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Abstract

Natural Language Processing is motivated by applications where computers should gain a semantic and syntactic

understanding of human language. Recently, the field has been impacted by a paradigm shift. Deep learning

architectures coupled with self-supervised training have become the core of state-of-the-art models used in Natural

Language Understanding and Natural Language Generation. Sometimes considered as foundation models, these

systems pave the way for novel use cases. Driven by an academic-industrial partnership between the Institut

Polytechnique de Paris and Google AI Research, the present research has focused on investigating how pretrained

neural Natural Language Processing models could be leveraged to improve online interactions.

This thesis first explored how self-supervised style transfer could be applied to the toxic-to-civil rephrasing of

offensive comments found in online conversations. In the context of toxic content moderation online, we proposed

to fine-tune a pretrained text-to-text model (T5) with a denoising and cyclic auto-encoder loss. The system, called

CAE-T5, was trained on the largest toxicity detection dataset to date (Civil Comments) and generates sentences that

are more fluent and better at preserving the initial content compared to earlier text style transfer systems, according

to several scoring systems and human evaluation. Plus, the approach showed it could be generalized to additional

style transfer tasks, such as sentiment transfer.

Then, a subsequent work investigated the human labeling and automatic detection of toxic spans in online

conversations. Contrary to toxicity detection datasets and models which classify whole posts as toxic or not, toxic

spans detection aims at highlighting toxic spans, that is to say, the spans that make a text toxic when detecting such

spans is possible. We released a new labeled dataset to train and evaluate systems, which led to a shared task at

the 15th International Workshop on Semantic Evaluation. Systems proposed to address the task include strongly

supervised models trained using annotations at the span level as well as weakly supervised approaches, known

as rationale extraction, using classifiers trained on potentially larger external datasets of posts manually annotated

as toxic or not, without toxic span annotations. Furthermore, the ToxicSpans dataset and systems proved useful to

analyzing the performances of humans and automatic systems on toxic-to-civil rephrasing.

Finally, we developed a recommender system based on online reviews of items, taking part in the topic of ex-

plaining users’ tastes considered by the predicted recommendations. The method uses textual semantic similarity

models to represent a user’s preferences as a graph of textual snippets, where the edges are defined by semantic
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similarity. This textual, memory-based approach to rating prediction holds out the possibility of improved explana-

tions for recommendations. The method is evaluated quantitatively, highlighting that leveraging text in this way can

outperform both memory-based and model-based collaborative filtering baselines.
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Résumé

Le traitement automatique du langage naturel est motivé par des applications où les ordinateurs doivent acquérir

une compréhension sémantique et syntaxique du langage humain. Récemment, le domaine a été impacté par un

changement de paradigme. Les architectures d’apprentissage profond couplées à des techniques d’apprentissage

auto-supervisé sont devenues le cœur des modèles correspondant à l’état de l’art en compréhension et généra-

tion du langage naturel. Parfois considérés comme des “foundation models”, ces systèmes ouvrent la voie à de

nouveaux cas d’utilisation. Née d’un partenariat académique et industriel entre l’Institut Polytechnique de Paris et

Google AI Research, la présente recherche s’est concentrée sur l’étude de la façon dont les modèles neuronaux de

traitement du langage naturel pré-entraînés pouvaient être utilisés pour améliorer les interactions en ligne.

Cette thèse a d’abord exploré comment le transfert de style auto-supervisé pouvait être appliqué à la reformula-

tion non-toxique de commentaires offensants dans les conversations en ligne. Dans le contexte de la modération de

contenu toxique en ligne, nous avons proposé une méthode de réglage fin d’un modèle texte-à-texte pré-entraîné

(T5) avec une fonction-objectif consistant en un auto-encodeur débruiteur cyclique. Le système, baptisé CAE-T5, a

été entraîné sur le plus grand jeu de données de détection de toxicité publé à ce jour (Civil Comments) et génère

des phrases plus fluides et préservant mieux le contenu initial, comparé aux systèmes antérieurs de transfert de

style de texte, selon plusieurs systèmes d’évaluation automatique et une étude faisant appelle à l’évaluation hu-

maine. De plus, l’approche a montré qu’elle pouvait être généralisée à d’autres tâches de transfert de style, comme

le transfert de sentiments.

Ensuite, les travaux de recherche ont porté sur l’étude de l’annotation humaine et la détection automatique des

sous-ensembles de mots toxiques dans les conversations en ligne. Contrairement aux jeux de données et aux

modèles de détection de toxicité qui classifient des messages entiers comme toxiques ou non, la détection des

mots toxiques vise à mettre en évidence les mots responsables de la toxicité du message, lorsqu’une telle détection

est possible. Nous avons publié un nouveau jeu de données annoté pour entraîner et évaluer les systèmes automa-

tiques, ce qui a conduit à une tâche partagée lors du 15e International Workshop on Semantic Evaluation. Les sys-

tèmes proposés pour cette tâche comprennent des modèles fortement supervisés, entraînés à l’aide d’annotations

au niveau des mots, ainsi que des approches faiblement supervisées, connues sous le nom d’extraction de raisons,

utilisant des classifieurs entraînés sur des ensembles de données externes, potentiellement plus importants, de
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messages annotés manuellement comme toxiques ou non, sans annotations à l’échelle des mots. En outre, le jeu

de données et les systèmes se sont avérés utiles pour analyser les performances des systèmes automatiques et

des humains en matière de reformulation des messages toxiques en messages civils.

Enfin, nous avons développé un système de recommandation basé sur des avis en ligne, s’inscrivant dans

l’explicabilité des préférences prises en compte par les recommandations prédites. La méthode utilise des modèles

basés sur la similarité sémantique textuelle pour représenter les préférences d’un utilisateur sous la forme d’un

graphe de fragements de texte, où les arrêtes sont définies par la similarité sémantique. Ce modèle de prédiction

de notes à mémoire, basé sur le texte, offre la possibilité d’améliorer les explications des recommandations. La

méthode est évaluée quantitativement, et nous permet de conclure que l’exploitation du texte de cette manière peut

surpasser les performances de modèles de référence utilisé en filtrage collaboratif.
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Notation

Datasets

V Vocabulary of |V | tokens (e.g. subwords). We use the same notation for a token and its one-hot encoding.

s Sequence (e.g. sentence) s1s2 . . . sm of m tokens.

xi The ith input data point. In the context of text transfer, the input is called the source text.

yi The ith target, associated with xi. If produced by a human, the target is called an annotation. If it is a noisy

version of the input, the target is called a pseudo-label, otherwise it is referred to as a label. To differentiate

the predicted output with the target, the latter is often referred to as ground-truth output. When there is no

confusion, the target y is associated with input x.

ŷi The ith predicted output, associated with xi.

Numbers and Arrays

a A scalar

a A vector

A A matrix

Optimization

L A loss function.

Probability

X The random variable observed by the xi.

P (X) The data-generating distribution of X.

P̂ (X) The empirical probability of X observed by the training set.

Pθ (X) The model distribution of X, parametrized by weight vector θ.
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P (x; θ) The probability Pθ (X = x) that X = x.

Ā The opposite of event A.

Sequences

⌢ Concatenation operator: (a1, a2, . . . , an) ⌢ (b1, b2, . . . , bm) = (a1, a2, . . . , an, b1, b2, . . . , bn)

: Slicing operator: a1:n = (a1, a2, . . . , an)
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Chapter 1

Introduction

1.1 General context: bridging the gap between human language and

semantically-driven computer science

Natural language is a straightforward communication system for humans. It has evolved naturally in human brains

and intertwines technological change. Indeed, the development of spoken languages enabled civilizations to thrive

by easing knowledge transfer. Homo sapiens individuals, while living in communities, unconsciously learn to speak

or sign, and children quickly gain the cognitive ability to express rich and subjective semantics. With the first

writing systems [248], ancient Mesopotamians invented a revolutionary concept to spread complex quantitative

and qualitative information. Johannes Gutenberg scaled this idea with printing technology, paving the way for the

scientific revolution and making general knowledge available to the masses. This trend has been accelerated in

the last two centuries with the advent of information and communications technology. On the one hand, logicians

and computer scientists constructed formal languages for machines to execute programs. On the other hand, the

general public started adapting to computers and designing countless applications that fit their habits. Further,

the Internet made people around the world more connected. Nowadays, social networks and online platforms are

integral parts of our daily lives. With the democratization of social interactions online, humans are accustomed to

sharing their opinions on various topics; people gather and talk at a scale never seen in human history. While online

participation offered exciting opportunities to humanity, it also engendered threats and challenges for the twenty-

first century. In this thesis, we addressed some of them in light of recent progress in Artificial Intelligence (AI). In

particular, our approach focused on bridging the gap between highly informal human experiences of the world and

the formal technologies that computers rely on.
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1.2 Scientific context: recent progress in artificial intelligence prepares

the ground for major technological shifts

Research in AI studies agents that have some perception of their environment and take actions in order to achieve

one or several goals [394] . Intelligence refers to natural intelligence found among animals, and AI focuses on the

ability of machines to make decisions automatically. Following Alan Turing’s theory of computation, AI foundations

have been built up by computer scientists and mathematicians as a formal science. Yet, its very nature makes

it deeply connected to many disciplines in social, natural, or applied sciences and this thesis is an example of

the interdisciplinarity of AI. Specifically, we narrowed down our exploration to Machine Learning (ML), a statistical

and computational paradigm consisting of algorithms improved by the automatic learning of relevant signals from

data. ML has become ubiquitous in AI for its ability to train models that yield top performances in perception (e.g.,

computer vision, natural language processing), information retrieval, robotics or predictive analytics for empirical

(i.e., natural and social) sciences, without manual—and often labor-intensive—feature engineering. In its standard

“supervised” learning form, the goal is to infer a probability distribution P (y|x; θ) matching unnoisy observations of

input xi and their label yi.

In the 2010s, Big Data processing and specialized hardware scaled the applications of a family of ML methods

called Deep Learning (DL) [276], directly inspired by biological neural networks to tackle cognitive functions. The DL

revolution started when deep artificial neural networks won large-scale computer vision tasks [249]. Subsequently,

neural architectures have been applied to other fields and showed remarkable results. Thus, Natural Language

Processing (NLP) research shifted towards neural (connectionist) approaches, and this thesis sought to take part in

this scientific trend by exploring new and challenging applications of DL for NLP. In fact, a question central to this

work is to what extent could these AI models impact people’s behavior in their social interactions online.

1.3 Research context: an academic-industrial partnership

The genesis of this Ph.D. results from a collaboration between the team Data, Intelligence and Graphs (DIG) of

the Information Processing and Communications Laboratory at Télécom Paris and the Conversation AI team from

Jigsaw, a unit within Google that explores global challenges and threats online (disinformation, censorship, cyber-

bullying and violent extremism), and develops scalable technological solutions for the safety of open societies. The

DIG team has a long experience in industrial collaborations, and this research benefited from the synergy produced

by the mixed environment. In particular, it combined the scientific rigor of fundamental research with a clear vision

of concrete downstream applications.In addition, the research was enriched by collaborations with People + AI Re-

search, a multidisciplinary team at Google Research that explores the human side of AI, and the Department of

Informatics at the Athens University of Economics and Business, which has strong expertise in NLP.
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1.4 Thesis outline

Here is an outline of the remainder of this thesis, along with our scientific contributions. The thesis is organized

as follows. First of all, Chapter 2 introduces the state-of-the-art in neural Natural Language Processing. We see

in particular how Machine Learning training paradigms, Deep Learning architectures, and Language Models have

shaped the current developments of the field. Then Chapter 3 focuses on a specific application of self-supervised

text-to-text transfer, namely style transfer. We present an approach to addressing the task when detoxification of

abusive comments is considered without a parallel dataset. In Chapter 4, we describe the new task of TOXICSPANS

detection, which we tackled thanks to a new annotated dataset and both strongly supervised and weakly supervised

(cf. Section 2.4.2) systems. Chapter 5 discusses a novel algorithm to compute rating predictions from the sentences

written by users who reviewed a set of items. Finally, Chapter 6 concludes the thesis.

1.5 Publications

The research conducted during the Ph.D. resulted in publications listed here in chronological order.

• L. Laugier, J. Pavlopoulos, J. Sorensen and L. Dixon: Civil Rephrases Of Toxic Texts With Self-Supervised

Transformers. Proceedings of the 16th Conference of the European Chapter of the Association for Compu-

tational Linguistics (EACL 2021) [267]

• J. Pavlopoulos, L. Laugier, J. Sorensen and I. Androutsopoulos: Semeval-2021 task 5: Toxic spans detec-

tion. Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval 2021) [381]

• J. Pavlopoulos, L. Laugier, A. Xenos, J. Sorensen and I. Androutsopoulos: From the Detection of Toxic

Spans in Online Discussions to the Analysis of Toxic-to-Civil Transfer. Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (ACL 2022) [382]

• A. Xenos, J. Pavlopoulos, I. Androutsopoulos, L. Dixon, J. Sorensen, L. Laugier: Toxicity Detection can be

Sensitive to the Conversational Context. First Monday, 27(5). [544]

• L. Laugier, T. Bonald and L. Dixon: Semantic Encoding of Review Sentences for Memory-Based Recom-

menders . Preprint
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Chapter 2

Neural Natural Language Processing

Chapter 2 abstract

This chapter describes the current state-of-the-art material and methods to address Natural Language Pro-

cessing with Machine Learning. The subsequent chapters investigate the concepts described in this chapter

in novel methods and/or applications. In what follows, we introduce in Section 2.1 motivations behind Natural

Language Processing, applications, and why ML is well suited to tackle them. We then present in Section 2.4

the different natures of data processed by ML and the resulting learning paradigms. Section 2.5 provides

an overview of modern training and inference techniques implementing the concepts described beforehand.

Finally, Section 2.6 summarizes existing neural architectures used as computation models for the previously

discussed methods.

2.1 Motivations

2.1.1 The syntactic nature of computers makes them formal machines

Computers (from Latin “computo”, i.e., calculate, count, sum up) are machines designed to execute programs—

software—made of sequences of instructions coded by discrete numbers. These instructions and the data they

operate on are expressed in the base-2 numeral system, which optimizes computations on physical hardware.

Science and engineering have improved hardware and software capabilities but have remained on the same basis:

the steps of algorithms are implemented by formal instructions processed by arithmetic logic units. Computers are

perfectly fit to make fast calculations and exceed the arithmetic performance of the best mental calculators. This

led early computer scientists to dream of machines able to perform other if not all, cognitive functions observed in

animals.
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2.1.2 Semantics of natural language is structured but ambiguous

From an animal’s perspective, there is no need to consciously formalize instructions before executing some complex

but intuitive tasks. In particular, humans rarely need to communicate with formal languages. Natural language

derives its richness from its complexity and ambiguity. Famous examples of syntactic ambiguity (e.g. “Time flies

like an arrow; fruit flies like a banana” [366]) or lexical ambiguity (e.g. “Will, will Will will Will Will’s will?” [166])

are widely used in linguistics to illustrate semantic ambiguity. It is fundamental to human expressions, and that is

why it is found throughout the history of literature. Comedy and humor abound in equivocations1 and word plays

such as puns based on homonymy and polysemy. Figures of speech (e.g., metaphors) and rhetorical devices

have nourished poetry and argumentations. Tone and register calibrate a speech to specific target audiences or

environments. For that matter, context is often crucial to addressing semantic disambiguation. Naturally, specific

contexts impose humans to control natural language by simplification rules. For example, the language used by

aviators for radio communication is codified to optimize the quality and quantity of information transmitted in a short

time and in noisy environments while being fast to learn. Though constructed international auxiliary languages, such

as Esperanto, were designed with regular and easy grammar but never replaced complex ordinary local languages.

It is worth noting that spoken language can be irregular and fluctuate in time and space while still achieving its goal

of connecting agents. Writing, and a fortiori printing motivated needs for language codification through relatively

well-defined spelling and grammar2. All in all, there is a gap between the way computers process information and

the mechanism behind natural language.

2.2 Methods

NLP has been studied since the origin of computer science. Computers cannot straightforwardly process natural

language due to incompatibility between formal instructions and ambiguity in natural language. Even nowadays,

computers remain far from a general understanding of language. Yet, AI strategies are well adapted to address NLP

challenges. Further, Alan Turing designed a test to compare artificial and human intelligence, called the imitation

game [507]. The test consists of a human evaluator asked to engage in written conversations with another human

on the one hand and a machine on the other hand without knowing the nature of its interlocutor. If the human

evaluator cannot tell the machine from the human, then the machine is considered to have passed the test by

showing human-equivalent intelligent behavior. The discussion about the link between NLP capabilities and strong

AI remains open. In its Chinese room argument, Searle [452] argues that an AI could pass the Turing test via a pure

syntactic method without any actual understanding of natural language.

Early NLP approaches used handwritten-rule-based systems called symbolic NLP that used to be prerequisite

1A.k.a. quae pro quibus in Latin languages.
2This phenomenon is not exclusive to linguistics, as similar needs have existed in music transcription for instance.
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to solving higher-level semantic tasks. Inspired by Chomskyan theories of linguistics [77], and grammar teaching

in education, symbolic AI combined logic, lexicon, and semantic for NLP. Although this approach based on com-

plex handcrafted feature engineering [258, 365, 576] benefited from total transparency and explainability, it lacked

robustness to multifaceted language as well as generalization capabilities. In the 1990s, ML revolutionized NLP

thanks to increased computational resources and data as well as the emergence of algorithms learning to solve

tasks without explicit specifications of how to do it. As a result, the paradigm shifted toward statistical learning,

imitating babies’ ability to start language learning well before entering school. Indeed, their brain unconsciously

and regularly processes examples of language heard, combined with other sources of signals perceived in their

environment.

2.3 Applications

In this research we focused on the written form of language. Although speech processing perfectly tackles research

efforts to process natural language, we did not investigate it due to the nature of the data that differs from the discrete

nature of text. Speech processing is usually not considered as part of NLP since it often involves speech-to-text

conversion, a.k.a. Automatic Speech Recognition (ASR) [124, 293], before processing text (NLP); this pipeline may

be followed by a Text-to-Speech (TTS) system. The set of NLP tasks is often decomposed into two complementary

subsets: Natural Language Understanding and Natural Language Generation.

Natural Language Understanding The sub-topic of NLP focusing on reading comprehension is called Natural

Language Understanding (NLU). Morpho-syntactic and information extraction applications of NLP include token

analysis such as lemmatisation [351], sequence labelling—Part-Of-Speech (POS) tagging [390, 360] and Named-

Entity Recognition (NER) [505, 204, 324, 260]—or syntactic parsing [4, 68], while NLU is often evaluated with

higher-level semantic tasks. Standard NLU benchmarks have been proposed to test systems’ abilities to understand

complex language features. NLU systems can be evaluated on the hidden benchmarks’ test sets, and the leader-

boards are publicly available. Meta-benchmarks standardize the evaluation of NLU by collecting human-annotated

example pairs on a set of tasks reflecting a deep understanding of language. The General Language Understanding

Evaluation (GLUE)3 [521] and its more challenging successor SuperGLUE4 [522] respectively aggregate 9 and 8

tasks—one task being common to both benchmarks—to test general language understanding and robustness of

systems. Additionally, the SQuAD5 dataset is also used to test NLU. The tasks aim at probing NLU systems on syn-

tactic correctness, semantic similarity, inference, reasoning, as well as question answering. Table 2.1 summarizes

and organizes common NLP tasks according to their types and frameworks.

3https://gluebenchmark.com/
4https://super.gluebenchmark.com/
5https://rajpurkar.github.io/SQuAD-explorer/
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Natural Language Generation There is a set of tasks regarded as Natural Language Generation (NLG). These

tasks may or may not imply strong NLU abilities; the boundary between NLU and NLG is not well defined. Uncon-

ditional Natural Language Generation (UNLG) [114, 170] refers to tasks where NLG has no other constraint than

the generated text to be syntactically and semantically correct. If the goal is to generate open-ended text, such as

a coherent story, UNLG does not need strong NLU abilities. On the contrary, in prompt completion tasks, UNLG

needs some good NLU capabilities for consistency purposes.

When the generated text has to meet additional requirements, NLG is qualified as Conditional Natural Language

Generation (CNLG). Controllable generation [232] is an example of CNLG. In particular, if the condition relies on

some input text, the task is called a text-to-text task and involves significant NLU of the input text before generating

the output text.

Text-to-text systems Text-to-text systems have been driven by research in machine translation [241, 88, 93]. The

task represents economic interest for industrial stakeholders, whose research and development laboratories are

at the forefront of these technologies. Automatic summarization [117, 428, 570] and conversational models (also

known as dialogue systems or chatbots) [590, 203, 583, 579] are the other two main text-to-text tasks. More mod-

estly, attribute transfer in text like style transfer (cf. Chapter 3) is another text-to-text task recently investigated. It

should be noted that, more generally, NLP can be involved in multimodal sequence-to-sequence tasks like image

captioning [545, 70, 556, 491, 490, 591, 321] (image-to-text) and text-to-image generation [403, 412, 435] with sig-

nificant results impacting the entire AI field.

NLU and NLG differ in a key aspect: NLU is easier to evaluate than NLG. Automatic metrics are indeed straight-

forward in NLU: accuracy, F1, and correlations are widely accepted as appropriate evaluation measures of clas-

sification tasks. However, standard CNLG metrics [436] (mainly BLEU [374], METEOR [268] and NIST [296] in

machine translation and ROUGE [295] in summarization) have been abundantly discussed: despite a relative sim-

plicity, these metrics based on n-gram overlaps cannot fully capture the diversity of language for expressing similar

semantics with different words, especially when there are few (if any) ground-truth examples per test example avail-

able. For this reason, model-based metrics like RUSE [467], BERTScore [575], BLEURT [454] and NUBIA [227]

have been recently proposed to overcome the limitations of word-based metrics: for instance, NLU models are used

to compare the semantics of pairs of (predicted, target) texts. Chapter 3 and Section 3.9.2 in particular touch upon

issues related to CNLG metrics. For its part, UNLG is commonly evaluated with Perplexity (PPL), an information-

theory-based metric measuring how the probability distribution of the generated text is similar to the distribution of

text written by humans [55].

All in all, among NLU, UNLG and CNLG, tasks may be tackled by notably different approaches (cf. Section 2.5),
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Machine
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Deep
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Figure 2.1: Venn diagram of the scientific topics explored in the present research. Chapter 4 and Chapter 5 lie in
the blue-green (large) colorized area while Chapter 3 can be categorized in the brown (small) colorized area. Figure
best viewed in color.

but there is no type of task easier than the others. Modern NLP research constantly transposes techniques devel-

oped for some tasks to others [554]. Moreover, there is a significant research effort going on aiming at unifying the

resolution of multi-type NLP tasks (cf. Section 2.5.8). Figure 2.1 summarizes the scientific topics introduced so far,

their intersections, and the areas where our research falls within.

As NLP has gained in maturity, we sought to apply it in novel ways to additional real word challenges focused

on the online expressions of Internet users. Before the popularisation of the Web, remote interlocutors expressed

either through spontaneous oral language (phone calls) or codified written language (epistolary correspondence).

Nowadays, every person with Internet access gets the opportunity to share their views through posts, comments,

or reviews on Web services that we all have integrated into our daily lives. Through online chat and microblogging,

not only have people had direct access to global-scale instant messaging, but new forms of language appeared,

halfway between oral and written languages; this raises important research issues from the perspective of NLP.

Actually, we will describe specific applications in which modern NLP can impact online human interactions after this

chapter discusses methods used in state-of-the-art NLP, summarized in a taxonomy shown in Figure 2.2. Further

information can be found in recent high-quality literature reviews [225, 300, 400, 359, 290, 307, 170].
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Type Task Dataset Benchmark Problem framework

NLU

Linguistic acceptability CoLA [526] GLUE Single-sentence classification

Sentiment analysis SST-2 [477] GLUE Single-sentence classification

Semantic similarity
MRPC [111] GLUE Pairwise sentence classification
STS-B [62] GLUE Pairwise sentence regression
QQP [207] GLUE Pairwise sentence classification

Natural language inference

MNLI [537, 53] GLUE Pairwise sentence classification
QNLI [409] GLUE Pairwise sentence classification
RTE [94, 21, 147,
32]

GLUE Pairwise sentence classification

CB [102] SuperGLUE Pairwise sentence classification

Coreference resolution WNLI [282] GLUE Pairwise sentence classification
WSC [282] SuperGLUE Pairwise sentence classification

Causal reasoning COPA [424] SuperGLUE Pairwise sentence classification

Word sense disambiguation WiC [391] SuperGLUE Triple-wise sentence classification

Question answering

MultiRC [233] SuperGLUE Triple-wise (passage - question - answer) text classification
BoolQ [81] SuperGLUE Pairwise (passage - yes/no question) text classification
ReCoRD [572] SuperGLUE Pairwise (passage - list-based query) text classification
SQuAD [408, 410] N/A Extractive QA

UNLG

Cloze completion CBT [183] N/A Single-word prompt completion
LAMBADA [373] N/A Single-word prompt completion

Story generation HellaSwag [564] N/A Multi-word prompt completion
StoryCloze
[350, 464]

N/A Multi-word prompt completion

CNLG

Machine Translation WMT [39, 115, 40,
41, 42, 43, 44]

N/A Text-to-text transfer

Abstractive summarization
CNN/Daily Mail
[181, 354, 453]

N/A Text-to-text transfer

XSum [357] N/A Text-to-text transfer

Dialog QuAC [76] N/A Text-to-text QA
CoQA [416] N/A Text-to-text QA

Table 2.1: Common NLP downstream tasks and evaluation datasets
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DAE BART [284]
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Word2vec [343, 342],
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CoVe [336]

Standard training Seq2Seq [495], Origi-
nal bitransformer [514]
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Unified

General LM GLM [114]

Pseudo-
mask LM

UniLMv2 [19]

Seq2Seq MLM MASS [478], T5 [406]

Permutation LM
Mask and

Permutation LM
MPNet [479]

XLNet [555]

Single-type
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Masked LM

BERT [107], RoBERTa
[311], DistilBERT [439],

ALBERT[264], DeBERTa
[174], ERNIE [582, 492, 493]

Forward-
backward LM

ELMo [388]

Causal LM

GPT [401, 402, 56], Grover
[565], Megatron-Turing NLG

[471, 427, 358, 475], PanGu-
α [567], Jurassic-1 [294], Go-
pher [404], Chinchilla [195],

LaMDA [502], PaLM [79]

Seq2Seq LM

Encoder-
Decoder LM

Original bitransformer [514],
MASS [478], T5 [406],

PEGASUS [569], ProphetNet
[398], GShard-M4 [279],

Switch bitransformer [125]

Prefix LM UniLM [112]

ANN

Transformer

Bitransformer
Original bitransformer

[514], MASS [478],
T5 [406], BART [284]

Unitransformer BERT [108], GPT
[401, 402, 56]

RNN

GRU [80]

LSTM
BiLSTM ELMo [388]

Seq2Seq [495]

FFNN
CNN USE [63]

FCNN FFLM [26], Word2vec [343]

Figure 2.2: Taxonomy of methods and architectures used in Neural NLP. Leaves show examples of publications using these techniques. Thick
boxes indicate methods leveraged and/or investigated in our research works. Figure best viewed in color.
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2.4 Learning with signals from the Experience

2.4.1 The three founding paradigms of Machine Learning

Animals learn with their nervous system processing signals coming from their sensory systems. The quality and

quantity of knowledge acquired by learning depend on the nature, length, repetition, and context of the experiences.

