to the

CPU cache system. This mechanism cannot be directly used onto clustered architec-

tures like MPPA as it requires either: (1) explicit inter-cluster communications; or (2)

committing changes to the global memory then fetched by other clusters. Solution (1) is

not relevant in our scope due to (small) local memories, numerous subdomains must be

streamed continuously in the MPPA’s compute clusters. Such streaming should be done

preferably by a self-governing and synchronization-free algorithm. Thus, keeping data in

the local memory and waiting for communication does not seem appropriate, not to men-

tion the complexity of managing the inter-subdomain spatial data dependency. In this

work, we choose to adapt solution (2), consisting in continuously committing changes of

subdomains to the global memory and performing one global synchronization between

clusters at each simulation time step.

To the best of our knowledge, there is no work yet on solving the challenges of simulating

large LBM domains on clustered many-core architectures. However, large LBM domains

cannot fit into on-chip memory and must be stored in the off-chip DDR memory, which

has much higher latency. Hence, using DMA to perform asynchronous transfers between

off-chip and on-chip memories becomes a key performance factor in order to mask the

memory latency. This involves important code re-structuration, as well as new commu-

nication primitives and algorithms. In this work, all these problems are addressed and

solved while keeping a clear abstraction level from the underlying target hardware for

the sake of genericity.

5.3 Low-level 3D asynchronous API

In this section, we briefly present some essential primitives performing asynchronous 3D

data transfers used to build our pipelined LBM algorithm onto the Kalray MPPA pro-

cessor. As shown in Fig. 5.1, the mppa async point3d t type describes copy-position

and dimensions of the global and local 3D buffers. The subdomain is represented by

width×height×depth elements, the size of each element in bytes being denoted size. We

take an example to illustrate this specification design. In a common image processing

decomposition, one may need to copy a 2D sub-image of 16× 16 pixels to a larger local
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buffer, allocated at 18× 18 pixels for instance. In this case, one must deal with a local

stride of two pixels between each data block. This is important when local buffers are de-

clared as true multi-dimensional arrays in the C99 standard, a feature which particularly

eases 2D and 3D stencil programming. With the convenient mppa async point[2|3]d t

data type (see Fig. 5.2), arbitrary positions and copy-block dimensions are automatically

taken into account inside the 2D/3D put and get functions, facilitating subdomain copy

and computation.

A structure mppa async event t is also defined in the API to contain required infor-

mation for performing an asynchronous transfer. In a put/get function, if the event

structure is set, the function fills a pending transaction event and returns immediately

(non-blocking paradigm). One can further come back and wait on this event by calling

the mppa async event wait() function for job completion. Otherwise, when the event

structure is NULL, the function blocks and returns whether the buffer is ready to be

reused (put) or the data are received (get).

1 typede f s t r u c t {
2 i n t xpos ; i n t ypos ; i n t zpos ; /∗ copy index ∗/
3 i n t xdim ; i n t ydim ; i n t zdim ; /∗ b u f f e r dimensions ∗/
4 } mppa async point3d t ;
5

6 /∗ 3D asynchronous t r a n s f e r from remote to l o c a l ∗/
7 i n t mppa async memsget block3d (
8 void ∗ l o c a l , const void ∗ g loba l ,
9 s i z e t s i z e , i n t width , i n t height , i n t depth ,

10 const mppa async point3d t ∗ l o c a l p o i n t ,
11 const mppa async point3d t ∗ remote point ,
12 mppa async event t ∗ event ) ;

Figure 5.1: A part of MPPA Async API for 3D transfer. Prototype of get and put
are similar.
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adding depth and Z fields.
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5.4 Pipelined 3D LBM stencil on clustered many-core pro-

cessors

5.4.1 Global algorithm

In the following, we take the D3Q19 LBM kernel from OPAL [23] as a reference point,

from which we propose a generic 3D LBM streaming algorithm with domain decom-

position, detailed index and halo size calculation in any configuration. The streaming

method is used for updating the whole domain by one time step, then is repeated till the

end of simulation duration. While we are focusing on optimizing LBM, our streaming

method can also be generalized for other kinds of stencil codes, by adapting the compute

kernel, and a suitable set of asynchronous transfer primitives (2D/3D).

The first step consists in re-writing the LBM kernel of OPAL from OpenCL-C to a

standard C99 code to run on CCs. Given the similarity between OpenCL-C and standard

C99, the porting process did not raise much difficulty. The one-step two-lattice method

with pull scheme originally implemented in OPAL is re-applied. Two instances of the 3D

lattice grid (LatticeEven, LatticeOdd), each containing Lx×Ly×Lz nodes, are allocated

on the global DDR memory and are accessed in node-wise layout, i.e. distribution values

of a lattice are stored consecutively. The second step divides the lattice domain into

subdomains (see Fig. 5.3), then copies and computes them one by one on the CC local

memory. Each subdomain is defined as a Cx × Cy × Cz cuboid. To avoid repetitions,

we use the subscript d as a symbol for the three Cartesian coordinates (x, y, z). Any

variable or equation whose variables are subscripted by d should be interpreted as three

variables or equations with x-/y-/z-subscripted terms.

For the sake of simplicity, we assume that Ld and Cd are powers of two and define

Md the number of subdomains in each dimension (Md = Ld/Cd). The total number

of subdomains is the product of the number of subdomains in each dimension M =

Mx × My × Mz. Besides, we denote the constant Fd = Cd + h to be the extended

subdomain size with halo layers (h) added1. Thus, updating a subdomain of Cx×Cy×Cz

nodes fetches an extended cuboid F = Fx × Fy × Fz nodes to the local memory. This

requirement is true for most cases (non-boundary subdomains - e.g. subdomain 4 of

Fig. 5.7). On boundary subdomains (e.g. subdomains 0, 1, 2, 3 of Fig. 5.7), the extended

cuboid should be adjusted by applying a halo cutoff to deal with solid nodes. A local

subdomain slot must therefore be allocated for Fx×Fy ×Fz nodes to match any cases.

Algorithm 1 sums up the mono-cluster context where the compute cluster 0 (CC0) is

updating M subdomains within an LBM time step. These subdomains are organized in

1h = 2 with the D3Q19 stencil.



Optimizing 3D LBM on Many-core Processors 41

async_copy_3D

async_copy_3D
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Pre-collision

   Collide

Propagate

Figure 5.3: 3D LBM/stencil decomposition where Main-block subdomain (green) is
copied with its surrounding halo layers (if exists) and one extra subdomain (blue) is

needed to store post-collision state.

a macro-pipeline using asynchronous 3D put and get functions to overlap computation

and communication. We also apply the two-lattice method on local memory, i.e. the

number of buffer slots is doubled, one for fetching the pre-collision cuboid (S) from the

first global lattice grid and one for storing the post-collision cuboid (S′) that will be put

in the second lattice grid. The pre-collision cuboid is allocated for Fx × Fy × Fz nodes,

while the post-collision cuboid only needs to store Cx × Cy × Cz nodes. Fig. 5.3 only

draws one global lattice grid for compactness, but it should be understood that the local

post-collision cuboid will be put in the second grid. These two global grids are then

swapped before starting the processing of the next time step.

Ideally, the algorithm should run on multiple compute clusters and exploit all processing

cores (PEs) in each cluster (multi-cluster multi-PE). For instance, on MPPA, multi-

threading within a compute cluster is enabled by spawning up to 15 threads, one per

PE, from the PE0 in the Pthreads fashion (create, join). As there are 16 compute

clusters available on MPPA, each CC is then responsible for M
16 subdomains. Note that

depending on the value of M , there might be K trailing subdomains (K ∈ [0..15]).

If K > 0, the algorithm must perform an extra step to copy, update and put back

these K trailing subdomains by K compute clusters, while other clusters are waiting. A

synchronization barrier at the end of each time step is needed between all CCs to avoid

data races at the next time step. This procedure is then repeated as many times as the

number of timesteps.

The double-buffering (2-depth) pipeline in Algorithm 1 is the most basic algorithm

where communication is overlapped by only one compute-step. As computations are

faster than data transfers, deeper pipelines such as triple- or quadruple-buffering (whose

details are found in Fig. 5.4 ) provide better overlapping, but also require more local

memory. Note that the time spent in GET and PUT is considered negligible (non-blocking)

and transfers are executed in background. However, the time spent in COMPUTE depends
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Algorithm 1 Explicit macro-pipeline of 3D stencil updates using double-buffering
within a time step.

1: /* Prolog: get first subdomain */
2: prefetch cube(0);
3:

4: /* Pipeline */
5: for i in 0 .. M − 1 do
6: if i < M − 1 then
7: prefetch cube(i+ 1); // get next cuboid
8: end if
9: wait cube(i); // wait current cuboid

10: compute cube(i); // compute current cuboid
11: put cube(i); // put back to global
12: end for
13:

14: /* Epilog: wait last put and barrier */
15: wait cube(M − 1);
16: barrier all clusters();

on core speed, while the WAIT time depends on how fast the memory system is serving

transfer requests and how they are hidden entirely or partially by the COMPUTE function.

In the next sub-sections, we propose methods to solve the following questions that

immediately arise from Algorithm 1:

• How can we distribute fairly and exclusively all subdomains across CCs with their

proper subdomain-indexing?

• Which subdomain size and pipeline depth should we choose to fit with the local

memory size and to obtain the best trade-off?

• How to manage copy indexes and halo size of any subdomain, with or without

using ghost layer?

m=0 1 2 3 4 5 6 7

i=0 1 2 0 1 2 0 1

buffers[0] G WCP WG WCP WG WCP W

buffers[1] G WCP WG WCP WG WCP W

buffers[2] G WCP WG WCP W

Prolog Epilog

Figure 5.4: 3-depth pipeline (triple-buffering) which allows 2-step distance between
GET and WAIT, but only 1-step distance between PUT and WAIT, thus the PUT transfer

will not be well overlapped (m: index of subdomain to compute, i: index of local buffer
slot; G = GET; P = PUT; W = WAIT; C = COMPUTE; WCP = {WAIT + COMPUTE +

PUT}; WG = {WAIT + GET}).
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5.4.2 Subdomain distribution

Given a CC identified by ccid ∈ [0..15], its working subdomains is indexed by a one-

dimensional range m as ccid × M
16 ≤ m < (ccid + 1) × M

16 (assume K = 0). Mapping

bijectively this 1D domain (m) to a 3D one (mx,my,mz) for spatial cube indexing (see

Fig. 5.3) was done by space filling curves, such as Morton or Hilbert curves, in [61]. These

curves have been efficiently implemented by bit-interleaving in [62] or lookup-table in

[63]. However, Morton, Hilbert and other curves are better suited for square or cubic

grids where the number of elements in all dimensions is equal. In our 3D decomposition

scheme, despite the fact that global lattice domain may be cubic (Lx = Ly = Lz),

subdomains may be not (Cx 6= Cy 6= Cz) due to many reasons (see next section), thus

these curves are not always suitable for subdomains, as Md can be different.

In order to solve this problem, we implement a simple alternative bijective function

f : N→ N3 in Fig. 5.5. It follows the 3D-row-major layout, which is also a space-filling

curve, to index subdomains. Each conversion of the 3D-row-major curve implemented

by f takes less than 10 instructions and is as fast as Morton or Hilbert curves.

1 void cubo id index 1to3 ( i n t m, /∗ input ∗/
2 i n t ∗ mx, i n t ∗ my, i n t ∗ mz) /∗ outputs ∗/
3 {
4 i n t z = (m / (Mx ∗ My) ) ;
5 i n t y = (m − ( z ∗ (Mx ∗ My) ) ) / Mx;
6 i n t x = (m − ( z ∗ (Mx ∗ My) ) ) − ( y ∗ Mx) ;
7 ∗mx = x ; /∗ outputs ∗/
8 ∗my = y ; /∗ outputs ∗/
9 ∗mz = z ; /∗ outputs ∗/

10 }

Figure 5.5: 3D Row-major subdomain-indexing f : N→ N3.

5.4.3 Local subdomain dimensions

In most of the cases, a cubic subdomain would be ideal for coding and optimizing.

However, the local memory of clustered many-core processors is usually limited but plays

an important role. On each MPPA’s compute cluster, 2 MB local memory is quite small

and should also host an embedded operating system, services and the user application

binary. A remaining space of about 1.5 MB is available for dynamic buffer allocations.

Some auxiliary variables are also needed in LBM for macroscopic monitoring (velocity,

density. . . ). The maximal allocatable space for local pre-collision and post-collision

cuboids is around 1.4 MB. Halo copy also consumes memory bandwidth. Hereafter, we

refer to halo bandwidth HBW as the bandwidth lost in fetching halo layers. The HBW

ratio is defined as the quotient of the number of halo cells by the total number of copied
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cells (main block and halo). On small subdomains, this ratio can be significant. For

example, given a cubic subdomain whose main block size is Cx×Cx×Cx, its HBW ratio

is calculated by the below formula and represented as in Fig. 5.6.

g(Cx, Cx, Cx) =
(Cx + 2)3 − C3

x

(Cx + 2)3
(5.1)

Cube size (Cx = Cy = Cz)
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Figure 5.6: Halo bandwidth ratio.

Since the halo cell are needed for spatial dependency due to domain decomposition, they

do not change the total number of updated cells nor the overall performance. As can be

seen in Fig. 5.6, the halo bandwidth costs up to 29% of data throughput on block size

16× 16× 16, but is enthusiastically reduced to as few as 10% on block size 64× 64× 64.

This leads to think that further many-core architectures with larger local memories

can noticeably improve 3D LBM performance by enlarging the subdomain size. The

best performance is so achieved when the volume of the main block (Cx × Cy × Cz) is

maximized and the HBW is minimized. Likewise, local storage should be reduced as

much as possible. Let’s assume single-precision floating-point representation, applying a

D-depth pipeline for the two-local-cuboid method described above must fit into 1.4 MB

of local memory and satisfy the linear-programming formulation below:

Find: (D,Cx, Cy, Cz)

Maximize: Cx × Cy × Cz (nodes updated per subdomain)

Minimize: Fx × Fy × Fz (per subdomain storage)

Minimize:
(Fx×Fy×Fz)−(Cx×Cy×Cz)

Fx×Fy×Fz
(HBW)

Subject to:
D × ((Fx × Fy × Fz) + (Cx × Cy × Cz))× 19× 4

10242
≤ 1.4

Fd = Cd + 2 ; Cd ∈ {2n} ; D,n ∈ N+

(5.2)

For instance, using D ≥ 3 in order to have better overlapping than with a 2-depth
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pipeline, restricts to a very small search domain (Cd ≤ 128) that can be resolved by run-

ning the branch-and-bound algorithm in a script. Solutions can either be (D,Cx, Cy, Cz)

= (3, 16, 8, 16) with 36% HBW ratio or (D,Cx, Cy, Cz) = (4, 8, 8, 16) with 43% HBW

ratio. A permutation of Cx, Cy, Cz also gives other satisfactory solutions, with the same

HBW ratio. On the other hand, note that increasing pipeline depth is not relevant,

because the higher D is, the smaller (Cx, Cy, Cz) will be, thus HBW will become unac-

ceptable. Moreover, compute cores will switch between small subdomains more often.

The accumulated waiting time will also be more important due to the exponential num-

ber of DMA requests and processing overhead of the DDR asynchronous services.

5.4.4 Local and remote copy-index management

In this section, we present generic analytic formulæ to process dynamically copy index-

ing, subdomain size computation and halo cutoff management depending on geometric

position of the subdomain. Adding a ghost layer surrounding the computational do-

main is a common technique to simplify the implementation of the streaming step at

boundary cells, see e.g. [26]. However, we choose not to use this approach in our work,

mainly to minimize global memory allocations and avoid wasting bandwidth/storage in

moving ghost cells.

However, in our 3D decomposition algorithm, this decision requires careful calculation of

copy parameters from subdomain indexes. It is important to note that as the pre-collision

cuboid S embeds two additional halo layers for each dimension (Fd), its computational

space begins at (1, 1, 1) and ends at (Fx − 2, Fy − 2, Fz − 2) included. When fetching

a non-boundary subdomain (main block + halo) from global memory to S, the arrival

point of data at the local buffer is set to (0, 0, 0), and the remote point is computed as

the global beginning position of the subdomain minus one (back-off) in each dimension

((md × Cd)− 1).

As ghost layers are not used in our implementation, a boundary subdomain can have

up to three missing sides, depending on its location (see Fig. 5.7). Consequently, the

halo layer of these missing sides needs to be pruned from the copied cuboid. The remote

read-point and local write-point must also be adjusted as well. In order to generalize

the solution, we introduce here three parameters associated respectively to these three

adjustments: halo cutoff, remote offset and local offset.

We present in the following, generic formulæ which determines copied positions and

halo cutoffs of a given 3D cuboid subdomain (mx,my,mz), generalized from the 2D
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representation of Fig. 5.7.

const A = (Ax, Ay, Az) = (0, 0, 0)

R = (Rx, Ry, Rz)

= (mx × Cx, my × Cy, mz × Cz)

Bad = Ad + local offset(md,Md)

Brd = Rd + remote offset(md,Md)

Sd = Fd + halo cutoff (md,Md)

(5.3)

The point A = (Ax, Ay, Az) = (0, 0, 0) is the start point of the local buffer. The

point R = (Rx, Ry, Rz) = (mx × Cx, my × Cy, mz × Cz) is the start point of the

remote subdomain, without its halo layers. The fetched cuboid S is sized at Sd = Fd +

halo cutoff(md,Md). It is read from the remote positionBrd = Rd+remote offset(md,Md)

and written to the local position Bad = Ad + local offset(md,Md). The collision is per-

formed on the main block of S and the result is then written to S′ for the propagation

step. However, managing copied parameters of S′ is simpler than on S. Since S′ con-

tains exactly the main block of the subdomain, updated data from a collision can be

written to (0, 0, 0), which is also the local copied position for sending to remote memory

R = (Rx, Ry, Rz). The parameters halo cutoff, remote offset and local offset are

implemented as macros with rules in Tab. 5.1.

0 1

2 3

4

A
B

R

Sx

Sy

Sx = Fx

mx

my

Figure 5.7: Local/Remote copied index in 2D (in lattice node) with A: begin of the
local buffer = (0,0); R: begin of the remote main block cuboid (without halo); B:

begin of the copied cuboid (S), represented by: Ba: index of S on local memory (from
A) and Br: index of S on global memory (from R).

Table 5.1: Copied index offset and halo cutoff of a subdomain.

local offset remote offset halo cutoff

(from point A) (from point R) (from Fd)

md = 0 1 0 −1

0 <md &&

md < Md − 1
0 −1 0

md = Md − 1 0 −1 −1
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These position computations can also be applied on other implementations which use

ghost layer, by setting all remote offset to −1, i.e. allowing to jump out of the com-

putational domain, and all local offset, halo cutoff to zero, i.e. imposing to copy

extended subdomain Fd to Ad, instead of copying Sd to Bad.

5.5 Results and discussions

5.5.1 Pipelined 3D LBM stencil on MPPA

We implement the pipelined 3D LBM algorithm on the MPPA-Bostan platform using

the POSIX programming model and asynchronous 3D primitives from the MPPA Asyn-

chronous One-Sided library. By default, MPPA-256 cores are set to run at 400 MHz and

LP-DDR3 frequency is configured at 1066 MHz, i.e. ∼8.5 GB/s peak per DDR. Note

that MPPA embeds two DDR interfaces (North and South) and the current OpenCL

runtime only uses one DDR and exposes 1 GB of available global device memory, while

the MPPA Asynchronous One-Sided library exposes both single and double DDR modes.

Different cubic cavity sizes, varying from 64 to 224 are used in our tests, with some ex-

ceptions. Problem sizes larger than 160 cannot be run in OpenCL on MPPA due to the

1 GB device memory limit. Local work-group size in OPAL OpenCL is always set to

32× 1× 1, as it delivers the best performance in most of the cases.

In single-DDR mode (POSIX and OpenCL), both LatticeEven and LatticeOdd are allo-

cated on the North DDR. In double-DDR mode (POSIX-only), the LatticeEven buffer

is allocated on the North DDR and the LatticeOdd is on the South DDR. The effec-

tive throughput of the double-DDR mode can be considered as twice as one of the

single-DDR mode, thus 2× performance is expected. We present here results of the

OPAL kernel rewritten with our new POSIX pipelined algorithm on the MPPA-256,

called OPAL async, in 3-depth and 4-depth pipelines and following the local two-lattice

method (S and S′) on various cavity sizes. These tests are further run in both single-

and double-DDR modes. All these runs are checked for correctness against the original

OPAL code on GPU.

As one cannotice in Fig. 5.8, the OPAL async algorithm outperforms the OpenCL ver-

sion by more than 30% on the single-DDR mode (from 12 MLUPS to 16± 1 MLUPS).

We also see that the configuration with less HBW (3-depth, 36% HBW) delivers higher

performance than the 4-depth configuration (43% HBW). While consuming memory

bandwidth, halo cells are copied because of the read-dependency between neighbors.

This does not contribute to the final performance. Fig. 5.8 shows that the less memory

bandwidth halo cells take up, the more performance we obtain. This leads to think that
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the HBW of 2D/3D stencil computations aimed to reach Exascale, like weather forecast,

ocean simulation and CFD, should be lessened on future clustered many-core processors.

For this to happen, these many-core chips should embed bigger local memory on each

compute unit to tear down the useless part of halo exchange due to domain decompo-

sition. Finally, Fig. 5.8 also shows the expected 2× performance speedup by using two

DDRs compared to the single-DDR mode.
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Figure 5.8: OPAL async vs. OPAL OpenCL on MPPA for duration = 1000 steps.
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5.5.2 Performance extrapolation

For a better understanding of the benefit of our streaming algorithm, we modified the

OPAL async code to be able to work with arbitrary values of pipeline-depth. Different

pipeline depths were then tried out (1, 2, 4, 6, 8) to see if increasing the number of

asynchronous buffers can improve the performance. The block size is thus reduced to

8× 8× 8 so that up to eight subdomains can be stored in the local memory. Moreover,

instead of using all the 16 compute clusters, we now vary this number of clusters and

set the domain size to 1283 to study the strong scalability of the algorithm. We consider

using only the double-DDR mode this time to obtain the best performance.

In Fig. 5.9, as expected, the 1-depth code (blue line) is slower than other version with

communication-computation overlapping. However, we obtain exactly the same perfor-

mance as the double-buffering case when using more than two buffers (4, 6, 8). The

performance line scales from 1 cluster to 8 clusters, then reaches almost a stable value of

between 20 to 22 MLUPS from 8 clusters to 16 clusters. To explain this, we added the

sustained throughput of 3D transfer (red line) from the Kalray unit test dedicated to

3D asynchronous copy. This test only does some ping-pong copies to the DDR and does

not perform any calculation (Arithmetic Intensity (AI) = 0 flops/byte). We observe
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that the native 3D copy reaches the maximum throughput with as few as four clusters

(6 GB/s), then remains the same for higher numbers of clusters (which is the same

trend as the performance of OPAL async.). Four clusters are thus enough to saturate

the DDR bandwidth. Unlike the 3D unit test, our LBM code performs real computation

on the copied data. Its AI is about 350/(2× 19× 4) = 2.3 flops/byte, which means that

each CC spends more time working on a 3D data block. This explains in Fig. 5.9 the

MLUPS performance which reaches its upper bound for 8 clusters, instead of 4 clusters

of the 3D unit test.

Another precise way to interpret the performance of 22 MLUPS is to apply the perfor-

mance estimation formula presented by McIntosh-Smith et al. [22]:

P =
B × 109

19× 2× 4× 106
(MLUPS) (5.4)

in which B is the effective memory bandwidth in GB/s. In order to take into account

the additional cost of halo copy in our decomposition algorithm, we multiply P by

(1 − HBW ), the effective part of bandwidth (main block) which generates the real

performance:

Ph =
6.0× 109

19× 2× 4× 106
× 83

103
= 20.2 MLUPS (5.5)

This estimation Ph, shows that there is seemingly a little performance gain to perform

asynchronous transfers on clustered many-core processors (here MPPA as an example)

as for today. This is not because the streaming algorithm is not good, but because the

overlapping gain time is too small compared to the lengthy waiting time for data due to

the DDR3 bottleneck. This also demonstrates the memory-bound property of general

stencil computations and leads to think that newer memory technologies, such as DDR4

and others, will be a performance boost on these architectures.

Notice that the scale-down of the 3D throughput versus the peak 17GB/s of two DDRs

is caused by the fact that strided copies (2D/3D) must read data from a lot of different

DDR memory banks. Furthermore, these copies can unavoidably suffer bad alignments

due to the access pattern of application (Q = 19 floats), thus bear an efficiency factor

of 3D transfer compared to the linear copy. For instance, on the current MPPA Bostan

platform, if the linear transfer factor is normalized at 1, the 3D factor lies often in

between 0.35 and 0.42, depending on the copy layout (size of each contiguous block,

alignment of strides and dataset).

A correlation, computed by the lm function in R, from 1 to 8 clusters gives the perfor-

mance expectation of our streaming algorithm if we were not bounded by the memory

bandwidth (gray line). These results confirm that our pipelined LBM algorithm is

strongly scalable, but is quickly memory-bound on MPPA and that its performance
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Figure 5.9: Performance extrapolation of OPAL async on 8× 8× 8 subdomains
with the first eight clusters correlation represented by a gray line for 1000 timesteps

and cavity size 128.

heavily depends on the hardware memory bandwidth. Our results also show that the

imbalance between computing power and data throughput is one of the largest draw-

backs of actual clustered many-core processors, and demonstrate the interest of future

high-bandwidth memory technologies.

5.6 Conclusions

We introduce a decomposition approach for generic 3D stencil problems with formu-

lations for calculating dynamically copied position indexes, subdomain addresses, sub-

domain size and halo cells. These analytic expressions are valid with or without ghost

layers and are also usable for 2D problems. Based on this decomposition, our new

pipelined 3D LBM code outperforms the original OpenCL version by 33 %, by overlap-

ping computation and communication.

We expect that anticipating data requests by asynchronous memory transfers would

improve effective throughput and that we could overcome the memory bound of the

studied LBM kernel, by introducing enough pipeline depth to hide the global memory

access latency. In practice, performance results are still bound by memory bandwidth

and increasing the number of buffers (pipeline depth) does not improve performance,

as the DDR3 memory is already fully loaded. Moreover, reducing subdomain size to

increase pipeline depth induces significant bandwidth consumption for halo copy. Fur-

thermore, the impact of HBW on small local memories was also identified as a governing

factor of performance in our algorithm. We find out that the best strategy is to have

cubic subdomains as large as possible and that the double-buffering scheme is enough on

the current generation of MPPA processor. We furthermore presented comprehensive
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linear-programming equations which give the best trade-off between these structuring

parameters.

In the next chapter, we study a new LBM propagation method which performs in-

place lattice update (one-step one-lattice). Such a method will reduce by half the local

memory requirement, thus increase the subdomain size, trim down halo bandwidth and

improve performance. Porting async work group copy {2D|3D} primitives to the next

OpenCL specification is also under consideration, as this would considerably improve

the exploitation of local memory on clustered many-core processors.





Chapter 6

In-place LBM Propagation

Algorithms

The biggest difference between time and space is that you can’t reuse time.

– Merrick Furst.

53
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6.1 Introduction

Besides the two-lattice propagation algorithm, several one-lattice algorithms were intro-

duced to reduce the memory footprint (by working on only one lattice array) and also

to improve data locality of the LBM. Most of them operate elaborate exchange of PDFs

between neighboring lattice nodes in the parallel execution context. The fundamental

challenge of any one-lattice algorithm is that memory accesses (read and write) must

be performed carefully on the same lattice buffer to enforce the spatio-temporal depen-

dency between nodes and time steps. More precisely, in a parallel algorithm, new PDFs

of a node after collision should not be written directly into memory without special care

about the old data that may have not been used yet by neighboring nodes.

On another hand, LBM boundary conditions on new physical models tend to be more

and more elaborate in terms of interaction between solid and fluid cells. Typical LBM

boundary conditions, such as simple bounce-back or interpolated bounce-back [30], im-

poses specific exchange rules of PDFs between adjacent nodes. Combining these condi-

tions with existing one-lattice algorithms such as compressed-grid, swap, AA-pattern or

Esoteric twist (see the next section), raises considerable complexity in implementation

and code assessment, especially for 3D domains.

Our key contributions in this chapter are as follows:

1. Two novel algorithms, two-wall and three-wall, in the one-lattice LBM class and

their implementation detail in OpenMP for shared memory context and OpenCL

for heterogeneous memory systems.

2. Comparison and performance analysis of these two-/three-wall algorithms versus

the AA-pattern (one-lattice) and the state-of-the-art two-lattice algorithm on cur-

rent mainstream computing platforms: Intel Xeon NUMA CPU, Intel Xeon Phi

Knights Landing MIC and NVIDIA Tesla Pascal GPU.

3. Promising results when using the proposed algorithms to implement complex LBM

and CFD problems at high spatial resolution on current and future many-core

processors.

The remainder of this chapter is structured as follows. Section 6.2 describes our ap-

proach, advantage and limitations of the two-wall algorithm. Section 6.3 presents the

three-wall algorithm as an improvement of two-wall. Implementation details in OpenMP

and OpenCL are given in Section 6.4. Experimental results and discussion on CPU, Xeon

Phi KNL and GPU Pascal are given in Section 6.5 and we conclude in Section 6.6.
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6.2 Two-wall propagation algorithm

In this section, we present a new parallel one-lattice LBM propagation algorithm, named

two-wall algorithm, in which the lattice grid G is updated in-place. The code change

for adapting this algorithm on complex boundary conditions remains simple, easy to

understand and to implement.

6.2.1 Algorithm

We propose a new propagation algorithm enabling in-place update when using the pull

scheme. Note that while we are assuming the pull scheme in this section, applying the

push scheme is entirely possible as well. The main idea for the pull scheme is, before

colliding and streaming new PDFs, outdated PDFs must be copied out and saved in a

temporary buffer (small, 2D buffer). Any spatial dependency which requires reading data

from a specific node in the grid G, should read in the temporary buffer instead. More in

detail, let say that the grid G is allocated in the C99 multi-dimensional array convention:

float Grid[Lz][Ly][Lx][Q]. We decompose the grid G into Lz walls. Each wall is

composed of Ly × Lx nodes. The lattice grid G is updated wall-by-wall. There will be

a sequential for loop in the z-direction to sweep through the Lz walls of G. At each z-

iteration, the wall z (referenced by Grid[z]) will be updated from time step t to t+1 and

its new PDFs are written in-place into Grid[z]. We then introduce two wall buffers, a

past wall and a current wall, each of Ly×Lx nodes (float Walls[2][Ly][Lx][Q]).

These two walls, swapped from one time step to another, are respectively used to store

old PDFs of the wall z − 1 and z before they were overridden by the new PDFs of the

collision operation. Fig. 6.1 illustrates the two-wall algorithm on the lattice grid G of

size Lz × Ly × Lx.

Y

X
Z

Lz
Lx

Ly
Thread 0}
Thread 1}
...}
Thread N-1}

two_wall[2]}

past_wall

} }

current_wall

walls sweeping

Figure 6.1: In-place updates on a grid with N threads using two-wall algorithm.
Wall buffers can be allocated with or without ghost-layer, depending on the

application.
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Before updating the wall z (a 2D YX-wall) from the time step t to t+1, the current wall

is used for saving the pre-collision data of this wall before it is modified by the in-place

post-collision propagation. Idem, the past wall contains the pre-collision data of the

back wall z − 1, as this wall in G has been updated to the time step t + 1 in the

previous z-iteration, thus cannot be used here for the wall z at the time step t. Inside

each wall, lattice nodes can be independently copied into the current wall. Then a

memory-fence barrier (if parallel execution) is needed to ensure that all copies are done

before performing the collision and the in-place propagation on the wall z of G. At the

end of each wall-update, all working threads must perform another barrier to achieve

global synchronization and to avoid data-races between concurrent threads. Pointers to

current wall and past wall are then swapped before advancing in the next wall in z-

direction. The current wall of the previous iteration z−1 now becomes the past wall

of the current iteration z. Inversely, the past wall of the previous iteration z − 1 is

now the current wall of the current iteration z and can be recycled for storing the pre-

collision state of the current wall z, before being overwritten by the upcoming collision.

Algorithm details are presented in Fig. 6.2 in which the D2Q9 lattice is used.

Figure 6.2: D2Q9 version of Two-wall in pull scheme: Copy operation (a) is
represented by green cells. A barrier is needed to respect the read-after-write

dependency between (a) and (b). Then, any node in the z-wall (black and blue cells)
can be read (b), collided and stored in-place (c) independently.

From the Fig. 6.2, parallelism is therefore possible at two steps: (a) and merge of

(b)+(c). These two steps are separated by a barrier to ensure the read-after-write

requirement of the copy operation of current wall, since the collision will read data

from the past wall and current wall for neighbors in z − 1 and z walls. This easily

yields an OpenMP implementation by two #pragma omp parallel for statements or

an OpenCL one, consisting in two kernels (one for (a) and one for (b)+(c)). They will

be presented later in Section 6.4.

6.2.2 Advantages and limitations

The main advantage of the two-wall algorithm is that adapting complex boundary

conditions is trivial by replacing any access to z − 1 and z cells by past wall and
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current wall, respectively. This means that there is only one kernel code to maintain,

instead of two on AA-pattern or Esoteric twist (even and odd). Adding and testing new

boundary conditions will require less effort. Data locality is also a good point. Memory

accesses from different cores have more chance to share and hit in cache (2D walls) than

other algorithms, where PDFs are read from or written to neighbors in three dimensions,

thus increasing penalty of cache-miss and cache-thrashing.

In return, there are two performance challenges of the two-wall algorithm. The first

is the data movement of 4q (see Table 6.1) per node per time step versus 2q or 3q of

two-lattice and others. This difference can be visible on a bandwidth-sensitive platform

with non-persistent cache between kernel executions (like OpenCL on GPU). Secondly,

updating a wall requires two barriers of all threads, resulting a total of 2Lz barrier

count for a grid G of Lz walls. Multiplied to the number of time step T , the algorithm

faces a very high number of barriers. As a matter of fact, two-wall requires fast barrier

support from the hardware and/or an efficient event-driven programming language to

launch and synchronize successive kernels at least cost, ideally via persistent threads

and asynchronous runtime in background. Subsequently, in the next section, we intro-

duce three-wall, an extended version of two-wall which breaks down the read-after-write

dependency within each wall and reduces the number of barriers from 2Lz to Lz.

6.3 Three-wall propagation algorithm

In two-wall, the memory-fence barrier after the wall-copy is mandatory because the

current wall is needed in the following collision step (read-after-write). This leads

to think that if the wall z has been copied beforehand (for example at the iteration

z − 1), the three steps (a) (b) and (c) in Fig. 6.2 can be merged into one unique kernel.

This implies that the new kernel must perform the copy operation of the next wall,

which we will refer to as future wall. Appropriately, three-wall introduces a third wall

buffer, called future wall. The algorithm sketch of three-wall is presented in Fig. 6.3.

During execution of the wall z, the compute kernel of three-wall copies the next wall

(Grid[z + 1]) into future wall. On the next iteration, the future wall becomes

the current wall, the current wall turns back to the past wall, and the past wall

switches up to the future wall and the process starts again. Now, since current wall

(formerly future wall) has already been copied in the previous iteration (or in prolog),

there is no more need to ensure ordering of cell updates of the wall of interest, thus the

memory barrier is no longer required for three-wall. The total barrier count is therefore

reduced to Lz, with the same quantity of data movement. Table 6.1 depicts the identical



58 In-place LBM Propagation Algorithms

quantity of data movement between two-wall and three-wall algorithm, in either direct-

and indirect-addressing, but with a different number of barrier count.

Table 6.1: Estimation of data requirement for updating one node with both two-wall
and three-wall algorithm, and then the barrier count of each algorithm.

Direct addressing Indirect addressing

# Type Comment # Type Comment

q PDF Copy: loads q PDF Copy: loads

q PDF Copy: stores q PDF Copy: stores

q PDF Collision: loads q PDF Collision: loads

q PDF Collision: stores q − 1 IDX Collision: lookup

q PDF Collision: stores

Σ = 4q PDFs Σ = 4q PDFs + (q − 1) IDXs

Barrier count

Two-wall # barriers = 2Lz

Three-wall # barriers = Lz

Moreover, as the copy of future wall is completely independent from the computation

(see Fig. 6.3), three-wall exposes the possibility of using streaming load/store instruc-

tions to perform cache-bypassing memory operation, avoid polluting useful data in dif-

ferent cache levels of computation. It is also possible to perform asynchronous copy of

the future wall on DMA-enabled architectures, so that CPU cores only need to focus

on the computation task. Note that the extra memory allocation for temporary wall

buffers is considered negligible compared to the main lattice buffer. For instance, three-

wall buffers represents 2.3% of additional memory on a 1283 domain ((3× 1282)/1283),

or 1.1% on a 2563 domain. Furthermore, on a non-cubic or complex-geometry domain,

the developer can make a choice of loop direction (either in Lz, Ly or Lx) that satisfies

a specific trade-off between performance and memory consumption. Our algorithm can

also be extended to more than three walls to fill the performance gap due to the barrier

cost, in exchange of the additional memory footprint.