For example, one can learn a language through immersion, lessons, the use of dictionaries, grammar books, or

other media. In the same manner, artificial agents have several ways of experiencing the real world. While animals

get signals through their sensory nervous system, artificial agents process information in various forms. Learning

algorithms have been traditionally categorized into paradigms depending on the nature of the available signals.

On the one hand, the experience of dataset-based systems is made of a set of observed examples. When

examples are only composed of a collection of features represented by xi, the method is known as “unsupervised”

and consists in modeling relevant properties of the data-generating distribution P (X). If, in addition to features in

xi, an example contains an associated target yi, then learning becomes “supervised” as when a teacher reveals the

exact answer to a question. In supervised learning, the goal is to approximate the distribution P (Y |X) of targets yi

given the inputs xi. When targets have been produced by humans, they are referred to as “annotations”.

On the other hand, “reinforcement learning” is based on direct interactions with an environment. Agents receive

a direct reward or penalty for an action taken in the environment. Even though reinforcement learning principles have

been explored in NLP [547, 151, 319, 539, 438, 510, 317], we did not investigate it during the present research.

Interestingly, current ML may combine ideas from different paradigms. Weakly supervised learning comprises

dataset-based experiences in between unsupervised and supervised learning, the latter being sometimes called

“strongly supervised learning” to avoid confusion.

2.4.2 Limitations of strong supervision spur weak supervision

As strong supervision [245] requires a large amount of well-annotated examples, it requires solid data-labeling

processes. Therefore, softer labeling schemes have been studied in order to relax these constraints. Enormous

quantities of high-quality labeled examples are often expensive in terms of money and time to collect as it requires

humans to produce individual annotations. Yet, it is sometimes possible to trade off quality annotation for quantity

with what is commonly referred to as weak supervision6. Following Zhou [592], we attempt dataset-based learning

taxonomy displayed on two axis in Figure 2.3. In the real world, supervision can be inaccurate, inexact, or incom-

plete. The following paragraphs introduce weakly supervised datasets as we go down the rabbit hole of relaxed

supervision constraints.

6Semi-supervised learning is also employed in the literature but often denotes a subcategory of weak supervision introduced later: incomplete
supervision.
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I loved this. ?
Great director! ?

...
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Unsupervised
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I loved it be-
cause I thought
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director. . . .

?

. . .
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I loved it but
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any of my col-
leagues.

/

...
...

I saw the movie
yesterday.
Awesome expe-
rience! Then, I
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The good-est
bad movie,
maybe, I’ve
ever seen.

?

...
...

Looks like a pi-
lot for a 70s sit-
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?
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People tend to
know more the
names of actors
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like.

?

I have seen all
Brad Pitt’s films.

...
...

Not disliking
may mean en-
joying.
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Figure 2.3: 2D-plot of a taxonomy of dataset-based learning depending on the supervision level. Chapter 3 and
Chapter 4 use concepts that can be categorized as weak supervision. Figure best viewed in color.
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Inaccurate supervision Targets are collected either automatically or manually. On the one hand, examples

(xi, yi) can be pre-processed automatically from existing databases: input text may be classified according to their

metadata like their source, tags, or ratings. Similarly, parallel corpora of translated legislation are used in machine

translation. While offering good scalability characteristics, automatic pre-processing is prone to errors. On the other

hand, manual annotation requires humans to examine inputs before carefully assigning some label(s). Though hu-

man experts often yield high-quality annotations, scaling expert annotation is expensive. That is why datasets are

often labeled by crowdworkers through crowdsourcing platforms such as Appen7 or Amazon Mechanical Turk8. As

crowdworkers are paid pro rata with the number of examples annotated, their incentives lean towards quantity rather

than quality. Furthermore, ambiguity, context [544] or audience dependency may make some examples subject to

subtle interpretation and misunderstood by crowdworkers if their reference frame differs too much from that of the

target audience. For example, pejorative American idioms “Monday-morning quarterback”9 and “carpetbagger”10

may be confusing for a native English-speaking crowdworker with Indian cultural background. All in all, noise in

automatic or manual targets may make supervision inaccurate.

Inexact supervision Properties of language can appear at different granularities: subwords, words, phrases,

clauses, sentences, paragraphs, etc. Splitting text into independent parts is a complex task due to semantic consis-

tency that can be long-term. Therefore, an input may contain more text than the subset of text (called “span”) actually

responsible for explaining its labeling. For instance, datasets made of review-rating pairs [175, 222] may contain

long reviews stating positive and negative aspects but associated with one single positive or overall negative rating

of the reviewed item. Finding local characteristics in long texts is at the heart of NLP research on interpretability and

explainability [419, 288, 355, 340, 59, 487] and is at the core of Chapter 4.

Incomplete supervision Some ML approaches can leverage a set of labeled and unlabeled examples. In partic-

ular, data augmentation [123] is a trick used to increase the size of the training dataset automatically. In NLP, data

augmentation can be materialized by synonym replacement [527] or cyclic translation [486] (cf. Chapter 3). Active

[459] and semi-supervised [593] learning are well-known approaches described by [592] though barely applied to

NLP. Actually, as it exploits both unlabeled and labeled data, incomplete supervision echoes a major breakthrough

in recent NLP training schemes, called self-supervised learning [309].

Self-supervision Open challenges in AI that are keys to animal intelligence are the development of commonsense

knowledge [106] and transfer of learning [386]. ML algorithms have proved quite efficient at overfitting individual low-

level tasks, provided they have enough various labeled sample data. Yet, strong supervision hinders generalization
7https://appen.com/
8https://www.mturk.com/
9Term referring to American football and meaning "someone who criticizes from hindsight.”[535]

10Term referring the American Civil War and meaning “one who comes to a place or organization with which they have no previous connection
with the sole or primary aim of personal gain, especially political or financial gain.” [536]
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because it cannot guarantee pitfalls that would not be covered by the training data. Indeed, collecting datasets of

labeled data large and diverse enough to cover the space of all possibilities is illusory and does not correspond to

processes observed in biological learning.

2.4.3 Supervisory signals from unlabeled data: a goldmine for Natural Language Pro-

cessing?

Even if the terminology of dataset-based ML is open to debate and may seem idle at first, we think it raises fun-

damental questions on how ML can improve from a biomimetics perspective. Historically, the presence of targets

differentiates supervised learning from unsupervised learning. The supervised signal was considered to come ex-

clusively from the target, and unsupervised algorithms were designed to discover structures or patterns in the input

features, e.g., anomaly detection, correlations (PCA [135, 199, 218]), cluster and community detection (k-means

[327, 313, 133]). Nevertheless, some untagged data sources like language hold far more “supervisatory signal”

[273] than others (like physical measurement in time or space). Thus, the diptych labeled / unlabeled learning

is a proposition11 that could clarify the origin of the supervisory signal. Take the following sentences: strain =

“People often stop watching a movie that they consider bad, before it ends.” and stest = “I stopped

watching this movie after only 1 hour”. Now, consider the task of sentiment analysis [371, 477, 571], where

the system has access to unlabeled training sentences including strain and is queried with inferring the sentiment

in stest. Even without direct access to external labels, self-supervised learning introduces objective functions to

capture the supervisory structure found in the training data (which may implicitly or explicitly contain labels, cf.

Section 2.5.3)12. Besides, it has recently played a crucial role in the development of AI systems as described in

Section 2.5. Self-supervision is even qualified as “the next frontier of AI” by LeCun and Ishan [273], revealing the

“dark matter of intelligence”.

In conclusion, we saw that ML could process signals in various ways. The original supervised/unsupervised/re-

inforcement learning paradigms have been extended to a richer set of in-between setups, resembling real-world

conditions. The following chapters derive examples of weakly supervised systems attempting to solve practical

problems raised by online interactions.

11https://twitter.com/yoavgo/status/1489364641000181774
12Note that strong supervision and self-supervision are equivalent from the point of view of UNLG.
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2.5 Training and inference

2.5.1 Supervised training

The traditional approach of supervised learning is well described with probabilistic learning. The true conditional

label distribution P (Y |X) (derived from the data generating distributions P (Y,X) and P (X)) is approximated by a

parametric family of model distributions Pθ (Y |X). Learning consists in tuning the weight θ by optimizing the value

of a loss (or objective) function L so that the optimal model distribution Pθ̂ (Y |X) gets “closest” to the empirical

conditional label distribution P̂ (Y |X), defined by the training set. The maximum likelihood estimator [131] with

regard to the observed examples (xi, yi) is often considered a good choice for θ̂ because of its statistical properties.

Beyond ambiguity and context dependency (cf. Section 2.1.2), natural language carries another important speci-

ficity: it is made of variable length sequences of discrete tokens. In NLU, sequentiality appears in the input text x

modeled as sequences of tokens
(
x1, x2, . . . , xm

)
. In NLG, the output is a variable-length sequence of tokens(

y1, y2, . . . , yp
)
. NLG is often viewed as a multiclass classification task with an infinite number of classes: the

possible classes are all the tuples made of tokens from the vocabulary V .

The discrete nature of language makes it particularly suited to supervised probabilistic classification, whose goal

is to learn a parametric function fθ—called the model—that predicts class ŷ given an input x. For instance, fθ

may correspond to the optimal decision rule, i.e. ŷ = fθ (x) = argmaxy P (y|x; θ) [35]. In classification, maximum

likelihood (L) estimation is equivalent to minimizing the cross-entropy loss (H)—a function grounded in information

theory [90]—or, alternatively, the statistical distance known as the Kullback–Leibler divergence DKL [252]. The

optimization problem can be formalized in the equivalent formula given in Equation (2.1).

θ̂ = argmin
θ

∑
i

L (xi, yi; θ) = argmin
θ

H
(
P̂ (Y |X) , Pθ (Y |X)

)
≜ argmin

θ
EP̂ (Y |X) [− log (Pθ (Y |X))]

= argmin
θ

DKL

(
P̂ (Y |X) ||Pθ (Y |X)

)
≜ argmin

θ
EP̂ (Y |X)

[
log

(
P̂ (Y |X)

Pθ (Y |X)

)]

= argmax
θ

L (θ| (xi, yi)) ≜ argmax
θ

P ((yi)i | (xi)i ; θ) = argmax
θ

∏
i

P (yi|xi; θ)

(2.1)

2.5.2 Language Representation Learning

Representation Learning [28] is an important ML concept at the core of the conception of neural architectures (cf.

Section 2.6). Neural classifiers models successively apply linear and non-linear transformations to input features in

order to make data points easily separable. Transformations generate internal representations of inputs and outputs

that may acquire relevant algebraic properties. For instance, linear separation in Euclidean space is particularly

intuitive (cf. Figure 2.4).
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Figure 2.4: 2D-illustration of the goal behind learning “good” representations with an Artificial Neural Network. Red
crosses and blue dots are data points belonging to one class or another. Representation (or feature) learning aims
at making these classes easily distinguishable in a latent space.

In NLP, we are interested in relevant numerical representations of text [186, 26]. A common approach to lan-

guage Representation Learning is text embedding, in which we aim at embedding chunks of text in some vector

space where semantic and syntactic properties are appropriately distributed. The granularity of the distributed rep-

resentation may vary [271, 239, 338] but the leading approach consists in embedding each word (or subwords

[456, 251, 108]) with a parametric embedding matrix θEmb of size dEmb × |V |. The embedding matrix can be used

as standalone for text analysis. Word embedding actually predates the neural NLP era. Still, an embedding matrix

often constitutes the first—and sometimes only—layer of a neural model.

2.5.3 Self-supervised Representation Learning

The goal of self-supervised Representation Learning is to automatically extract general syntactic and semantic

knowledge (like common sense) from tremendous quantities of unlabeled data. NLP has the characteristics of

having easy access to a huge amount of raw, rich, and various datasets online. Unlabeled text of diverse nature and

quality may be present in online encyclopediæ [482] (in 2022, Wikipedia13 had ∼ 29 billion words, ∼ 3.9 billion of

which are in the English version), news datasets [220] (Google News dataset has∼ 100 billion words), books corpora

[596] (∼ 800 million words in the Toronto Books Corpus), web crawl (scrape) corpora [406, 402, 56, 79] (Common

Crawl14 has hundreds of billions of words) or social media conversations1516 [2] (LaMDA [502] was trained on ∼ 1.56

trillion words from public dialogs).

Knowledge may be stored in explicit or implicit forms. For instance, the sentence “1961 was the last year in

which the majority of Hollywood films were released in black and white.” [533] explicitly states a his-

torical fact related to cinematography. It also participates in the commonsense knowledge that black and white

movies preceded color movies, and the shift happened in the mid-twentieth century. More implicitly, the sentence

“In December 2015, Moore announced his support for Vermont Senator Bernie Sanders in the 2016

13https://en.wikipedia.org/
14https://commoncrawl.org/
15https://twitter.com/
16https://www.reddit.com/
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United States presidential election.” [534] refers to American politics to indicate the political views of direc-

tor Michael Moore. Further text detailing Senator Bernie Sanders’ political positions may add valuable background

to understanding Michael Moore’s work. In the following sections, a corpus used for self-supervision will be repre-

sented by a sequence of unlabeled tokens
(
w1, w2, . . . , wq

)
with q > 109 in practice.

Non-contextual self-supervised word embeddings Implementations of self-supervised Representation Learn-

ing in NLP are based on the distributional hypothesis proposed by linguists: words are context-dependent. This

principle has been summarized by “You shall know a word by the company it keeps” in Firth’s work on collocational

meaning [164]. First uses of unlabeled text to learn word representations were introduced by Collobert and Weston

[85], Turian et al. [506] and Collobert et al. [86]. It became dominant in NLP when latent semantic analysis revealed

powerful properties learned by the self-supervised Word2vec [343, 342, 429, 163], GloVe [385] and Fasttext [157].

The key idea was to design a loss function forcing the encoding of semantic similarity between two words. Cosine

similarity between the word embeddings was chosen as a proxy for semantic similarity.

Word2vec In NLP, self-supervision is put in practice with appropriate tasks designed to learn semantic similarity

from the context in which words occur. Mikolov et al. [343] proposed two efficient objectives to make a model learn

word embeddings from the contexts they appear in: continuous bag-of-words and skip-gram. In both objectives,

training consists in the classification task of maximizing the likelihood P (y|x; θ) where x is the input text and y is the

pseudo-label text. The principle consists in making a fixed-size window slide along the entire corpus
(
w1, w2, . . . , wq

)
and using the tokens in the window to build x and y. Let 2×c+1 be the window size. The window is made of a target

token wt at its center and a set of context tokens
{
wt−c, wt−c+1, . . . , wt−2, wt−1, wt+1, wt+2, . . . , wt+c−1, wt+c

}
.

Continuous bag of words In the continuous bag-of-word (CBOW) version, the input is made of the context tokens,

and the pseudo-label is the target token.

Skip-gram Conversely, skip-gram considers the target token to be the input and the context tokens to be the

pseudo-label.

A word of caution: even though here the self-supervised training considers words in their context, the learned

embeddings are called “non-contextual” or “static” because they are stored in a fixed dEmb×|V |-matrix, later used to

embed words independently of the context they appear in. Incidentally, cosine similarity has also been applied later

for sentence similarity [450, 64] and we leverage “sentence embeddings” in the subsequent chapters (cf. Chapter 3

and Chapter 5).

30



2.5.4 Stack structures

In neural NLP, the backbone structures of models can be classified according to the type of task they are mainly

designed for (cf. Section 2.3). Layers fulfilling a specific function are grouped into what is called a stack. Neural

NLP developments have juggled the single-stack and multi-stack structures we present hereunder.

Single-stack structures A system mainly designed for NLU is called an encoder as its function is to encode

discrete representation of text x into a latent representation z = fθEnc(x). The goal is to encode the semantics of the

input in a continuous distributed space. z can be a single vector representing the entire input x =
(
x1, x2, . . . , xm

)
or a sequence of m token representations. BERT [108], its derivatives [311, 439, 264, 174], XLNet [555], ELECTRA

[83] and ERNIE [582, 492, 493] are examples of modern NLU systems modeled with encoders.

NLG-oriented (and in particular UNLG-designed) systems are often modeled with a stack called decoder, whose

role is to decode internal dense representations z in discrete sequences of tokens y. Decoders have been used to

model NLG systems such as GPT [401, 402, 56], Grover [565], Megatron-Turing NLG [471, 427, 358, 475], PanGu-

α [567], Jurassic-1 [294], Gopher [404], Chinchilla [195], LaMDA [502] and PaLM [79]. If combined with an encoder,

the decoder is trained to maximize the likelihood P (y|z; θ). In language modeling (cf. Section 2.5.7), generating

tokens of ŷ is then realized via sampling the model distribution according to some decision rule (cf. Section 2.5.7).

What is more, since natural language has properties of symbolic time series [298], NLG is aptly addressed by auto-

regressive decoders. Auto-regressive generation consists in generating one token at a time with a feedback loop at

each time step. The iterative process stops when a special End-Of-Sequence token <EOS> is reached.

There are two key properties that differentiate the design of encoders and decoders. First, encoders have access

to the entire input text x. Therefore, they a priori know the sequence length, while decoders cannot know in advance

the length of the sequence y they will generate, especially when generation is auto-regressive. The sequence length

variability is a concept characterizing NLP as opposed to computer vision, where images have a fixed set of pixels.

Second, by having initial access to the entire input x, encoders can process the entire sequence in any order. On

the contrary, auto-regressive decoders may only process information coming from previous tokens.

Multi-stack structures In addition to single-stack structures, multi-stack structures have been proposed. The

most common multi-stack structure is the double stack. It is made of an encoder and a decoder (cf. Figure 2.5).

Encoder-decoders are general structures proposed in sequence-to-sequence learning [495]. In particular, they

are adapted to text-to-text tasks, where learning a suitable representation z in a latent space is sought-after. For

example, disentanglement can be a good latent space property when we aim at transferring some text attribute from

one subspace to another. Actually, latent representation learned with strongly supervised learning was the main

idea of Sutskever et al. [495]. More recently, encoder-decoder structures have been employed by the bitransformer

[514], MASS [478], T5 [406], PEGASUS [569], BART [284], ProphetNet [398], GShard-M4 [279] and the switch
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Figure 2.5: Structures of neural models found in the literature. hi is the contextualized representation corresponding
to the ith input token.

bitransformer [125].

The number, nature, and assembly of stacks in neural NLP is only limited by computational resources, optimiza-

tion issues, and the imagination of their developers. For example, Baziotis et al. [22] proposed to combine two

encoder-decoders, i.e. a quadruple-stack structure, for self-supervised abstractive summarization.

Note that the structure-function mapping proposed above is flexible. Indeed, several works have used single-

stack structures for text-to-text [56, 112, 19, 114] while others introduced encoder-decoders for a set of applications

including NLU-only tasks [406].

Strongly supervised NLP models learn input representations for the task they are trained on. Yet, since neural

models tend to overfit when not appropriately regularized, representations may be too task-specific. In contrast, we

may be looking for more general representations to strengthen transfer learning [483, 503, 54, 504, 370, 9, 10, 97,

407, 269, 121, 47, 141] properties of models, inspired by human abilities to solve new tasks by leveraging knowledge
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acquired on related problems seen in the past. In fact, pretraining a model on a self-supervised task is an efficient

(and perhaps sufficient) approach to teach general knowledge that will be used to solve downstream tasks [154].

2.5.5 Self-supervised Encoder-Decoders

Auto-encoders Auto-Encoder (AE) [557, 51, 247, 302, 185, 188, 303, 154, 144] are models traditionally used for

learning representations (a.k.a. feature learning) from unlabeled data. The hack is to train an encoder-decoder,

like in the strong supervised setup, except that the label y is the input x (cf. Figure 2.5) or a subset of x’s features.

Auto-Encoders illustrate the terminology point discussed in Section 2.4.2. Indeed, Auto-Encoders deal with raw

unlabeled input text but are trained with a pseudo-label built automatically from the input. Neither unsupervised

learning nor strong supervision faithfully correspond to this situation where the supervisory signal comes from the

input itself.

If unconstrained, an Auto-Encoder could simply learn the identity function, which is useless. Therefore, training

and modeling techniques have been developed to force the decoder to reconstruct the input x from a compressed

salient encoding. Several such means have been introduced such as Variational Auto-Encoders (VAE) [237, 238]

and concrete Auto-Encoders [1] but the most efficient ones for NLP are specific regularized auto-encoders, called

the Denoising Auto-Encoders (DAE).

Denoising Auto-Encoders Bengio et al. [29] and Alain and Bengio [6] showed that training an Auto-Encoder

to reconstruct a corrupted version x̃ of the input x makes the model learn rich representations for x [517, 518].

Corruption alters the input data by sampling x̃ from a noise distribution given x, C
(
X̃|x

)
. Then, learning P (x|x̃; θ)

teaches the model to capture important information from x while ignoring the noise (cf. Figure 2.5). Glorot et al.

[148] proved the relevancy of DAEs for NLP by using them in sentiment analysis. Common text corrupting strategies

include single-token or multi-token span replacement with a special mask <M> token [108, 311, 264, 174, 582, 492,

493, 284, 83, 478, 569, 88, 112] (cf. Section 2.5.8), a sequence of sentinel tokens <X>, <Y>, . . . [406] or tokens

randomly sampled from the vocabulary [108]. Other noising functions have been introduced such as random token

deletions (dropping) [284], permutations (shuffling) [555, 284, 19], capitalization [312], truncations or else rotations.

In NLP, training with a Denoising Auto-Encoder is sometimes referred to as Full Text Reconstruction (FTR), as

opposed to Corrupted Text Reconstruction (CTR, cf. Section 2.5.8) [307].

Denoising Auto-Encoders can be trained to learn transferable representations of the input as well as the output

in generation tasks. Nevertheless, without further and stronger supervisory signals, they cannot a priori solve

downstream tasks. As a matter of fact, the learned representations may be too general with too much information

lost by compression. Downstream tasks may only need a subset of the semantics included in the input or output

text, hence the need of “domain adaptation”. Thus, the complete training of a model can be decomposed into two

consecutive optimization phases: pretraining a subset of (or all) parameters with self-supervision before fine-tuning
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the entire model on strongly supervised downstream task(s) [184]. Note that there is a current research trend trying

to get rid of the fine-tuning hypothesis, which will be detailed in Section 2.5.9.

2.5.6 The pretraining/fine-tuning pipeline

Pretraining Even if it is possible to pretrain NLP models with strong supervision [336], self-supervised pretraining

has prevailed in neural NLP for the reasons given in Section 2.4.3. Non-contextual self-supervised word embeddings

(cf. Section 2.5.3) have been used as representation features in NLP models. Whether pretrained or not, word

embedding often makes up the first layer of a neural model; Turian et al. [506] showed the benefits of pretrained

word embeddings over random initialization.

Pretrained model Additional self-supervised pretraining tasks have been proposed to pretrain the entire model

rather than the initial layer [343, 385, 388]. Dai and Le [95], Liu et al. [306] and Howard and Ruder [200] were

among the first to impulse the now widely-used trend of full-model pretraining in NLP [108, 311, 439, 264, 174,

555, 83, 582, 492, 493, 401, 402, 56, 565, 471, 427, 358, 475, 567, 294, 404, 195, 502, 79, 478, 406, 569, 284,

398, 279, 125, 56, 112, 19, 114], in order to increase transfer learning abilities. Initially, the original denoising auto-

encoding objective (cf.Section 2.5.5) was used for self-supervised pretraining. Alternatively, contrastive learning

[443] is another approach to self-supervised pretraining. This classification task consists of learning which pairs of

text are comparable. Examples of contrastive learning include Negative Sampling [343], Replaced Token Detection

(RTD) [83], Next Sentence Prediction (NSP) [108] and Sentence Order Prediction (SOP) [264]. Yet, the dominant

approach to self-supervised pretraining heavily relies on Language Models, introduced in Section 2.5.7.

Fine-tuning After pretraining, a second phase is often needed to adapt and transfer the knowledge acquired at

pretraining toward more restrained problem(s). Strong supervision on few17 labeled examples are used to fine-

tune (update) the model’s parameters with an objective focused on one or several specific downstream task(s).

Despite significantly improving the experimental results on downstream tasks, there is no clear theoretical ground-

ing regarding pretraining benefits. Goodfellow et al. [154] puts forward two arguments. First, in the optimization

perspective, models benefit from parameter initialization in the appropriate region [120]. The second reason is

probability-grounded: knowledge of the input and/or output distributions would facilitate the process of learning the

right mapping from inputs to outputs; a data-driven temet nosce18 maxim so to speak.

As we have seen, self-supervision is implemented through pretraining in modern neural NLP. There exist several

loss functions to pretrain a model, but a specific family of objectives has prevailed in modern ML-based NLP:

Language Models.

17Compared to the pretraining dataset size
18Latin for “know thyself”
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2.5.7 Language Models

Standard properties of modern Language Models A Language Model (LM) is a probability distribution over

variable-length sequences of tokens belonging to a pre-defined vocabulary V (i.e., symbols pertaining to a lan-

guage). A LM parametrized by θ assigns probability P (s|θ) to all sequences s =
(
s1, s2, . . . , sm

)
∈ V m,∀m ∈ N.

LMs had initially been introduced in the context of automatic speech recognition [212] and have been applied to

NLP [26]. In a probabilistic approach, language modeling is the natural way to formulate NLG. LMs not only relate

to the well-known classification setup but also enable direct and simple learning of both the syntactic complex-

ity of language and the semantic knowledge phrased by language [220]. For instance, assigning high probability

to the English sentence “People often stop watching a movie that they consider bad, before it ends.”

contributes to encoding that a well-formed English sentence starts with a capital letter and ends with a period and

that the word “bad” has more probability of directly following the word “consider” than the word “they”. Addi-

tionally, a system with some understanding of natural language (vocabulary, grammar, and semantics) may learn a

commonsense fact about logical human behavior with this sentence.

Recent ML for NLP has substantially benefited from specific models trained to compute LMs, to the point where

models and the distribution they predict are often identified. Indeed, neural architectures like transformers (cf.

Section 2.6) and the massive increase in models’ capacities improved the expressiveness of LMs.

Neural Language Models Early implementations of LM computing relied upon word-count-based methods. A

n-gram LM is a statistical LM [462, 346] computing the frequency of markovian sequences of n tokens—called n-

grams19—appearing in text [329, 461, 155]. When seen as weighted finite automata, an n-gram LM is an instance

of statistical NLP systems at the intersection of formal language theory and linguistics. Because statistical LMs use

discrete representations of tokens, they face two issues: sparsity and complexity. Sparsity implies that n-grams

not appearing in the training set have null probability, hence hindering generalization. Besides, the complexity of

statistical LM is in O (en) with respect to the the context length n, limiting the Markov assumption to low nth order

in practical cases. Both limitations are addressed by continuous space Language Models [449]. In this approach,

widely used nowadays, neural networks (cf. Section 2.6) are trained to compute LMs. Neural LMs (NLMs) can

be characterized by the specific backbone architecture used, e.g., Feedforward NLM, Recurrent NLM, Transformer-

based NLM, etc. It is common for NLMs to learn an internal representation of individual tokens, or entire sequences,

with dense and low-dimensional vectors. In general, each token st—st being an input token in NLU and an output

token in NLG—is represented at each layer i by a vector ht
i called the hidden representation of st or the hidden state

of the model at time step t. The output layer dealing with projecting the last hidden representations ht back to logits

in the discrete vocabulary space is often called the “LM Head”.

19n-grams are particular skip-grams, seen in Section 2.5.3
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Auto-regressive Language Models LMs can be auto-regressive (cf. Section2.5.4). At each generation step t,

the model has access to representations of the previously generated token(s) ŝ1:t−1 =
(
ŝ1, ŝ2, . . . , ŝt−1

)
. Auto-

regressive LMs are computed with the chain rule (cf. Equation (2.2)).

P (s|θ) = P
(
s1, s2, . . . , sm|θ

)
=

m∏
t=1

P
(
st|ŝ1, ŝ2, . . . , ŝt−1; θ

)
(2.2)

Search techniques for Generation There are various strategies to generate tokens from an auto-regressive LM

at inference time. They can be grasped by their quality-complexity trade-off. Let T be the maximum size of a

generated sequence. In theory, T can be infinite, but in practice, T ∈ N.

Exhaustive search Under the assumption of a good auto-regressive LM, searching the sequence with maximum

likelihood requires a brute-force approach. Exhaustive search consists in exploring the entire distribution of all

possible sequences made of tokens from the vocabulary V . Equation (2.3) formalizes the exhaustive search.

ŝ = argmax

s∈
T⋃

k=1

V k

P (s|θ) (2.3)

Exhaustive search has exponential complexity as its running time is in Θ
(
|V |T

)
. In NLP, |V | ∼ 104 so generating

long and/or many sequences quickly becomes intractable.

Greedy search The auto-regressive property lets us sacrifice some quality for major savings in execution time.

With greedy search, the generated sequence ŝ =
(
ŝ1, ŝ2, . . . , ŝT

)
is generated one step at a time. In practice, tokens

generated after an End-Of-Sequence token (<EOS>) are ignored (or the process stops before they are generated).

At each time step, greedy search yields ŝt = argmaxst∈V P
(
St = st|ŝ1, ŝ2, . . . , ŝt−1; θ

)
. Because it simply considers

the distribution on the vocabulary V at each time step, greedy search takes linear execution time, in Θ(|V | · T ).

Beam search A trade-off has been proposed to control quality and complexity with a parameter B called the beam

width. In beam search [171], a set Ht of the B most probable sequences from Ht−1 concatenated with any token

w ∈ V is iteratively maintained at each time step t, as described by equations (2.4).
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H0 = ∅

Ht = argmax
H⊂H̃t:
|H|=B

∑
ŝ1:t∈H

PS1:t∼H
(
S1:t = ŝ1:t|θ

)
where H̃t =

⋃
(ŝ1:t−1,w)
∈Ht−1×V

ŝ1:t−1 ⌢ (w)

Finally ŝ = argmax
ŝ1:T∈HT

PS1:T∼H
(
S1:T = ŝ1:T |θ

)
(2.4)

Beam search has a linear run time in Θ(B · |V | · T ) with a constant factor equal to B. Beam search is widely

used in NLG, especially in machine translation, and plays a role in increasing the diversity of generated text since

it yields B alternative generated text. The beam width B gives direct control over the quality-complexity trade-

off: B = 1 is greedy search, while incrementing B exponentially from V to V T at each time step corresponds to

exhaustive search.

Teacher forcing when training auto-regressive Language Models Auto-regressive LMs use a feedback loop

at inference time. The same process can be used at train time, but an alternative scheme is often preferred for

its time efficiency and robustness. When making a prediction, teacher forcing [538] gives the model access to

information not accessible at inference time: the ground-truth target. Instead of predicting the next token based

on the previously generated tokens (P
(
st|ŝ1, ŝ2, . . . , ŝt−1; θ

)
), teacher forcing computes the prediction of the next

token based on the past ground-truth tokens: P
(
st|s1, s2, . . . , st−1; θ

)
. The benefits are twofold and illustrated

by the following situation where the LM is trained on the sentence “People often stop watching a movie that

they consider bad, before it ends.”. If the training step is early, then free-running generation may produce

“random” tokens, like ŝ1 = “are” and ŝ2 = “she”. The information coming from the model trained to maximize

P
(
S3 = “stop”|ŝ1 = “are”, ŝ2 = “she”; θ

)
is much more noisy than when a “teacher” forces the model to maxi-

mize P
(
S3 = “stop”|s1 = “People”, s2 = “often”; θ

)
. Besides, even when the training process is advanced, the

signal from P (s|θ) = P
(
s1, s2, . . . , sm|θ

)
requires to compute the sequence

(
P
(
st|ŝ1, ŝ2, . . . , ŝt−1; θ

))
t∈[1..T ]

one

generation step at a time while
(
P
(
st|s1, s2, . . . , st−1; θ

))
t∈[1..T ]

can be parallelized and computed in a single step.

Sequence-to-sequence learning Sequence-to-Sequence (Seq2Seq) learning is the set of ML approaches that

transforms a sequence into another. Sutskever et al. [495] have proposed a neural approach to text-to-text tasks.

This work has gotten major impact since it achieved remarkable results by applying three key principles:

1. Train with end-to-end learning, i.e., models (gradient-based) directly learn from inputs associated with targets

2. Optimize auto-regressive Language Model objectives
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3. Model distributions with encoder-decoder neural architectures (cf. Section 2.5.4 and Section 2.6)

Sequence-to-Sequence Language Models A Seq2Seq LM is a LM conditioned by some input text x =(
x1, x2, . . . , xm

)
. A sequence sampled from the distribution is called an output y =

(
y1, y2, . . . , yp

)
, and a Seq2Seq

LM assigns probability P (y|x; θ). Sutskever et al. [495] proposed a strongly supervised approach, that is to say

maximizing the likelihood P (y|x; θ) from pairs of input and target texts (xi, yi). With auto-regressive generation, a

convenient way of triggering the generation of the first token ŷ1 given the input x is to condition the generation with

an initial Beginning-of-Sequence token y0 = <BOS>. This also applies to teacher forcing, in which case y0 = <BOS>

is prepended to the input y.

Prefix Language Models Prefix LMs are neural Seq2Seq LMs modeled with a single-stack structure [112, 367]

(cf. 2.5.4).

Encoder-decoder Language Models A Seq2Seq LM modeled with a double-stack encoder-decoder structure

[478, 406, 398, 284] (cf. Section2.5.4) is referred to as an encoder-decoder LM [290].

2.5.8 Self-supervised Pretrained Language Models

LMs fit perfectly self-supervision in NLP. Therefore, they have been extensively applied to pretraining systems

designed for UNLG (cf. Section 2.5.8), NLU (cf. Section 2.5.8) and test-to-text transfer (cf. Section 2.5.8). We detail

below specific approaches to train LMs with self-supervision.

Causal Language Models As we saw in Section 2.5.7, LMs—and in particular auto-regressive LMs—are well

suited to NLG. In addition to strong supervision (cf. Section 2.5.7), LMs can be trained with self-supervision in

order to generate text automatically. To this end, a sequence s is here split into two subsequences: a prompt

text x =
(
<BOS>, s1, s2, . . . , sk

)
and text to generate y =

(
sk+1, sk+2, . . . , sk+k′

)
. A Causal LM [221] is an auto-

regressive NLM maximizing the likelihood P (y|x, θ). Causal LMs are commonly referred to as standard LM. Contrary

to Seq2Seq LMs, causal LMs are fully unidirectional. This means their architectures are designed to prevent hidden

representations of tokens from processing information coming from subsequent (“future”) tokens. For this reason,

causal LMs are sometimes called left-to-right LMs in the context of sinistrodextral (left-to-right) writing systems.

When using a single-stack structure, causal LMs are said to use a decoder structure (cf. Section 2.5.4). Self-

supervised training consists in teacher forcing with a sliding window of size m over tokens in the corpus w, i.e.

at training step τ ∈ N∗, xτ = (<BOS>) and yτ =
(
w(τ−1)·m+1, w(τ−1)·m+2, . . . , wτ ·m) (cf. Figure 2.5). Pretraining

with causal language modeling has been introduced by GPT [401] and declined by subsequent models, often

characterized by increasing capacities and/or increasing pretraining dataset sizes [402, 56, 36, 565, 471, 427, 358,
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475, 567, 294, 404, 195, 502, 79]. The emergence of these Large Language Models (LLM) led to impressive results

in generating fluent and long sequences of coherent and sometimes astonishingly creative text.

Bidirectional Language Models In de Saussure and Baskin [103], the founder of modern linguistics, Ferdinand

de Saussure, considered linearity to be a fundamental property of human language:

"The Linear Nature of the Signifier:

The signifier, being auditory, is unfolded solely in time from which it gets the following characteristics: (a)

it represents a span, and (b) the span is measurable in a single dimension; it is a line.

In contrast to visual signifiers (nautical signals, etc.) which can offer simultaneous groupings in several

dimensions, auditory signifiers have at their command only the dimension of time. Their elements are

presented in succession; they form a chain. This feature becomes readily apparent when they are

represented in writing and the spatial line of graphic marks is substituted for succession in time.

Sometimes the linear nature of the signifier is not obvious. When we accent a syllable, for instance, it

seems that we are concentrating more than one significant element on the same point. But this is an

illusion; the syllable and its accent constitute only one phonational act. There is no duality within the act

but only different oppositions to what precedes and what follows. [. . .]

The linear nature of language [. . .] rules out the possibility of pronouncing two elements simultaneously.

The elements are arranged in sequence on the chain of speaking."

The linear characteristics of the sound chain can be found in many modern writing systems, particularly in

alphabet-based scripts. This motivates the unidirectionality developed in causal LM.

However, Saussure’s structural linguistics has been criticized by the more recent founding father of modern

linguistics, Noam Chomsky. With the introduction of multi-layered “deep structures” [78], the chomskian generative

linguistics implicates the concept of simultaneity observed for instance in non-verbal communication (e.g. sign

languages [196]), non-lingual auditory perception (e.g. philharmonic orchestras) or non-verbal visual perception

(e.g. photographs).

As a matter of fact, the unidirectional hypothesis is not necessary either in NLU. Bidirectional language mod-

eling [14] is a clever way to build good representations from self-supervision. For example, learning to pre-

dict that “1961” precedes “was the last year in which the majority of Hollywood films were released

in black and white.” corresponds to memorizing the correct date of a fact, whereas learning that “black and

white.” follows “1961 was the last year in which the majority of Hollywood films were released in”

amounts to remember attributive information given an incomplete, dated fact. Because a bidirectional LM (BiLM)

aims at learning, with self-supervision, semantic representations of input text for NLU, its structure is often referred
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to as an Auto-Encoder when it is single-stack (cf. Section 2.5.4). However, to avoid confusion with Goodfellow

et al. [154]’s more restrictive definition of neural Auto-Encoders20 (cf. Section 2.5.5), we prefer the general term of

“self-supervised encoder”.

Forward-backward Language Models [388] introduced bidirectional embeddings from forward-backward

LMs. The LM is bidirectional because it is trained to predict a standard “forward” auto-regressive LM(
P
(
st|s1, s2, . . . , st−1; θ

))
as well as a “backward” auto-regressive LM

(
P
(
st|st+1, st+2, . . . , sm; θ

))
, in order to learn

word representations.

Here, language modeling is said to produce contextualized or dynamic word embedding [338, 387, 336, 388].

The novelty is that the same token can be embedded depending on the context it appears in. It is particularly

useful to disambiguate polysemes and homographs21 in downstream tasks. We give in Table 2.2 an example of the

different definitions of the word “bank”, illustrating why contextually-meaningful embedding is sometimes needed.

Masked Language Models Beyond forward-backward LMs, subsequent works have proposed additional BiLMs.

Actually, self-supervised pretraining for NLU gained a foothold when BERT [108] achieved state-of-the-art results on

the GLUE benchmark. Since then, only derivative models have renewed the leaderboard [311, 439, 264, 174, 493].

The pretraining task introduced by BERT is the Masked Language Model (MLM)22. If the corpus
(
w1, w2, . . . , wq

)
is

split into n sentences s1 ⌢ s2 ⌢ . . . ⌢ sn, masked language modeling involves corrupting a sentence s ∈ (si)i∈[1..n]

like with denoising autoencoding. The noised sentence s̃ =
(
s̃1, s̃2, . . . , s̃m

)
is corrupted with a specific process

originally proposed by Taylor [499] and detailed in equations (2.5). In words, this corresponds to drawing an event

Ct that token st is corrupted. BERT-style corruption takes the form of a replacement by a special “Mask” token <M>

with high probability, or by a uniformly random token from V with low probability (explained by the fact that the <M>

token is reserved for pretraining only).

P (Ct) = 0.15

P
(
s̃t = st|st, C̄t

)
= 1

P
(
s̃t = <M>|st, Ct

)
= 0.8

P
(
s̃t = st|st, Ct

)
= 0.1 ·

(
1 +

1

|V |

)
P
(
s̃t = w|st, Ct

)
=

0.1

|V |
∀w ∈ V \

{
st
}

(2.5)

From the model’s perspective, the input x is the corrupted sentence s̃ (cf. Figure 2.5). Though, contrary to DAEs,

20“An Auto-Encoder is a neural network that is trained to attempt to copy its input to its output.”
21Homophones in speech processing
22BERT was also trained with contrastive learning, but Liu et al. [311] showed that its impact was limited.
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Remark Semantic meaning Part of
speech

Translation in Mod-
ern French

From Old
Italian banca

An organization where people and businesses can invest or bor-
row money, change it to foreign money, etc.

Noun Banque

A building where the services described above are offered. Noun Banque

To keep or put money in a particular building described above. Verb

Mettre en banque /
de côté, déposer,
être titulaire d’un
compte

To win or earn a particular amount of money. Verb Gagner, faire (de
l’argent)

To rely upon. Verb Compter, miser

In gambling, money that belongs to the owner and can be won
by the players.

Noun Banque

A collection of something, such as blood or human organs for
medical use, in a place that stores these things for later use.

Noun Banque

From Old
English
hōbanca

Sloping raised land, especially along the sides of a river. Noun Bord, rive, berge

A pile or mass of earth, clouds, etc. Noun

Talus, massif,
pente, remblai,
amoncellement,
couche, banc

To collect in or form into a mass, or to make something do this. Verb Amonceler

(Of an aircraft) To fly with one wing higher than the other when
turning.

Verb Virer

(Of an aircraft) The inclined turn described above. Noun Virage incliné

From Old
French banc A row of similar things Noun Banc, rangée, batterie

Collocated
with “shot”

In pool, a shot in which the player causes the cue ball or an
object ball to rebound off a cushion.

Noun (Coup) par la bande

In basketball, a shot in which the basketball glances off the back-
board before reaching the basket. Noun

[Untranslatable]
(Tir) contre la
planche

Table 2.2: Homonyms of the English word “bank”. Rows sharing the same etymology correspond to polysemes.
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masked LMs recover only the masked tokens (st)t∈{j:s̃j=<M>} rather than the original uncorrupted sentence s. As a

result, masked LMs are sometimes referred to as Masked Auto-Encoders. For NLU tasks such as classification, a

special <CLS> token may be prepended to the input. In this way, the model is able to learn not only contextualized

representations of individual tokens but also aggregate representations of the entire text via the representation h0

of the <CLS> token, processed in subsequent classification layers of the model. Another special token, <SEP> is also

used to separate sentences when the pretraining involves contrastive learning, comparing pairs of sentences.

The second advantage of BERT is the transformer backbone used to compute the masked LM (cf Section 2.6.3).

Unified Language Models Supervised Seq2Seq LMs and self-supervised causal or bidirectional LMs have been

developed to train parameters of models specialized on one single type of NLP tasks: CNLG, UNLG or NLU,

respectively. A recent trend seeks to unify LM pretraining to address one or more types of tasks.

Permutation Language Models The first attempt to unify causal and bidirectional LM was introduced by Yang

et al. [555]. Compared to causal LMs, masked LMs use a special Mask token <M>, which causes a discrepancy

between pretraining and fine-tuning. To overcome this gap while keeping bidirectionality in pretraining NLU sys-

tems, XLNet, and its successor MPNet [479], proposed a generalized self-supervised task, called Permutation LM

and consisting in auto-regressive language modeling on a uniformly random permutation s̃ =
(
s̃1, s̃2, . . . , s̃m

)
of the

sequence s =
(
s1, s2, . . . , sm

)
. Formally, let Sm be the set of all permutations of [1..m]. Permutation LM maxi-

mizes the likelihood P
(
s̃t|s̃1, s̃2, . . . , s̃t−1; θ

)
where P

(
s̃ =

(
sσ(1), sσ(2), . . . , sσ(m)

)
|
(
s1, s2, . . . , sm

))
= 1

m! ∀σ ∈ Sm.

Permutation LM led to improvement on several NLU tasks compared to the original masked LM.

Sequence-to-Sequence Masked Language Models Song et al. [478] and Raffel et al. [406] have adapted bidi-

rectional pretraining to an encoder-decoder structure with the goal of improving NLU and NLG in addition to the

text-to-text abilities of Seq2Seq LMs. When pretraining with Sequence-to-Sequence masked LM (Seq2Seq MLM),

the encoder is fed with the corrupted input x̃ and the decoder is trained to predict the pseudo-labels in an auto-

regressive way. Additional Seq2Seq MLMs have been proposed, such as the summarization-specialized PEGASUS

[569].

Multi-task self-supervised Pretrained Language Models Recent LMs have been proposed to pretrain systems

with a unified self-supervised LM based on controlling the information flow (causal, bidirectional or Seq2Seq) in

its backbone neural architecture, via dynamic attention masking (cf. Section 2.6.3). Pseudo-mask LM Dong et al.

[112], Bao et al. [19] enables pretraining a unique model to gain both NLU and UNLG abilities. In addition to these

two types of tasks, General LMs [114] can also address CNLG elegantly.
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2.5.9 Transfer Learning via Knowledge Adaptation to Downstream Tasks

Pretrained models reveal their full potential when adapted to specific—and possibly many—problems, called down-

stream tasks, and evaluated by labeled datasets (cf. Section 2.3). As mentioned in Section 2.5.6, strongly super-

vised fine-tuning has been the standard knowledge adaptation procedure after a model has been pretrained with

self-supervision.

LMs have an essential characteristic: they can represent task descriptions as well as targets in the same seman-

tic space as inputs. GPT-2 [402] and T5 [406] were among the first systems to solve multi-NLU-and-CNLG tasks in

a full text-to-text format after the model had been trained. The control of the task to solve was done by conditioning

task-specific text prefixes prepended to the input. Keskar et al. [232] used these prefixes, called “control codes”,

to steer UNLG in text subspaces characterized by specific style or content attributes. Raffel et al. [406] showed

the mutual benefit resulting from gradient-based fine-tuning of a single model on a mixture of tasks and illustrated

transfer learning between downstream tasks (in addition to transfer learning between the pretraining and fine-tuning

phases).

Fine-tuning often requires a large amount (∼ 104 to ∼ 106) of labeled examples per downstream task. It also

hinders the sought-after capability of alternating the resolution of several—possibly unrelated—tasks without further

parameter updates. These reasons have motivated the development of techniques leveraging the pretraining phase

(denoted meta-learning [56] in this context) to address transfer learning directly. Besides fine-tuning, recent works

[402, 56] have shown that task-specific knowledge can be acquired by manipulating causal LMs’ behaviors (cf.

Section 2.5.9). Plus, these methods paved the way for efficient few-shot learning in NLP.

Few-shot learning ML traditionally requires at least hundreds of data points for training a system to solve a

complex task. However, at a certain cognitive developmental stage, the biological brain has sufficient innate and

acquired knowledge23 to learn new tasks with few or even no examples. For instance, if a human is asked to identify

whether two different sentences have the same meaning, they will perform pretty well without any example and

whether or not they solved a similar problem before. Sometimes, an example is needed to understand the task.

If an English speaker is asked to identify pleonasms, an example such as “to exit outside” may be needed if the

person does not know the word “pleonasm”. More difficult tasks may require more than one example. Asking to

recognize zeugmas or semantic syllepsis may require positive examples like “They covered themselves with dust

and glory” [509], “On their flippant way through Italy, the French carelessly picked up Genoa, Naples and syphilis”

24, as well as a few negative examples. The setup where a pretrained system has access to a minimum description

of a task and/or a small amount of annotated data, typically less than 100, is called few-shot learning. In ML, if a

pretrained system has access to a single annotated example, the setup is called one-shot learning [344, 126]. For

23On the nature versus nurture debate, see Coll et al. [84], Goldhaber [150] and Keller [230]
24Quote attributed to Voltaire
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instance, a system that has properly clustered the classes seen during pretraining may be able to classify inputs

with regard to the previous classes plus an additional class to whose the single annotated example belongs. In the

extreme, zero-shot learning [67, 265, 259, 476, 368] refers to the case where the pretrained model cannot see any

labeled example to solve a task it has not been explicitly pretrained on.

Contrary to BERT [108] and T5 [406] which require strongly supervised gradient-based fine-tuning of their pa-

rameters with a significant number of labeled examples to solve one or several downstream task(s), GPT-2’s break-

through was to propose a clever way to address several downstream tasks with a single frozen model [402]. The

passable-but-promising results showed that a self-supervised causal LM could learn new tasks in a few-shot learn-

ing setup. The method, described in the next section, was later called “in context-learning” by Brown et al. [56].

Self-supervised pretraining on a dataset covering a tremendous amount of information, including domain knowl-

edge, could theoretically suffice to address in a few-shot learning setup, NLP tasks where targets can be expressed

with text, provided the model has enough capacity. For instance, the unlabeled sentence “I loved it because I

thought she was a great director” might participate in indicating that appreciating a director means the opinions on

their movies is positive. Radford et al. [402] provide additional examples of naturally occurring demonstrations of

translation found in large pretraining corpora. Recent evaluations on NLP benchmarks [56, 79] tend to show that

scaling the parameters of LMs (cf Section 2.5.9) does indeed close the gap between state-of-the-art fine-tuned LMs

and large-scale causal LMs used in few-shot learning setups. Whether this means that Artificial general intelligence

[132] or human-level AI will eventually be achieved with large-scaled models is an open debate. Controlling causal

LMs with natural language descriptions of downstream tasks (and potentially a couple of labeled examples) is done

with methods based on clever input tuning.

Few-shot and zero-shot transfer with input tuning Early few-shot learning involved gradient-based parame-

ter fine-tuning [130, 33, 223] though input tuning is the current state-of-the-art approach. Prompt augmentation is

the method consisting of feeding pretrained causal LMs with information necessary to solve a task given an input

text. The model is stimulated with a prompt (or context), like “The director is great. I thought the movie

was ”. Then, probabilities of a pre-defined set of texts, called verbalizers and corresponding to the classes of

the problem (e.g., in this situation “good” for positive sentiment and “bad” for a negative one) are compared. A

prompt (cf. Section 2.5.8) x′ is formed with the input text x and a “template” [307]. The process of transform-

ing x into x′ is called the prompting function. The template consists of a prefix and/or a suffix. Prefixes and

suffixes may take the form of explicit text instructions for zero-shot transfer [440, 528], like the prefix “Give me the

sentiment of ” or the suffix “What is the sentiment of the previous sentence? ”. Additionally, with recent

architectures being able to process long sequences of text without long-term dependency problems, it is possible

to pass a few labeled examples in the prompt [272]. This priming-based few-shot learning [253] may concate-

nate pairs using inter-separation (between pairs) and intra-separation (between the input and the target) symbols,
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for instance, “I loved this. => Positive \n Great director! => Positive \n I really hated it. =>

Negative \n This was the worst movie I have ever seen! => ”. The power of prompt-based learning for

multi-task learning [60, 402] comes from the ease in of switching from one application to a totally different one with

a single change in the template. Instructions and examples can be mixed in many ways for the same task. Actually,

prompt template engineering has recently become an active research topic.