6.4 Implementations

We present in this section two short versions of our D3Q19 LBM implementation, the

first one within the shared-memory OpenMP paradigm and the second in OpenCL on

heterogeneous platforms including accelerators.
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Figure 6.3: D2Q9 version of three-wall in pull scheme: Copy operation (a) is
represented by green cells. The barrier is no longer needed, since FutureWall is only

written (not read) in the current iteration. This removes the read-after-write
dependency of two-wall, and exposes possibility of using streaming stores for further
optimization. The black and the blue cells are then independently read (b), collided

and stored in-place (c).

6.4.1 OpenMP

Both two-wall and three-wall possess a for-loop in one dimension. In this work, we

choose to pin the loop on the z-direction and to allocate the grid buffer as float

Grid[Lz][Ly][Lx][Q]. For the sake of simplicity, computation within each Lz wall

is based on #pragma omp parallel for statements which embrace two inner-loops in

Ly and Lx direction. Barrier in two-wall is implicitly done by two separate OpenMP

pragma which involve fork/join from the master thread at each time. Further optimiza-

tion can use #pragma omp barrier between persistent threads which can even embrace

the z-loop.

Wall buffers are allocated as a circular buffer float Walls[3][Ly][Lx][Q]. On each

z wall, threads (or rather the master thread) compute(s) indexes of the past wall,

current wall and future wall (if three-wall) as ip, ic, and if respectively by the

modulo operation based on z:

ip = z mod 3

ic = (z + 1) mod 3

if = (z + 2) mod 3

(6.1)

Here, instead of assigning (z− 1) mod 3 to ip, z mod 3 to ic and (z+ 1) mod 3 to if ,

which makes natural sense, we choose to begin at z mod 3 until (z+2) mod 3 for ip, ic,

and if respectively. This avoids the negative first-case where z = 0, while ip, ic and if

have distinct values ranging in {0, 1, 2}. Note that on two-wall, this range is {0, 1} since

mod 2 is used instead of mod 3. Implementation details of two-wall and three-wall

are shown in Fig. 6.4 in pseudo-code and Fortran-like OpenMP syntax. Fig. 6.2 and
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Fig. 6.3 graphically describe the code data accesses patterns. We note that on three-

wall, a preliminary action (prologue) needs to be taken. It consists in performing copy

of the first future wall (z = (0 + 1) mod 3) before entering the for-loop, so that the

first iteration can directly access its current wall.

1: for z in 0 .. Lz-1 do

2: PastWall = Walls[(z ) mod 2];
3: CurrentWall = Walls[(z+1) mod 2];
4:
5: $OMP PARALLEL PRIVATE(y,x)

6: for (y,x) in (0..Ly-1, 0..Lx-1) do

7: copy cell Grid[z][y][x] to CurrentWall[y][x];
8: end for

9:
10: // Implicit barrier here between two OMP

pragma’s

11:
12: $OMP PARALLEL PRIVATE(y,x)

13: for (y,x) in (0..Ly-1, 0..Lx-1) do

14: collide and inplace update Grid[z][y][x],
using PastWall, CurrentWall and
Grid[z+1];

15: end for

16: end for

17:
18:
19:

(a) Two-wall.

1: FirstWall = Walls[(0+1) mod 3]; // prolog

2: $OMP PARALLEL PRIVATE(y,x)

3: for (y,x) in (0..Ly-1, 0..Lx-1) do

4: copy cell Grid[0][y][x] to FirstWall[y][x];
5: end for

6:
7: for z in 0 .. Lz-1 do

8: PastWall = Walls[(z ) mod 3];
9: CurrentWall = Walls[(z+1) mod 3];
10: FutureWall = Walls[(z+2) mod 3];
11:
12: $OMP PARALLEL PRIVATE(y,x)

13: for (y,x) in (0..Ly-1, 0..Lx-1) do

14: if z < Lz-1 then

15: copy cell Grid[z+1][y][x] to Future-
Wall[y][x];

16: end if

17: collide and inplace update Grid[z][y][x],
using PastWall, CurrentWall and
Grid[z+1];

18: end for

19: end for

(b) Three-wall.

Figure 6.4: Shared-memory OpenMP pseudo-code of one time step with Two-wall
and Three-wall in D3Q19. We assume AoS (Array of Structures) storage on CPU

architecture. Fortran-like $OMP PARALLEL pragma is optional.

6.4.2 OpenCL

In the implementation of OpenCL, the two #pragma omp parallel statements of the

OpenMP code of two-wall is replaced by two 2D OpenCL kernels: one for wall-copy and

one for wall-compute. Regarding three-wall, similarly to OpenMP, only one OpenCL

kernel is needed inside each z-iteration which includes (a) copy of future wall, (b) collision

and (c) in-place update. Implementation of these two kernels in OpenCL is mostly

identical to ones of the OpenMP code in the previous section, with the loops in Ly

and Lx broken into two-dimensional Ly × Lx global work-items. Fig. 6.5 illustrates the

OpenCL implementation of two-wall and three-wall, in which we depict the code from

the host side (the for-loop in Lz direction) which enqueues OpenCL kernels to the device.

Regarding the synchronization between kernels, we employ the cl event management

provided by the OpenCL API [8]. Kernels enqueued to the device can be set to a specific

execution order by their event-dependency. This allows us to explicitly enforce the FIFO

order independently from any specific OpenCL driver implementation, which for a more

efficient utilization of the hardware, enables the out-of-order execution by default.
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1: for z in 0 .. Lz-1 do
2: Set kernel argument CopyWall.z = z;
3: Enqueue FIFO kernel CopyWall to device;
4:
5: Set kernel argument Compute2Wall.z = z;
6: Enqueue FIFO kernel Compute2Wall to de-

vice;
7: end for
8:

(a) Two-wall.

1: // Prolog
2: Set kernel argument CopyWall.z = 0;
3: Enqueue FIFO kernel CopyWall to device;
4:
5: for z in 0 .. Lz-1 do
6: Set kernel argument Compute3Wall.z = z;
7: Enqueue FIFO kernel Compute3Wall to de-

vice;
8: end for

(b) Three-wall.

Figure 6.5: Heterogeneous memory OpenCL implementation of one time step in
Two-wall and Three-wall in D3Q19. Each $OMP PARALLEL in Fig. 6.4 is replaced by

an Ly × Lx OpenCL kernel.

6.5 Results and discussions

In this work, we implement the lid-driven cavity use-case based on the OPAL LBM kernel

presented in [23], originally written in OpenCL-C. Multiple-relaxation-time (MRT) colli-

sion from [64] is fused with the pull propagation and the half-way bounce-back boundary

condition. The collision kernel performs about 350 floating-point arithmetic operations

per lattice update. Four propagation algorithms are implemented for comparison: (1)

Two-lattice, (2) AA-pattern, (3) Two-wall and (4) Three-wall. Two-lattice is consid-

ered as the state-of-the-art algorithm. AA-pattern is chosen as an efficient algorithm

which requires only one instance of the lattice buffer. Then two-wall and three-wall are

implemented for comparison to the two former algorithms.

For comparison between the four propagation algorithms, we will use the customary

performance metrics in LBM, i.e. million lattice-node updates per second (MLUPS)

and the memory occupancy efficiency in terms of LUPS per byte, referred to as the

perf-mem ratio. The main reason of comparing the perf-mem ratio is to understand

the performance efficiency of algorithms on a given amount of memory, in a similar

way as GFLOPS per watt account for algorithmic energy efficiency. Results of each

implementation are checked for correctness against the reference OPAL code on a GPU.

6.5.1 OpenMP

The OpenMP code runs on two shared memory platforms:

• 24-core 12x2 NUMA CPU Intel Xeon Haswell E5-2680v3 at 2.5 GHz

• 64-core MIC Intel Xeon Phi Knights Landing (KNL) 7230 at 1.30 GHz
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It is worth mentioning that KNL embeds 16 GB of on-chip high-bandwidth MCDRAM

accessible either as cache or flat memory. In this test, we explicitly allocate lattice

buffers directly into the MCDRAM via the hbwmalloc library [65]. 1

For both two-lattice and AA-pattern, the three nested for-loops in z, y, x are organized

and collapsed as follow:

#pragma omp parallel for private(x,y,z) collapse(2)

for(z = 0; z < Lz; z++)

for(y = 0; y < Ly; y++)

for(x = 0; x < Lx; x++)

This configuration leaves the possibility to the icc compiler of vectorizing the x-loop

and gives the best performance in our tests. Regarding the computation code, the

LBM kernel of OPAL is rewritten from OpenCL-C to the multi-dimensional array C99

standard. Given the similarity between OpenCL-C and C99, the porting process did

not raise much difficulty, which consists mostly in copying the propagation and collision

code blocks inside the three nested zyx-loops.

Table 6.2: Compilation flags and OpenMP context on CPU and KNL.

Arch. Compilation OpenMP env.

CPU
icc -O3 -qopenmp -align

-fma -ftz -finline-functions

OMP_NUM_THREADS=24

OMP_PROC_BIND=close

OMP_PLACES=cores

KNL

icc -O3 -qopenmp -align

-fma -ftz -finline-functions

-xMIC-AVX512

OMP_NUM_THREADS=64

OMP_PROC_BIND=close

OMP_PLACES=cores

Performance in MLUPS of the four propagation algorithms on CPU is shown in Fig. 6.6a.

On CPU, AA-pattern delivers similar performance to the one ot two-lattice algorithm,

that shows its benefit over two-lattice in terms of memory requirement. Performance

of two-wall and three-wall are between 20 to 40% lower than one of two-lattice and

AA-pattern, which conform to 4q of data movement per lattice update. As expected,

three-wall is faster than two-wall on CPU, but by only 2-9%, certainly thanks to the

1 The kona01 node from the PlaFRIM system which is configured with flat memory-mode and
quadrant cluster-mode [66]. On both processors, the compiler version of Intel 2017 update2-knl is used.
Compilation flags are given in the Tab. 6.2, by following the recommendations from [66]. Default
OpenMP affinity environment variables like number of threads and thread locality are also given the
Tab. 6.2. We observe that using the same number of OpenMP threads as the number of physical cores
yields better performance, as it avoids additional cost related to thread-switching and cache-pollution.
Thread-binding is also carefully chosen to optimize cache locality within NUMA cores on CPU or the
shared common L2 cache of a tile (2 cores) on KNL.
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efficient OpenMP runtime on the CPU cache system. However, we observe that two-

wall turns to be faster than three-wall from problem sizes larger than 3843. This is

explained by the data size of three-wall buffers that exceeds the L3 cache size of CPU

(30 MB) from 3843 domain: 3× (3842× 19× 4) ≈ 32 MB. Performance of both two-wall

and three-wall follows an oscillating line that fits the L2 and L3 cache, at 1283 and

3843 respectively. Performance efficiency of algorithms in terms of LUPS-per-byte is

shown in Fig. 6.6c, whose values are normalized to the two-lattice algorithm. The AA-

pattern, which consumes twice less memory than two-lattice while delivering the same

performance, is two times more efficiency in terms of memory occupation. Besides, three-

wall and two-wall, although they do not reach the same efficiency as the AA-pattern,

are always better than two-lattice.

Moreover, we observe interesting results on KNL. As seen from Fig. 6.6b, two-lattice

considerably outperforms three other algorithms (300 MLUPS versus 225 MLUPS of

AA-pattern). This performance gap is justified by the fact that icc has succeeded at

generating non-temporal streaming stores [67] (movntdq) for the two-lattice propaga-

tion. Instruction generation is confirmed by reading the executable binary of two-lattice

with the objdump command. This instruction is introduced on Xeon Phi generations

for bypassing cache levels when writing data to the memory (the second lattice buffer

of two-lattice). This avoids expensive read-for-ownership (RFO) operations and saves

memory bandwidth on the Xeon Phi architecture, which is known to be more sensitive

to cache-pollution because of the write-allocate policy. Interestingly, however, perfor-

mance of three-wall this time competes with AA-pattern and outperforms two-wall by

15-20% for problem sizes larger than 3843 (≈ 32 MB of last-level L2 cache). This

result is promising because it shows that one can use three-wall as an alternative to

AA-pattern to implement complex LBM boundary conditions on the KNL architecture,

while obtaining the same performance and perf-mem ratio (see Fig. 6.6d). Performance

of two-wall on KNL is not stable on small and medium problem sizes between 643 and

3843 (zigzag line). There are two possible reasons to this phenomenon: (1) important

number of inter-thread barriers (2Lz) and (2) dependence of memory alignment for two-

wall buffers with respect to problem size. These two issues are likely to be amplified by

the latency from the directory-based L2 coherence protocol on KNL and would require

further investigation to explain the phenomenon.

As a result, we prove that three-wall and two-wall can be implemented on a CPU

system with higher memory-efficiency than two-lattice. Moreover, using three-wall on

CPU does not offer significant gain over two-wall, because the cache coherence protocol

can still manage to deliver satisfactory latency and bandwidth in a low-concurrency

context (24 cores). However, it is promising to employ three-wall, which outperforms

clearly two-wall, on a high-core count architecture like KNL (versus traditional CPU) as
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Figure 6.6: Comparison of different propagation algorithms in OpenMP on CPU
and KNL. T = 1000 time steps.

an alternative to other one-lattice algorithms. The barrier cost and OpenMP overhead

of three-wall is acceptable in a high-concurrency context like on KNL, with 64 cores and

a high-latency cache coherence protocol. Three-wall can also be optimized on the KNL

architecture by generating non-temporal streaming stores via OpenMP hints and/or

compiler flags, which we expect to yield higher performance than AA-pattern.

6.5.2 OpenCL

The OpenCL code is run on two platforms:

• CPU Intel Xeon Haswell E5-2680v3 (same as the OpenMP code)

• GPU NVIDIA Tesla P100 (Pascal) PCI-E 16GB

The CPU is used as an OpenCL device by setting the device type to CL DEVICE TYPE CPU

and similarly CL DEVICE TYPE GPU for the GPU. Two-lattice has been already imple-

mented in the original version of OPAL [23]. We took this code as a basis to write

kernels for AA-pattern, two-wall and three-wall by adapting the propagation step and
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the post-collision in-place update of PDFs for each of these three algorithms. OPAL is

implemented in a way that one can easily switch the memory layout depending on the

target architecture, typically between AoS (favorable for CPU) and SoA (favorable for

GPU). OpenCL libraries used in our tests are summarized in Tab. 6.3, in which global

and local work-items configuration of kernels are also given. Similar to OpenMP, in

OpenCL we can have either 2D or 3D kernels corresponding to the four propagation al-

gorithms (2D for three-wall/two-wall and 3D for two-lattice and AA-pattern). We study

performances using 32 as the problem size increment. It should be mentioned that set-

ting OpenCL work-group size to 32 × 1 × 1 already gives satisfactory performance on

target platforms. Incrementing work-group size to for instance 64× 1× 1 does not yield

important gains, while constraints the problem size to be multiple of 64.

Table 6.3: OpenCL drivers and configuration on CPU and GPU.

Arch. OpenCL driver OpenCL config. in 2D (or 3D)

CPU Intel OpenCL 14.2
GlobalSize Lx × Ly (×Lz)

LocalSize 32× 1 (×1)

GPU CUDA 7.5.18
GlobalSize Lx × Ly (×Lz)

LocalSize 32× 1 (×1)

Surprisingly in Fig. 6.7a, despite using the same CPU, the AA-pattern OpenCL code

delivers significantly higher performance than the OpenMP version (290 MLUPS versus

210 MLUPS). This represents up to 2.75 times higher in perf-mem efficiency with respect

to the normalized two-lattice ratio (see Fig. 6.7c) (versus ×2 in OpenMP). This leads us

to think that the Intel OpenCL SDK, by some advanced SIMD optimizations, performs

much better than the icc compiler on OpenMP pragma’s of the AA-pattern propagation.

The Intel OpenCL runtime might have detected that AA-pattern always writes data

back to the same location of earlier reads and generates the corresponding optimized

code. More fine-tuned compilation options for icc could be the missing point in our

tests. However, determining the corresponding flags or using advanced OpenMP hints

and extensions is not the main goal of this work. For the sake of portability and proof-

of-correctness of algorithms, we do not include any platform-specific code annotation

and only use default compilation flags as recommended in [66]. Moreover, we see that

implementing two-/three-wall in OpenCL on CPU is less favorable (125 MLUPS) than

directly using OpenMP (180 MLUPS), with respect to the performance and perf-mem

ratio. The oscillating line, seen in the OpenMP code, is replaced by a normal lower

performance line, probably due to the OpenCL runtime overhead and cache flush after

each kernel completion.

Furthermore, the latest Pascal GPU, with its HBM2 memory, delivers gratifying perfor-

mance with more than 3000 MLUPS on two-lattice and 2700 MLUPS on AA-pattern,
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which is 10 times higher than on the CPU. Besides, we obtain about 1300 MLUPS

for two-wall and 1380 MLUPS for three-wall, which is 6% better than two-wall (see

Fig. 6.7b). For unknown reason, the AA-pattern implementation fails to execute on

problem sizes larger than 3523 and returns an XID 31 error. According to the NVIDIA

documentation, this error is due to an illegal address access. It is possibly caused by

the application code, but there could also be driver bugs or hardware bugs. As the issue

does not appear on problem sizes smaller than 3523 with the same code, we suspect a

pathological corner-case of the AA-pattern algorithm on the target GPU architecture

and/or the current driver version. Nonetheless, the original source of the error remains

unknown for the moment. Regarding the LUPS per byte efficiency on GPU, in Fig. 6.7d,

the perf-mem ratio of AA-pattern is two times higher than the one of two-lattice (same

as in OpenMP). Furthermore, we see that two-wall and three-wall algorithms are less

efficient than two-lattice, by their perf-mem ratio between 0.6 and 0.9, normalized to

two-lattice.
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Figure 6.7: Comparison of different propagation algorithms implemented in
OpenCL on CPU and GPU. T = 1000 time steps. Memory layout AoS is used on

CPU and SoA is used on GPU.

From these results, we conclude that two-/three-wall can also be easily implemented

from an existing two-lattice kernel in OpenCL. While running correctly on CPU or

GPU in OpenCL, two-/three-wall do not offer significant performance gain nor memory-

efficiency compared to two-lattice and AA-pattern. In our testing environment, we notice
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execution failure of the AA-pattern algorithm for problem sizes larger than 3523 on the

Tesla P100 GPU, which can be a drawback in applying AA-pattern on GPU-based

platforms.

6.6 Conclusions

In this chapter, we introduce two-wall and three-wall, two novel algorithms of the LBM

one-lattice algorithm class which use a single lattice instance. Two-wall and three-wall

are easy to implement and can be used on complex boundary conditions.