Prompt Engineering

Manual template engineering A straightforward way of exploring how linguistic and world knowledge acquired by

LMs are affected by prompt templates is to manually craft prefix prompts [389, 444, 445, 446].

Automated prompt learning Besides manually designed prompts, templates can be optimized with automated

methods [214, 470, 142]. Further works have proposed to transform prompt learning into continuous prompt tuning

[399, 588, 165, 292, 310, 280, 161]. Whereas templates (hard prompts) are discrete instructions written in natural

language, it is possible to prepend dense representations (soft prompts) to the input right after it has been embedded

by the initial neural layer (cf. Section 2.5.2). Besides offering a finer-grained optimization framework, this tuning

strategy requires far fewer parameters to train than what is required by traditional full-model tuning, hence producing

major savings in time and space.

Large Pretrained Language Models A major development currently happening in neural NLP is the scaling of

Pretrained Language Models (PLMs). Indeed, we observe a race to develop and use resources to pretrain in-

creasingly deeper models on ever larger datasets. This is justified by empirical studies showing that not only LMs’

capacities (reflected by performances on downstream NLP tasks and text generation) are smoothly improved by

scaling up the parameters and training datasets [228], but also it seems no upper bound has (yet?) been reached

[79]. At the time of writing this dissertation, models have regularly grown from the 100-million-parameter GPT-1 [401]

to the 300-million-parameter BERT [108], the 1.5-billion-parameter GPT-2 [402], the 8.3-billion-parameter Megatron

[471, 358], the 11-billion-parameter-T5 [406], the 17.2-billion-parameter Turing NLG [427], the 70-billion-parameter

Chinchilla [195], the 137-billion-parameter LaMDA [502], the 175-billion-parameter GPT-3 [56], the 178-billion-

parameter Jurassic-1 [294], the 200-billion-parameter PanGu-α [567], the 280-billion-parameter Gopher [404], the

530-billion-parameter Megatron-Turing NLG [475], the 540-billion-parameter PaLM [79], and finally the 1.6-trillion-

parameter Switch Transformer [125]. The crux of the problem lies in parallel computing hardware and software. It

was enabled by advances in model architectures (cf. Section 2.6) and AI accelerators like Tensor Processing Units

(TPUs) and Graphics Processing Units (GPUs).

Large self-supervised Pretrained LMs are currently considered as driving a paradigm shift, similar to the sea

changes observed when ML algorithms—and later DL architectures—emerged and became dominant in AI. These
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Model GLUE Score ↑ SuperGLUE Score ↑
CBoW [343] (Baseline) 58.6 44.5
GPT [401, 56] 72.8 71.8a

BERT-Large [108] 80.5 69.0
RoBERTa-Large [311] 84.6 88.5
T5-XXL [406] 90.3 89.3
DeBERTa-TuringNLRv4 [174] 90.8 90.3
ERNIE [582, 493] 91.1 90.6
Human 87.1 89.8

a Few-shot learning.

Table 2.3: GLUE and SuperGLUE scores of high-impact LMs on the test sets according to the leaderboards. Except
for the score of GPT(-3) on the SuperGLUE benchmark, all models are fine-tuned on the downstream tasks.

seismic changes are characterized by quick standardization of approaches that are eventually applied to real-life

problems and directly—or indirectly—impact citizens’ daily lives. The current AI transition stemming from Pretrained

LMs has been named the revolution of “Foundation Models” [46]. Not only have these models become the “sub-

strate of NLP”, showing astonishing capabilities in world knowledge, creativity as well as common sense, logical

and arithmetical few-shot reasoning (examples of complex joke explanation are provided by Brown et al. [56]), but

similar ideas have been applied to further modalities [498] such as images [73, 412, 435], tables [558] or proteins

[423]. Pretrained LMs made of numbers of parameters exceeding the number of neurons in human brains [179]

are now considered as “foundations for a wide range of downstream applications”. It is not well understood yet

whether their aptitudes are based on actual generalization, as in human intelligence, or on powerful memorization

[402]. Opportunities and risks have been extensively explored by Bommasani et al. [46], including potential harms

concerning bias, ethics, fairness, privacy, safety, security, or natural environment.

Table 2.3 shows the average GLUE and SuperGLUE test scores (cf. Section 2.3) of high-impact LMs as well

as a baseline (cf. Section 2.5.3) and human performances. Apple-to-apple comparison of released or published

models on benchmarks is difficult [12]. Indeed, models often differ on several aspects such as objective functions,

sizes, pretraining datasets, or knowledge adaptation strategy.

NLP methods have been developed in light of ML, with old systems relying on handcrafted features. Then,

given the powerful abilities of a particular class of end-to-end ML models—called deep Artificial Neural Networks

(ANN) [362]—in other supervised AI problems such as computer vision, research has introduced Deep Learning

architectures tailored to language characteristics [149]. It appears that ANNs are now widely used in all sorts of

NLP tasks, given they achieve state-of-the-art results on many benchmarks.

46



x1

x2

xn

+1

aaaaaaaaaaaaaaΣ σ ya

w1w1

w2w2

wnwn

bb

...

Figure 2.6: Computations made by a single artificial neural unit. Figure best viewed in color.

2.6 Neural network architectures

ANNs [426] are loosely inspired—though not being replicas25—of biological neural networks described by neuro-

scientists [337]. From the theoretical computer science perspective, an ANN can be seen as a circuit [531], i.e.,

a model made of a computation graph processing information as it flows through it. This concept is specific when

compared to the more traditional procedural (e.g., programming in C++) or functional (e.g., programming in OCaml)

approaches of computer science. The simplest kind of neural network is called the Feedforward Neural Network,

and we describe its structure below.

2.6.1 Feedforward neural networks

Compared to other ML systems, ANNs can be characterized by their cognitive-inspired structure consisting of layer

stacks, each made of many artificial neural units making small computations in parallel.

Artificial neural units The building block of ANNs is simple parametric and generic computing units called artificial

neurons and inspired by the mathematical modeling of the molecular biology observed in nerve cells [226]. A neural

unit is fed with some vector of n input features x, and outputs a scalar y (also denoted a when part of a network).

The transformation computed by the unit is a non-linear function of the weighted sum of the input features plus a

bias term (cf. Figure 2.6). The computation can be formally written y = σ (w · x+ b).

The weight vector w and the bias scalar b are the neuron’s parameters. The non-linear function σ is called an

activation function. As training ANNs relies on gradient-descent-based optimization algorithms, activation functions

are often chosen to be continuously differentiable (e.g. hyperbolic tangent, sigmoid [168], softmax [45], Gaussian

Error Linear Unit [178], Swish [411]) though the REctified Linear Unit [353] is a popular activation function not

25The design of modern ANNs should not be confused with the modeling of biological brains.
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Figure 2.7: Computations made by a single feedforward neural layer. Figure best viewed in color.

differentiable at 0. An intuitive way to apprehend the activation’s operation is to see it as an indicator triggered

by specific linear combinations of the input features x. For instance, a specific neural unit in a system might be

“activated” when it detects the presence of the adverb “not” in a sentence. It will then pass this output signal to the

input of subsequent units that may take this information into account if they take part in the process of determining

whether the sentence contains some semantic negation and how to process it.

Feedforward neural layers A feedforward neural layer is a set of neural units, each with its own set of parameters,

making similar computations in parallel on the same input vector x. The layer produces an output vector y and is

parameterized by a m× n weight matrix W and a bias vector b. The computation can be written y = σ (W · x+ b)

assuming the activation function σ applies to a vector element-wise (cf. Figure 2.7). As each neural unit is connected

to all the input features in x, this layer is sometimes qualified as “fully-connected” as opposed to layers whose

neural units are only partially connected to the input features (cf. Section 2.6.2). As an example, natural language

embeddings (cf. Section 2.5.2) are modeled with fully-connected feedforward layers.

Fully-connected neural networks We can go one step further and compute the output y as a non-identity function

of the activation values. This can be achieved with a second neural layer with its own set of parameters called the

output layer (cf. Figure 2.8). Now, y = σ(2)
(
W(2) · σ(1)

(
W(1) · x+ b(1)

))
. The first layer is called the hidden layer

because it has direct access neither to the output nor to the input. The input features x is sometimes referred to as

the input layer, even if it has no parameter. Note that the output layer does not require bias as in the hidden layer.

Actually, we just described the architecture of a standard multi-layer Feedforward Neural Network (FFNN), also

known as Fully-Connected Neural Network (FCNN). FCNN made of one hidden layers are used to pretrain non-

contextual word embeddings like Word2vec (cf. Section 2.5.3). In NLP, the input layer is the one-hot encoding

of words in the vocabulary V . The idea of sequential neural layers comes from the neocortical layering observed

48



x1

x2

xn

+1

...

a
(1)
1

a
(1)
2

a
(1)
k

...

y1

y2

ym

...

input
layer

hidden layer
output
layer

Figure 2.8: Computations made by a fully-connected feedforward two-layer neural network. Figure best viewed in
color.

by neuroscientists [256]: for instance, layer IV acts as the recipient of incoming sensory signal later processed by

subsequent layers.

The network’s trainable parameters θ is the set of all parameters found in each layer. This architecture defines

a mapping fθ between the input and the output space. The non-linear activation functions enable this multi-layer

structure. Plus, non-linearities are desired when it comes to making predictions on non-linearly separable data.

Universal approximation theorem The main theoretical result in the mathematical theory of ANNs is that they

are universal function approximators.

Theorem 1 Let S ⊆ Rn be compact. Then, ∀ (g, ϵ) ∈ C (S,R) × R∗
+, there exists a FCNN fθ with one hidden layer

and a finite number of neural units such that sup
x∈S
∥g (x)− fθ (x) ∥.

Even if the result does not tell how many weights are needed or how to find them, it grounds ANNs as composi-

tional function approximators.

Deep neural networks A characteristic of ANNs is that they can stack many hidden layers, each learning specific

functionalities. The use of deep neural networks is often called Deep Learning (cf. Figure 2.9). Besides depth, the

other hyperparameter characteristic of ANNs’ capacities is their width, that is, the number of units within a layer.

It has been shown that deep and wide ANNs can approximate functions of increasing complexity. Of course, the

design of ANNs is tied with the optimization strategy used to train them as well as their connectionist structures and

the mathematical operations performed by units or cells.
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Figure 2.9: Standard structure of a deep Feedforward Neural Network. Figure best viewed in color.

Learning via ANN training After their parameters θ are initialized, for instance randomly, ANNs usually learn

to approximate functions or probability distributions with gradient-descent-based optimization [61]. In supervised

learning, differentiation algorithms tune the parameters θ with the goal of minimizing the prediction error computed

with a loss function or, alternatively, maximizing the probability distribution of the observed data. Efficient training

of the network’s parameters is enabled by the back-propagation algorithm [430, 431], leveraging the chain rule

[278, 285] and dynamic programming [24] to make fast updates of each unit’s parameters. Additional advances in

hardware and training techniques led computer scientists to develop larger ANNs [187, 27].

ANNs have been studied as efficient representation learners for a long time [189]. Not only have deep ANNs

demonstrated better learning performances than previous ML models [250, 472, 497], but they do so by automati-

cally learning salient features with end-to-end supervised training [87, 28]. This means that there is no other signal

coming to the network than the input features x processed by the input layer and the target y used to backpropagate

errors from the output layer. In other words, even if no agent tells the model how to solve the task, the network learns

suitable representations in its hidden layers. Indeed, studies on both neural Computer Vision [473, 563, 480] and

neural NLP26 [500, 82, 211, 425] showed that the hidden layers learn hierarchical structures of the feature distribu-

tions, similar to traditional pipelines based on manual feature engineering. For instance, in NLU, BERT’s lower-level

layers tend to be dedicated to syntactic processing while the higher-level layers focus on semantic understanding.

26Sometimes called “BERTology” when investigating modern systems
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Figure 2.10: Popular alternative architectures of layers found in neural NLP models. si represents the one-hot
encoding of the ith token. ei is the non-contextual embedding of the ith token. hi is the contextualized neural
representation of the ith token. Figure best viewed in color.

This echoes the observations of Broca’s area in the frontal cortex, broken into two component regions. Brodmann’s

areas 44 and 45 are assumed to be respectively involved in syntactic and semantic tasks [156].

Feedforward Neural Language Models LMs were modeled by ANNs first by Bengio et al. [26]. Their Feed-

forward Neural Language Model (FNLM) was made of an embedding layer, a hidden layer, whose inputs are the

concatenation of the word embeddings, and an output layer whose activation is softmax.

2.6.2 Alternative neural architectures

Advances in HPC (HPC) devices and optimization algorithms have driven the development of large ANNs. Their

expressiveness has also been improved by architecture engineering, which contributes to the scaling of the models’

parameters as well. We present here a set of popular architectures for NLP, illustrated in Figure 2.6. See Goodfellow

et al. [154] for further reference on Deep Learning architectures.

Convolutional layers Besides FCNN, another major family of FFNN has been introduced in computer vision. In-

spired by neurophysiology research on the receptive fields in the visual cortex [205], Convolutional Neural Networks

(CNNs) apply convolution filters to local features from the previous layer [137, 520, 274, 275]. These convolving

operations have later been transposed to neural NLP [236, 224, 208]. In NLP-oriented CNNs, the first hidden

layer makes convolving operations with a window moving on the stacked word embeddings (cf. Figure 2.10). The

Universal Sentence Encoder [63] used to embed sentences in Chapter 5 is a CNN.
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FFNNs are good encoders of fixed-length data. In particular, CNNs were originally developed to process images.

Yet, non-feedforward ANNs have been proposed to encode and generate variable-length sequential data, such as

text.

Recurrent layers Inspired by cognitive modeling of temporal structures [432, 433], recurrent layers are neural

layers whose units process inputs seen as time series [118]. At each time step t, the neural unit computes a hidden

state ht by applying operations to the tth input xt and the t − 1th hidden state ht−1. Figure 2.10 (right) shows an

unfolded representation of a recurrent layer. Hidden states are expected to act as—theoretically infinite—memory,

computed from the past inputs x1:t (or context). Actually, some important characteristic of recurrent layers is that the

units share their parameters. This is equivalent to introduce cycles in ANN computation graphs, while FFNN’s graphs

are acyclic. Parameter sharing is motivated by better generalization on variable-length sequences and reduces

space complexity since the model width is independent of the input sequence lengths. In practice, the training of

Recurrent Neural Networks (RNNs) is done by unrolling the cycles, which represents high time complexity in the

case of deep RNNs processing long sequences, compared to parallelized architectures. For this reason, RNNs

tend to be shallower than other neural architectures, despite evidences showing that RNNs also benefit from deeper

architectures [159, 375].

RNNs have been widely employed in NLP. Mikolov et al. [341] introduced recurrent LMs. RNN-based encoder-

decoders are used in Seq2Seq learning [495, 75]. BiLMs (cf. Section 2.5.8), and more generally NLU systems,

have often been implemented with bidirectional RNNs [448] while auto-regressive NLG has been modeled with

unidirectional RNNs.

Variants of the vanilla RNN, called gated RNNs, introduced units—sometimes referred to as cells—performing

more complex operations whose goal is to better model the context to address the long-term dependency problem.

Long Short-Term Memories (LSTMs) [192, 145] and Gated Recurrent Units (GRUs) [80] are popular cells. In Chapter

Chapter 4, we used Bidirectional LSTMs (BiLSTMs) to detect toxic spans in online posts.

Further details on architectures, training, and comparisons of RNNs, see Graves [158]. The main drawback of

deep RNNs is the unstable training known as the vanishing and exploding gradient problem [25].

2.6.3 Attention neural networks

Information storage is a concept essential to understanding the mind as well as for the development of AI. The nature

of traditional computer memories differs significantly from the human memory studied by cognitive neuropsychology.

Yet, cognitive and neurocomputing architectures have spurred effective mechanisms improving ANNs’ abilities [488,

530, 160]. In particular, attention is the core building block of a prominent neural architecture that has gradually

become the de-facto standard in state-of-the-art NLP: the transformer [514].
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Attention mechanism Because the human working memory (or short-term memory) has a limited capacity [348]

(7 ± 2 elements), it uses a behavioral process called attention to prioritizing the information. Attention consists

of identifying salient stimuli, i.e., signals relevant to the task, and ignoring the remaining incoming sensory data,

considered distraction [562]. In speech, sentence stress can draw attention to a specific word in order to adapt its

meaning. For instance, the message in the sentence “I never said she stole my money.” varies according to the

word(s) stressed [397]. “I never said she stole my money.” means that somebody else stole my money, while “I

never said she stole my money.” means that she stole something else, etc. Visual memory is also known to rely on

selective attention27. When reading, a human is assumed to focus attention on the words most useful to understand

the text. A symbolic way of visualizing this would be to transcribe text like in the following example:

“1961 was the last year in which the majority of Hollywood films were released in

black and white.”

The integration of attention into ANNs was first proposed by Graves [159] and Bahdanau et al. [16]. Their work

improved recurrent layers with a mechanism enabling the model to focus on specific tokens of the input sentences.

In their famous publication entitled “‘Attention Is All You Need”, Vaswani et al. [514] proposed an attention neural

network, called the transformer, without recurrent connections. Its key component is the attention head.

Attention heads Attention heads look like the fully-connected feedforward layers described in Section 2.6.1.

Attention head inputs are the d-dimensional representations of a sequence of n tokens (e.g. the initial embed-

dings of the one-hot encoded tokens, cf. Section 2.5.2). The first step consists in projecting with weight matrices

WQ ∈ Rdk×d, WK ∈ Rdk×d and WV ∈ Rdv×d the inputs into vectors respectively called queries Q ∈ Rn×dk , keys

K ∈ Rn×dk and values V ∈ Rn×dv . Then, the attention head performs dot-product-based pairwise comparisons on

the queries and keys. The attention head outputs the sum of the values, weighted by the comparison scores. In

other words, the queries are said to “attend” the values. The formula is given in Equation (2.6).

Attention (Q,K,V) = softmax
(
Q ·K⊺

√
dk

)
·V (2.6)

WV , WQ and WV are the attention head’s trainable parameters θAtt. The principle of the attention head is that

during training, the ANN learns which token pairs should be attended to perform best on the task; the intuition being

that the weighted sum summarizes the contextual information contained in the input tokens, independently of their

distance to the query. This progress in addressing the long-term dependency problem of RNNs has contributed to

the success of transformers. The second advantage proposed by attention heads is that the computations are highly

parallelizable and can leverage the capabilities of AI accelerators. Yet, the bottleneck to the scaling of transformers

27The Invisible Gorilla Test [65] is a well-known study on intentional blindness
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is the quadratic complexity of the attention heads, while RNNs’ sequential operations are linear in the input length.

Though, the current trend is to deploy large transformers on increasing HPC resources.

Actually, there are two kinds of attention heads found in transformers. First, self-attention heads compute com-

parisons between each pair of tokens in the input text. Besides, in strongly supervised text-to-text, teacher forcing

feeds the network with pairs of input and target texts. In this case, cross-attention heads compare pairs made of one

token from the input and one token from the target. By telling which words were the most attended, attention heads

contribute to increasing the explainability of ANNs, often described as black boxes. We leveraged this property in

Chapter 4.

In order to better model the many ways words can interact with each other, transformers use multi-head attention

layers whose output representations are concatenated and linearly transformed with a matrix parameterized by

θConcatenation. This enables the ANN to capture all the possible semantic and syntactic relationships.

Transformer blocks Transformers are made of stacks of identical blocks including multi-attention heads as well

as attention-less fully-connected neural layers, residual connections [173], normalizing layers [13] (cf. Figure 2.11).

These additional attention-less layers and operations contribute to improving the transformer training.

Transformers The original transformer architecture is made of a stack of transformer blocks on top of a position-

wise feedforward embedding layer, whose role is to encode the order of the words (cf. Figure 2.11). As a matter

of fact, the transformer initially referred to the double-stack encoder-decoder structure introduced by Vaswani et al.

[514]. However, single-stack transformers underpin many NLP systems. To avoid confusion, we refer to single-stack

transformers as unitransformers while encoder-decoder transformers—using both self-attention and cross-attention

in the decoder—are called here bitransformers.

The expressiveness of transformers is the reason why they have become the backbone of many neural NLP

models. Even though several variants of the original transformer have been explored, Narang et al. [356] did not

find modifications which significantly improved the transformer performance on a wide range of applications.

The premise of foundation models is based on the self-supervised pretraining of large transformer-based LMs,

equivalently referred to as pretrained transformers, Pretrained LMs, or large LMs in the literature. Further details on

transformers can be found in Vaswani et al. [514] and Lin et al. [299].

Attention masks Section 2.5 presented strategies for training ML systems. Even though training objectives are

mainly implemented with loss functions, attention neural network stacks trained with teacher forcing (cf. Sec-

tion 2.5.7) utilize masking patterns to control the context that tokens are allowed to attend (cf. Figure 2.11). In

other words, these attention masks condition the representation of query tokens to a specific set of key tokens. For

instance, causal LM is implemented with causal attention masks that restrict the information flow used to represent
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the target token to the past tokens.

Chapter 2 conclusion

NLP has studied tasks of gradually increasing difficulty, successively tacked by symbolic AI, statistical ML

and deep ANNs. At the crossroads of computer science and linguistics, the field has become enriched by

neuropsychology and cognitive concepts. As a matter of fact, NLP is not just about language; it is deeply

related to automatic reasoning and world knowledge. We presented in this chapter the winning combination

of training strategies, self-supervised objectives, and HPC-powered DL architectures constituting modern

neural NLP basis. In light of the recent advances in NLP described in this chapter, subsequent chapters

introduce novel methods to apply these “foundation models” to improve online user interactions.
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Chapter 3

Civil Rephrases Of Toxic Texts With

Self-Supervised Transformers

This chapter presents research conducted with John Pavlopoulos, Jeffrey Sorensen, and Lucas Dixon. It led to

an article published in the Proceedings of the 16th Conference of the European Chapter of the Association for

Computational Linguistics (EACL 2021) [267].

Chapter 3 abstract

Platforms that support online commentary, from social networks to news sites, are increasingly leveraging

Machine Learning to assist their moderation efforts. But this process does not typically provide feedback to

the author that would help them contribute according to the community guidelines. This is prohibitively time-

consuming for human moderators to do, and computational approaches are still nascent. This work focuses

on models that can help suggest rephrasings of toxic comments in a more civil manner. Inspired by recent

progress in unpaired sequence-to-sequence tasks, a self-supervised learning model is introduced, called

CAE-T5a. CAE-T5 employs a pretrained text-to-text transformer, which is fine-tuned with a denoising and

cyclic Auto-Encoder loss. Experimenting with the largest toxicity detection dataset to date (Civil Comments)

our model generates sentences that are more fluent and better at preserving the initial content compared

to earlier text style transfer systems which we compare with using several scoring systems and human

evaluation.
aThe code is publicly available at github.com/LeoLaugier/conditional-auto-encoder-text-to-text-transfer-transformer

with an Apache License 2.0.
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INPUT OFFENSIVE COMMENT you now have to defend this clown along with his russian corruption.
GENERATED CIVIL COMMENT you now have to defend this guy from his russian ties........

INPUT OFFENSIVE COMMENT blaming trudeau and the government is just stupid.
GENERATED CIVIL COMMENT blaming trudeau and the liberal government is just wrong.

INPUT OFFENSIVE COMMENT dubyaa was a moron.
GENERATED CIVIL COMMENT dubya was a republican.
a A nickname for George W. Bush.

Table 3.1: Examples of offensive sentences from the Civil Comments test set and the more civil rephrasing gener-
ated by our model. The third example shows that its strategy may involve shifting the original intent since “republican”
is not a non-offensive synonym of “moron”.

3.1 Introduction

There are many ways to express our opinions. When we exchange views online, we do not always immediately

measure the emotional impact of our message. Even when the opinions expressed are legitimate, well-intentioned,

and constructive, poor phrasing may make the conversation go awry [568]. Recently, NLP research has tackled

the problem of abusive language detection by developing accurate classification models that flag toxic (or abusive,

offensive, hateful) comments [101, 377, 543, 139, 134, 568, 513, 560].

The prospect of healthier conversations, nudged by ML systems, motivates the development of NLU and NLG

models that could later be integrated into a system suggesting alternatives to vituperative comments before they are

posted. A first approach would be to train a text-to-text model [15, 514] on a corpus of parallel comments where each

offensive comment has a courteous and fluent rephrasing written by a human annotator. However, such a solution

requires a large paired labeled dataset, in practice difficult and expensive to collect (see Section 3.7). Consequently,

we limit our setting to the self-supervised case where the comments are only annotated in attributes related to toxi-

city, such as the Civil Comments dataset [49]. We summarize our investigations with the following research question:

RQ: Can we fine-tune end-to-end a pretrained text-to-text transformer to suggest civil rephrasings of rude com-

ments using a dataset solely annotated in toxicity?

Answering this question might provide researchers with an engineering proof-of-concept that would enable fur-

ther exploration of the many complex questions that arise from such a tool being used in conversations. The main

contributions of this work are the following:

• We addressed for the second time the task of unsupervised civil rephrases of toxic texts, relying for the first

time on the Civil Comments dataset and achieving results that reflect the effectiveness of our model over

baselines.

• We developed a non-task-specific approach (i.e., with no human hand-crafting in its design) that can be gen-
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eralized and later applied to related and/or unexplored attribute transfer tasks.

While several of the ideas we combine in our model have been studied independently, to the best of our knowl-

edge, no existing self-supervised models combine sequence-to-sequence bitransformers, transfer learning from

large pretrained models, and self-supervised fine-tuning (Denoising Auto-Encoder and Cycle Consistency). We

discuss the related work introducing these tools and techniques in the following section.

3.2 Related work

Unsupervised complex text attribute transfer (like civil rephrasing of toxic comments) remains in its early stages,

and our particular applied task has only a single antecedent [364]. There is a great variety of useful works to tackle

the task and this section attempts to summarize the vast majority of these works. We describe below the recent

strategies in style transfer when applied to image-to-image tasks. Then, we present the most related lines of work

in unsupervised—or more precisely self-supervised—text-to-text tasks.

3.2.1 Style transfer in Computer Vision

The first successful application of Deep Learning to style transfer dates back to the work of Gatys et al. [143] who

relied on the supervised pretraining of a CNN to synthesize paintings in a specific style. Then, Zhu et al. [594]

proposed a more general approach to image-to-image translation using Generative Adversarial Network (GAN)

[153]. CycleGAN is an unsupervised learning method. This means it does not need any correspondence between

paired images with the exact same content (e.g., a pair of images with three Equidae in a specific position with a

specific background) and different attributes (on the first image, the Equidae are horses, while on the second they

are zebras). For training, CycleGAN only needs two “collections” of images, each collection having a known specific

attribute or style (e.g., a collection of horses and a collection of zebras). The goal is to make CycleGAN learns the

mapping between the first collection (made of examples in the “source” space, with the source attribute) and the

second collection (made of examples in the “destination” space, with the destination attribute).

A GAN consists in a two ANNs: a generator (G) and a discriminator (D). The generator aims to transfer images

from the source space (X) to the destination space (Y ). The discriminator computes the probability that its input

image belongs to the destination space. The adversarial training consists in optimizing the discriminator’s weights

in order for it to correctly classify images in the destination space while maximizing the probability that the gener-

ator outputs images considered as destination images by the discriminator. The GAN loss function is describe in

Equation (3.1). Its formal optimization will be given in Equation (3.4).

LGAN (G,D,X, Y ) = Ey∼Y [logP (y ∈ Y |θD)] + Ex∼X [log (1− P (G (x) ∈ Y |θD))] (3.1)
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Figure 3.1: Examples of image-to-image transfer with CycleGAN. Figure from Zhu et al. [594].

In order to learn the mapping in both ways, CycleGAN actually involves two generators (one for attributeA to

attributeB , GA2B , and one for attributeB to attributeA, GB2A) and two discriminators (one for attributeA, DA, and

one for attributeB , DB). Is an adversarial loss enough, though? Not if the generator’s capacity is large enough

to map the entire source collection to a random permutation of the destination collection. This is where the Cycle

Consistency loss will play its regularization role by constraining the “round trip” image translation to be close to the

source image. It is essential to ensure that the content is not altered. CycleGAN’s Cycle Consistency loss is given

in Equation (3.2).

LCYC (GA2B , GB2A) = Ex∼X [∥GB2A (GA2B (x))− x∥1] + Ey∼Y [∥GA2B (GB2A (y))− y∥1] (3.2)

The CycleGAN model can then be trained by optimizing the loss LCycleGAN (cf. Equation (3.3)) being the sum of

the adversarial loss and the Cycle Consistency loss (cf. Equation (3.4)).

LCycleGAN (GA2B , GB2A, DA, DB) = LGAN (GA2B , DB , A,B) + LGAN (GB2A, DA, B,A) + LCYC (GA2B , GB2A) (3.3)

ĜA2B , ĜB2A = argmin
GA2B ,GB2A

max
DA,DB

LCycleGAN (GA2B , GB2A, DA, DB) (3.4)

A natural question arises when we investigate unsupervised text-to-text transfer: could CycleGAN be directly

applied to text? Unfortunately, the answer is no, and the reason is mainly due to the discrete nature of text. Indeed as
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we saw in Section 2.5.7, search strategies involved in decoding the representations—after the softmax layer—often

break the chains of differentiability. Therefore, gradient-based training cannot use the standard backpropagation

algorithm. Yet, popular workarounds have been proposed. Besides uses of reinforcement learning to solve the

non-differentiability problem when sampling in NLG, efforts to generate text in a continuous space only have been

proposed [23, 254].

However, these methods being unstable, hard to train in practice and/or nascent at the time of our work, we

decided not to apply CycleGAN, but rather seek ideas in the then recently promising unsupervised neural machine

translation.

3.2.2 End-to-end training of text-to-text models

Artetxe et al. [11], Conneau et al. [89], Lample et al. [261, 262], Conneau and Lample [88] introduced methods based

on techniques aligning the embedding spaces of monolingual datasets and tricks such as denoising auto-encoding

losses [517] and back-translation [455, 116].

Abstractive summarization (or sentence compression) has also been studied in unsupervised setups. Baziotis

et al. [23] trained a model with a compressor-reconstructor strategy similar to back-translation while Liu et al. [308]

trained a Denoising Auto-Encoder that embeds sentences and paragraphs in a common space.

Unsupervised attribute transfer is the task most related to our work. It mainly focuses on sentiment transfer with

standard review datasets [326, 176, 466, 289], but also addresses sociolinguistic datasets containing text in various

registers [140, 414] or with different identity markers [519, 395, 263]. When paraphrase generation aims at being

explicitly attribute-invariant, it is referred to as obfuscation or neutralization [119, 550, 396]. Literary style transfer

[551, 372] has also been tackled by recent work. Here, we applied attribute transfer to a large dataset annotated in

toxicity, but we also use the Yelp review dataset from Shen et al. [466] for comparison purposes (see Section 3.4).

Initial unsupervised attribute transfer approaches sought to build a shared and attribute-agnostic latent represen-

tation encoding for the input sentence with adversarial training. Then, a decoder, aware of the destination attribute,

generated a transferred sentence [466, 202, 136, 581, 548, 216].

Unsupervised attribute transfer approaches that do not rely on a latent space are also present in the literature. Li

et al. [289] assumed that style markers are very local and proposed to delete the tokens most conveying the attribute

before retrieving a second sentence in the destination style. They eventually combined both sentences with a

neural network. Lample et al. [263] applied unsupervised neural machine translation techniques from Conneau and

Lample [88] to several attribute transfer tasks, including social media datasets. Xu et al. [548], Gong et al. [152], Luo

et al. [320], Wu et al. [540] trained models with reinforcement learning. Dai et al. [98] introduced unsupervised

training of a transformer called StyleTransformer (ST) with a discriminator network. Our approach differs from these

unsupervised attribute transfer models in that they did not either leverage large pretrained transformers or train with
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a denoising objective.

The most similar work to ours is the one from Nogueira dos Santos et al. [364] who trained for the first time

an encoder-decoder rewriting offensive sentences in a non-offensive register with non-parallel data from Twitter

[422] and Reddit [458]. Our approach differs in the following aspects. First, we use transformers pretrained on

a large corpus instead of randomly initialized RNNs for encoding and decoding. Second, their approach involves

collaborative classifiers to penalize generation when the attribute is not transferred, while we train end-to-end with a

Denoising Auto-Encoder. Even if their model shows high accuracy scores, it suffers from low fluency, with offensive

words being often replaced by a placeholder (e.g. “big” instead of “f*cking”).

Controlled text generation [128, 232, 270, 99] is a NLG task that consists of a LM conditioned on the attributes

of the generated text such as the style. But a major difference with attribute transfer is the absence of a constraint

regarding preserving the input’s content.

3.3 Method

3.3.1 Formalization of the text attribute rewriting problem

Let XT and XC be our two non-parallel corpora of comments satisfying the respective attributes “toxic” and “civil”.

Let X = XT ∪XC . We aim at learning a parametric function fθ mapping a pair of source sentence x and destination

attribute a to a fluent sentence y satisfying a and preserving the meaning of x. In our case, there are two attributes,

“toxic” and “civil”, that we assumed to be mutually exclusive. We denote α(x) to be the attribute of x and ᾱ(x) the

other attribute (for instance when α(x) = “civil”, then ᾱ(x) = “toxic”). Note that fθ (x, α (x)) can simply be x.

3.3.2 Bi-conditional encoder-decoder generation

Our approach consists in training an auto-regressive LM (cf. Section 2.5.7) conditioned on both the input text x and

the destination attribute a.

We compute fθ with a LM P (y|x, a; θ). As we do not have access to ground-truth targets y, we propose in

section 3.3.3 a training function that we assume to maximize P (y|x, a; θ) if and only if y is a fluent sentence with

attribute a and preserving x’s content. Additionally, we used an auto-regressive generating model where inference

of ŷ is sequential and the token generated at step t + 1 depends on the tokens generated at previous steps:

P (ŷt+1|ŷ:t, x, a; θ).

To condition on the input text, we followed the work of Bahdanau et al. [15], Vaswani et al. [514], Nogueira dos

Santos et al. [364], Conneau and Lample [88], Lample et al. [263], Dai et al. [96], Liu et al. [308], Raffel et al. [406]

and opted for an encoder-decoder (cf. Section 2.5.4) framework. Lample et al. [263] and Dai et al. [96] argue

that in unsupervised attribute rewriting tasks, encoders do not necessarily output disentangled representations,
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independent of their attribute. However, the t-SNE visualization of the latent space in Liu et al. [308] allowed us to

assume that encoders can output a latent representation z, attending to content rather than on an attribute, with

similar training.

The LM is conditioned on the destination attribute with control codes introduced by Keskar et al. [232]. At the

time of this work, control codes were defined as a fixed sequence of tokens prepended to the decoder’s input s, and

supposed to prepare the generation in the space of sentences with the destination attribute a. Note that the term

of prefixed prompts (cf. Section 2.5.9) would better fit the vocabulary found in the current literature. Let c(a) be the

control code of attribute a.

3.3.3 Self-supervised training

Training transformers with denoising objectives is an effective self-supervised strategy (cf. Section 2.5.5).

During training, we corrupted the encoder’s input x with the noise function from Devlin et al. [108] (cf. Sec-

tion 2.5.8). We denote x̃ the corrupted version of x. We trained the model as a Denoising Auto-Encoder (DAE),

meaning that we minimized the negative log-likelihood of Equation (3.5).

LDAE = Ex∼X [− logP (x|x̃, α (x) ; θ)] (3.5)

The hypothesis is that optimizing the DAE objective teaches the controlled generation to the model.

Inspired by the equivalent approach in unsupervised image-to-image style transfer (cf. Section 3.2.1), we added

a Cycle Consistency (CC) objective [364, 116, 395, 263, 88, 96] (cf. Equation (3.6)) which enforces content preser-

vation in the generated prediction.

LCC = Ex∼X

[
− logP

(
x|fθ̃ (x, ᾱ (x)) , α(x); θ

)]
(3.6)

As the Cycle Consistency objective computes a non-differentiable auto-regressive pseudo-prediction ŷ during

stochastic gradient descent training, gradients are not back-propagated to θ̃ = θ̂τ−1 at training step τ .

Finally, the loss function sums the DAE and the CC objectives with weighting coefficients (cf. Equation (3.7)).

L = λDAELDAE + λCCLCC (3.7)

3.3.4 The text-to-text bitransformer architecture

The architectures for the encoder and decoder are unitransformers. Contrary to Vaswani et al. [514], Conneau and

Lample [88], Raffel et al. [406] we did not keep the decoder’s layers computing cross attention between the encoder’s

outputs h and the decoder’s hidden representations because generation suffers from too much conditioning on the
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input sentence and we observe no significant change in the output sentence. Rather, we followed Liu et al. [308] and

computed the latent representation z with an affine transformation of the encoder’s hidden state h0 (corresponding

to the first token of the input text). Let x ∈ X be the input sequence of tokens. It is embedded and then encoded by

the unitransformer encoder:

xEmb = fθEmb(x)

hEnc = fθEnc(xEmb)

h0
Enc = hEnc[0, :]

z = fθDense(h
0
Enc)

z is an aggregate sequence representation for the input. There are different heuristics that can be used to

integrate it into the decoder. We considered summing z to the embedding of each token of the unitransformer

decoder’s input s since it balances the backpropagation of the signals coming from the original input and the output

being generated in the destination attribute space, and it worked well in practice in our experiments.

hDec = fθDec (fθEmb (c (a) ⌢ x) + z)

ŷ = fθLMHead(hDec)

Plus, the encoder and the decoder unitransformers share the same embedding layer, and the LM Head is tied to

the embeddings.

Except for the dense layer computing the latent variable z, all parameters are coming from the bitransformer

pretrained with a seq2seq MLM objective (cf. Section 2.5.8) and published by Raffel et al. [406]. Thus, our DAE

and CC objectives fine-tune T5’s parameters and this is why we call our model a Conditional Auto-Encoder Text-

To-Text Transfer Transformer (CAE-T5). Algorithm 1 describes the fine-tuning procedure of CAE-T5, where H is

the cross-entropy loss (cf. Equation (2.1)). Illustrations of the training and inference procedures are provided in

Figure 3.2.

3.4 Experiments

3.4.1 Datasets

We employed the largest publicly available toxicity detection dataset to date, which was used in the ‘Jigsaw Unin-

tended Bias in Toxicity Classification’ Kaggle challenge.1 The 2M comments of the Civil Comments dataset stem

from a commenting plugin for independent news sites. They were created from 2015 to 2017 and appeared on

approximately 50 English-language news sites across the world. Each of these comments was annotated by crowd

1https://www.tensorflow.org/datasets/catalog/civil_comments
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Algorithm 1: CAE-T5 training

Input : T5’s pretrained parameters θ0, unpaired dataset labelled in toxicity X = XT ∪XC

Output: CAE-T5’s fine-tuned parameters θT
for step τ ∈ [1;T ] do

if τ%2 == 0 then
Sample a mini-batch x of sentences in XT

else
Sample a mini-batch x of sentences in XC

end
θ ← θ̂τ−1

θ̃ ← θ̂τ−1

x̂DAE ← fθ(x̃, α(x))
x̂CC ← fθ(fθ̃(x, ᾱ(x)), α(x))
ℓDAE ← H(x, x̂DAE)
ℓCC ← H(x, x̂CC)
ℓ← λDAEℓDAE + λCCℓCC

Back-propagate gradients through θ
Update θτ by a gradient descent step

end

x̃

θEmb

θEnc

θDense

z

c (α (x)) ⌢ x

θEmb

θDec

θLMHead

x

(a) DAE training

x

ᾱ(x)

fθ̃ ŷ

α(x)

fθ x̂

(b) CC training

x

θEmb

θEnc

θDense

z

c (a)

θEmb

θDec

θLMHead

ŷ

(c) Inference

Figure 3.2: Illustration of the training (a and b) and inference (c) procedures. (a) DAE: The bitransformer encodes
the corrupted input text x̃ in a latent variable z that is then decoded conditioned on the source attribute α(x) with
the objective of minimizing the cross entropy between x and the generated text x̂. Here, generation is not auto-
regressive since the DAE is trained with teacher forcing. (b) CC: The input x is pseudo-transferred with attribute
ᾱ(x) via auto-regressive decoding because we do not know the ground-truth y. The generated output ŷ is then back-
transferred to the original space of sentences with attribute α(x). Back-transfer generation is not auto-regressive
because we use teacher-forcing here. Thus, we can trivially back-propagate the gradients through fθ (back-transfer)
but not through fθ̃ (pseudo-transfer). (c) Model overview at prediction time. x and ŷ are the input and generated
text, a is the destination attribute, z is the latent input representation and c(a) is the control code.
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Yelp Polarized Civil Comments
Positive Negative Toxic Civil

Train 266,041 177,218 90,293 5,653,785
Dev 2,000 2,000 4,825 308,130
Test 500 500 4,878 305,267

Average length 11.0 13.0 19.4 21.9

Table 3.2: Statistics for the Yelp dataset and the processed version of the Civil Comments dataset. Average lengths
are the average numbers of SentencePiece tokens.

raters (at least 3 each) for toxicity and toxicity subtypes [49]. For more details on the dataset, see Section 4.3.

Following the work of Dai et al. [96] for the IMDB Movie Review dataset (positive/negative sentiment labels), we

constructed a sentence-level version of the dataset. Initially, we fine-tuned a pretrained BERT [108] toxicity classifier

on the Civil Comments dataset. Then, we split the comments in sentences with NLTK’s sentence tokenizer.2 Even-

tually, we created XT (respectively XC) with sentences whose system-generated toxicity score (using our BERT

classifier) is greater than 0.9 (respectively less than 0.1) to increase the dataset’s polarity. The test ROC-AUC of

the toxicity classifier was 0.98 with a precision of 0.95 and a recall of 0.38. Even with this low recall |XT | was large

enough (approximately 90, 000, see Table 3.2).

We also conducted a comparison to other style transfer baselines on the Yelp Review Dataset (Yelp), commonly

used to compare unsupervised attribute transfer systems. The dataset consists of restaurant and business reviews

annotated with a binary positive/negative label. Shen et al. [466] processed it and Li et al. [289] collected human

reference human references for the test set3. Table 3.2 shows statistics for these datasets.

3.4.2 Evaluation

Evaluating a text-to-text task is challenging, especially when no gold pairs are available. Attribute transfer is suc-

cessful if generated text: 1) has the destination control attribute, 2) is fluent and 3) preserves the content of the input

text.

Automatic evaluation We followed the current approach of the community [553, 315, 523, 549, 263, 96, 172] and

approximated the three criteria with the following metrics:

1. Attribute control: Accuracy (ACC) computes the rate of successful changes in attributes. It measures how

well the generation is conditioned by the destination attribute. We predicted toxic and civil attributes with the

same fine-tuned BERT classifier that pre-processed the Civil Comments dataset (single threshold at 0.5).

2. Fluency: Fluency was measured by Perplexity (PPL). To measure PPL, we employed a GPT-2 [402] causal

LM fine-tuned on the corresponding datasets (Civil Comments and Yelp).
2https://www.nltk.org/api/nltk.tokenize.html
3https://github.com/lijuncen/Sentiment-and-Style-Transfer/tree/master/data/yelp
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TEXT BLEU SIM

Original furthermore, kissing israeli ass doesn’t help things a bit
57.6 70.6 %Human rephrasing also, supporting the israelis doesn’t help things a bit.

Original just like the rest of the marxist idiots.
3.4 65.3 %Human rephrasing it is the same thing with people who follow Karl Marx doctrine

Original you will go down as being the most incompetent buffoon ever elected, congrats!
2.3 16.2 %Human rephrasing you could find out more about it.

Table 3.3: Evaluation with BLEU and SIM of examples rephrased by human crowdworkers.

3. Content preservation: Content preservation is the most difficult aspect to measure. Unsupervised Neural

Machine Translation [88], summarization [308] and sentiment transfer [289] have access to a few hundred

samples with at least one human reference of the transferred text and evaluate content preservation by com-

puting metrics based on overlapping n-grams (e.g., BLEU Papineni et al. [374]) between the generated pre-

diction and the reference(s) (ref-metric). However, as we did not have paired samples, we computed a content

preservation score between the input and the generated sentences (self-metric).

Table 3.3 shows the BLEU scores (based on exact matches) of three examples rephrased by human annota-

tors (Section 3.7). In the top-most example, the BLEU score is high. This is explained by the fact that only 4

words are different between the two texts. In contrast to the first example, the two texts in the second example

have only 1 word in common. Thus, the BLEU score is low. Despite the low evaluation, however, the candidate

text could have been a valid rephrase of the reference text.

The high complexity of our task explains the motivation for a more general quantitative metric between input

and generated text, capturing the semantic similarity rather than overlapping tokens. We did not consider the

novel metrics BERTScore [574], RUSE [468] and BLEURT [454] because they either are based on token-to-

token comparison or require fine-tuning on pairs of (toxic comment, human civil rephrasing) annotated with

human quality judgement. Fu et al. [136], John et al. [216], Gong et al. [152], Pang and Gimpel [372] proposed

to represent sentences as a (weighted) average of their words embeddings before computing the cosine simi-

larity between them. We adopted a similar strategy, but we embedded sentences with the pretrained Universal

Sentence Encoder [63] and called it the sentence similarity score (SIM). The same sentence similarity was

used to compare sentences in Chapter 5. The first two sentence pairs of Table 3.3 had high similarity scores.

The rephrasings preserved the original content while not necessarily overlapping much with the original text.

However, the last rephrasing did not preserve the initial content and had a low similarity score with its source

sentence. As statistical evidence, the self-SIM score comparing each of the 1, 000 test Yelp reviews with their

human rewriting was 80.2% whereas the self-SIM score comparing the Yelp review test set to a random de-

rangement of the human references was 36.8%. Section 3.9.2 gives additional arguments in favor of using

SIM for measuring content preservation.
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We optimized all three metrics because doing otherwise comes at the expense of the remaining metric(s).

We aggregated the scores of the three metrics by computing the geometric mean4 (GM) of ACC, 1/PPL and

self-SIM.

Human evaluation Following Li et al. [289], Zhang et al. [578, 581], Wu et al. [540, 541], Wang et al. [523], John

et al. [216], Liu et al. [304], Luo et al. [320], Jin et al. [215] and to further confirm the performance of CAE-T5,

we hired human annotators on Appen to rate in a blind fashion different models’ civil rephrasings of 100 randomly

selected test toxic comments, in terms of attribute transfer, fluency, content preservation and overall quality on a

Likert scale from 1 to 5. Each rephrasing was annotated by 5 different crowd-workers whose annotation quality is

controlled by test questions. If a rephrasing is rated 4 or 5 on attribute transfer, fluency, and content preservation,

then it is “successful”.

Figure 3.3 and Figure 3.4 detail the guidelines we wrote on the crowdsourcing website Appen5, when we asked

human crowd-workers to rate automatic rephrasings and to rephrase toxic comments. The contributor level was set

to level 3, which corresponds to the highest quality standard.

3.4.3 Baselines

We compared the output text that CAE-T5 generated with a selection of unpaired style-transfer models described

in Section 3.2 [466, 289, 136, 320, 96]. We also compared with Input Masking. Input Masking is inspired by an

interpretability method called Input Erasure (IE) [287]. IE has been used to interpret the decisions of neural models.

Initially, words are removed one at a time, and the altered texts are then re-classified (i.e., as many re-classifications

as the words). Then, all the words that led to a decreased re-classification score (based on a threshold) are returned

as the ones most related to the decision of the neural model. Our baseline follows a similar process, but instead of

deleting, it uses a pseudo token (‘[MASK]’) to mask one word at a time. When all the masked texts have been scored

by the classifier, the rephrased text is returned, comprising as many masks as the tokens that led to a decreased

re-classification score (set to 20% after preliminary experiments). We employed a pretrained BERT as our toxicity

classifier, fine-tuned on the Civil Comments dataset (see Section 3.4.1).

3.5 Experimental setup

3.5.1 Architecture details

We fine-tuned the pretrained “large” bitransformer from Raffel et al. [406]. Both unitransformers (encoder and

decoder) had 24 blocks, each made of a 16-headed self-attention layer and a feed-forward network. The attention,
4The geometric mean is not sensitive to the scale of the individual metrics.
5https://appen.com
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Figure 3.3: Guidelines provided to human crowd-workers on Appen when they were asked to rate automatic civil
rephrasings of toxic comments.
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Figure 3.4: Guidelines provided to human crowd-workers on Appen, when they were asked to rewrite toxic com-
ments in a way that is less rude.
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dense, and embedding layers had respective dimensions of 64, 4096, and 1024, for a total of around 800 million

parameters.

Input sentences were lowercased then tokenized with SentencePiece6 [251] and eventually truncated to a max-

imum sequence length of 32 for the Yelp dataset and 128 for the processed Civil Comments dataset. The control

codes were c(a) = (a) ⌢ (“: ”) for attributes a ∈ {“positive”, “negative”} in the sentiment transfer task and

a ∈ {“toxic”, “civil”} when we apply to the Civil Comments dataset.

3.5.2 Training details

During training, we applied dropout regularization at a rate of 0.1. We set λDAE = λCC = 1.0. In preliminary

experiments, we observed that λCC = 0 was preserving little content from the initial sentence and that λCC = 2∗λDAE

was weighting the preservation too much, at the cost of accuracy. Therefore we focused our experiments on λCC =

λDAE. It is a good default setting since we do not need any a priori about the balance between fluency, accuracy

(enforced with the Auto-Encoder), and content preservation (enforced with Cycle Consistency). DAE and back-

transfer (in the course of the CC computation) were trained with teacher-forcing; we did not need auto-regressive

generation since we had access to a target for the decoder’s output. Each training step computed the loss on a

mini-batch made of 64 sentences sharing the same attribute. Mini-batches of attributes a and ā were interleaved.

Since the Civil Comments dataset is class imbalanced, we sampled comments from the civil class of the training set

at each epoch. The optimizer is AdaFactor [465] and we trained for 88, 900 steps during 19 hours on a TPU v2 chip.

3.5.3 Automatic evaluation details

Decoding was greedy. The parametric models used to compute ACC and PPL were 12-layer, 12-headed pretrained,

and fine-tuned unitransformers with hidden size 768. The BERT classifier was an encoder followed by a sequence

classification head, and the GPT-2 causal LM was a decoder with a LM head on top. We used the sacrebleu7

implementation for BLEU and the Universal Sentence Encoder pretrained by Google to compute SIM8.