Our algorithms do not deliver the highest performance on CPU and GPU compared to

other algorithms, but offer better memory efficiency (LUPS per byte) than the state-

of-the-art two-lattice algorithm. Especially on a high-core-count shared-memory ar-

chitecture like KNL, three-wall gives competitive performance and memory efficiency

compared to AA-pattern, one of the most efficient propagation algorithms in literature.

Employing three-wall on future many-core architectures which embed more local mem-

ory and private cache as well as the non-temporal streaming store instruction could

lead to further performance improvements. Furthermore, hardware architecture in near

future is likely to favor large on-chip coherent memory associated to many-core designs.

For such evolutions, our approach will become mandatory to increase performance with

a straightforward OpenMP implementation. Using a single lattice instance also allows

to increase spatial resolution and thus to obtain more reliable solutions of the physical

problem under consideration.





Chapter 7

Message Passing Interface (MPI)

on Many-core Processors

The single biggest problem in communication is

the illusion that it has taken place.

– George Bernard Shaw.

69
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7.1 Introduction

In this chapter, we propose the design of an MPI Message-Passing library [9] for the

intra communication on many-core processors, using the vendor support library (MP-

PAIPC [68]) as the transfer-fabric to build MPI protocols from scratch, while porting

any of existing MPI implementations such as MPICH or OpenMPI would not be possible

due to limited on-chip memory of most recent many-core processors.

Based on studied MPPA hardware specifications presented in [31, 68], this chapter does

a brief hardware summary and focuses on an MPI design over (but not limited to) the

MPPA architecture, with detailed implementation algorithms and formulated models

following vendor-hardware characteristics (K,h) and different optimizing approaches

(Lazy, Eager). These studies are generic enough to be compared/ported to other very-

similar architectures, such as Tilera [69], STHORM [70] or Neo chip [71], on which

doing/optimizing MPI communication over Network-on-chip is still a challenging or

never-posed question.

The remainder of this chapter is organized as follows: Related MPI-oriented works on

other many-core platforms are compared in section 7.2. Section 7.3 describes our MPI

architecture design. Section 7.4 resumes our MPI implementation in pseudo-codes of

blocking and non-blocking communication (MPI Send and MPI Isend). Some optimiza-

tion ideas are then proposed and developed in this section such as (1) synchronization-

free eager send and (2) implicit local-buffered lazy send for short and medium sized

messages respectively. A throughput estimation model based on the data transmis-

sion time is also introduced in section 7.5 to evaluate the communication performance.

Section 7.6 presents our results for the ping-pong test following two scenarios, either

symmetric ranks (MPI compute node - MPI compute node) or asymmetric ranks (MPI

compute node - MPI I/O), corresponding on MPPA to CC-CC and CC-I/O subsystem

respectively. Different optimization approaches are also tested and compared.

Using the MPPA-MPI library, the HPL benchmark [38, 39] was ported on MPPA with

the support of the standard BLAS-Netlib [72, 73] (mono-threaded) and OpenBLAS [74],

an OpenMP optimized implementation. These benchmark results are summarized in

section 7.7 and conclusions are given in section 7.8.

7.2 Related works

Our design is similar to the co-processor-only MPI model on the Intel Xeon-Phi plat-

form [75], with support of OpenMP for hybrid multi-threaded programming. Besides
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MPI ranks running on CC, we introduce an MPI I/O rank running on an I/O subsys-

tem of the chip as bridge to communicate with the host through the PCI-e interface,

while there are no direct communication link between the host and the compute clus-

ters on MPPA. Along the way, some collective MPI functions were also implemented

(MPI Comm split, MPI Bcast, MPI Reduce, MPI Allreduce and MPI Barrier).

Our message-trigger handling mechanism using the RM core was inspired by the similar

work of Prylli and Tourancheau [76] [77] implementing the BIP protocol for an opti-

mized MPI implementation over the Myrinet network, taking advantage of its dedicated

hardware, an extra core like the MPPA RM core.

Today, there exist other multi-/many-core processors similar to the MPPA. Some of

them has an MPI implementation, others do not. This section reviews MPI-oriented

libraries on other many-core architectures and their performance related to our work.

Raw processor [78], designed by the Computer Science Laboratory at MIT, combines

16 identical compute units, called tile. The 16 tiles are connected by one static NoC and

two dynamic NoC. The static network is used for predefined memory access pattern at

compile time, the dynamic ones are used for communication scheme at runtime. Psota

and James [79] propose rMPI, the first MPI library over the Raw achitecture by inherit-

ing some design aspects from MPICH and LAM/MPI also other specific implementation

belonging to the Raw hardware. The highest throughput obtained on the ping-pong test

of the Raw processor is about 150 MB/s with buffer size of 3.2 MB (100K words) [80].

Tilera processors [69] are mainly used in high performance embedded systems such

as networking and multimedia. The TilePro64 processor defines a flat 2D-mesh with 64

identical VLIW cores connected through the Tilera iMeshTM network-on-chip. Cache

coherence on TilePro64 is guaranteed by a hardware mechanism called Dynamic Dis-

tributed Cache (DDC) [69]. Kang et al. [81] propose an MPI implementation on Tile64

processor which delivers up to 250 MB/s on MPI Send/MPI Recv communication, with

the largest message size of 256 KB due to the limited memory per core. At this buffer

size, our MPI implementation on MPPA delivers 400 MB/s on MPI Send or up to 1 GB/s

using DMA.

Intel Single-Chip Cloud (SCC) is a prototype aimed to promote many-core proces-

sor. Its 48 cores are organized in 24 dual-core clusters with access to off-chip DRAM

shared/private region for all/each core through a look-up table (LUT), also a dedicated

shared on-chip Message Passing Buffer (MPB). This memory architecture gives extra ad-

vantage for implementing quick message sending based on shared buffers. However, the

use of the dynamic NoC routing on Intel SCC (instead of static NoC in MPPA) makes
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it difficult to evaluate the maximum communication latency [82] also incurs unordered

packets, hence inappropriate for hard real-time applications.

The SCC-specific MPI-like native communication library (RCCE) delivers peak through-

put of 55 MB/s on the ping-pong test [83]. By the same test, Clauss et al. [84] presented

iRCCE (an improved RCCE version) and SCC-MPICH (an MPICH-based implemen-

tation over iRCCE) that reach respectively 150 MB/s and 120 MB/s of throughput.

RCKMPI, an Intel MPI implementation for SCC is also bounded by the performance of

the iRCCE layer. Our MPI library on MPPA was built from scratch over the MPPAIPC

library, without any TCP/UDP layer, while an MPICH-based solution would not fit the

cluster private memory space (2 MB). A such MPICH implementation on MPPA can

be extrapolated to 1.0 GB/s by adding the same overhead of 20% of SCC-MPICH over

to iRCCE.

Intel Many Integrated Core (MIC), known as Intel Xeon Phi co-processor family,

is a x86-based many-core architecture with native support of Linux operating system

and standard software stack. The first Intel MIC generation, namely Knights Corner

(KNC), proposes three MPI programming models [75] which are (1) offload (host-only),

(2) co-processor-only and (3) symmetric (both host and co-processor). The MPI com-

munication in the intra-MPPA context corresponds to the co-processor-only intra-MIC

case. Potluri et al. [85] studied the communication throughput of the MVAPICH2 li-

brary on KNC and their results show that a MIC-optimized MVAPICH2 library can

delivers more than 9 GB/s of uni-direction throughput for messages up to 1 MB.

7.3 MPPA-MPI design

In the MPPA context, each CC is referred to as an MPI rank. Thus, the MPPA-256

processor supports up to 16 MPI ranks. Each MPI rank owns a private memory space

of 2MB. Moreover, a hybrid MPI I/O rank is introduced running on the North IOS and

manages the off-chip DDR memory. This MPI I/O rank is started from the host via

the k1-mpirun command and is responsible for spawning MPI compute ranks on CCs

subsequently. To keep the portability of any MPI legacy code, this extra MPI I/O rank

is not listed in the MPI COMM WORLD. Any communication with this rank can be achieved

through a local communicator (MPI COMM LOCAL ) that groups all MPI ranks within an

MPPA processor (i.e. 17 ranks). The MPPA-MPI architecture on each rank is then

divided in two layers:
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7.3.1 MPI-inter-process Control (MPIC)

Each MPI transaction begins by exchanging control messages at the MPIC layer between

MPI ranks. Control messages are used for:

• information exchange about MPI transaction type (send/receive, communicator

split, etc.).

• synchronization point in case of rendez-vous protocol.

We implement an RQueue-based active message server [86] on each MPI rank (CC

and IOS) to handle incoming control messages from all other ranks (including itself on

loop-back). Upon control message arrival, a callback function is executed on the RM,

consisting typically on saving it into an internal buffer which later will be read by MPI

calls from the main function (PE0).

Control messages exchanged in the MPIC layer contain either one of the structures

defined in Fig. 7.1.

1 /∗ Message sent by Tx to Rx ( Request−To−Send ) ∗/
2 typede f s t r u c t s e n d p o s t s {
3 mppa pid t s e n d e r i d ; /∗ ID o f Tx proce s s ∗/
4 i n t mpi tag ; /∗ MPI message tag ∗/
5 . . .
6 } s e n d p o s t t ;
7

8 /∗ Message sent by Rx to Tx ( Clear−To−Send ) ∗/
9 typede f s t r u c t r e c v p o s t s {

10 i n t dnoc tag ; /∗ DNoc a l l o c a t e d on Rx ∗/
11 mppa pid t r e a d e r i d ; /∗ ID o f Rx proce s s ∗/
12 i n t mpi tag ; /∗ MPI message tag ∗/
13 . . .
14 } r e c v p o s t t ;

Figure 7.1: Control message structures

In an MPI send/receive, The Tx rank posts a Request-To-Send (send post t) to the

Rx rank; idem, the Rx rank sends back a Clear-To-Send (recv post t) containing its

allocated dnoc tag, to which the Tx rank will send data. Beforehand, this dnoc tag

needs to be configured and linked to the receive buffer to enable remote writing.

7.3.2 MPI-inter-process Data-Transfer (MPIDT)

MPIDT is a light-weight wrapper of MPPAIPC Portal primitives. Once the Tx rank has

got a matching control message, it configures a data transfer using received information
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(e.g. dnoc tag). Data can then be sent in either blocking or non-blocking mode depen-

dent on the calling MPI function, using appropriate Portal primitives (see Tab. 7.1 for

detailed function mapping).

Table 7.1: MPI send/receive implementation in MPIDT level

MPPA-MPI MPPAIPC Portal

MPI Send, MPI Ssend mppa pwrite,

mppa pwrites

MPI Isend, MPI Issend mppa aio write

MPI Recv, MPI Irecv mppa aio read

MPI Wait mppa aio wait

Fig. 7.2 illustrates the structure of our MPPA-MPI implementation. Each rank emits

control-message to its involved partner at each MPI call. The active server runs on the

RM core and processes incoming control-messages. Furthermore, depending on MPI

transactions and their status at runtime, the server can decide whether to perform a

data send if this has not been or could not be done by the main thread, especially in

case of a pending MPI Isend request or a matching registered lazy message.

Server (RM)

MPI_NOC_API
MPI implementation

DMA
manager NoC barrier

send_post

recv_post

pending_isend

datatype

comm

pending_irecv

Callback Handler

Local buffers

Control messages
buffers

MPPAIPC

Network-on-Chip

Data

Control messages
(outgoing)

Data

Control
messages
(incoming)

MPPAMPI components

Main thread (PE)

Figure 7.2: MPPA-MPI components and interaction with
Network-on-chip through MPPAIPC.
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7.4 MPPA-MPI implementation

As mentioned above, on-flight control messages carry essential information depending

on their purpose. We present now their usage as well as algorithms of the two commu-

nication scenarios in our work:

(1) synchronous blocking send (MPI Send) and

(2) asynchronous non-blocking send (MPI Isend)

7.4.1 MPI Send - MPI Recv

Most well-known and optimized MPI libraries contain many (combined) techniques to

perform the MPI Send call. In the first time, we chose to implement this function with

rendez-vous blocking behavior, in order to avoid extra buffer space and minimize memory

usage. This choice certainly adds more synchronization cost but does not change the

functionality of the send/receive transaction. Some optimization approaches will be

presented in the coming sections. Algorithms 2 and 3 summarize the implementation of

MPI Send and MPI Recv.

Algorithm 2 MPI Recv(buf, count, datatype, source, tag, comm, status)

1: my rank ← get rank(comm);
2: dnoc tag ← allocate dnoc tag();
3: /* configure to receive data on this dnoc tag */
4: aio request ← configure aio read(buf, dnoc tag, ...);
5: if source == MPI ANY SOURCE then
6: send post ← find send post(count, datatype, tag, ...);
7: real source ← send post.source;
8: else
9: real source ← source;

10: end if
11: /* send recv post to real source (MPIC layer) */
12: send recv post(my rank, dnoc tag, real source, tag, comm, ...);
13: /* wait data (MPIDT layer) */
14: mppa aio wait(aio request);
15: return MPI SUCCESS;

The implementation of MPI Irecv is the same as the one of MPI Recv, except that the

function returns right after having posted the receive to the sender, and the completion

of reading (mppa aio wait) is done in MPI Wait.



76 Message Passing Interface (MPI) on Many-core Processors

Algorithm 3 MPI Send(buf, count, datatype, dest, tag, comm)

1: my rank ← get rank(comm);
2: /* send send post to dest */
3: send send post(my rank, dest, tag, comm, ...);
4: /* wait for matching recv post from Rx (MPIC layer) */
5: repeat
6: recv post ← find recv post(count, datatype, tag, ...);
7: until recv post 6= NULL
8: /* send data (MPIDT layer), using mppa pwrite(s) */
9: send data(buf, count, datatype, recv post.dnoc tag);

10: return MPI SUCCESS;

7.4.2 MPI Isend - MPI Recv

The implementation of MPI Isend uses non-blocking Portal primitives on both PE and

RM on the Tx side. When the Tx rank (PE0) reaches MPI Isend in its execution with-

out having received any matching recv post, it creates a non-started pending isend

request containing related information (buffer pointer, dest, count, tag etc.) and re-

turns. On arrival of the matching recv post, the RM core (callback handler) reads

the previous pending isend request and triggers a non-blocking data send (to the

recv post.dnoc tag of the Rx rank). The request is then set to started state to be

distinguished from other non-started requests.

On the other hand, when the recv post arrives before MPI Isend, the RM core saves it

into the internal buffer. The PE core executing MPI Isend later reads this recv post,

performs a non-blocking send and marks the pending isend request as started. This

propriety ensures that the transfer is performed only once for each transaction, either

by the PE core (in MPI Isend) or by the RM core (in callback handler). At the end,

started requests will be finished and cleaned by MPI Wait. Algorithms 4 and 5 present

in more details the implementation of MPI Isend and of the callback handler.

7.4.3 Optimization

7.4.3.1 Eager send optimization

The idea is to pack any MPI message which can fit into a 120-byte space, as a control-

message and send it directly to the Rx active server. In reality, the maximum data

payload is about 96 bytes (24 bytes is used for control header). An eager buffer needs

to be allocated on each MPI rank and can be defined by the EAGER BUFFER LENGTH

macro in main.c. This approach is synchronization-free when the MPI Send call can
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Algorithm 4 MPI Isend(buf, count, datatype, dest, tag, comm, request)

1: my rank ← get rank(comm);
2: /* send send post to dest */
3: send send post(my rank, dest, tag, comm, ...);
4: req ← new request(buf, count, ..., PENDING ISEND);
5: /* look for a matching recv post (MPIC layer) */
6: recv post ← find recv post(count, datatype, tag, ...);
7: if recv post 6= NULL then
8: /* configure/start a non-blocking write (MPIDT layer) */
9: aio request ← configure aio write (buf, recv post.dnoc tag, ...);

10: req→status := STARTED;
11: req→aio request := aio request;
12: else
13: /* Do nothing (request initialized NON STARTED) */
14: end if
15: request ← req;
16: return MPI SUCCESS;

Algorithm 5 callback recv post(recv post)

1: /* look for a matching pending isend */
2: req ← find pending isend(recv post);
3: if req 6= NULL then
4: /* configure/start a non-blocking write (MPIDT layer) */
5: aio request ← configure aio write (req→buf, recv post.dnoc tag, ...);
6: req→status := STARTED;
7: req→aio request := aio request;
8: else
9: save recv post(recv post);

10: end if
11: return ;

return before a matching receive is posted (non-local). It also leads to an improvement

of about 6 to 10% in performance for the HPL benchmark on MPPA (see Section 7.7).

For longer messages, using several eager sends introduces segmentation and reassembly

costs. A test case is implemented with messages split into eager packets in order to

determine the best communication trade-off in Fig. 7.4. Such segmentation however

consumes buffering memory and therefore increases RM workload.

7.4.3.2 Lazy send optimization

Lazy send consists in copying medium-size message into a local buffer and returns. The

RM is then responsible for sending it to the destination. Unlike eager buffer on the

Rx side, lazy buffer is allocated on the Tx side and can be tuned via some macros

(LAZY THRESHOLD, LAZY BUFFER LENGTH).
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This approach must be used with care because bad communication scheduling may

lead to buffer wasting and lazy messages remaining for too long. Inversely, a dense

communication scheme should neither be set to lazy mode in order to be able to send

data directly rather than spending time doing memcpy in local memory.

7.4.3.3 DMA thread usage

MPI Isend uses Portal non-blocking primitive to configure a Tx DMA thread for data

sending. The DMA engine implements a fetch instruction that loads the next cache

line while pushing the current line into the NoC. This fetch is nowadays not available

on PE cores, meaning that outbound throughput using PE is 4 times lower than using

DMA engine (1 B/cycle vs. 4 B/cycle). Thus, tuning to use non-blocking DMA on

MPI Send for messages of size greater or equal to DMA THRESHOLD will maximize the

transfer performance.

7.5 MPPA-MPI Throughput modeling

The MPPA-256 Network-on-chip [87] is designed so that any path linking two CCs

always contains less than eight hops (including two local hops - one at sender and one

at receiver). The average switching time on a NoC router is 7 cycles, then it takes the

packet at most 8 cycles to reach the next hop. In the worst case, the link distance (time a

packet spends on NoC to reach its destination) is 112 cycles (7×8+8×(8−1)). However,

the necessary time to send a buffer (transmission time - t) is about O(N) cycles [88]

(where N the buffer size in bytes), which is much longer than the link distance [89].

As a result, we describe the transmission time t as a function of the buffer size N ,

a constant transfer ratio K and a default overhead h (aka. the cost of sending an

empty buffer). This default overhead presents the initial cost of MPI implementation

management (ID mapping, metadata setup, synchronization, error checking ...) and/or

configuring the peripherals (cache, DMA) to prepare for data sending. This cost is paid

on each MPI call and is independant to the subsequent data-sending process (which

is presented by a data-transfer factor K). The ping-pong round-trip time (RTT) is

approximately the sum of the transmission time on both sides, as the propagation time

is negligible.