3.6 Results

3.6.1 Quantitative comparison to prior work

Table 3.4 shows quantitative results on the Civil Comments dataset. Surprisingly, the Perplexity (capturing fluency)

of text generated by our model was lower than the Perplexity computed on human comments. This can be explained

by social media authors of comments expressing an important variability in language formal rules that was only
6gs://t5-data/vocabs/cc_all.32000/sentencepiece.model
7https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/sacrebleu.py
8https://tfhub.dev/google/universal-sentence-encoder/2
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Model ACC↑ PPL↓ self-SIM↑ GM↑
Copy input 0.0% 6.8 100.0% 0.005
Random civil 100.0% 6.6 20.0% 0.311
Human 82.0% 9.2 73.8% 0.404

CrossAlignment [466] 94.0% 11.8 38.4% 0.313
IE (BERT) 86.8% 7.5 55.6% 0.401
StyleTransformer (Conditional) [96] 97.8% 47.2 68.3% 0.242
StyleTransformer (Multi-Class) [96] 98.8% 64.0 67.9% 0.219

CAE-T5 75.0% 5.2 70.0% 0.466

Table 3.4: Automatic evaluation scores of different models trained and evaluated on the processed Civil Comments
dataset. The scores are computed on the toxic test set. “Human” corresponds to 427 human rewritings of randomly
sampled toxic comments from the train set. “Random civil” means we randomly sampled 4,878 comments from the
civil test set.

partially replicated by CAE-T5. Other approaches such as StyleTransformer (ST) and CrossAlignment (CA) have

higher accuracy but at the cost of both higher Perplexity and lower content preservation, meaning that they are

better are discriminating toxic phrases but struggle to rephrase coherently.

In Table 3.5 we compare our model to prior work in attribute transfer by computing evaluation metrics for different

systems on the Yelp test set. We achieved competitive results with low Perplexity while getting good sentiment

controlling (above human references). Our similarity, though, is lower, showing that some content was lost when

decoding; hence the latent space did not fully capture the semantics. It is fairer to compare our model to other style

transfer baselines on the Yelp dataset since our model is based on sub-word tokenization while the baselines are

often based on a limited size pretrained word embedding: many more words from the Civil Comments dataset could

be attributed to the unknown token if we want to keep reasonable size vocabulary, resulting in a performance drop.

The human evaluation results shown in Table 3.6 correlate with the automatic evaluation results.

When considering the aggregated scores (geometric mean, success rate, and overall human judgment), our

model is ranked first on the Civil Comments dataset and second on the Yelp Review dataset, behind DualRL, yet

our approach is more stable and therefore easier to train when compared to reinforcement learning approaches.

3.6.2 Qualitative analysis

Table 3.7 shows examples of rephrases of toxic comments automatically generated by our system. The top first

two examples emphasize the ability of the model to perform fluent control generation conditioned on both the input

sentence and the destination attribute. We present more results showing that we can effectively suggest fluent

civil rephrases of toxic comments in Table 3.8. However we observed more failures for the civil rephrasing task (cf.

Table 3.9) than in the sentiment transfer task (cf. Table 3.10 and Table 3.11). We identified three natures of failure:

Supererogation generation does not stop early enough and produces fluent, transferred related but unnecessary

content.
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Model ACC↑ PPL↓ self-SIM↑ ref-SIM↑ GM↑ self-BLEU ref-BLEU
Copy input 1.3% 11.1 100.0% 80.2% 0.105 100.0 32.5
Human references 79.4% 14.0 80.2% 100.0% 0.357 32.7 100.0

CrossAlignment [466] 73.5% 54.4 61.0% 59.0% 0.202 21.5 9.6
[289]
RetrieveOnly 99.9% 4.9 47.1% 48.0% 0.213 2.7 1.8
TemplateBased 84.1% 46.0 76.0% 68.2% 0.240 57.0 23.2
DeleteOnly 85.2% 48.7 72.6% 67.7% 0.233 33.9 15.2
D&R 89.8% 35.8 72.0% 67.6% 0.262 36.9 16.9
[136]
StyleEmbedding 8.1% 29.8 83.9% 69.8% 0.132 67.5 21.9
MultiDecoder 47.2% 74.2 67.7% 61.4% 0.163 40.4 15.2
DualRL [320] 88.1% 20.5 83.6% 77.2% 0.330 58.7 29.0
[96]
StyleTransformer (Conditional) 91.7% 44.8 80.3% 74.2% 0.254 53.2 25.6
StyleTransformer (Multi-Class) 85.9% 29.1 84.2% 77.1% 0.292 62.8 29.2

CAE-T5 84.9% 22.9 67.7% 64.4% 0.293 27.3 14.0

Table 3.5: Automatic evaluation scores of different models trained and evaluated on the Yelp dataset. Accuracy is
computed by a BERT classifier fine-tuned on the Yelp train set (accurate at 98.7% on the test set). Perplexity is
measured by a GPT-2 LM fine-tuned on the Yelp train set. “self-” refers to a comparison to the input and “ref-” to a
human reference.

Model Attribute transfer↑ Fluency↑ Content Preservation↑ Success rate↑ Overall↑
CA 2.98 2.32 1.89 6% 1.81
IE (BERT) 2.77 2.39 2.20 6% 1.89
ST (Cond) 2.91 2.36 2.08 5% 1.87
ST (M-C) 2.93 2.42 2.10 5% 1.93

CAE-T5 2.72 3.06 2.63 13% 2.52

Table 3.6: Human evaluation of different models trained and evaluated on the Civil Comments dataset.
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INPUT MITIGATED

stop being ignorant and lazy and try reading a bit
about it.

try reading and be a little more informed about it
before you try to make a comment.

this is absolutely the most idiotic post i have ever
read on all levels.

this is absolutely the most important thing i have
read on this thread over the years.

trump may be a moron, but clinton is a moron as
well.

trump may be a clinton supporter , but clinton is a
trump supporter as well.

shoot me in the head if you didn’t vote for trump. ((((((you’re right if you didn’t vote for trump.hhhhhhhhhi’m not sure i’d vote

50% of teachers don’t have any f*cks to give. 50% of teachers don’t have(((((((((hhhhhhhhha phd in anything.

Table 3.7: Examples of automatically transferred test sentences by our system, valid rewriting, and highlighted
flaws failure in attribute transfer or fluency ,

hhhhhhhsupererogation,((((((((
position reversal, and((((((hhhhhhhallucination.

Hallucination conditioning on the initial sentence fails, and the model generates fluent but unrelated content.

Position reversal the author’s opinion is shifted.

In order to assess the frequency of hallucination and supererogation, we randomly selected 100 toxic comments

from the test set and manually labeled the generated sentences with the non-mutually exclusive labels “contains

supererogation” and “contains hallucination”. We counted on average 17% of generated sentences with supereroga-

tion and 34% of generated sentences showing hallucination (often local). We observed that the longer the input

comment, the more prone to hallucination was the generated text.

While supererogation and hallucination can be explained by the probabilistic nature of generation, we assume

that position reversal was due to bias in the dataset, where toxic comments are correlated with negative com-

ments. Thus, offensive comments tend to be transferred to supportive comments even though a human being would

rephrase attacks as polite disagreements.

Interestingly, our model was able to add toxicity to civil comments, as shown by the examples in Table 3.12. Even

if such an application is of limited interest to online platforms, it is worth warning about its potential misuse.

3.7 Discussion

Strongly supervised learning is a natural approach when addressing text-to-text tasks. In our study, we submitted

the civil rephrasing of toxic comments task to human crowd-sourcing. We randomly sampled 500 sentences from the

toxic train set. For each sentence, we asked five annotators to rephrase it in a civil way to assess if the comment was

offensive and if it was possible to rewrite it in a less rude way while preserving the content. On 2, 500 answers, we

tally 427 examples not flagged as ‘impossible to rewrite’ and with a rephrasing different from the original sentence.

This low 17.1% yield was caused by two main issues. On the one hand, unfortunately, not all toxic comments can

be reworded in a civil manner so as to express a constructive point of view; severely toxic comments that are solely
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Toxic to Civil

Input and then they need to do what it takes to get rid of this mentally ill bigot!
CAE-T5 and then they need to do what they can to get rid of this kind of man that is causing the

whole problem!

Input do you think any of those idiots vote?
CAE-T5 do you think any of those people vote?

Input this is just so stupid.
CAE-T5 this is just so sad.

Input are you nuts?
CAE-T5 are you kidding me?

Input we are all entitled to our own opinions but not the facts that one can’t find in this criminally
stupid opinion.

CAE-T5 we are all entitled to our own opinion but not to the kind of facts that can be found in
this case.

Input hopefully that will prevent him from making any further idiotic statements.
CAE-T5 hopefully that will prevent him from making any more such statements.

Input the poll is garbage.
CAE-T5 the poll is fake news.

Input it was irresponsible to publish this garbage.
CAE-T5 it was irresponsible to publish this information.

Input just because someone else has a different opinion does not mean that person is stupid,
uneducated or foolish.

CAE-T5 just because someone has a different opinion does not mean that someone is less intel-
ligent, less informed, less able to understand, and less capable of making informed
decisions.........

Input biased leftist trash article.
CAE-T5 biased leftist article.

Input dumb people vote for trump.
CAE-T5 most people vote for trump.

Input what hypocrites your sources are!
CAE-T5 what are your sources of information? ! ! ! !

Input bill o’reilly is a narcissistic sociopath.
CAE-T5 bill o’reilly is a neo-liberal.............

Table 3.8: Examples of automatically transferred toxic test sentences by our system and valid rewriting.
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Toxic to Civil

Input f*ck the flag.
CAE-T5 ���i love the flag.

Input i guess we can kill them.
CAE-T5 but i think we can���save them.

Input stupid comment
CAE-T5 �����interesting comment.

Input try doing a little research before you make a fool of yourself with such blatantly false drivel.
CAE-T5 try doing a little research before you make a blatant mistake in your

hhhhhhhhso-called opinion.

Input hey old fart, you losers have always been fake news.
CAE-T5 hey old soul, you have never been right, the fake news has

hhhhhhhhalways been bad.

Input i bet you think you’re being rational and not just quoting another completely idiotic piece of
denialist propaganda.

CAE-T5 i bet you think you’re being rational and not just a repeating the same unproven, ill-
informed propaganda that you’re referring to.

hhhhhhhhhh
. i’m just a little more

Input the ontario voters were rated the dumbest people in all the whole world.
CAE-T5 the ontario����XXXXliberals were voted in by the most gullible people in the country...............

Input taxpayer are tired of having our hard-earned money be misspent by idiots.
CAE-T5 taxpayers are tired of having our hard-earned money���XXXstolen by uncaring bureaucrats.

Input suggesting that people change their commute times is stupid.
CAE-T5 suggesting that people change their�����XXXXXlifestyles is not helpful.

Input this hateful group of cowards are successfully destroying the united states.
CAE-T5 the hateful group of((((((((hhhhhhhhtrump supporters are successfully dividing the united states.

Input whatever the idiot in chief touches turns to crap.
CAE-T5 whatever the president doeshhhhhhin the room turns to(((((((hhhhhhhwhat he wants.

Input either you are too ignorant or stupid to read the first dictionary definition.
CAE-T5 either you are too hhhhhhhyoung to read or are XXXXtoo old to understand ((((((((((hhhhhhhhhhthe first amendmenthhhhhhhhhhhor the first amendment.

Input trump is doing right things, he is great president, a lot better than 44th one from kenya
lot of good people support trump, only crooked and dumb people against

CAE-T5 trump is doing great, XXXXi know, he is better than most of the other ((((((hhhhhhcandidates -
obama����XXXX, clinton,XXXXtrump,XXXXtrump,XXXXtrump,XXXXtrump,XXXXtrump,XXXXtrump,XXXXtrump,

Input the dumb become dumber.
CAE-T5 the���XXXpoor become���XXXricher.

Table 3.9: Examples of automatically transferred toxic test sentences by our system, valid rewriting, and highlighted
flaws failure in attribute transfer or fluency ,

hhhhhhhsupererogation,((((((((
position reversal, and((((((hhhhhhhallucination.
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Positive to Negative

Input portions are very generous and food is fantastically flavorful .
DualRL portions are very thin and food is confusing .
ST (Multi) portions are very poorly and food is springs flavorless .
CAE-T5 portions are very small and food is awfully greasy for the price .
Human portions are very small and food is not flavorful .

Input staff : very cute and friendly .
DualRL staff : very awful and rude .
ST (Multi) staff : very nightmare and poor .
CAE-T5 staff : very rude and pushy .
Human staff : very ugly and mean .

Input friendly and welcoming with a fun atmosphere and terrific food .
DualRL rude and unprofessional with a loud atmosphere and awful food .
ST (Multi) poor and fake with a fun atmosphere and mushy food .
CAE-T5 rude and unhelpful service with a forced smile and attitude .
Human unfriendly and unwelcoming with a bad atmosphere and food .

Input i love their star design collection .
DualRL i hate their star design disgrace .
ST (Multi) i do n’t care star���XXXbites collection .
CAE-T5 i hate(((((((((hhhhhhhhhstarbucks corporate .

hhhhhhhhhthe staff is horrible .
Human i ca n’t stand their star design collection .

Input oj and jeremy did a great job !
DualRL oj and jeremy did a great job !

hhhhhhhhhh
disgrace ! disgrace !

ST (Multi) oj and jeremy did a terrible job !
CAE-T5 ��ZZoh and((((((hhhhhhjesus christ

((((((((((((hhhhhhhhhhhh
i did n’t have any change !

Human oj and jeremy did a terrible job !

Table 3.10: Examples of automatically transferred sentences from the Yelp test set (positive to negative), valid
rewriting, and highlighted flaws failure in attribute transfer or fluency ,

hhhhhhhsupererogation, and((((((hhhhhhhallucination.
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Negative to Positive

Input the store is dumpy looking and management needs to change .
DualRL the store is perfect looking and management speaks to change perfectly .
ST (Multi) the store is dumpy looking and management moved to change .
Ours the store is neatly organized and clean and staff is on top of it .
Human managment is top notch , the place looks great .

Input i emailed to let them know but they apparently dont care .
DualRL i loved them know them know but they dont care .
ST (Multi) i emailed to let them know but they honestly played their .
CAE-T5 i emailed to let them know and they happily responded right away . a great service
Human i emailed to let them know they really do care .

Input this place is dirty and run down and the service stinks !
DualRL this place is clean and run perfect and the service helped !
ST (Multi) this place is quick and run down and the service stunning !
CAE-T5 this place is clean and well maintained and the service is great ! ! !
Human this place is clean , not run down , and the service was great .

Input do not go here if you are interested in eating good food .
DualRL definitely go here if you are interested in eating good food .
ST (Multi) do not go here if you are interested in eating good food .
CAE-T5 definitely recommend this place if you are looking for good food

hhhhhhhat a good price .
Human do not go here if you are interested in eating bad food .

Input my husband had to walk up to the bar to place our wine order .
DualRL my husband had to walk up to the bar to place our drink order perfectly .
ST (Multi) my husband had to walk up to the bar to place our wine order .
CAE-T5 my husband loves to stand in line((((((((hhhhhhhhat the beer stand

((((((((((hhhhhhhhhh
and watch the game .

Human my husband did n’t have to walk up to the bar to place our wine order .

Table 3.11: Examples of automatically transferred sentences from the Yelp test set (negative to positive), valid
rewriting, and highlighted flaws failure in attribute transfer or fluency ,

hhhhhhhsupererogation, and((((((hhhhhhhallucination.
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Civil to Toxic

Input great effort and great season.
CAE-T5 stupid and horrible move by this team.

Input canadian teachers
are the foundation of this great country.

CAE-T5 canadians are the dumbest people in this country.

Input why isn’t trudeau in jail for gross negligence?
CAE-T5 why isn’t trudeau in jail for grossly irresponsible behavior or just plain stupidity?????

Input there really is no safe place on the planet to live anymore.
CAE-T5 there really is no safe place on the planet for the stupid to live.

Input trudeau will do as he’s told.
CAE-T5 trudeau will do as he’s told, he’s stupid.

Input all of canada is paying for that decision.
CAE-T5 all of canada is paying for that stupid decision.

Input people like you need their talking points.
CAE-T5 people like you need their asses kicked.

Input this is a great article that hits the nail on the head.
CAE-T5 this is a���stupid article that hits the nail on the head.

Input and just which money tree is going to pay for this?
CAE-T5 and just where is the money going to come from to pay for this crap?hhhhhhhhhhhhhh

when is this crap going to end?
hhhhhhhwho cares????

Input you need to get a new dictionary.

CAE-T5 you need to get a new f*cking dictionary.
hhhhhhhhhhhhh
get a new f*cking dictionary.hhhhhhhhhhhhh

get a new f*cking dictionary.XXXXXget a new

Input the real question is; will the hell’s angels forgo their major source of income?
CAE-T5 the real question is when will the idiocy of((((((((hhhhhhhhthese trumpkins end?

Input according to http://cookpolitical.com/story/10174, trump got 46.1% of the popular vote.
CAE-T5 according to ((((((((hhhhhhhhtrump, pence is the dumbest president ever, and

(((((((((((((hhhhhhhhhhhhh
clinton got the second-worst(((((((hhhhhhhapproval rating�����XXXXXin history.. .. trump’

Input so it’s okay to sacrifice the environment in the name of the almighty dollar......
CAE-T5 so it’s okay to destroy the world with the actions of one stupid dude

(((((((((hhhhhhhhhin the white house............

Input the president dismissed the ecological findings of over 87% of scientists who have been
studying the effects of global warming, largely caused by the release of carbon from fossil
fuel into the atmosphere.

CAE-T5 the president ignored the scientific consensus ��HHthat over 90% of all climate scientists
((((((hhhhhhare complete idiots, �����XXXXXreacting to (((((hhhhhthe rash of ((((((((hhhhhhhhterrorist attacks (((((((hhhhhhhthat have been ((((((hhhhhhtaking place

((((((((hhhhhhhharound the world... ((((((((hhhhhhhhtrump has made(((((hhhhhit his life’

Input not sure where you got your definition of a good guy.

CAE-T5 not sure where you got your
((((((((((((hhhhhhhhhhhh
idea that trump is a kinda dumb guy.

Table 3.12: Examples of automatically transferred civil test sentences by our system, valid rewriting, and high-
lighted flaws failure in attribute transfer or fluency ,

hhhhhhhsupererogation,((((((((
position reversal, and((((((hhhhhhhallucination. For the test

set of civil sentences, the automatic metrics are ACC= 92.8%; PPL= 9.8 and self-SIM= 54.3%.
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made of insults, identity attacks, or threats are not “rephrasable”. On the other hand, evaluating crowd-workers with

test questions and answers is complex. The Perplexity being higher on crowdworkers’ rephrases than on randomly

sampled civil comments raises concerns about the production of human references via crowd-sourcing. The nature

of large datasets labeled in toxicity and the lack of incentives for crowd-sourcing civil rephrasing annotation make

it expensive and difficult to train systems in a supervised framework. These limitations motivate self-supervised

approaches.

Lastly, the more complex the unsupervised attribute transfer task, the more difficult its automatic evaluation is.

In our case, evaluating whether the attribute is actually transferred required to train an accurate toxicity classifier.

Furthermore, the LM we used to assess the fluency of the generated sentences has some limitations and does

not generalize to all varieties of language encountered in social media. Finally, measuring the amount of relevant

content preserved between the source and generated texts remains a challenging, open research topic.

3.8 Comparison with state-of-the-art unsupervised text simplification

In parallel with this project, recent works have proposed efficient unsupervised approaches to the related Conditional

Natural Language Generation task of text simplification. While early attempts of unsupervised sentence simplifica-

tion [494, 585] could not reach the performances of supervised methods, Martin [330]’s paraphrase-mining-based

strategy, called MUSS [331], outperformed supervised Seq2Seq models.

In addition to fluency and content preservation in the generated text, simplification is characterized by sentence

compression as well as constraints on lexical and syntactic complexity. In comparison, our task, conditioned on

style transfer, may require semantic or syntactic transfer of different nature than reducing complexity9.

Besides learning to address a text-to-text task in unsupervised settings, CAE-T5 and MUSS share similar con-

trollable mechanisms using prefix tokens10. Yet, at training time, our control codes (e.g., “civil: ”) are not bound

to pairs of examples, while MUSS’s explicit proxy control tokens are (e.g., “<NbChars 0.3>”, for a character com-

pression ratio of 30%, is learned at training time through pairs of examples satisfying the ratio). Therefore, MUSS

introduced unsupervised paraphrase mining at scale to align sentences that the Seq2Seq model was trained on.

Their mining strategy used Meta’s sentence embedding model (LASER 11) similar to Google’s Universal Sentence

Encoder [63] that was used in our work11. A notable difference is that they opted for the L2 distance while we used

the cosine distance. We kept for future work paraphrase mining in the Civil Comments dataset, whose individual

sentences may be harder to align than sentences in CCNet [529] (used by MUSS).

9Toxic-to-civil style transfer could be seen as equivalent to “reducing toxicity”, but it cannot be measured with character-based metrics such
as the length or the Levenshtein distance [281], used in unsupervised simplification.

10See Section 2.5.9 for details on recent promises offered by prefix prompts in few-shot learning
11Similarly, when we needed a scalable nearest neighbor searcher on sentence embeddings (cf. Chapter 5), we opted for Google’s ScaNN

[162] while MUSS used Meta’s Faiss [217].
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3.9 Subsequent related works

3.9.1 Parallel detoxification datasets

Several works put our study in perspective between the publication of this work and the writing of the present thesis.

Indeed, by releasing an English dataset (ParaDetox) of 12, 000 manually rewritten sentences, Dementieva et al.

[105], Logacheva et al. [314] paved the way to strongly supervised models addressing detoxification. Additionally,

a shared task (RUSSE-2022), proposed by Dementieva et al. [104], provided a parallel Russian dataset and used

both automatic (including an embedding distance-based metric as in this work) and manual evaluation to compare

participating models. Part of the English dataset was used to train a strongly supervised model in Chapter 4.

Section 4.8.1 compares both methods.

3.9.2 Comparison of sentence similarity with other content preservation metrics

In order to benchmark our sentence similarity metric against standard content preservation metrics used in CNLG,

we evaluated SIM with the recently released BEAMetrics [451] benchmark. We used it as a tool to compute the cor-

relations between quantitative human judgments and reference-based metric scores on a set of tasks and evaluation

metrics covering a representative spectrum of CNLG research.

For a given annotated dataset addressing a specific task, BEAMetrics provides a set of source samples as-

sociated with one or several human-produced reference(s), a system-generated candidate, as well as quantitative

human assessments of the candidate on the task, given the source sample. For a given sample, reference-based

metrics usually compute a score between 0 and 1 from the system-generated text and the human-produced refer-

ence(s). This approach has been widely used in CNLG for its high correlation with human judgments.

The tasks used to evaluate the metrics were Machine Translation (WMT 2019 323), Data-to-Text (WebNLG-eval

469), Text Simplification (Asset-eval 8 and MUSS-eval 332), Image Captioning (PASCAL50S 516 and Flickr8k 194),

Summarization (REALSumm 34 and SummEval 122) and Question Answering (Efficient QA 347 and OKVQA-Eval

328).

Table 3.13 shows Pearson correlation coefficients (%) for all (metric, dataset) pairs proposed by BEAmetrics,

except non-English datasets. As a result, SIM is competitive with other standard CNLG metrics, especially when a

single reference is available since its average person correlation score is ranked first. This tends to confirm that SIM

is relevant when evaluating content preservation in unsupervised CNLG tasks, where a single reference is used:

the source text. This argument could also be relevant in the context of Chapter 5, where SIM is used to compare

users’ tastes for the task of item rating prediction.
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# Ref Metric WMT WNLG ASV MUSS PSCL FLCKR RLS SE EQA VQA AM

Max

ROUGE-1 [295] 16.0 63.6 61.8 41.6 52.3 48.7 47.4 16.7 35.5 19.3 40.3
ROUGE-2 [295] 15.5 61.2 54.7 35.5 52.0 47.0 46.0 14.7 22.2 9.8 35.9
ROUGE-L [295] 16.8 60.9 59.4 40.9 52.0 49.4 42.6 14.2 35.4 19.8 39.1
BLEU [374] 15.5 61.3 47.6 32.7 50.3 52.0 37.6 11.7 10.8 15.5 33.5
METEOR [268] 16.2 63.7 65.8 40.6 56.0 56.5 53.7 17.3 33.7 5.1 40.9
BERTScoreP [575] 20.0 60.6 69.9 37.9 49.6 48.2 29.3 9.1 11.5 4.8 34.1
BERTScoreR [575] 20.0 72.9 73.3 36.3 53.5 41.1 45.4 14.7 13.1 15.9 38.6
BERTScoreF1 [575] 20.5 62.1 73.4 37.5 52.6 47.4 39.3 13.1 12.4 9.9 36.8
BLEURT [454] 22.8 68.4 79.9 37.7 57.3 60.6 34.1 9.4 22.6 18.4 41.1
Nubia [227] 22.1 78.7 62.2 43.5 52.9 58.6 12.5 6.0 33.5 13.8 38.4
SIM (ours) 17.2 60.6 58.6 38.2 60.2 74.3 38.7 9.2 27.9 20.2 40.5

1

ROUGE-1 [295] 16.0 69.7 47.9 41.6 43.4 37.1 47.4 17.9 35.5 19.3 37.6
ROUGE-2 [295] 15.5 59.6 41.2 35.5 27.5 32.9 46.0 14.6 22.2 13.6 30.9
ROUGE-L [295] 16.8 61.2 43.0 40.9 41.4 38.2 42.6 15.7 35.4 19.8 35.5
BLEU [374] 15.5 53.6 29.9 32.7 29.5 32.2 37.6 7.0 10.8 15.5 26.8
METEOR [268] 16.2 67.9 52.2 40.6 42.9 41.6 53.7 16.2 33.7 5.1 37.1
BERTScoreP [575] 20.0 59.2 45.8 37.9 37.3 36.7 29.3 9.1 11.5 4.8 29.0
BERTScoreR [575] 20.0 70.8 66.3 36.3 45.9 25.2 45.4 14.1 13.1 15.9 34.5
BERTScoreF1 [575] 20.5 60.8 61.4 37.5 43.9 33.5 39.3 12.4 12.4 9.9 32.8
BLEURT [454] 22.8 77.1 68.1 37.7 51.6 53.2 34.1 9.8 22.6 18.4 39.2
Nubia [227] 22.1 78.7 62.2 43.5 52.9 58.6 12.5 6.0 33.5 13.8 38.4
SIM (ours) 17.2 70.1 49.2 38.2 53.7 66.3 38.7 11.2 27.9 20.1 39.3

Table 3.13: Pearson correlation coefficients between quantitative human judgments and reference-based metric
scores. #Ref indicates whether all or a single human reference was considered by the metric. WMT: WMT-2019.
WNLG: WebNLG-eval. ASV: Asset-eval. MUSS: MUSS-eval. PSCL: PASCAL50S. FLCKR: Flickr8k. RLS: REAL-
Summ. SE: SummEval. EQA: Efficient QA. VQA: OKVQA-Eval. AM: Arithmetical mean.

Chapter 3 conclusion

This work was the second to tackle civil rephrasing to our knowledge and the first to address it with a fully

end-to-end discriminator-free text-to-text self-supervised training. CAE-T5 leverages the NLU / NLG power

offered by large pretrained bitransformers. The quantitative and qualitative analysis showed that ML systems

could contribute to some extent to pacify online conversations, even though many generated examples still

suffer from critical semantic drift.

In the future, we plan to explore whether the decoding can benefit from NAR generation [325, 417]. We

are also interested in the recent paradigm shift proposed by Kumar and Tsvetkov [255], where the generated

tokens representation is continuous, allowing more flexibility in plugging attribute classifiers without sampling.
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Chapter 4

From the Detection of Toxic Spans in

Online Discussions to the Analysis of

Toxic-to-Civil Transfer

This chapter presents research conducted with John Pavlopoulos, Alexandros Xenos, Jeffrey Sorensen, and Ion

Androutsopoulos. It led to a task description published in the Proceedings of the 15th International Workshop on

Semantic Evaluation (SemEval 2021) as well as an article published in the Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (ACL 2022) [382].

Chapter 4 abstract

We studied the task of toxic spans detection, which concerns the detection of the spans that make a text

toxic when detecting such spans is possible. We introduced a dataset for this task, TOXICSPANSa, which

we released publicly. By experimenting with several methods, we showed that sequence labeling models

perform best. Moreover, methods that add generic rationale extraction mechanisms on top of classifiers

trained to predict if a post is toxic or not are also surprisingly promising. Finally, we used TOXICSPANS and

systems trained on it to provide further analysis of state-of-the-art toxic to non-toxic transfer systems seen in

Chapter 3, as well as human performance on that latter task. Our work highlights challenges in finer toxicity

detection and mitigation.
aOur code and dataset are publicly available at https://github.com/ipavlopoulos/toxic_spans with a CC0 license. Part of the

dataset was also used in the SemEval-2021 Task 5 [381] (cf. Appendix A).
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4.1 Introduction

In social media and online fora, toxic content can be defined as rude, disrespectful, or unreasonable posts that

would make users want to leave the conversation [48]. Although several toxicity detection datasets [543, 48] and

models [447, 377, 559] exist, most of them classify whole posts, without identifying the specific spans that make

a text toxic. But highlighting such toxic spans can assist human moderators (e.g., news portal moderators) who

often deal with lengthy comments and prefer attribution instead of a system-generated unexplained toxicity score

per post. Locating toxic spans within a text is thus a major step towards successful semi-automated moderation and

healthier online discussions.

To promote research on this new task, we released the first dataset of English posts with annotations of toxic

spans, called TOXICSPANS. We discussed how it was created and proposed an evaluation framework for toxic

spans detection. We considered methods that (i) perform sequence labeling (tag words) or (ii) rely on an attentional

binary classifier to predict if a post is toxic or not, then invoke its attention at inference time to obtain toxic spans

as in rationale extraction. The latter approach allows leveraging larger existing training datasets, which provide gold

labels indicating which posts are toxic or not, without providing gold toxic span annotations. Although sequence

labeling performed better overall, the binary attentional classifier performed surprisingly well too, despite having

been trained on data without span annotations.

We then studied some characteristics of strongly supervised and self-supervised toxic-to-civil transfer models

[266] by comparing them on several datasets, including a recently released parallel toxic-to-civil dataset [105] and

the new TOXICSPANS dataset. Using the latter, we introduced a measure to evaluate the elimination of explicit

toxicity, and we used this measure to compare the behavior and performance of toxic-to-civil models. Lastly, by

applying toxic span detection systems, we assessed the performance of human crowdworkers on the toxic-to-civil

task.

4.2 Related work

Toxicity detection systems [447, 377, 559] are typically trained on datasets annotated at the post level (a text is

annotated as toxic or not) [543, 48]. Our work differs from general toxicity detection in that we detect toxic spans,

instead of assigning toxicity labels to entire texts. Toxic spans detection can be seen as a case of attribution or

rationale extraction [287, 420, 277, 584, 209, 109], but specifically for toxic posts, a task that has never been

considered in general toxicity detection before.

Detecting spans, instead of entire posts, was recently also considered in propaganda [333] and hate speech

detection [334]. Although the ground truth type is similar (spans), propaganda detection is a different task from

ours. Hate speech is a particular type of toxicity [48], which can be tackled by more general toxicity detectors [511],
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Gold Spans (set of character offsets) Post

{55, 56, 57, 58, 59, 60} What if his opinion is that most other commenters are idiots? :-)

{80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
176, 177, 178, 179, 180}

Survival of the fittest would not have produced you. You are
alive because your weak blood is supported by welfare and food
stamps. Please don’t reference Darwin in your icon. Loser.

{55, 56, 57, 58} Time to give the opposition weapons and overthrow this jerk.

{31, 32, 33, 34, 35, 36, 37, 38, 39} you are a paid liberal hack of stupidity shore living the liberal lie
every day

{9, 10, 11, 12, 13} Youre an idiot.

{7, 8, 9, 10, 11, 14, 15, 16, 17, 18} what a dummy, dummy has no regard for the law. you cannot
brutalize a suspect. he has complete lack of respect for any law
and is acting like a dictator. he is trying to emulate putin.

{12, 13, 14, 15, 16, 17, 94, 95, 96, 97,
98, 99, 100, 101, 102}

People make stupid decisions and then expect the gov’t to bail
them out. There is no cure for stupidity.

{14, 15, 16, 17, 18, 19, 20, 29, 30, 31,
32, 33, 34, 35}

Nah, the only asshole is the asshole firing a rifle within city limits.

{ } So tired of all these Portlanders moving to California and ruining
the culture. When will it stop?!?

{ } Fits the despicable piece of trash like a glove.

{ } No he shot someone so he shouldn’t be free. He should be
locked up like He is for the next decade. You holla like its no
big deal but what if it was your little brother who was shot? Then
your dumb ass wouldnrlt be screaming free ace g or whatever
gay nickname he has. That is the lamest gangster name ever.
Do you think that name scares people? Ace clown is what i will
now call him.

Table 4.1: Examples of toxic posts and their ground truth toxic spans (also shown in bold red). In the left column,
toxic spans are shown as sets of character offsets. No toxic spans are included in the ground truth of the last posts.
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but not the other way round; i.e., we address a broader problem. This probably explains why a pattern-matching

baseline, based on the data of Mathew et al. [334], achieved only slightly better results than a random baseline on

our dataset.

As seen in Chapter 3, suggesting civil rephrases of posts found to be toxic [364, 266] is the next step towards

healthier online discussions and can be viewed as style transfer [466, 136, 263]. We show how toxic spans detection

can contribute to the assessment of toxic-to-civil transfer, linking the two tasks together for the first time.

4.3 The CIVILCOMMENTS dataset

In 2015, when many publications were closing down comment sections due to moderation burdens, a start-up

named Civil Comments launched [129]. Using a system of peer-based review and flagging, they hoped to crowd

source the moderation responsibility. When this effort shut down in 2017 [37], they cited the financial constraints of

the competitive publishing industry and the challenges of attaining the necessary scale.

The founders of Civil Comments, in collaboration with researchers from Google Jigsaw, undertook an effort to

open source the collection of more than two million comments that had been collected. After filtering the comments

to remove personally identifiable information, a revised version of the annotation system of Wulczyn et al. [543] was

used on the Appen crowd rating platform to label the comments using a number of attributes, including ‘toxicity’,

‘obscene’, ‘threat’ Borkan et al. [48]. The complete dataset, partitioned into training, development, and test sets,

was featured in a Kaggle competition,1 with additional material, including individual rater decisions, published [50]

after the close of the competition.

4.4 The new TOXICSPANS dataset

We used posts (comments) from the publicly available Civil Comments dataset [48], which already provides whole-

post toxicity annotations. We followed the toxicity definition that was used in Civil Comments, i.e., we used ‘toxic’

as an umbrella term that covers abusive language phenomena, such as insults, hate speech, identity attack, or

profanity. This definition of toxicity has been used extensively in previous work [198, 511, 229, 169, 380]. We asked

crowd annotators to highlight the spans that constitute “anything that is rude, disrespectful, or unreasonable that

would make someone want to leave a conversation”. Besides toxicity, our annotators were also asked to select

a subtype for each highlighted span, choosing between insult, threat, identity-based attack, profane/obscene, or

other toxicity. Asking the annotators to also select a category was intended as a priming exercise to increase their

engagement. Still, it may have also helped them align their notions of toxicity further, increasing inter-annotator

1www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
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agreement. For the purposes of our experiments, we collapsed all the subtypes into a single toxic class, and we did

not study them further; but the subtypes are included in the new dataset we released.

Annotation From the original Civil Comments dataset (1.2M posts), we retained only posts that had been found

toxic by at least half of the crowd-raters. This left approx. 30, 000 toxic posts. Toxic comments are rare, especially in

fora that are not anonymous and where people have expectations that moderators will be watching and taking action.

We selected a random 11, 000 subset of the 30, 000 posts for toxic spans annotation. We used the crowd-annotation

platform of Appen.2 We employed three crowd-raters per post, all of whom were warned for explicit content. Raters

were selected from the smallest group of the most experienced and accurate contributors. The raters were asked

to mark each post’s toxic word sequences (spans) of by highlighting each toxic span on their screen. For each post,

the dataset includes the spans of all three raters. If the raters believed a post was not actually toxic, or that the

entire post would have to be annotated, they were instructed to select appropriate tick-boxes in the interface without

highlighting any span. The tick-boxes were separate, and the dataset shows when (if) any of the two were ticked.

Hence, when no toxic spans are provided (for a particular post by a particular rater), it is clear if the rater thought

that the post was not actually toxic, or that the entire post would have to be annotated.

It is not possible to annotate toxic spans for every toxic post. For example, in some posts the core message

being conveyed may be inherently toxic (e.g., a sarcastic post indirectly claiming that people of a particular origin

are inferior) and; hence, it may be difficult to attribute the toxicity of those posts to particular spans. In such cases,

the posts may end up having no toxic span annotations, according to the guidelines given to the annotators; see the

last posts of Table 4.1 for examples. In other cases, however, it is easier to identify particular spans (possibly multiple

per post) that make a post toxic, and these toxic spans often cover only a small part of the post (see Table 4.1 for

examples).

Agreement We measured inter-annotator agreement on 87 randomly selected posts of our dataset, using five

crowd-annotators per post in this case. We calculated the mean pairwise (for a pair of annotators) Cohen’s kappa

per post, using character offsets as instances being classified as toxic (included in a toxic span) or non-toxic; we

then averaged over the posts. Although our dataset contains only posts found toxic by at least half of the original

crowd-raters, only 31 of the 87 posts were found toxic by all five of our annotators, and 51 were found toxic by the

majority of our annotators; this is an indicator of the well-known subjectivity of toxicity detection. On the 31, 51,

and 87 posts, the average kappa score was 65%, 55%, 48%, respectively, indicating that when the raters agree (at

least by a majority) about the toxicity of the post, there is also reasonable agreement regarding the toxic spans.

Note that the toxic spans are typically short. This leads to class imbalance (most offsets are marked as non-toxic),

increases agreement by chance (on the non-toxic offsets), and leads to low kappa scores (kappa adjusts for chance

2https://appen.com/
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Figure 4.1: Distribution of the percentage of characters of each post that are covered by the ground truth spans.

agreement). Another reason behind this modest (compared to other tasks) inter-annotator agreement is the inherent

subjectivity of deciding if a post is toxic or not. Our kappa score is in fact, slightly higher than in previous work on

toxicity detection, classifying posts as toxic or not [442, 378], and in that sense, our inter-annotator agreement can

be seen as an improvement.

Ground truth To obtain the ground truth of our dataset, we averaged the labels per character of the annotators

per post. We used the following process: for each post t, first, we mapped each annotated span of each rater to its

character offsets. We then assigned a toxicity score to each character offset of t, computed as the fraction of raters

who annotated that character offset as toxic (included it in their toxic spans). We retained only character offsets

with toxicity scores higher than 50%; i.e., at least two raters must have included each character offset in their spans.

Table 4.1 shows examples.

The dataset TOXICSPANS contains the 11, 035 posts we annotated for toxic spans. The unique posts are actually

11, 006 since a few were duplicates and were removed in subsequent experiments. A few other posts were used as

quiz questions to candidate annotators’ reliability and were also discarded in subsequent experiments.

Exploratory analysis Figure 4.1 shows the distribution of the percentage of character offsets of each post that

are included in toxic spans. Figure 4.2 illustrates the distribution of dense toxic spans per post. Figure 4.3 shows

the most frequent toxic spans in the dataset (after lower-casing each post) and their frequencies. Figure 4.4 shows

the most frequent multi-word toxic spans (again after lower-casing). Figure 4.5 illustrates the distribution of the size

(in words) of those posts whose ground truth covers the whole post.

Although we instructed the crowd-raters to click the appropriate tick-box and not highlight any span when the

whole post would have to be highlighted, the ground truth of 34 out of the 11, 000 posts covers the entire post.
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Figure 4.2: Distribution of the number of dense ground truth toxic spans per post in TOXICSPANS.

Figure 4.3: Most frequent toxic spans in TOXICSPANS.

Figure 4.4: Most frequent multi-word toxic spans.
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Figure 4.5: Distribution of size (in words) of posts whose ground truth covers the whole post.

However, 14 out of the 34 posts are single-word texts, while the other posts are very short; it seems that in very

short posts the raters sometimes did not realize they ended up highlighting the entire post. Furthermore, about

5, 000 of the 11, 000 posts have an empty ground truth set of toxic character offsets (as in the last posts of Table 4.1),

even though all the posts of our dataset had been found toxic by the original raters. This is partly due to the fact

that we include in the ground truth only character offsets that were included in the toxic spans of the majority of our

annotators. It also confirms it is not always possible to attribute (at least not by consensus) the toxicity of a post to

particular toxic spans. In almost all posts, the ground truth covers less than half of the post; and in the vast majority,

less than 20% of the post. A dense toxic span of a post is a maximal sequence of contiguous toxic characters.

There exist posts with more than one dense toxic span, but most posts include only one. Table 4.2 provides further

statistics.

4.5 Evaluation framework for toxic spans

For the newly introduced toxic spans detection task, we evaluated systems in terms of F1 score, as in the work

of Da San Martino et al. [92]. Given the ith test post, let Ŷi be the predicted set of character offsets and Yi the

ground truth character offsets. The per-post F1 score is defined by Equation (4.1).

F i
1 =

2 · P i ·Ri

P i +Ri
where P i =

|Ŷi ∩ Yi|
Ŷi

and Ri =
|Ŷi ∩ Yi|

Yi
(4.1)

If Yi is empty (no gold spans are given), we set F i
1 = 1 if Ŷi is also empty, and F i

1 = 0 otherwise. The final test

F1 score is the average of the per-post F i
1 scores over all test posts. We used F1 as the main evaluation measure

in the experiments reported below.
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Mean Min Max

Post length 208.14 4 1,000
Dense toxic span length 7.01 3 87

# Dense toxic spans 0.58 0 8

Table 4.2: TOXICSPANS statistics. Lengths in characters.

4.6 Methods for toxic spans detection

4.6.1 Simplistic baselines

TRAIN-MATCH, is a simple lookup-based model that classifies as toxic any tokens encountered inside toxic spans of

the training data. HATE-MATCH operates similarly, but the lookup is within the hateful/offensive spans of the data of

Mathew et al. [334]. A naive baseline, RAND-SEQ, randomly classifies tokens as toxic or not.

4.6.2 Supervised sequence labelling

Toxic spans detection can be seen as sequence labeling (tagging words). As a baseline of this kind, we employed

SPACY’S CNN (cf. Section 2.6.2), which is pretrained for tagging, parsing, entity recognition [197]. We called this

model CNN-SEQ and fine-tuned it on dense toxic spans, treated as ‘entities’. We also trained a bidirectional LSTM

(BILSTM-SEQ, cf. Section 2.6.2),3 and fine-tuned BERT [107] (cf. Section 2.5.8) and SPAN-BERT [219] for toxic spans

(BERT-SEQ, SPAN-BERT-SEQ). These methods require training data manually annotated with toxic spans, so we refer

to them as strongly supervised as opposed to weakly supervised methods.

4.6.3 Weakly supervised learning

We trained binary classifiers to predict the toxicity label of each post, and we employed attention as a rationale

extraction mechanism at inference to obtain toxic spans, an approach Pavlopoulos et al. [376] found to work rea-

sonably well in toxicity detection.4 We experimented with two classifiers: a BILSTM with deep self-attention as in

the work of Pavlopoulos et al. [376], but training with a regression objective and probabilistic labels following D’Sa

et al. [113] and Wulczyn et al. [543]; and BERT with a dense layer and sigmoid on the <CLS> embedding. To detect

toxic spans, we used the attention scores of the BILSTM and the attention scores from the heads of BERT’s last layer

averaged over the heads, respectively. In both cases, we obtained a sequence of binary decisions (toxic, non-toxic)

for the tokens of the post (inherited by their character offsets) by using a probability threshold (tuned on develop-

ment data) applied to the attention scores. We refer to these two attention-based rationale extraction methods as

3We used the probabilistic ground truth for training and mean squared error as the loss function of BILSTM-SEQ, which yielded best results in
preliminary experiments.

4Similar attention-based rationale-extraction methods have been used, e.g., by DeYoung et al. [109] and Jain et al. [209], but not in toxicity
detection. See also Wiegreffe and Pinter [532], Kobayashi et al. [240], Ferrando and Costa-jussà [127] for a broader discussion of attention as
an explainability mechanism.
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SQUAD 2.0 TOXICSPANS

Context Post
Question Empty string

is_impossible boolean toxic_spans_is_empty boolean
Answer Toxic span

Table 4.3: Mapping between the SQUAD 2.0 format and TOXICSPANS examples.

BILSTM+ARE and BERT+ARE, respectively. These methods require training posts annotated only with toxicity labels

per post (no toxic span annotations).

4.7 Experimental Settings

4.7.1 Sequence labelling

BILSTM-SEQ was implemented in KERAS 2.7.0.5 We used word embeddings of size 200 and hidden states of size

128; mean squared error (MSE) loss; the Adam optimiser; learning rate 0.001; post padding; maxlen and batch size

128; training for max. 100 epochs. We used early stopping with 5 epoch patience, monitoring the validation loss.

The classification threshold was set to 0.5. CNN-SEQ was trained for 30 epochs; we used 0.5 recurrent dropout;

progressively increasing batch size from 4 to 32 with step 1. All the other hyper-parameters were set to their default

values. BERT-SEQ was implemented using the Huggingface Transformers library.6 We used the BERT-base-cased

model, binary cross entropy loss; the Adam optimiser; learning rate 2 · 10−5; maxlen 128; batch size 32; training for

max. 100 epochs; early stopping with 5 epoch patience, monitoring validation loss. The classification threshold was

0.5.

SPAN-BERT base (cased) was fine-tuned in the same way that Joshi et al. [219] fine-tuned it on SQUAD 2.0 [410]

with the format mapping presented in Table 4.3. At training time, we ignored posts with more than one dense toxic

span since the SQUAD 2.0 format allows for only one dense answer span in the context. We trained with a learning

rate 2 · 10−5, for 4 epochs with training batches of size 32.

Post-level classifiers with attribution BILSTM+ARE was implemented in KERAS, like BILSTM-SEQ. We used

maxlen of 128; post padding; early stopping with patience 5 epoch, monitoring the validation loss; Adam optimizer

with 0.001 learning rate; MSE loss. The text classification threshold was 0.5. BERT+ARE was implemented with

Huggingface Transformers similarly to BERT-SEQ. We used maxlen of 128; post padding; early stopping with patience

5 epoch, monitoring the validation loss; Adam optimizer with 2 · 10−5 learning rate; binary cross-entropy loss. The

text classification threshold was 0.5. In both models, the attention threshold (above which a token is considered

5https://keras.io/
6https://huggingface.co/transformers/
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F1 (%) P (%) R (%)

Baselines
RAND 7.3 5.3 25.4
TRAIN-MATCH 41.0 39.1 48.7
HATE-MATCH 10.6 7.1 43.7

Strong supervision

BILSTM-SEQ 58.9 59.8 58.9
CNN-SEQ 59.3 60.7 59.0
BERT-SEQ 59.7 60.7 60.0
SPAN-BERT-SEQ 63.0 63.8 62.8

Weak supervision BILSTM+ARE 57.7 58.4 57.3
BERT+ARE 49.1 49.4 49.5

Table 4.4: F1, Precision (P ), Recall (R) of sequence labeling (1st zone), attentional (2nd), and look-up methods (3rd)
in toxic spans detection. Average scores of a 5-fold Monte Carlo cross-validation are shown. The standard error of
the mean is always lower than a percentage point. The ROC AUC scores of BILSTM and BERT (the attention-based
rationale extraction methods) in toxic/non-toxic text classification were 90.9% and 96.1%, respectively.

toxic) was fine-tuned on the development set of each Monte Carlo cross-validation fold.

Further implementation details can be found in our code repository (cf. the chapter’s abstract).

4.7.2 Experimental results for toxic spans

We used a 5-fold Monte Carlo cross-validation (5 random training/development/test splits) on the 11, 000 posts of

TOXICSPANS. In each fold, we use 10% of the data for testing, 10% for development, and 80% for training. In ARE-

based methods, which rely on an underlying classifier to predict if a post is toxic or not, the classifier is trained on the

training part of the fold (which contains only toxic posts, ignoring the toxic span annotations) and a randomly selected

equal number of non-toxic posts from Civil Comments that are not included in our dataset. When measuring the

(binary) classification performance of the underlying classifier, the classifier is evaluated on a new equally balanced

test set of 3, 000 randomly sampled unseen posts from Civil Comments.

Both look-up methods (TRAIN-MATCH, HATE-MATCH) outperform the random baseline (Table 4.4). However,

TRAIN-MATCH performs much better, which agrees with our hypothesis that toxicity detection is a broader problem

than hate speech detection. Both look-up methods are outperformed by the sequence labeling models (-SEQ),

especially SPAN-BERT-SEQ, which is pretrained to predict spans. These results show that the tokens of toxic spans

are context-dependent, and their meaning is not captured well by context-unaware look-up lexicons. BERT+ARE

performs worse than BILSTM+ARE, despite the fact that the underlying BERT classifier is much better (ROC AUC

96.1%) at separating toxic from non-toxic posts than the underlying BILSTM (90.9%). Interestingly, the BILSTM binary

toxicity classifier with the attention-based toxic span detection mechanism [376] is close in performance with BILSTM-

SEQ, despite the fact that the latter is directly trained on toxic span annotations, whereas the former is trained with

binary post-level annotations only (toxic, non-toxic post).
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You can stick your d**k up anyone’s butt. Why have any laws at all?

Of course they do. Stupid people really have to meet everyone else half way if they don’t want to be called
stupid, starting with not saying stupid things.

Table 4.5: Examples of posts where SPAN-BERT-SEQ incorrectly predicted no spans. Ground truth in red.

Play stupid games, win stupid prizes.

I always smile when I’ve been called stupid by a fool.

Table 4.6: Examples of posts where SPAN-BERT-SEQ predicted some, but not all of the gold spans. Ground truth in
red. Predictions of SPAN-BERT-SEQ in bold.

Error analysis of SPAN-BERT-SEQ We performed an error analysis on our best toxic spans detector (SPAN-BERT-

SEQ). We analyzed its predictions on the first fold of the Monte Carlo Cross-Validation, which comprises 10% of the

dataset or 1, 001 posts. We identified three main types of errors. The first type of error, which is the most frequent

one occurring in 235 out of 1, 001 posts (23.5%), comprises posts for which SPAN-BERT-SEQ failed to find all toxic

spans. This type of error can be divided in two sub-types: the first sub-type comprises posts for which SPAN-BERT-

SEQ predicted no spans at all (Table 4.5), while the second sub-type comprises posts for which SPAN-BERT-SEQ

predicted some, but not all of the gold spans (Table 4.6). The first sub-type occurs more often, with 217 out of the

235 total occurrences of the first error type, while the second sub-type occurs only a few times (18 out of 235). The

second type of error, which is the second most frequent one, occurred in 173 out of the 1, 001 posts (17.3%). It

occurs when the ground truth of a post is empty, but SPAN-BERT-SEQ predicts at least one toxic span (Table 4.7).

The last type of error occurs rarely (only 10 out of 1, 001 posts) when the ground truth of a post is not empty, and

SPAN-BERT-SEQ predicts more (or larger) toxic spans than it should (Table 4.8).

Improving attribution-based detection Several large datasets with post-level toxicity annotations are publicly

available [379]. Therefore, attribution-based toxic span detectors, such as BILSTM+ARE, can, in principle, perform

even better if the underlying binary classifier is trained on a larger existing dataset. To investigate this, we increased

Not sure if “people are dumb” is the best descriptor, but you are correct that we tend to seek out and grasp at
anything that supports our beliefs and hopes. Hence the proliferation of “fake news”, which feeds those wants.