TransmissionT ime : t = K ×N + h (cycles) (7.1)

RTT ≈ 2× t = 2× (K ×N + h) (cycles) (7.2)
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Throughput : T =
2×N
RTT

≈ N

K ×N + h
=

1

K + h
N

(bytes/cycle)

(7.3)

lim
N→∞

T ≈ lim
N→∞

1

K + h
N

=
1

K
(bytes/cycle)

= 400×K−1 (MB/s)

(at frequency 400 MHz)

(7.4)

The constant K is a value specific to each send function with its own underlying trans-

port primitive. For example, the MPI Isend which uses the DMA engine with peak

throughput of 4 B/cycle, would have its transfer ratio K of about 0.25. The MPI Send,

with default peak throughput of 1 B/cycle (no DMA engine), should obtain a transfer

ratio K around 1.

7.6 Results and Discussion

Using the MPPA Developer platform [90] with the first-generation MPPA processor, we

set up ping-pong tests between:

(1) MPI rank 0 (CC 0) - MPI rank 15 (CC 15) and

(2) MPI I/O 128 (IOS 128) - MPI rank 15 (CC 15).

All MPI cluster ranks run at the same clock frequency of 400 MHz. The North IOS run-

ning the MPI I/O rank is configured to use the DDR controller at the default frequency

of 600 MHz.

In each case, the same MPI send function is used on both sides (MPI Send or MPI Isend).

At the first time, all tests are run without any optimization in order to calibrate the

proper throughput of each context (Fig. 7.3). At the second time, we enable all opti-

mization on the MPI Send test and compare our optimization approaches in terms of

latency, throughput and messages sent per second (Fig. 7.4).

Each ping-pong is repeated 50 times. We assume that there is no waiting time inside

the MPI send function, since all ranks start at the same time and run at the same

clock speed. Hence, the duration of the MPI send function can be considered as the

transmission time. Depending on the send context, the measured transmission time is

fitted into a linear correlation K×N +h presented in Tab. 7.2. The standard deviation

from all obtained results is always less than 0.2%.
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From To MPI Send MPI Isend

CC 0 CC 15 t = 0.98×N + 31430 t = 0.27×N + 33690

CC 15 CC 0 t = 0.98×N + 30240 t = 0.27×N + 32850

IOS 128 CC 15 t = 13.52×N + 159544 t = 0.84×N + 181300

CC 15 IOS 128 t = 0.98×N + 129200 t = 0.26×N + 144500

Table 7.2: Transmission time (cycles).

7.6.1 Inter-CC communication

Communication links between CCs are bi-directionally symmetric. According to our

model and the K values from Tab. 7.2, the estimated maximum throughput (given

by 400 × K−1 MB/s) should be around 408 MB/s and 1481 MB/s for MPI Send and

MPI Isend respectively. The ratio h/N can be ignored in this case. Fig. 7.3a shows

obtained results that match with our estimation model.

(a) Symmetric : Between ranks 0 and 15 (b) Asymmetric : Between ranks 128 and
15

Figure 7.3: Ping-pong throughput MPI Send (PE core) vs. MPI Isend (DMA).

7.6.2 CC-IOS communication

Contrary to the symmetric communication performance between CCs, the transmission

rate on I/O subsystem relies on the DDR bandwidth, which is much lower than the

on-chip memory on CCs. We observe higher K values and much more considerable

overhead h on the IOS 128, showing that the communication link from IOS to CCs might

be the bottleneck on the MPPA. It is then difficult ignoring h
N in this case. Keeping on

our throughput estimation by 400 ×
(
K + h

N

)−1
now matches with experiment results
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on Fig. 7.3b, where the performance gap between the CC 15 and the IOS 128 is also

illustrated.

7.6.3 Optimization comparison

We focus now on finding, on a given message size, the best send method among the four

(Normal, Eager, Lazy and DMA) to use on MPI Send, in order to obtain lowest latency

(round-trip-time) and/or highest ping-pong throughput, by enabling all optimizations

and re-running our experiments between CCs. We also evaluate the number of messages

sent per second in each approach by dividing the clock frequency (400 MHz) by the

duration of the MPI Send call (in cycles). As the message will now be eagerly sent or

lazily buffered and MPI Send returns right afterward, this duration on Eager(-splitting)

or Lazy could no longer be evaluated as the transmission time in the Tab. 7.2, but

respectively by :

E ×
(⌊

N

96

⌋
+ 1

)
(cycles, E ≈ 3800) (7.5)

Omemcpy(N) = 1.28×N + 5300 (cycles) (7.6)

where E is the constant necessary cost to send 1 eager-split and Omemcpy is a linear func-

tion of memcpy cost. Note that in the Lazy approach, the message is sent in background

by the RM.

Hence, Eager and Lazy methods provide lower latency and higher message rate on short

buffers, since they were designed to get rid of two-sided synchronization and the buffer

size is still small enough not to be outperformed by the DMA high-throughput capacity.

Fig. 7.4a shows that the ping-pong latency from 1 to 256 bytes using eager-splitting is

reduced by half compared to DMA or Normal. Otherwise, this latency increases radically

as soon as its transmission time, despite being smaller at the beginning, getting repeated

as many times as split segmentation
(⌊

N
96

⌋
+ 1
)
. On the other hand, using DMA on large

buffers optimizes bandwidth utilization compared to Normal (using PE) or Lazy (using

RM) methods. (Fig. 7.4b).

Fig. 7.4c illustrates the message-rate of the four send methods. Not only this kind

of measure gives user a high-level point of view about the implementation capacity

to support communication load, but it shows interesting advantages of Eager and Lazy

methods in tuning MPI applications, thanks to their fast sending time for short messages

and synchronization-free algorithm.
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(a) Ping-pong latency (RTT)
on short buffers

(b) Ping-pong throughput (c) Number of messages sent
per second

Figure 7.4: Optimization approaches comparison.

7.7 High Performance Linpack (HPL) on MPPA-256

HPL benchmark was ported on MPPA-256 using our MPI implementation and cross-

compiling of BLAS-Netlib and OpenBLAS. Each MPI compute rank, assigned to a

compute cluster, only owns 2 MB of memory, which amounts to a total on-chip memory

of 32 MB, enable to store up to 4 million double precision floating-point numbers or a

2000 × 2000 matrix. Operating system space and user code (BLAS, MPI, HPL) must

be taken into account as well. In practice, the HPL can run on the MPPA-256 with

1250× 1250 matrix, which is a very small problem size for this kind of benchmark. As

a result, communication, local indexing etc. has a significant cost with respect to the

number of floating point operations (O(N3)). Fig. 7.5b. does an estimation on further

problem sizes on future MPPA generations with more on-chip memory.

(a) HPL benchmark on MPPA-256
against number of cores: BLAS vs.

OpenBLAS.

(b) HPL score extrapolation with in-
creasing problem size.

Figure 7.5: HPL current performance (a) and extrapolation (b)
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Fig. 7.5a shows the HPL result on MPPA-256 using BLAS and OpenBLAS. Note that

70 GFLOPS of annouced theoretical performance is for all the 256 cores, while the

best benchmark score (Rmax = 1.2 GFLOPS) was achieved using only one core per

CC (i.e. 16 cores in total) and MPI eager send. Also, we have seen no performance

change by enabling MPI lazy optimization. This can be explained by well-scheduled

HPL overlapping [39] in which, either MPI processes arrive to the communication step

at the same time, or all heavy sends are done asynchronously by MPI Isend, while

lazy sending only shows its advantage in bad-scheduled MPI Send. Furthermore, multi-

threading on MPI compute ranks (OpenMP on CCs) did never give better HPL result,

because of the small working set and the OpenMP overhead.

7.8 Limitations and conclusions

In this chapter, we have introduced the design and performance issues of an MPI im-

plementation on the Kalray MPPA-256. The MPPA-MPI library provides 1.2 GB/s of

throughput for any inter compute-cluster point-to-point communication and this per-

formance depends on the underlying MPPAIPC library. Optimization ideas such as

eager send and lazy message are proposed, implemented and compared to determine

the best approach based on message size. A synthetic model is also presented for each

approach to evaluate their communication latency and throughput. We also learn that

supporting MPI programming model is not an easy task on recent many-core processors,

including MPPA, since MPI has become a large API with high-level abstractions and

many-core hardware is taking more diversity and complexity. Thus, optimizing an MPI

implementation on each of these platforms is even more not trivial.

Despite the fact that the HPL benchmark was also successfully ported on MPPA as

a validation test of our MPI library, we think that mapping an MPI rank on a single

compute cluster of MPPA is not a long-term solution. This topology mapping can

provide some ease of programming in the short-term, but will encounter a scalability

issue in the future when we will want to connect hundreds or thousands of MPPAs

together. The granularity will be too fine and such mapping will face a significant

communication overhead. A more coarse-grained mapping, for instance, one MPI rank

per MPPA would be a versatile solution, with the larger DDR space, PCIe and Ethernet

interfaces. Each MPI rank then can be accelerated by the 16 compute clusters via

OpenMP 4 or OpenCL in the MPI+X hybrid model.





Chapter 8

General Matrix Multiplication

(GEMM) on Many-core

Processors

The best performance improvement is the transition

from the non-working state to the working state.

– John Ousterhout.
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8.1 Introduction

The largest difference of a DMA-based many-core architecture from other conventional

platforms is the lack of a data cache system. On a DMA-based architecture, all data

must be accessed and copied from the off-chip global memory to the on-chip local mem-

ory. This not only improves data locality and latency, but also allows computation-

communication overlap by asynchronous transfers.

Our objective in the present chapter is to implement a fast GEMM on DMA-based

many-core processors, typically the MPPA2-256. Consequently, we are focusing on asyn-

chronous algorithms to reduce memory latency and an MPPA assembly micro-kernel to

obtain the highest performance. Therefore, we do not plan to support a full range of

GEMM parameters from the BLAS API in this chapter.

8.2 GEMM in POSIX-C

8.2.1 Algorithm

In this work, we use blocksize naming convention from Matsumoto et al. [91], which

implement an auto-tuning blocked GEMM implementation on OpenCL devices, based on

configurable runtime parameters. The matrix C is divided in blocks of size Mwg ×Nwg

(Ci). Blocks of A are partitioned as Mwg ×Kwg (Ai), and blocks of B as Kwg × Nwg

(Bi).

On MPPA2, the two-layer memory configuration matches. A large and slow DDR mem-

ory versus a small and fast scratchpad memory on each Compute Cluster (CC). Com-

puting a block Ci requires multiplying a block-row of Ai to a block-column of Bi (see

Fig. 8.1). Each block-row and block-column contains a same number of
⌈

K
Kwg

⌉
Ai or Bi

blocks.1 Our DMA-based GEMM algorithm, called GEMM-async, is given in Fig. 8.1.

Each block Ci is computed by one CC, equipped with 1.5 MiB of local memory (scratch-

pad) and 16 PEs. There are totally L =
⌈

M
Mwg

⌉
×
⌈

N
Nwg

⌉
blocks C to be distributed

over 16 CCs. Each CC is responsible for at least
⌊

L
16

⌋
blocks C. Whenever L is not

multiple of 16, certain clusters must process one more block to fulfill remaining blocks

(L mod 16).

To compute a block Ci within each cluster, blocks Ai and Bi are streamed from the DDR

to scratchpad in the double-buffering overlapping scheme. At any time, there is always

1The ceil() function rounds up to the next integer to deal with trailing matrix elements after
decomposition.



General Matrix Multiplication (GEMM) on Many-core Processors 87

0 1 2 3 4A

B

C

}
}

 

/* Prologue */
prefetch_block_A (0) ;
prefetch_block_B (0) ;
prefetch_block_C (0) ;
 
/* Pipeline */
for i in 0 .. NB_BLOCKS_K -1
    prefetch_block_A (i+1) ; 
    prefetch_block_B (i+1) ;
    wait_block_A ( i ) ;
    wait_block_B ( i ) ;
 
    local_gemm ( A[i], B[i], C ) ;
done
 
/* Epilogue */
put_block_C (0) ;

0

1

2

3

4

0

Figure 8.1: Streamed-tiled GEMM algorithm.

two blocks in prefetch by DMA (one next Ai and one next Bi), and other three blocks

in computation (current Ai, Bi and Ci). Blocksize parameters (Mwg, Nwg and Kwg) are

consequently set to Mwg = Nwg = Kwg = 256 in FP32 and Mwg = Nwg = 256, Kwg =

128 in FP64, so that the scratchpad memory can hold at least five blocks: two Ai, two Bi

and one Ci. We note that, in our algorithm, both single-buffering and double-buffering

were implemented on blocks Ci. The communication cost on Ci (read at the beginning

and write at the end), even being on the critical path with the single-buffering scheme

(not overlapped), can be amortized by flops computation from blocks Ai and Bi when

K is large (
⌊

L
16

⌋
× 2 versus

⌊
L
16

⌋
×
⌈

K
Kwg

⌉
× 2).

On edge blocks 2, since the matrix data does not entirely fulfill the block, we perform

zero-padding on the remaining part (right and bottom) of the edge block, so that the

block-computation kernel can be reused without change or polluting results.

In order to facilitate development process and to focus on algorithmic aspects, we de-

signed and implemented a set of two- and three-dimensional asynchronous copy functions

and integrated them into the Kalray low-level asynchronous communication library, so-

called mppa async. Conception details of these 2D and 3D functions are presented in

Chapter 5, Section 5.3 (page 38)

2An edge block is the block added by the ceil() function, often at the right and bottom of the
decomposition grid, to cover trailing matrix elements.
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8.2.2 Assembly-level GEMM micro-kernel

In the above section, we have described the asynchronous GEMM algorithm between

DDR and scratchpad memory. Once blocks Ai, Bi and Ci are copied into scratchpad

and zero-padded if necessary, the local computation can proceed.

....

....

A
~

i

B
~

p

Ci

KC

KC

Figure 8.2: BLIS
micro-kernel.

For the sake of simplicity, in this work, we consider the

row-major GEMM TN configuration, in which the block Ci are

decomposed into tiles Cr of size mr × nr to fit into the

register file. This technique is known as register-blocking,

where mr and nr are usually small (4, 8 and less than 16).

In row-major GEMM TN, Cr is computed by a panel Ap of size

mr × kc and a panel Bp of size nr × kc (kc = Kwg, Ap ∈
Ai, Bp ∈ Bi). Cr is updated as a sequence of kc rank-1

updates between mr elements of Ap and nr elements of Bp

(see Fig. 8.2). This computation can be done by a BLIS

gemm micro-kernel (see Chapter 3, Section 3.2 (page 23)),

and setting the panel column-stride (cs) of Ap to Mwg and the panel row-stride (rs)

of Bp to Nwg, instead of respectively mr and nr as defined in BLIS. 3 The MPPA ISA

provides a streaming-load instruction which performs prefetching from the scratchpad

memory into registers, bypassing the cache L1. Using this prefetch instruction allows

another finer-granularity overlapping level: in-core computation and register-scratchpad

communication, versus the DDR-scratchpad overlapping described in the previous sec-

tion. Combining these two overlapping schemes enables parallel and highly efficient GEMM

computation on a DMA-based, cache-free architecture like MPPA. Implementation of

the corresponding micro-kernel is summarized in Algorithm 6.

8.3 GEMM in OpenCL Data-Parallel

In OpenCL, blocks Ci are distributed onto work-groups. Each work-group computes one

block Ci. Since GEMM is inherently parallel and a work-group is mapped on one PE on

MPPA2, we set the local work-group size to 1×1 and global work-items count to 256×1,

so that there are exactly 256 work-groups scheduled on 256 PEs during execution. The

asynchronous GEMM pipeline on each work-group will operate the longest path, necessary

to amortize the sequential cost of prolog and epilog.

3In BLIS, a packing step is carried out on Ap and Bp to pack these panels into other temporary
contiguous ones (Ã and B̃). These packed panels reduce the memory spatial distance between each
rank-1 update (as small as mr and nr), thus improve cache and TLB performance.
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Algorithm 6 BLIS gemm micro-kernel on MPPA2 with in-core computation and reg-
ister prefetching.

1: /* Prolog */
2: Prefetch first column Ap [0*cs] → registers Ar[mr ]
3: Prefetch first row Bp [0*rs] → registers Br[nr ]
4: Set registers acc[mr ][nr ] to zero
5:

6: /* kc-loop */
7: for k in 0 ... kc − 2 do
8: Prefetch (k +1)-th column Ap [(k +1)*cs] → registers A′r[mr ]
9: Prefetch (k +1)-th row Bp [(k +1)*rs] → registers B′r[nr ]

10: acc[mr ][nr ] += Ar[mr ] × Br[nr ] // mr × nr FMAs
11: Ar ← A′r
12: Br ← B′r
13: end for
14:

15: /* Epilog */
16: acc[mr ][nr ] += Ar[mr ] × Br[nr ] // mr × nr FMAs
17:

18: /* alpha-beta post-processing */
19: if (beta != zero) then
20: Load Ci [mr ][nr ] → registers Cr [mr ][nr ]
21: Cr [mr ][nr ] *= beta
22: else
23: Set registers Cr [mr ][nr ] to zero
24: end if
25: acc[mr ][nr ] = alpha × acc[mr ][nr ] + Cr [mr ][nr ] // mr × nr FMAs
26: Store acc[mr ][nr ] to Ci [mr ][nr ] scratchpad

In the Kalray OpenCL data-parallel mode, an independent compute-unit (work-group)

possesses a maximal scratchpad of 64 KB ( local memory). We note that according

to the OpenCL definition, scheduling of work-groups and their execution binding is

controlled by the OpenCL runtime. It is not possible to synchronize work-groups or

explicitly bind them on the same cluster to somehow build up and share a larger common

local memory. Compared to the POSIX programming model, in which a compute-unit

is mapped on a cluster with 1.5 MB of scratchpad memory (see Chapter 4, Section 4.2.1

(page 29)), the OpenCL data-parallel mode has much less local memory available per

compute-unit for DMA transfers. The same overlapping algorithm was ported from

POSIX-C to OpenCL-C without any difficulty. However, blocksizes are reduced to Mwg

= Nwg = 64, Kwg = 48 for FP32, and Mwg = Nwg = Kwg for FP64, due to the local

memory constraint. Since the performance of the tiled algorithm relies strongly on the

blocksize of the fast memory layer (see Chapter 3, Section 3.1.2.2 (page 22)), this memory

constraint would suffer I/O bottleneck and deliver lower performance than the POSIX-

C programming model. The BLIS micro-kernel was not usable either, since linking an
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assembly code or a user-compiled object to an OpenCL kernel was not supported at the

time of our work.

Regarding the two- and three-dimensional asynchronous copy functions, we implement a

set of extended asynchronous primitives of the ones defined in the OpenCL specification.

They are: (1) a general-strided copy function which supports remote and local strides,

respectively in global and local memory (the original one does not support stride on

local memory), (2) 2D asynchronous copy and (3) 3D asynchronous copy. These two

later primitives are mapped one-to-one over the underlying 2D and 3D ones from the

mppa-async library. Similarly, these new OpenCL primitives facilitate the writing of

the GEMM-async algorithm in OpenCL.

8.4 GEMM in OpenCL POSIX-like (Task-Parallel)

In the above section, we have identified the two following performance limitations of

GEMM-async in OpenCL data-parallel, compared to the POSIX-C model:

• Small scratchpad memory per compute-unit. This execution and memory mapping

reduces DMA blocksizes, results to I/O bound and performance loss.

• Lack of support for assembly code or pre-compiled objects. A carefully hand-

tuned BLIS micro-kernel could deliver higher efficiency than the built-in OpenCL

compiler, especially on the MPPA VLIW architecture.

Figure 8.3: OpenCL POSIX-like:
motivation.

We propose in this section a proof-of-concept of an

extension to the current OpenCL environment, so-

called OpenCL POSIX-like or Task-Parallel. This

extension combines (1) the execution and large

scratchpad memory mapping of the POSIX model,

with (2) the deployment facility and expressibility

of the OpenCL API, in order to produce a high per-

formance and portable GEMM code on DMA-based

many-core architectures.

8.4.1 Execution and memory mapping

In the POSIX-like mode, an OpenCL work-group is mapped on one compute cluster

(CC) and operates 1024 KB of local memory. When a work-group is scheduled, its

kernel is booted on the PE0 of the associated CC. The kernel, running on the PE0, then
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relies on the Pthreads API to spawn the remaining 15 PEs on the CC and share the

common scratchpad for co-working (see Fig. 8.4). This large shared memory reduces data

redundancy (replication of Ai, Bi and Ci), thus notably increases the tiling blocksize.

Figure 8.4: OpenCL POSIX-like: execution and memory (also known as OpenCL
Task-Parallel).

From the ease-of-coding point of view, the OpenCL POSIX-like mode can be considered

as an alternative deployment runtime to the POSIX programming model. The OpenCL

kernel, once booted on the PE0, is identical to a main function in the POSIX-C model.

Developers no longer need to take care of writing compilation Makefile, nor launching

scripts from the host processor onto the MPPA processor. Instead, they can directly

provide a kernel wrapper to the OpenCL program and get it compiled and linked to an

optimized object or library implementing the crucial part of performance (BLIS micro-

kernel). The executable is then sent, scheduled and started on the MPPA (operations

that are considered as non-productive work) by the OpenCL driver. The on-site run-

time only need to provide essential features of the libc, such as malloc/free, printf

and pthread *, as well as access to some vendor low-level tools like the mppa-async

communication library or profiling APIs, for the kernel to be fully operational.

8.4.2 Integration of object code or library

For on-the-flight linking of the kernel wrapper and the pre-compiled object or library, the

OpenCL API defines the clLinkProgram() function that performs the same action. The

linking process within a regular OpenCL program is depicted in Fig. 8.5. We combine the

handle of an object code given by the clCreateProgramWithBinary() with one from the

sequence of clCreateProgramWithSource() and clCompileProgram(). This produces
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two OpenCL cl program’s which are not self-standing. By performing a linking step

with clLinkProgram(), the two binaries merge in a common and self-sufficient program,

ready to be used to create an OpenCL cl kernel for the device.

Figure 8.5: clLinkProgram(): linking a user-compiled object to an OpenCL kernel.

This procedure is similar to the traditional compiling and linking process of a regular

C program. In fact, it follows the same principles under the hood (compile, link, run),

but translated into function calls of a portable programming API. With this OpenCL

POSIX-like extension, the C code of GEMM-async and the BLIS micro-kernel were

almost entirely reused to compile a custom binary object. The OpenCL kernel wrapper

is implemented as a simple call to the custom C function (with the BLIS micro-kernel

inside). The host program is rewritten to use the clLinkProgram() function. The

adaptation cost of GEMM-async from the OpenCL data-parallel to this new mode was

not more than 100 lines of code.

8.5 Results

The three GEMM-async implementations are run on the MPPA2-256 processor oper-

ating at clock frequency of 400 MHz and DDR3 of 1066 MHz. At that frequency, the

peak GEMM performance is 400 GFLOPS in FP32 and 200 GFLOPS in FP64. In this

work, we present only performance of the FP32 precision to be in pace with an existing

Kalray implementation of SGEMM, based on the name of another communication library
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MPPAIPC, considered as the baseline of our comparisons. The POSIX-C code is run in

two configurations: (1) single-DDR with the three matrices A and B and C on one DDR,

and (2) double-DRR with the matrices A and C on the DDR North and the matrix B

on the DDR South. This configuration provides twice more DDR bandwidth to the

A-B streaming algorithm. The OpenCL runtime presently enables the use of only one

DDR for global memory, either in data-parallel or task-parallel mode. In the OpenCL

task-parallel mode, we link the kernel to two BLIS micro-kernels, one using normal load

through the L1 cache and one using streaming-load to prefetch data into registers. The

both BLIS micro-kernels are written in assembly and compiled by gcc.

Table 8.1: GEMM-async performance on MPPA2-256, FP32, frequency 400 MHz.

MPPAIPC POSIX POSIX OpenCL OpenCL

(baseline) Data-Parallel Task-Parallel

Matrix size 4096 × 4096 4096 × 4096 4096 × 4096 4096 × 4096 4096 × 4096

Compiler gcc (-O3) gcc (-O3) gcc (-O3) clang (-O3) clang + gcc

#DDR 2 1 2 1 1

Local memory 1.5 MiB 1.5 MiB 1.5 MiB 64 KiB 1024 KiB

C standard N/A 75 GFLOPS 76 GFLOPS 65 GFLOPS N/A

Assembly: ffmawp, 200 GFLOPS 227 GFLOPS 228 GFLOPS N/A 192 GFLOPS

cached-load

Assembly: ffmawp, N/A 290 GFLOPS 350 GFLOPS N/A 207 GFLOPS

streaming-load

Tab. 8.1 summarizes GEMM performance in various programming models and configu-

rations on the MPPA2 many-core processor. We highlight the Rmax performance of

350 GFLOPS, (corresponding to 87% of Rpeak) of the double-DDR POSIX-C implemen-

tation, combined with the BLIS micro-kernel that asynchronously reads data to registers

by streaming-load and performs the 64-bit vectorized ffmawp instruction, the most in-

tensive in the MPPA2 VLIW ISA. It yields 1.75x speedup over the baseline score of

MPPAIPC, and 1.2x over the single-DDR POSIX-C configuration.

The OpenCL data-parallel mode delivers 65 GFLOPS, due to the blocksize constraint

as discussed in section 8.3. The OpenCL POSIX-like extension, with a large common

scratchpad memory and capability of linking to a pre-compiled code, yields 207 GFLOPS

which is three times better than the data-parallel mode and getting closer to the POSIX-

C performance. Note that the current extension does not expose the same hardware

resources as the POSIX-C model (one DDR versus two DDRs, 1024 KiB versus 1.5 MiB

of local memory). An identical configuration will allows our OpenCL extension to reach

the same GEMM performance of the POSIX model.
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8.6 Conclusions

In this chapter, we introduce a set of GEMM implementations over existing programming

models, as well as new proposed extensions on the MPPA2 processor. The best perfor-

mance is obtained on the POSIX-C model with large development efforts (≈ 4000 lines of

code). The default OpenCL data-parallel mode, despite reducing the programming cost,

encounters the scratchpad memory limitation due to the execution mapping. The new

OpenCL POSIX-like extension combines assets of each one of the two above models and

provides an elegant and high performance programming mode for the MPPA2 processor.

Within a reduced development cost of about 2500 lines of code, the OpenCL POSIX-like

yields a performance three times higher than the OpenCL data-parallel mode and 59%

compared to the POSIX-C one, with rooms for improvement by using two DDRs and

the largest local memory space.

Nevertheless, those implementations are only for benchmark and study purpose. They

are not usable in system-wide software applications or production frameworks which, for

the sake of portability, commonly invoke only standard APIs and libraries. For instance,

convolution algorithms in deep learning or simulation solvers in physics, biology and

chemistry frequently bind their compute kernels on dense and sparse linear algebra

operations. Providing an optimized sparse and dense BLAS library has always been a

decisive condition to any processor architecture. However, achieving that task is not

always manageable.



Chapter 9

Portable and Optimized BLAS

Library on Many-core Processors

...I would be panicked if I were in industry. Now I’m forced into an

approach that I haven’t laid the groundwork for, it requires a lot more

software leverage ..., and the microprocessor manufacturers don’t control

the software business.

– John L. Hennessy, Stanford University.
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9.1 Introduction

Besides traditional CPU and GPU platforms, recent initiatives and strategies for energy-

efficient HPC [92] [93] also look at low-power system-on-chip (SoC) processors as the

building blocks. These SoC processors integrate a reduced instruction set CPU acceler-

ated with a high number of in-order DSP, VLIW or vector cores operating on scratchpad

memories. To strip off power-consuming sources, accelerator cores do not implement out-

of-order execution, hardware prefetcher, or globally coherent caches. Applications are

expected to focus on local memory to overcome the high latency of the main memory

and to leverage Direct Memory Access (DMA) engines to overlap communication and

computation. Integrating DMA capabilities into a BLAS library represents a design

and development challenge. This combines all the complexity of the BLAS library de-

velopment, known to be elaborate, expertise-requiring and time-consuming, with the

asynchronous aspects of DMA transfers, the multiplicity of memory spaces and the high

execution concurrency. Failure to design a portable DMA-based BLAS will result in

repeating the same time-consuming process on each new architecture. Our key contri-

butions are as follows:

1. Asynchronous implementation of the level-3 BLAS in the BLIS framework as a flexible

and fully-compatible module to leverage DMA capabilities on embedded platforms

with minimal and deterministic memory footprint. 1

2. Definition of a generic and user-friendly DMA back-end interface of six functions,

inspired by the classic asynchronous one-sided put/get RDMA operations for inter-

connection networks, firstly proposed in the SHMEM paradigm [94]. The purpose

of the back-end interface is to unify low-level communication libraries from different

platforms and to provide a coherent mapping of BLIS primitives on any DMA-based

architecture. Contributed code is released under the same BSD license as BLIS.2

3. Validation of the principles on the Kalray MPPA2-256 many-core processor, with

mapping of the back-end DMA interface over the Kalray DMA library as an evidence

of portability. The implementation delivers 75% of peak performance on a single-core

execution with a memory footprint of 480 KB.

4. Implementation of a reference DMA back-end with the memcpy function and Pthreads.

This reference implementation passed out of the box the BLIS test suite 3 on CPU

as another evidence of portability and correctness.

1We refer to memory footprint as the scratchpad memory space needed for DMA and packing buffers.
This footprint depends on the block size parameters, the overlapping scheme of each matrix as well as
the parallelization of different loops. These aspects will be discussed later in the chapter.

2https://github.com/hominhquan/blis/tree/rdma
3https://travis-ci.org/hominhquan/blis

https://github.com/hominhquan/blis/tree/rdma
https://travis-ci.org/hominhquan/blis
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The remainder of this chapter is structured as follows. Section 9.2 presents some related

work about using DMA transfers to optimize BLAS on different architectures. Sec-

tion 9.3 introduces a design of a portable DMA back-end for the BLIS framework, and

motivates the key technical decisions which respect to embedded memory constraints.

Section 9.4 shows obtained performance on the Kalray MPPA2-256 processor with de-

tailed observation and explanation of the results. We conclude and outline future work

in Section 9.5.

9.2 Related work

Exploiting DMA transfers has been the primary option when developing applications on

Digital Signal Processors (DSP), Field Programmable Gate Array (FPGA) and other

accelerator architectures fitted with local memories. Early works on developing DLA

library were presented for FPGA [95], DSP [96] and the CELL processor [97] [98]. Lin

et al. [99] optimized the DGEMM operation on the Sunway many-core architecture. They

achieved 88.7% peak efficiency by combining both asynchronous DMA between different

memories and asynchronous RLC (Register-Level Communication) between cores within

the same group. Tasende [100] introduced a BLIS-instantiated Epiphany-accelerated

SGEMM on the Parallela board, by offloading the micro-panel computation from the host

processor to the Epiphany co-processor and overlapping the host-device communication.

Each of these works comes with specific solutions suited to the architecture in terms of

hardware topology, DMA characteristics and memory alignment, but the fundamental

technique remains the same. While the main idea has always been using DMA engines

to overlap communication and computation by streaming matrix sub-blocks to the local

memory, the question of generalizing algorithms to a software API and a hardware

abstraction layer is seldom brought up and tackled.

Previous and comparable works to this chapter were on implementing the level-3 BLAS

with DMA capabilities on Texas Instruments DSP by Igual et al. [96] and Ali et

al. [101]. Later on, these techniques were applied on the BLIS framework [102] [103]

and released within the MCSDK HPC toolchain [104]. Likewise, Szydzik et al. [105]

presented a level-3 BLIS port with DMA transfers on the Movidius Myriad, a cutting-

edge low-power processor for computer vision, that appears quite similar to previous

work on TI DSP.

The aforementioned works illustrate the costly but fundamental need of providing an op-

timized BLAS library on novel and low-power many-core architectures. They leverage

efficient DMA asynchronous communication between large (external, slow) and small
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(on-chip, fast) memories, which matches our first objective. However, the second ob-

jective of having a generic and portable DMA support for a BLAS library (e.g. BLIS

framework) is not satisfied. Despite the fact that the TI’s MCSDK HPC source code

is public, development was done specifically for the C66x DSP without an abstraction

layer. To the best of our knowledge, source code of the work on the Myriad architecture

has not been released nor made open-source, as of today. None of other works proposes

an open-source solution generic enough to be reused on another architecture. Finally,

BLIS has been actively evolving since the last two years with significant changes and

simplification in order to reach its current excellent maintainability. This provides an

ideal opportunity for the design of a generic and portable DMA support in BLIS, so

that developers of a new DMA-based architecture can quickly port a highly-optimized

BLIS on their platform with minimal efforts.

9.3 Portable DMA support for level-3 BLIS

9.3.1 Algorithm overview

To reduce the communication cost, DMA-based architectures feature one or several local

memories close to computing cores. Each Synergistic Processing Elements (SPE) core

of the IBM CELL platform possesses 256 KB of Local Store (LS) memory [98]. The TI

KeyStone-II processor embeds 6 MB of Multicore Shared Memory (MSM) [101] between

eight DSP cores and the host processor. The Movidius Myriad-2 processor implements

2 MB of shared Connection MatriX (CMX) memory between twelve SHAVE cores [105].

On the Kalray MPPA2-256 processor, there are 32 MB of Local Memory distributed

across sixteen compute-clusters [31]. In the remainder of this chapter, we will refer to

these local memories in general as scratchpad memory (SMEM). A scratchpad memory

is defined as a user-allocatable and DMA-accessible memory space, close to the cores in

the memory hierarchy and thus accessible at lower latency and higher bandwidth than

global memory.

On a specific architecture, the scratchpad memory may reside in L1/L2/L3 locked cache

partitions (if accessible to DMA) or in a physically distinct memory region. It should

be mentioned that in the case of the TI DSP, different cache levels can be configured

as multiple levels of SMEM. However, at the present work, we consider only one level

of SMEM. The main reason to that is that we do not know of any other hardware in

the market with memory characteristics similar to the TI DSP. Another reason is that

supporting multi-level SMEMs would add considerable complexity in the BLIS-RDMA
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control trees [48], which we strive to keep as simple as possible in the first instance, in

order to be used as a reference point for any further platform-specific customization.

Fig. 9.1b depicts the global vision of the DMA support and how it is integrated into

the layered design of the cache-based version (Fig. 9.1a) of BLIS. The three matrices A,

B and C are partitioned and traversed through five loops around a micro-kernel, itself

is a rank-k update constituting the sixth loop. Sub-partitions of A, B and C, before

being used for computation by cores, are continuously streamed by DMA from the main

memory to the SMEM. Level-3 in BLIS is currently built on top of GEMM (and TRSM)

following approaches proposed in [43]. Algorithm of each of these two routines is im-

plemented as a control tree following the block-panel-based loop organization described

in [106]. In order to develop a comprehensive DMA support with as few modification as

possible, we re-apply the block-panel-based algorithm by instantiating two new DMA

control trees for GEMM and TRSM respectively.

Pseudo-code to integrate DMA transfers into the control tree is summarized in Fig. 9.2,

where code modifications for the DMA extension are highlighted using colored text.

Sub-partitions of A, B and C are copied by DMA from the main memory into SMEM

DMA buffers, then packed in situ in an appropriate contiguous memory layout [44] (Ã

and B̃). Packing facilities are used unchanged. Computation is then performed on these

SMEM packed buffers Ã, B̃ and Cdma. Cdma is then copied back to the main memory

as described in Fig. 9.2. In GEMM, as matrices A and B are read-only, double-buffering

is used for copying blocks/panels of A and B into SMEM. Matrix C, which is used

for both input and output, is traversed under a triple-buffering scheme: one buffer in

computation, one buffer in prefetch (get) and one buffer in writing back (put).

9.3.2 Memory management

Control trees of BLIS-RDMA require SMEM dynamic allocation to perform on-demand

asynchronous copies between the main memory and the SMEM. Conveniently, BLIS

comes with a memory broker managing a pool of memory blocks, mainly used for the

packing process. However, those blocks are often inflated to match some given algorithms

or a pre-defined alignment that are needed by the underlying macro- and micro-kernel.

As the DMA copy occurs before the packing and does not interface directly with either

macro- or micro-kernel (see Fig. 9.1b), the DMA buffer can be allocated as a dense and

contiguous block in order to reduce the SMEM footprint. We thus added the ability

of using a scratchpad allocator into BLIS-RDMA so that the control trees can allocate

exactly the needed amount of SMEM for DMA transfers. This allocator is mapped on

malloc by default and can be re-defined by user. Recent architectures tend to embed
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Figure 9.1: Cache-based and DMA-based layer design of BLIS. Image used and
modified with permission.

for jc in 0, ..., n− 1 steps nc
DMA block kc × nc from B[0][jc]→ Bdma

for pc in 0, ..., k − 1 steps kc
DMA next block kc × nc from B[pc + kc][jc]→ B′

dma

Wait Bdma and pack Bdma to B̃
DMA block mc × kc from A[0][pc]→ Adma

DMA block mc × nc from C[0][jc]→ Cdma

for ic in 0, ...,m− 1 steps mc

DMA next block mc × kc from A[ic +mc][pc]→ A′
dma

Wait Adma and pack Adma to Ã
DMA next block mc × nc from C[ic +mc][jc]→ C ′

dma

Wait Cdma

for jr in 0, ...,nc −1 steps nr // Macro-kernel
for ir in 0, ...,mc −1 steps mr

// mr × nr rank-kc micro-kernel :

gemm ukr(Ã [ir][0], B̃ [0][jr], Cdma [ir][jr], ...)

end for
end for

DMA block mc × nc Cdma back to main memory
end for

end for
end for

Figure 9.2: Pseudo-code of BLIS-RDMA through the five layers. Green is used for
matrix B. Blue is used for matrix A. Red is used for matrix C. Swap of
Adma/Bdma/Cdma buffers within each iteration is not presented here.



Portable and Optimized BLAS Library on Many-core Processors 101

fast on-chip memory with a dedicated allocator, such as the MCDRAM on Intel KNL

and the hbwmalloc library [65], which match our requirement of having a dedicated

SMEM allocator.

By instantiating control trees from the default ones, BLIS-RDMA inherits the same

multi-threading mechanism as was enabled in the cache-based version, through five

thread-count variables (e.g. BLIS JC NT, BLIS IC NT and so on) corresponding to the

five loops around the micro-kernel (see Fig. 9.2). Upon available SMEM capacity, one

can enable or disable multi-threading in some or a specific layer to fit the hardware

constraints. For instance, setting BLIS JC NT = 2 will trigger two simultaneous DMA

control flows in the outermost jc loop and double the SMEM footprint when each DMA

flow is traversing the four underlying loops. A good parallelization scheme of BLIS-

RDMA on embedded platforms would be to enable multi-threading in the inner loops

to expose data-sharing. Typically, threads within the ic loop will share the same Bdma

panels (hence same B̃). More deeply, threads in the jr loop will share both Bdma and

Adma (hence same B̃ and Ã respectively) as well as the Cdma blocks.

Detailed memory footprint calculation of a top-down single-threaded DMA flow is given

in Tab. 9.1. To take into account per-loop parallelization, let fi and ti denote respec-

tively the unitary memory footprint and the thread count (BLIS * NT) of the i-th loop.

The total memory footprint F of a DMA control tree is determined by the following

expression:

F = t5(f5 + t4(f4 + t3(f3 + t2(f2 + t1f1)))) + fc (9.1)

We note fc the footprint of BLIS internal data and control trees (≤ 80 KiB) and take

them in account in the calculation as these structures may be allocated in the SMEM for

the execution performance as well. They are used only by the control code and are not

duplicated like other user buffers (DMA, packing). The current DMA implementation

has f5, f2 and f1 equal to zero. There is further possibility to implement fine-grained

multi-level SMEMs by enabling the f2 and f1 footprints to fit the L2 and L1 cache for

instance. Regarding f5, a simple multi-threading via the BLIS JC NT variable would be

enough to enable coarse-grained parallelization.

9.3.3 Asynchronous DMA back-end interface

We present in this section a new back-end interface providing DMA support to perform

asynchronous copy operations. The main idea behind this interface is inspired from the

abstract design of BLIS, enabling the use of assembly-tuned micro-kernels written for a

given architecture in order to reach near-peak performance. Likewise, Fig. 9.4 introduces

a vendor-defined data structure and six functions of the back-end DMA interface. The
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Table 9.1: Single-threaded level-3 BLIS-RDMA SMEM footprint calculation.

Layer
SMEM footprint

Description
(floating-point numbers, except fc)

Control code (fc) ≤ 80 KiB Internal data & control trees

5th loop (f5) 0 Outermost nc partitioning

4th loop (f4)
2× kc × nc Bdma double-buffering

< (kc + mr) × nc B̃ with mr-zero-padding

3rd loop (f3)

2× mc × kc Adma double-buffering

< mc × (kc + nr) Ã with nr-zero-padding

3× mc × nc Cdma triple-buffering

2nd loop (f2) 0 Macro-kernel

1st loop (f1) 0 Macro-kernel (cont.)

Total 3× ((kc × nc) + (mc × kc) + (mc × nc)) +

(upper bound) (mr × nc) + (mc × nr) + 80 KiB

dma event t datatype is defined as a data structure passed to the underlying platform-

specific primitives to perform asynchronous transfers (get/put) and data synchroniza-

tion (wait). The bli dma backend init() and bli dma backend finalize() func-

tions, respectively called within the default functions bli init() and bli finalize(),

are for general purpose which leaves room for setting up any DMA-related hardware

resources at the beginning, as well as de-allocating them at the end of execution. De-

pending on the architecture, they may contain specific initializations or just be left

empty.
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Figure 9.3: Illustration of a generic 2D copy. The receiving local buffer (right hand
side) must be equal to (or can be larger than) the extent block (Adma or Bdma).

The bli dma backend get2D() and bli dma backend put2D() are the two most im-

portant functions in the back-end interface. They respectively perform asynchronous

copy of 2D blocks corresponding to matrix sub-partitions from the main memory to the

SMEM and vice-versa. Their arguments provide the information necessary to describe

a generic 2D copy and the pointer to an event parameter. Any put/get function is sup-

posed to return immediately and data are transfered in the background by the hardware
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1 typedef struct point2d_s {

2 int xpos , ypos , xdim , ydim;

3 } point2d_t;

4

5 typedef <vendor_dma_event_t > dma_event_t;

6

7 void bli_dma_backend_init(void);

8 void bli_dma_backend_finalize(void);

9 void bli_dma_backend_get2D(

10 const void* global , void* local ,

11 point2d_t* global_point , point2d_t* local_point ,

12 size_t elem_size , int width , int height , dma_event_t *event);

13

14 void bli_dma_backend_put2D(

15 const void* local , void* global ,

16 point2d_t* global_point , point2d_t* local_point ,

17 size_t elem_size , int width , int height , dma_event_t *event);

18

19 void bli_dma_backend_event_wait(dma_event_t *event);

20 int bli_dma_backend_addr_in_global_mem(const void* addr);

Figure 9.4: BLIS-RDMA back-end interface, to be implemented by the hardware
vendor in order to provide the generic 2D copy described in Fig. 9.3. The dimension

of the src (global) and dst (local) 2D buffer (xdim, ydim), the dimension of the extent
block (width, height, element size) and its localization (xpos, ypos) within both src

and dst buffer. The position offset, from which data is read/written, is then
calculated from the start address of each src and dst 2D buffer.

DMA engines. Each transfer is registered as an event on which computing threads (or

rather the master thread) can later come back and wait for completion, by calling the

bli dma backend event wait() function. For further details on these data structures,

reader is invited to refer to previous works by Ho et al.[3] and Hascoët et al.[2].

The last function, bli dma backend addr in global mem() is not used yet and is left

for future development. The purpose of this boolean function is to detect if a matrix

or a sub-partition has already been allocated in the SMEM, or conversely in the main

memory, so that the control tree can decide whether to trigger the DMA transfer or

leave the buffer as-is. For example, one can imagine that the matrix C, for any reason

(size, latency or reusability), has been allocated directly into the SMEM by the user,

who later calls the GEMM operation between this C and two large matrices A and B from

the main memory. In such case, BLIS-RDMA should work on and update the instance

of C resident in SMEM and only trigger DMA transfers on A and B.

Once the dma event t datatype and the back-end interface is mapped and implemented

over the platform-specific DMA library, the BLIS-RDMA control trees will then appro-

priately perform asynchronous copies to overlap data transfer to computation by calling

the back-end functions. This shows the advantage of the BLIS-RDMA interface in terms
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of portability and code-reuse. Developers of an existing or a new DMA-based architec-

ture only need to declare the scratchpad allocator, implement the six functions on top

of their DMA library with usually as few as 100 lines of code (see Appendix A.2 and

Appendix A.1), plug them into BLIS in the same way as the micro-kernels and finally

obtain a highly-optimized BLIS-RDMA with communication-computation overlapping.

9.3.4 Special cases handling

We discuss in this section the technical solutions that were implemented in BLIS-RDMA

in order to comply with the limited local memory available on DMA-based platforms.

These restrictions may or may not apply on other (conventional) architectures where

hardware resource is less critical. In any case, these operations can be disabled in the

source code.

For TRMM (Triangular matrix multiply) and TRSM (Triangular equation system solving)

operations, the long dimension of the micro-panel (kc) is, if necessary, rounded up to

be multiple of mr or nr (upon sidea) [48] so that the packing facility can manage edge

cases by zero-padding.4 Despite the fact that only a few elements are added to the DMA

panel, this slightly increased kc size can exceed the available SMEM space reserved to

the library, which will likely fail at execution. In BLIS-RDMA, kc will be rounded down

to the lower nearest multiple of mr (or nr), instead of the upper nearest value. As mr

and nr are often small (4, 8 and less than 32) and kc is in the order of hundreds, this

rounding-down mostly does not affect the global performance.

For SYMM (Symmetric matrix multiply) operations, let us denote A the symmetric ma-

trix and consider the left-side lower-part non-transpose case with kc larger than mc as

shown in Fig. 9.5. The packing process of a diagonal-intersected panel must perform a

symmetrization - a mirror-copy of the lower part and symmetrically write to the upper

part of the panel so that the gemm micro-kernel can be reused for computation. Since

the SMEM address space is different from the main memory and the DMA panel of size

mc × kc is physically detached and copied from the main memory to the SMEM, the

packing routine will try to read data from an invalid region outside the DMA panel (the

gray part in Fig. 9.5), which will probably cause a segmentation fault. There are three

options to manage this case: (1) virtually increase the mc dimension of the DMA panel

to be equal to kc (without changing the real mc step parameter) to cover the gray missing

4Edge case occurs when a panel intersects the diagonal and thus is divided into two parts: a gemm-
like part which is computation-ready and a trmm- or trsm-like part in which a small triangle needs to
be zeroed out before the computation. The first part can be used as is as input of the gemm micro-
kernel. Whereas on the second part, it is preferable to have kc multiple of mr (or nr) so that the trailing
triangular sub-matrix is compatible with the trsm micro-kernel. The two parts can also be computed at
once by the fused gemmtrsm micro-kernel as well.
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region or (2) reduce kc to be equal to mc so that the symmetrization is totally covered

by the default panel, or (3) increase mc and reduce kc both at the same time to reach

a common value. The two first options involve either adding mc or subtracting kc by

abs(kc −mc), that we respectively call upper-squarization and lower-squarization. The

third option, which is a combination of the two first ones, is then called mid-squarization.

KC

MC

MR

abs(KC-MC)

DMA panel 

(MC x KC)

Missing data for 

symmetrization

Figure 9.5: Illustration of DMA panel extension requirement for symmetrization in
case of SYMM (left-side/lower/non-transpose A).

Upper-squarization, while ensuring the intended performance by keeping the same kc

block size, leads to excessive SMEM allocation that can quickly exceed the capacity of

the embedded hardware. On the contrary, lower-squarization results in under-utilization

of the reserved SMEM by lowering the default kc block size, hence is exposed to per-

formance degradation, especially on low-bandwidth memory systems. Mid-squarization,

despite being more complex to implement, appears to be the most relevant option as

it can yield acceptable performance while being reasonable in memory consumption,

by maintaining a trade-off between computation and memory footprint. In the current

state of our work, lower-squarization is employed for the sake of simplicity and proof of

concept, and affects only the performance of SYMM. Implementing the mid-squarization

is part of our roadmap.

9.4 Experimental results

9.4.1 Hardware configuration

We use the Kalray MPPA2-256 many-core processor as the target platform to validate

our development. The cluster local memory of 2 MB is equivalent to the SMEM in BLIS-

RDMA terminology. Multi-threading within a cluster is enabled using Pthreads. Default

clock frequency of cores is set to 500 MHz with the peak performance of 2 GFLOPS/-

core in SGEMM and 1 GFLOPS/core in DGEMM. The DDR3 main memory is configured at
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1333 MHz with a theoretical bandwidth of 10.4 GB/s. For the time being, BLIS-RDMA

is run on a single compute cluster and multi-threaded over eight cores. The eight remain-

ing cores are not used, due to local memory capacity constraints, and will be enabled

for BLIS when a planned more memory-efficient software code cache is released.

The back-end DMA interface is implemented on top of the MPPA2 asynchronous library

in less than 70 lines of code (see Appendix A.2). In order to maximize data-sharing and

minimize SMEM footprint, multi-threading is enabled only in the jr loop by setting

the BLIS JR NT environment variable to the thread count. This is considered as the

most modest mode in BLIS-RDMA, as all threads share the same Adma, Bdma, Ã,

B̃ and Cdma buffers. Blocksize parameters mc, nc, kc and register block size mr, nr

used on MPPA2 are given in Tab. 9.2, on which we also calculate the SMEM footprint

for compilation. This estimated SMEM footprint is calculated from formulas given in

Tab. 9.1 and Eq. 9.1. This size bounds closely the real execution footprint, without the

need of beforehand iterative run. Micro-kernels of gemm in single and double precision

are written in the MPPA2 VLIW assembly language to maximize flops count, which we

estimate to reach 97% efficiency. The fused gemmtrsm micro-kernels are combined from

gemm micro-kernels and reference C99 trsm ones.

In the current state of work, the level-3 BLAS is run only in single and double precision on

the MPPA2 processor, hence without c and z operations and Hermitian routines. With

on-going software developments, we expect to be able to run the full BLIS testsuite

on the MPPA2 processor in a near future. In the meantime, BLIS-RDMA has already

passed the testsuite on CPU with the back-end DMA interface emulated by memcpy

and Pthreads, which we believe to be a pertinent cross-validation. Comparing to the

cache-based implementation on MPPA2, the DMA-based approach delivers between 5×
to 10× speedup on small matrices (≤ 512). On larger matrices, the cache-based solution

suffers severe performance degradation (up to 1000× slowdown), due to the increasing

overhead of matrix-packing, caused by large strided-accesses and cache-thrashing on the

software cache.

Table 9.2: Level-3 BLIS-RDMA configuration on MPPA2-256 for a well balance be-
tween performance and scratchpad.

mc nc kc mr nr SMEM footprint

SGEMM 64 128 130 4 8 480 KiB

DGEMM 48 64 130 4 4 480 KiB

Level-3 BLAS 480 KiB

Computation results from the MPPA2 processor are checked for correctness against

the OpenBLAS library on an x86 CPU. Every figure in this section is drawn with the

top border line representing the theoretical peak performance of the target routine (e.g
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SGEMM or DGEMM, multi-threaded or not). Any figure in which both SGEMM and DGEMM

is presented will have the top border equal to the SGEMM peak and another lower line

precising the DGEMM peak.

9.4.2 Multi-core level-3 BLAS

Fig. 9.6 reports the performance of level-3 BLAS on a single MPPA2 compute cluster

with different core counts. As can be seen from Fig. 9.6a, most single-core operations

(except SYMM) obtain between 68% and 75% of peak in both single-precision (FP32)

and double-precision (FP64). The left-side lower-part non-transpose case for SYMM was

intentionally chosen in our benchmark to measure the performance loss of the lower-

squarization handling as previously discussed in section 9.3.4. Typically, single-core

SSYMM and DSYMM achieve respectively 61% and 58% of peak. This represents approxi-

mately 13 to 16% of performance degradation between SYMM compared to other level-3

routines. However, we note that this degradation also depends on the block size config-

uration. It is significant on the MPPA2 processor because the default kc is twice larger

than mc. Lower-squarization will thus divide the kc block size by two, hence double the

required data bandwidth as well as the DMA control-flow overhead, which explains the

performance loss on the MPPA2 processor. This leads to think that larger (and square)

block sizes will be less exposed (or even not at all) to this issue when they are large

enough to cross the memory bar of the system and pass to the compute-bound side.

Nevertheless, it is not seemingly the case for embedded platforms where local (on-chip)

memory is often the most constrained resource.

Multi-threaded performance using 4 cores and 8 cores is presented in Fig. 9.6b and

Fig. 9.6c. We observe that the efficiency decreases with increasing core count. We

identify the following factors to the multi-threaded performance:

• Small block size due to limited local memory capacity. This constraint not only

reduces the strong scalability of the parallelized jr loop, but also increases the I/O

cost.

• Local memory bank conflicts. Micro-kernels written in MPPA2 assembly language

employ a cache-bypass streaming load instruction between SMEM and core regis-

ters. This instruction delivers higher single-core throughput, but is sensitive to the

local memory bank conflicts (local memory is composed of 16 banks interleaved

every 64 bytes on the MPPA2 processor).
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• Barrier and DMA synchronization. Thread barriers incur a significant overhead

in multi-core context, especially in BLIS-RDMA where threads must synchronize

between each other and wait for termination of DMA transfers.
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Figure 9.6: Performance of multi-threaded level-3 BLAS on MPPA2-256, single
compute-cluster, 500MHz.

9.4.3 Multi-core xGEMM in different shapes

We present in this section performance of GEMM in single and double precision in three

matrix configurations: (1) square matrices (m = n = k), (2) various m = n and k =

kc and (3) various k with constant m = n. Each configuration is run with 1, 4 and

8 cores and performance is normalized in terms of GFLOPS/core. Satisfactory strong

scalability is achieved when the GFLOPS/core ratio does not depend from the number

of cores used. In general, the multi-threaded performance on MPPA tends to yield

lower GFLOPS/core ratio, for the reasons mentioned in the previous section. The only

possible improvement in our opinion is to increase the SMEM footprint to enlarge the

DMA panel block size, which is constrained by hardware limitations.

Performance efficiency and scalability of configuration (1) and (2) are reported in Fig. 9.7a-

9.7b and Fig. 9.7c-9.7d, in FP32 and FP64, respectively. We observe slightly higher and

more stable performance of the k = kc configuration compared to the square (m = n

= k) configuration. When k is not multiple of kc, the pc loop (4th loop around the

micro-kernel) must perform an extra iteration to process the trailing elements in the

k-direction. This implies an additional cost in re-triggering the DMA transfers and

overlapping mechanism in the inner loops to update a smaller number of elements. For-

tunately, this overhead can be compensated by the computational load in the case of

large k (Fig. 9.7a-9.7b).
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Figure 9.7: Scalability of multi-threaded xGEMM in different shapes on
MPPA2-256, single compute-cluster, 500MHz.
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In the case of small k however, as depicted in Fig. 9.7e-9.7f, when k is just slightly larger

than kc, the performance drops by 8% on the first kc slump (130) and by 3% on the

subsequent slumps (N×kc) This phenomenon, called divot, has been observed and cured

by Smith et al. [107] in the cache-based version of BLIS on the Xeon Phi processor,

by increasing the effective kc by a certain size at each kc-multiple point to create a

“bridge” passing over the divot value. Interestingly enough, contrarily to the previous

situation, this performance-throttling (or divot) on the MPPA2 processor cannot be

quickly recovered to its previous sustained performance, but rather climb slowly up

and re-reach the maximum performance exactly at the next kc-multiple point, and get

throttled down again (like a TCP congestion line). We believe this is a representative

case of the difference of overhead between a software DMA-based communication versus

a hardware cache-based implementation, where a cache-miss takes often less than 50

cycles, while a “DMA-miss” is in the order of thousands of cycles.

9.5 Conclusions

Pursuing the previous chapter work on optimizing blocked GEMM on DMA-based many-

core processor, in this chapter, we present BLIS-RDMA, a generic support for, not

limited to, the level-3 BLAS in the BLIS framework. We achieve three objectives: (1)

standard programmability by supporting the BLAS API, with (2) portability through

a back-end interface, and (3) computation performance in leveraging the cumbersome

DMA capabilities on an increasing range of embedded and non-conventional many-core

architectures. The work are demonstrated on the MPPA2 many-core processor with

satisfying performance (75% peak on single-core). The implementation, despite being

presently ported only on MPPA and CPU, is designed having in mind to support any

DMA-based architecture and to minimize the porting effort through a back-end interface

of six functions, aimed to be easily implemented by hardware vendors. We observe that,

even with a DMA engine that enables efficient overlap between communication and

computation, it is still hard to obtain near-peak performance on embedded platforms

that are constrained by the local memory capacity.



Conclusions

Home isn’t where you’re from, it’s where

you find light when all grows dark.

– Pierce Brown, Golden Son.
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A few steps back

In this thesis, we walk through memory-bound and compute-bound applications on

increasingly popular conventional and non-conventional many-core architectures. Main

contributions of this thesis are summarized as follows.

We first propose approaches for improving the data bottleneck of the 3D lattice Boltz-

mann method on many-cores processors by using scratchpad memory and asynchronous

DMA transfer. We achieve 33 % performance gain on the MPPA architecture by actively

streaming data from and to local memory, unlike in the passive OpenCL programming

model.

We then tackle the memory consumption of the LBM by proposing two novel algo-

rithms which require only one lattice array. The proposed algorithms are implemented

in OpenMP and OpenCL and offer more development facility than other algorithms

among the one-lattice class. Results show the adequacy of using our algorithms on a

large set of cores with a sophisticated cache and memory system, by obtaining the same

performance as the AA-pattern algorithm on the Xeon Phi Knights Landing processor,

and 1.5 times higher memory-efficiency than the state-of-the-art two-lattice algorithm.

We present a DMA-based matrix multiplication (GEMM) algorithm. We identify neces-

sary key features of DMA-based programming models to obtain high performance and

portability. We implement those approaches on MPPA in POSIX-C and OpenCL with

a hand-tuned optimized VLIW assembly kernel. We achieve up to 350 GFLOPS of

SGEMM (87 % peak performance).

We present BLIS-RDMA, a generic DMA support for the BLIS framework. BLIS-RDMA

enables high-performance BLAS computations on DMA-based many-core processors.

BLIS-RDMA proposes a deterministic data footprint model for a controlled scratchpad

allocation. BLIS-RDMA implements a portable asynchronous one-sided communication

interface which allows porting of highly optimized BLAS library on any DMA-based

architecture in less than 100 lines of code. Our implementation is validated on the

MPPA processor, delivering over 75 % peak performance within a memory footprint of

480 KB.

These contributions are built around and for the DMA capabilities of non-conventional

many-core processors in general, and the Kalray MPPA in particular. Providing a

coherent application mapping on hardware and partitioning the dataset onto parallel

compute-units with asynchronism and concurrency is the most challenging task.
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Perspectives

Next step in our work plan is porting and improving proposed LBM in-place propagation

algorithms with DMA engines to prefetch and copy wall data on the MPPA processor.

Extending them to a 2.5D approach and complex geometries is also a plausible direction.

Regarding BLIS-RDMA, we want to study the adaptation cost to run it on the whole

MPPA processor, as well as the portability on other DMA-based platforms or high-end

many-core processors. There will be implementation of the mid-squarization approach

for optimal SYMM performance, as well as integration of the DMA capabilities to the

lower (and easier) level-1 and level-2 in order to provide a full-blown BLIS-RDMA. We

also plan to support more elaborate control trees for multi-level SMEMs upon hardware

availability. We will also look at extending the DMA back-end to perform DMA-copy-

and-pack and remove the CPU-based packing step (at least for GEMM operation).

We believe future high performance systems will combine multiple computing architec-

tures. Applications (and their sub-modules), upon their arithmetic intensity range, will

be deployed and run on the most suitable or specific-designed architecture. Such a sys-

tem will be heterogeneous and non-uniform in terms of memory technology, computing

power and programming models. Abstraction layers and domain-specific frameworks are

important to end-users who are not familiar to the hardware system. All the complexity

is kept in the underlying level, where system developers will strive to deliver the highest

performance.

The energy-efficient design of embedded many-core architectures is attractive to theo-

retical HPC power budget, but in reality may sacrifice ease of programming and sustain-

ability of performance due to the reduced hardware feature set and memory constraints.

Opening minds to adopt new architectures, identifying their strength and weakness, de-

signing portable libraries and programming models are steps to be taken to keep the

HPC community moving forward. With this final message we conclude this thesis.





Appendix A

BLIS RDMA backend: reference

and MPPA implementation

Listing A.1: BLIS-RDMA backend: memcpy-based reference implementation.

1 #include "blis.h"
2

3 void bli_dma_backend_init_ref ()
4 {
5 // Empty
6 }
7

8 void bli_dma_backend_finalize_ref ()
9 {

10 // Empty
11 }
12

13 void bli_dma_backend_trigger_get2D_ref(
14 void* global , // begin address of global buffer
15 void* local , // begin address of local buffer
16 size_t size , // size of an element in byte
17 int width , // block width in element
18 int height , // block height in element
19 point2d_t *global_point , // global_point
20 point2d_t *local_point , // local_point
21 dma_event_t *event // DMA event. If NULL: blocking ,
22 // else return immediate and must later call
23 // wait() on this event
24 )
25 {
26 int i;
27 char* local_ptr = ((char*) local) +
28 ((( local_point ->ypos * local_point ->xdim) + local_point ->xpos) * size

);
29 char* global_ptr = ((char*) global) +
30 ((( global_point ->ypos * global_point ->xdim) + global_point ->xpos) *

size);
31

32 for(i = 0; i < height; i++)
33 {
34 memcpy(local_ptr , global_ptr , width*size);
35 local_ptr += (local_point ->xdim * size);
36 global_ptr += (global_point ->xdim * size);
37 }
38 }
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39

40 void bli_dma_backend_trigger_put2D_ref(
41 void* local , // begin address of local buffer
42 void* global , // begin address of global buffer
43 size_t size , // size of an element in byte
44 int width , // block width in element
45 int height , // block height in element
46 point2d_t *local_point , // local_point
47 point2d_t *global_point , // global_point
48 dma_event_t *event // DMA event. If NULL: blocking ,
49 // else return immediate and must later call
50 // wait() on this event
51 )
52 {
53 int i;
54 char* local_ptr = ((char*) local) +
55 ((( local_point ->ypos * local_point ->xdim) + local_point ->xpos) * size

);
56 char* global_ptr = ((char*) global) +
57 ((( global_point ->ypos * global_point ->xdim) + global_point ->xpos) *

size);
58

59 for(i = 0; i < height; i++)
60 {
61 memcpy(global_ptr , local_ptr , width*size);
62 local_ptr += (local_point ->xdim * size);
63 global_ptr += (global_point ->xdim * size);
64 }
65 }
66

67 void bli_dma_backend_event_wait_ref(dma_event_t *event)
68 {
69 // Nothing to wait here
70 }
71

72 int bli_dma_backend_addr_in_global_mem_ref(void* addr)
73 {
74 return 1;
75 }



Listing A.2: BLIS-RDMA backend: MPPA implementation.

1 #include "blis.h"
2

3 void bli_dma_backend_init ()
4 {
5 // Empty
6 }
7

8 void bli_dma_backend_finalize ()
9 {

10 // Empty
11 }
12

13 void bli_dma_backend_trigger_get2D(
14 void* global , // begin address of global buffer
15 void* local , // begin address of local buffer
16 size_t size , // size of an element in byte
17 int width , // block width in element
18 int height , // block height in element
19 point2d_t *global_point , // global_point
20 point2d_t *local_point , // local_point
21 dma_event_t *event // DMA event. If NULL: blocking ,
22 // else return immediate and must later call
23 // wait() on this event
24 )
25 {
26 mppa_async_sget_block2d(
27 (void*) local , // local
28 MPPA_ASYNC_DDR_0 , // NOTE : DDR0 hardcoded
29 (uintptr_t)global -( uintptr_t)&DDR_START , // offset
30 (size_t) size , // size
31 (int) width , // width
32 (int) height , // height
33 (const mppa_async_point2d_t *) local_point , // local_point
34 (const mppa_async_point2d_t *) global_point , // remote_point
35 (mppa_async_event_t *) event // event
36 );
37 mppa_async_event_setdinval (( mppa_async_event_t *) event , 0);
38 }
39

40 void bli_dma_backend_trigger_put2D(
41 void* local , // begin address of local buffer
42 void* global , // begin address of global buffer
43 size_t size , // size of an element in byte
44 int width , // block width in element
45 int height , // block height in element
46 point2d_t *local_point , // local_point
47 point2d_t *global_point , // global_point
48 dma_event_t *event // DMA event. If NULL: blocking ,
49 // else return immediate and must later call
50 // wait() on this event
51 )
52 {
53 mppa_async_sput_block2d(
54 (const void*) local , // local
55 MPPA_ASYNC_DDR_0 , // NOTE : DDR0 hardcoded
56 (uintptr_t)global -( uintptr_t)&DDR_START , // offset
57 (size_t) size , // size
58 (int) width , // width
59 (int) height , // height
60 (const mppa_async_point2d_t *) local_point , // local_point
61 (const mppa_async_point2d_t *) global_point , // remote_point
62 (mppa_async_event_t *) event // event
63 );
64 mppa_async_event_setdinval (( mppa_async_event_t *) event , 0);
65 }
66

67 void bli_dma_backend_event_wait(dma_event_t *event)
68 {
69 mppa_async_event_wait (( mppa_async_event_t *)event);
70 }
71

72 int bli_dma_backend_addr_in_global_mem(void* addr)
73 {
74 return ((( uintptr_t)addr >= (uintptr_t)&DDR_START) ? 1 : 0);
75 }
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Kari Tiensyrjä, and Ahmed Hemani. A network on chip architecture and design methodology. In

VLSI, 2002. Proceedings. IEEE Computer Society Annual Symposium on, pages 105–112. IEEE,

2002.

[90] Kalray Inc. Kalray Platforms and Boards. Accessed March 30, 2015.

[91] Kazuya Matsumoto, Naohito Nakasato, and Stanislav G Sedukhin. Performance tuning of ma-

trix multiplication in OpenCL on different GPUs and CPUs. In High Performance Computing,

Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages 396–405. IEEE, 2012.

[92] Nikola Rajovic, Paul M Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez, and Mateo Valero.

Supercomputing with commodity CPUs: Are mobile SoCs ready for HPC? In Proceedings of the

International Conference on High Performance Computing, Networking, Storage and Analysis,

page 40. ACM, 2013.

[93] Michael Feldman. Mont-Blanc 2020 Project Sets Sights on Exascale Processor, December 2017

(accessed December 30, 2017).

[94] Scott Pakin, Vijay Karamcheti, and Andrew A Chien. Fast Messages: Efficient, portable commu-

nication for workstation clusters and MPPs. IEEE concurrency, 5(2):60–72, 1997.

[95] Yong Dou, Stamatis Vassiliadis, Georgi Krasimirov Kuzmanov, and Georgi Nedeltchev Gaydadjiev.

64-bit floating-point FPGA matrix multiplication. In Proceedings of the 2005 ACM/SIGDA 13th

international symposium on Field-programmable gate arrays, pages 86–95. ACM, 2005.

[96] Francisco D Igual, Murtaza Ali, Arnon Friedmann, Eric Stotzer, Timothy Wentz, and Robert A

van de Geijn. Unleashing the high-performance and low-power of multi-core DSPs for general-

purpose HPC. In Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, page 26. IEEE Computer Society Press, 2012.

[97] Jakub Kurzak, Alfredo Buttari, and Jack Dongarra. Solving systems of linear equations on the

CELL processor using Cholesky factorization. IEEE Transactions on Parallel and Distributed

Systems, 19(9):1175–1186, 2008.

[98] Vaibhav Saxena, Prashant Agrawal, Yogish Sabharwal, Vijay K Garg, Vimitha A Kuruvilla, and

John A Gunnels. Optimization of BLAS on the Cell Processor. In HiPC, volume 5374, pages

18–29. Springer, 2008.

[99] James Lin, Zhigeng Xu, Akira Nukada, Naoya Maruyama, and Satoshi Matsuoka. Optimizations

of Two Compute-Bound Scientific Kernels on the SW26010 Many-Core Processor. In Parallel

Processing (ICPP), 2017 46th International Conference on, pages 432–441. IEEE, 2017.



Bibliography

[100] Miguel Tasende. Generation of the Single Precision BLAS library for the Parallella platform, with

Epiphany co-processor acceleration, using the BLIS framework. In Dependable, Autonomic and

Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big

Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/-

DataCom/CyberSciTech), 2016 IEEE 14th Intl C, pages 894–897. IEEE, 2016.

[101] Murtaza Ali, Eric Stotzer, Francisco D Igual, and Robert A van de Geijn. Level-3 BLAS on the

TI C6678 multi-core DSP. In Computer Architecture and High Performance Computing (SBAC-

PAD), 2012 IEEE 24th International Symposium on, pages 179–186. IEEE, 2012.

[102] Devangi Parikh, Francisco D Igual, and Murtaza Ali. Implementation of Linear Algebra Libraries

for Embedded Architectures Using BLIS, Accessed 2017.

[103] Devangi Parikh and Will Leven. An Implementation of GEMM for DMA-enabled Architectures,

Accessed 2017.

[104] Texas Instruments (TI)). MCSDK HPC 3.x Linear Algebra Library, Accessed 2017.

[105] Tomasz Szydzik, Marius Farcas, Valeriu Ohan, and David Moloney. Level-3 BLAS on Myriad

multi-core media-processor SoC. In Hot Chips 26 Symposium (HCS), 2014 IEEE, pages 1–1.

IEEE, 2014.

[106] Field G Van Zee and Tyler M Smith. Implementing high-performance complex matrix multipli-

cation via the 3m and 4m methods. ACM Transactions on Mathematical Software. Under review,

2017.

[107] Tyler M Smith, Robert Van De Geijn, Mikhail Smelyanskiy, Jeff R Hammond, and Field G

Van Zee. Anatomy of high-performance many-threaded matrix multiplication. In Parallel and

Distributed Processing Symposium, 2014 IEEE 28th International, pages 1049–1059. IEEE, 2014.






	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Introduction
	1 High Performance Computing: from Single-core to Many-core
	1.1 Introduction
	1.2 Performance walls
	1.2.1 Frequency-wall
	1.2.2 Energy-wall
	1.2.3 Memory-wall
	1.2.4 Software-wall

	1.3 Summary

	2 Lattice Boltzmann method (LBM)
	2.1 Background
	2.1.1 Theory
	2.1.2 Memory requirement

	2.2 Propagation algorithms
	2.2.1 One-step two-lattice (OT)
	2.2.2 One-step one-lattice (OO)

	2.3 Summary

	3 Basic Linear Algebra Subprograms (BLAS)
	3.1 Background
	3.1.1 Introduction
	3.1.2 General Matrix Multiplication (GEMM)

	3.2 BLAS-like Library Instantiation Software (BLIS)
	3.3 Summary

	4 Kalray Massively Parallel Processor Array (MPPA)
	4.1 Introduction
	4.1.1 Company
	4.1.2 MPPA architecture overview

	4.2 Programming models
	4.2.1 Distributed-memory POSIX-C
	4.2.2 Host-based OpenCL acceleration

	4.3 Summary

	Contributions
	5 Optimizing 3D LBM on Many-core Processors
	5.1 Introduction
	5.2 Related work
	5.3 Low-level 3D asynchronous API
	5.4 Pipelined 3D LBM stencil on clustered many-core processors
	5.4.1 Global algorithm
	5.4.2 Subdomain distribution
	5.4.3 Local subdomain dimensions
	5.4.4 Local and remote copy-index management

	5.5 Results and discussions
	5.5.1 Pipelined 3D LBM stencil on MPPA
	5.5.2 Performance extrapolation

	5.6 Conclusions

	6 In-place LBM Propagation Algorithms
	6.1 Introduction
	6.2 Two-wall propagation algorithm
	6.2.1 Algorithm
	6.2.2 Advantages and limitations

	6.3 Three-wall propagation algorithm
	6.4 Implementations
	6.4.1 OpenMP
	6.4.2 OpenCL

	6.5 Results and discussions
	6.5.1 OpenMP
	6.5.2 OpenCL

	6.6 Conclusions

	7 Message Passing Interface (MPI) on Many-core Processors
	7.1 Introduction
	7.2 Related works
	7.3 MPPA-MPI design
	7.3.1 MPI-inter-process Control (MPIC)
	7.3.2 MPI-inter-process Data-Transfer (MPIDT)

	7.4 MPPA-MPI implementation
	7.4.1 MPI_Send - MPI_Recv
	7.4.2 MPI_Isend - MPI_Recv
	7.4.3 Optimization

	7.5 MPPA-MPI Throughput modeling
	7.6 Results and Discussion
	7.6.1 Inter-CC communication
	7.6.2 CC-IOS communication
	7.6.3 Optimization comparison

	7.7 High Performance Linpack (HPL) on MPPA-256
	7.8 Limitations and conclusions

	8 General Matrix Multiplication (GEMM) on Many-core Processors
	8.1 Introduction
	8.2 GEMM in POSIX-C
	8.2.1 Algorithm
	8.2.2 Assembly-level GEMM micro-kernel

	8.3 GEMM in OpenCL Data-Parallel
	8.4 GEMM in OpenCL POSIX-like (Task-Parallel)
	8.4.1 Execution and memory mapping
	8.4.2 Integration of object code or library

	8.5 Results
	8.6 Conclusions

	9 Portable and Optimized BLAS Library on Many-core Processors
	9.1 Introduction
	9.2 Related work
	9.3 Portable DMA support for level-3 BLIS
	9.3.1 Algorithm overview
	9.3.2 Memory management
	9.3.3 Asynchronous DMA back-end interface
	9.3.4 Special cases handling

	9.4 Experimental results
	9.4.1 Hardware configuration
	9.4.2 Multi-core level-3 BLAS
	9.4.3 Multi-core xGEMM in different shapes

	9.5 Conclusions

	Conclusions
	A BLIS RDMA backend: reference and MPPA implementation
	Bibliography