They can shuffle the cabinet seven ways from Sunday and it’s still a cabal of losers.

This outlet should hire some editors. Nobody I’ve crossed paths with would green light this crap.

Actually, Seaton is a wealthy man and can do without his day job quite easily. If he would just get rid of that
friggin’ stupid cap....

In other word, blah, blah, blah, blah. It’s bullshit. Deal with it. No proof=doesn’t exist.

Or maybe we should place a tax on stupid ideas like yours

Table 4.7: Examples of posts where the ground truth was empty, but SPAN-BERT-SEQ incorrectly predicted at least
one span. Predictions of SPAN-BERT-SEQ in bold.
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People don’t normally take it to heart when an idiot calls someone stupid.

$10B a GW avg compared to $2.5B a GW for a 2nd Candu nuke at LePreau. Stupid is as stupid does I
guess.

All useless piles of crap.

oh no, this isn’t even in the top 10 moronic statements by this babbling fool.

Table 4.8: Examples of posts where the ground truth was not empty, and SPAN-BERT-SEQ incorrectly predicted more
(or larger) toxic spans. Ground truth in red. Predictions of SPAN-BERT-SEQ in bold.

Figure 4.6: Improvement in the F1 of BILSTM+ARE when increasing the training set of its underlying BILSTM with
posts tagged at the post-level (toxic/non-toxic, no toxic spans). Standard error of mean shown as error bars.

the training set of the underlying BILSTM classifier of BILSTM+ARE. We added to the training set of each cross-

validation fold 80, 000 further toxic and non-toxic posts (still equally balanced, without toxic spans) from the dataset

of Borkan et al. [48], excluding posts used in TOXICSPANS. The ROC AUC score of the underlying BILSTM (in the

task of separating toxic from non-toxic posts) improved from 90.9% to 94.2%, and the F1 score of BILSTM+ARE (in

toxic spans detection) improved from 57.7% to 58.8%, almost reaching the performance of BILSTM-SEQ.

Figure 4.6 shows the improvement in the F1 score of BILSTM+ARE when increasing the training set of the un-

derlying BILSTM with 5000, 10000, 20000, 40000, 80000 more posts (always balanced toxic/non-toxic) with post-level

annotations only (no toxic span annotations). The dashed lines represent the sequence labeling methods, which

cannot benefit directly from training data without toxic span annotations. Similarly, Figure 4.7 shows the correspond-

ing improvement in the ROC AUC score of the underlying BILSTM in the toxic/non-toxic text classification task.
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Figure 4.7: Improvement in the ROC AUC of BILSTM+ARE in the toxic spans detection task, when increasing the
training set of its underlying BILSTM with posts tagged at the post-level (no toxic spans).

4.8 Toxic spans in toxic-to-civil transfer

As shown in Section 4.7.2, a toxic span detection method can be used to highlight toxic parts of a post, to assist,

for instance, human moderators. The new TOXICSPANS dataset and toxic span detection methods, however, can

assist in more ways. This section describes how we combined the new dataset and the best-performing toxic span

detector (SPAN-BERT-SEQ) to show how they can be useful in toxic-to-civil text transfer (cf. Chapter 3). In the con-

text of detoxifying comments to nudge users toward healthier conversations online, this task aims at suggesting civil

rephrasings of toxic posts. More specifically, we studied the following research question:

RQ: Can TOXICSPANS data and toxic span detectors be used to assess the mitigation of explicit toxicity in toxic-

to-civil transfer?

To answer this question, we proceeded in two ways:

(i) Evaluating the transfer of toxic spans in system-detoxified posts

(ii) Studying any remaining toxic spans in human-detoxified posts.

4.8.1 System-detoxified posts

We first compared the performance of two toxic-to-civil transfer models, CAE-T5 and SED-T5, both based on the

T5 encoder-decoder transformer architecture [406]; they both fine-tune the weights of the same pretrained model,

namely T5-large. CAE-T5 [266] is the self-supervised Conditional Auto-Encoder presented in Chapter 3. It had
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Parallel (P) Non-Parallel (NP)
Toxic-to-Civil pairs Toxic Civil

Train 2,222 90,293 5,653,785
Dev 278 4,825 308,130
Test 278 4,878 305,267

Average length 19.8a 19.4 21.9

a Toxic posts

Table 4.9: Statistics for the parallel (P) and non-parallel (NP) datasets, used to train the SED-T5 and CAE-T5 toxic-
to-civil models, respectively. Average lengths are reported by counting SentencePiece [251] tokens.

Civil to toxic (P)

Input stop being ignorant and lazy and try reading a bit about it.
CAE-T5 try reading and be a little more informed about it before you try to make a comment.
SED-T5 stop being lazy and lazy and try reading a bit about it.

Input this is absolutely the most idiotic post i have ever read on all levels.
CAE-T5 this is absolutely the most important thing i have read on this thread over the years.
SED-T5 this is��not the most useless post post I have ever read on all levels

Input trump may be a moron, but clinton is a moron as well.
CAE-T5 trump may be a clinton supporter , but clinton is a trump supporter as well.
SED-T5 trump may be a badon, but clinton is a badon as well.

Input shoot me in the head if you didn’t vote for trump.
CAE-T5 ((((((you’re right if you didn’t vote for trump.

hhhhhhhhhi’m not sure i’d vote
SED-T5 shoot me the head if you didn’t vote for Trump

Input 50% of teachers don’t have any f*cks to give.
CAE-T5 50% of teachers don’t have(((((((((hhhhhhhhha phd in anything.
SED-T5 50% of teachers don’t have any tofls to give.

Table 4.10: Examples of automatically transferred sentences from the NP test set (toxic to civil), valid rewriting,
and highlighted flaws failure in attribute transfer or fluency ,

hhhhhhhsupererogation,((((((((
position reversal, and((((((hhhhhhhallucination.

been fine-tuned on a large non-parallel (NP) dataset based on pre-processed posts from the Civil Comments (CC)

dataset, the dataset (with post-level annotations) that TOXICSPANS was also based on. SED-T5 is a Supervised

Encoder-Decoder; we fine-tuned it on a smaller parallel (P) dataset created by Dementieva et al. [105], consisting

of pairs of comments: a toxic comment and a detoxified paraphrase written by a crowdworker.

Table 4.9 summarizes statistics of the two datasets (P, NP) and highlights a trade-off between the level of su-

pervision and number of samples: there is a 1 : 40 ratio between toxic comments in P (direct supervision, parallel

data) and NP (indirect supervision, no parallel data). Table 4.11 shows our experimental results. We report accuracy

(ACC), Perplexity (PPL), similarity (SIM), and the geometric mean (GM) of ACC, 1/PPL, SIM. The systems computing

these metrics are the same as in Chapter 3. As a reminder, accuracy measures the rate of successful transfers

from toxic to civil. It computes the fraction of posts whose civil version is classified as non-toxic by a BERT toxicity

classifier. Perplexity is used here as a measure of fluency. Similarity measures content preservation between the

original toxic text and its system-rephrased civil version (self-SIM) or the gold (human) civil rephrasing (ref-SIM, only
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for P).

As can be seen in Table 4.11, CAE-T5 has better aggregated results (higher GM) than SED-T5 in all three datasets,

which are due to lower Perplexity and (in NP and TOXICSPANS) higher accuracy. However, SED-T5 learned to

preserve content better (higher SIM in all three datasets) because of the parallel data (P, with gold rephrases) it

was trained on. By contrast, CAE-T5 was trained without parallel data (NP) using a cycle-consistency loss, which

leads to more frequent hallucinations of content that was not present in the original post [266]. These hallucinations

may also help CAE-T5 obtain better Perplexity scores by generating fluent civil ‘rephrases’ that do not preserve,

however, the original semantics. Examples shown in Table 4.10 illustrate the tendency of CAE-T5 to remove toxicity

with hallucination and position reversal compared to SED-T5’s rephrasings, often more faithful to the input comment

(rare cases of hallucination), but at the cost of fluency and detoxification accuracy. Also, although the general trends

are similar in all three datasets (SED-T5 preserves content better, CAE-T5 is better in Perplexity and GM), there are

several differences too across the three datasets. For example, CAE-T5 is much better than SED-T5 in accuracy

(posts detoxified) on NP and TOXICSPANS, but both systems have the same accuracy on P; and the scores of the

systems vary a lot across the three datasets.

These considerations motivated us to seek ways to analyze the behavior of toxic-to-civil transfer models further.

TOXICSPANS and toxic span detectors are an opportunity to move towards this direction by studying how well transfer

models cope with explicit toxicity, i.e., spans that can be explicitly pointed to as sources of toxicity. We leave for

future work the flip side of this study, i.e., studying cases where transfer models rephrase spans not explicitly marked

(by toxic span detectors or human annotators) as explicitly toxic.

4.8.2 Explicit Toxicity Removal Accuracy

Recall that the accuracy (ACC) scores of Table 4.11 measure the percentage of toxic posts that the transfer models

(CAE-T5, SED-T5) rephrased to forms that a (BERT-based) toxicity classifier considered non-toxic. One could ques-

tion, however, if it is possible (even for humans) to produce a civil rephrase of a toxic post when it is impossible to

point to particular spans of the post that cause its toxicity (as in the last posts of Table 4.1). Detoxifying posts of

this kind may constitute a mission impossible for most models (possibly even for humans); the only way to produce

a non-toxic ‘rephrase’ may be to change the original post beyond recognition, which may be rewarding systems like

CAE-T5 that often hallucinate in their rephrases, as already discussed.

Hence, it makes sense to focus on posts that contain explicit toxic spans, marked by human annotators (for

TOXICSPANS) or our best toxic span detector (SPAN-BERT-SEQ). Using these toxic spans, we defined three additional

variants of accuracy: ACC2 is the same as ACC, but ignores posts that do not contain at least one toxic span; ACC3

also considers (in its denominator) only posts that contained at least one toxic span, but computes the fraction of

these posts that had all of their toxic spans rephrased (even partly) by the transfer model; ACC4 is a stricter version
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Evaluation Dataset Metric CAE-T5 SED-T5

Non-Parallel (NP)

ACC ↑ 75.0 % 52.2 %
ACC2 ↑ 83.4 % 67.3 %
PPL ↓ 5.2 11.8

self-SIM ↑ 70.0 % 87.9 %
GM (self) ↑ 0.466 0.338

ACC3 ↑ 86.7 % 64.1 %
ACC4 ↑ 83.2 % 59.5 %

Parallel (P)

ACC ↑ 94.3 % 94.3 %
ACC2 ↑ 94.7 % 94.3 %
PPL ↓ 9.1 38.3

ref-SIM ↑ 27.6 % 65.3 %
self-SIM ↑ 32.6 % 65.6 %
GM (ref) ↑ 0.306 0.252
GM (self) ↑ 0.323 0.252

ACC3 ↑ 98.8 % 94.3 %
ACC4 ↑ 94.7 % 91.9 %

TOXICSPANS

ACC ↑ 92.9 % 65.6 %
ACC2 ↑ 92.5 % 63.7 %
PPL ↓ 7.2 24.9

self-SIM ↑ 34.5 % 82.1 %
GM (self) ↑ 0.355 0.279

ACC3 ↑ 96.9 % 62.0 %
ACC4 ↑ 92.0 % 54.7 %

Table 4.11: Automatic evaluation scores of CAE-T5 (trained on NP’s training subset) and SED-T5 (trained on P’s
training subset), when the test sets are from NP, P, and TOXICSPANS. ACC2, ACC3, ACC4 also consider toxic spans
(Section 4.8.2).

of ACC3 that requires the posts to also be judged non-toxic by the (BERT-based) toxicity classifier.

Table 4.11 shows that restricting ACC to consider only posts with at least one toxic post (ACC2) substantially

improved the performance of both models on the NP dataset, indicating that it contains many ‘mission impossible’

instances (posts with no toxic spans) that the original ACC considers. By contrast, switching from ACC to ACC2 led to

mostly negligible changes on the P and TOXICSPANS datasets, which is in accordance with the fact that they contain

fewer posts with no toxic spans (11.5% and 48.7%, respectively, compared to 67.4% for NP). Another interesting ob-

servation is that ACC4 was always substantially lower than ACC3 (for both systems, on all three datasets), indicating

that the models often successfully detected toxic spans and try to rephrase them, but the rephrases were still toxic,

at least according to the toxicity classifier.

4.8.3 Human-detoxified posts

In this experiment, we wished to study the extent to which humans rephrase known toxic spans when asked to

produce civil rephrases of toxic posts. We used the P dataset, the only one of the three considered that contains

human rephrases.7 Since P does not contain gold toxic spans, we again employed SPAN-BERT-SEQ to add toxic

7We used all the P data since no training was involved.
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spans to the source posts and retained only the 1, 354 (out of 2, 778 in total) source-target pairs of posts with at

least one toxic span in their source post.8 In all but 6 of the 1, 354 posts, the humans have rephrased (in the

gold target post they provided) all the toxic spans of the source post. The 6 posts were mainly cases where the

human changed the context to mitigate toxicity, while retaining the original toxic span. For example, “he’s not

that stupid” became “he’s not stupid” (original toxic span shown in bold); in this case removing the “that”

from the context arguably makes the post less offensive. Overall, we conclude that humans did rephrase almost all

cases of explicit toxicity in the toxic posts they were given.

We also applied SPAN-BERT-SEQ to the gold target (rephrased) posts that the humans provided to check if any

explicit toxicity remained or was introduced by the rephrases. This flagged 93 gold target posts as comprising at least

one toxic span. A manual inspection of the 93 posts revealed that they fall into two main categories. The first category

comprises cases where a toxic span of the source post was rephrased, but the rephrase might not be considered to-

tally civil; e.g., “how freaking narcissistic do you have to be?” became “how narcissistic do you have

to be?”, where SPAN-BERT-SEQ marked the “narcissistic” of the rephrase as a toxic span. The second category

comprises cases where SPAN-BERT-SEQ produced false positives; e.g., the source post “most of the information

is total garbage” became “most of the information is totally useless”, but SPAN-BERT-SEQ marked (ar-

guably incorrectly) “useless” as a toxic span.

4.8.4 Toxicity scores of posts with and without explicit toxicity

We also applied the BERT-based text toxicity classifier of Chapter 3 to the 2, 778 posts of the P dataset, dividing them

into two sets: posts that comprised at least one toxic span detected by SPAN-BERT-SEQ (1, 354 posts with explicit

toxicity) and the rest (implicit toxicity). The BERT-based toxicity classifier considered more toxic (higher average

toxicity score) the 1, 354 posts of the first set compared to the second one, i.e., it was more confident that the posts

of the first set (explicit toxicity) were toxic, as one might expect. By resampling 1, 000 subsets (of 50 posts each)

from the two sets, we confirmed that this is a statistically significant difference (P = 0.001). The difference in the

average predicted toxicity score between the two sets is 14% (from 0.94 down to 0.80).

4.9 Discussion

The posts we annotated for toxic spans were extracted from an already heavily studied public domain benchmark

dataset (Civil Comments) that has been examined by thousands of teams in a Kaggle competition,9 and that has

been cited in over 50 academic publications. The Civil Comments dataset was filtered to remove any potential

personally identifiable information before it was released. Our annotation cost was $21, 089 for 59, 486 judgements,

8The most frequent spans were “sh*t”, “st*p*d”, “f*ck”.
9shorturl.at/hqEJ3
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Figure 4.8: Frequency of annotations based on the country of origin of the crowd-annotators.

paying $0.30 per item. All raters were warned for the explicit content of the job, and only high accuracy raters were

selected (70 + %) based on performance on quiz questions. The most common countries of origin of our crowd-

annotators were Venezuela and USA (cf. Figure 4.8). In the contributor satisfaction survey, 51 participants gave an

overall task rating of 3.6/5.0, with pay and test question fairness rated slightly higher than ease of job and clarity of

instructions.

We note that it is more difficult and costly (approximately 3 times more) to manually annotate toxic spans, instead

of just labeling entire posts as toxic or not. This is why we also explored adding rationale extraction components on

top of toxicity classifiers trained on existing much larger datasets. We showed that BILSTM+ARE has the potential

to reach the performance of BILSTM-SEQ, which is important for future work aiming to build toxic span detectors

without any toxic span annotations in the training data. This may be particularly useful in low-resourced languages

with limited resources for text toxicity [561].

Having two separate systems, one for toxicity detection and one for toxic spans identification, is more easily

compatible with existing deployed toxicity detectors. One can simply add a component for toxic spans at the end

of a pipeline for toxicity detection, and the new component would be invoked only when toxicity would be detected,

leaving the rest of the existing pipeline unchanged. Since the vast majority of posts in real-world applications

are non-toxic [48], this pipeline approach would only increase the computational load for the relatively few posts

classified as toxic. Using only toxic posts in this study was also a way to simplify this first approach to toxic spans

detection, assuming an oracle system achieved the first step (deciding which posts are toxic). However, we note

that future work could study adding non-toxic posts to our dataset and require systems to first detect toxic posts,

then extract toxic spans for toxic posts.

A direct comparison (in terms of size) of TOXICSPANS with other existing toxicity datasets is only possible if one

focuses on the toxic class, typically the minority one, since our dataset contains only toxic posts. By adding non-toxic

posts, much larger versions of our dataset can be compiled, of sizes similar to those of existing previous datasets
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(that provide post-level annotations only). Hence, our TOXICSPANS dataset is accessible with the following versions:

First, only toxic posts are included (11, 006 posts), which is the version we discuss in this work. Second, the previous

version will be augmented with the same number of randomly selected non-toxic Civil Comments posts. Third, a

version similar to the previous one, but where the ratio of toxic to non-toxic posts will be 1 : 40 to be closer to that of

real-world datasets (325, 499 posts).

As shown in Section 4.8, the TOXICSPANS dataset and toxic span detectors can also help study and evaluate

explicit toxicity removal when rephrasing toxic posts to be civil. In this case, toxic spans can be used to get a better

understanding of how toxic-to-civil models operate by showing the toxic spans and their context, along with their

rephrases.

For more details on the shared task we organized at SemEval-2021, please see the competition description in

Appendix A.

4.10 Intended use and misuse potential

The toxic span detection systems we considered are trained (the sequence-labeling ones) and tested (all systems)

on posts with binary ground-truth character offset labels (toxic or not), reflecting the majority opinion of the anno-

tators (Section 4.4). This runs the risk of ignoring the opinions of minorities, who may also be minorities among

crowd-annotators. To address this issue, we also released the toxic spans of all the annotators and the pseudony-

mous rater identities, not just the spans that reflect the majority opinion, to allow different label binarisation strategies

and further studies.

Toxic span detection systems are intended to assist the decision-making of moderators, not to replace mod-

erators. When they operate correctly, systems of this kind are expected to ease decision-making (reject/accept a

post). Incorrect results could be of two types; toxic spans that were not highlighted and non-toxic spans that were

highlighted. Mistakes of both types, especially the first one, may mislead a moderator working under time pressure.

As with other content filtering systems (e.g., spam filters, phishing detectors), toxic span detectors may trigger an

adversarial reaction of malicious users, who may study which types of toxic expressions evade the detectors (esp.

publicly available ones) and may gradually start using more implicit toxic language (e.g., irony, false claims), which

may be more difficult to detect. However, this is a danger that concerns any toxicity detection system, including

systems that classify user content at the post level (without detecting toxic spans).

4.11 Subsequent related works

Following our work on English toxic spans, Ravikiran et al. [415] published a similar approach adapted to Code-

Mixed Tamil-English comments. We hope our project initiated a larger trend in multilingual toxic span detection as
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non-English-only platforms may benefit from automated online moderation at the span level as well.

Chapter 4 conclusion

We studied toxicity detection, which aims to identify the spans of a user post that make it toxic. Our work is

the first of this kind in general toxicity detection. We constructed and released a dataset for the new task,

along with baselines and models. Fine-tuning the SPAN-BERT sequence labelling model of Joshi et al. [219],

yielded the best results. A post-level BILSTM toxicity classifier that was combined with an attention-based

attribution method, not trained on annotations at the span level, performed well for the task. By leveraging

the dataset of posts annotated as toxic or non-toxic (without spans), we showed that this method can reach

the performance of a BILSTM sequence labeling approach that was trained on the more costly toxic spans

annotations. This result is particularly interesting for future work aiming to perform toxic spans detection

by using only datasets with whole-post toxicity annotations. In a final experiment, we examined toxic-to-

civil transfer, showing how toxic spans can help shed more light on this task, too, by helping assess how well

systems and humans address explicit toxicity. In future work, we plan to study toxic span detection in multiple

languages and in context-dependent toxic posts.
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Chapter 5

Semantic Encoding of Review Sentences

for Memory-Based Recommenders

This chapter presents research conducted with Thomas Bonald, Lucas Dixon, and Raghuram Vadapalli. It led to

an article submitted to the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022)

and not reviewed yet.

Chapter 5 abstract

This chapter explores a novel use of review text to represent user-preferences for rating prediction. The ap-

proach leveraged textual semantic similarity models to represent a user’s preferences as a graph of textual

snippets, where the edges were defined by semantic similarity. This textual, memory-based approach to

rating prediction offers the promise of improved explanations for recommendations. The method was eval-

uated quantitatively, highlighting that leveraging text in this way can out-perform both memory-based and

model-based collaborative filtering baselines.

5.1 Introduction

With the democratization of online shopping and content delivery platforms, internet users are accustomed to writing

textual reviews of products and services. While recommender systems initially relied only on quantitative preference

scores, newer datasets with textual reviews, combined with advances in Natural Language Understanding, suggest

that both the performance of recommenders and their explainability might benefit from leveraging textual represen-

tations.

While item recommendation systems aim to predict the next interaction corresponding to the users’ preferences,
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this work focused on rating prediction systems that try to predict the rating a user will give an item. For example,

when a user is trying to evaluate a given item, e.g., they heard about a movie and are looking it up before choosing

whether to watch it or not. In this setting, search engines and film streaming sites like Netflix show information to

help the user make a decision, such as the average rating, public reviews, and sometimes personalized ratings and

explanations for why the user may enjoy it (so-called endorsements). This work focuses on providing high-quality

personalized rating prediction leveraging review text in a way that supports explanations based on snippets of review

text from other users.

Statistical and ML models are often used to compute personalized predictions based on the past interactions

(e.g., ratings and reviews) rui of a set of users u ∈ U on a set of items i ∈ I. The archetypal baseline for recom-

mender systems is Collaborative Filtering (CF) [421]. CF-based approaches infer preference scores r̂ui from the

similarity between users who expressed common tastes. The computation of these commonalities varies from the

data the system has access to, though the majority of traditional models rely on past ground-truth ratings. Even if

they show acceptable quantitative results, rating-based recommender systems often suffer from a lack of clear and

precise explanation for why the recommendation was made.

Srifi et al. [481] recently reviewed attempts to integrate review text in recommender systems. They examined

existing methods, classified by Chen et al. [72], that extract information from reviews in order to enhance recom-

mender systems. While many of these studies inferred high-level features such as sentiments or topics, only a few

directly built semantic-aware recommender systems from the unstructured text found in reviews.

Memory-based and model-based systems are the main two families of methods seen in CF [3, 71]. Memory-

based CF predicts user ratings by directly aggregating ratings from other users with similar preferences. Model-

based CF uses interaction data to train a model—typically a high dimensional vector—that can be used to generate

ratings for future items. Even when memory-based CF shows worse absolute quantitative evaluation on standard

metrics, it benefits from the simplicity of implementation and ease of creating explanations.

To the best of our knowledge, the work from Terzi et al. [501] (cf. Section 5.2) is the only effort to leverage text in

memory-based CF by using word-based similarity measures between reviews to compute user similarities. However,

recent progress in NLU enables far richer and more effective semantic representations of text [515, 108, 405]. In this

chapter, we used modern large Pretrained Language Models [552] to embed sentences of reviews into a so-called

semantic vector space (Section 5.5). We then employed a user k-NN model based on user similarity (Section 5.6).

The key insight is that user similarity can be defined in terms of a graph based on semantic similarity from text in user

reviews. Specifically, we showed how to build sentence-based k-Nearast Neighbors (k-NN) graphs (Section 5.7) to

compute user similarity. We denote our model Text-KNN1 (Figure 5.2).

We evaluated our model in the context of two large datasets containing both numerical and text reviews; the

Amazon Review dataset [175] and the Yelp dataset[222]. Offline metrics are often used to evaluate recommender

1Our code is available at https://bit.ly/3NlL6Qa
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Figure 5.1: 2D t-SNE projection of sentence embeddings. Red, green, and blue colors represent sentences from
horror, comedy, and animation movies, respectively. Movie titles are displayed at the barycenter of their review
sentences (with adjustment for readability purposes). Figure best viewed in color.
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It was wonderfully funny.

a great family movie.
It was wonderfully funny.

A horror movie classic .

...
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systems. Although top-N ranking metrics such as discounted cumulative gain [210] and hit rate evaluate item

recommendation, rating prediction has traditionally been evaluated with error-based predictive accuracy metrics like

the Root-Mean-Square Error (RMSE). However, it has been observed that RMSE is not effective at distinguishing the

quality of algorithms—high performance can even be achieved by naive baselines [91]. Moreover, RMSE unfairly

represents users with a smaller spread of scores (as error values will be smaller). In Sections 5.8, we explored

arguments in favor of rating-prediction evaluation based on rankings, leading us to also report a metric inspired by

the Fraction of Concordant Pairs [243].

5.2 Related work

User k-NN is the main approach studied in memory-based CF. The cornerstone of k-NN is the definition of a

similarity measure between two users [363]. Several similarities can be computed from the vectors of the ratings

of co-reviewed items, among which mean squared difference (MSD, 463, 383), cosine similarity [301], Pearson

correlation coefficient [180] and Jaccard coefficient [246].

Model-based CF rely on intrinsic models trained with various machine learning techniques [485, 546, 573] to

directly predict user preferences. In particular, state-of-the-art latent factor models [244] such as probabilistic matrix

factorization [437], Singular Value Decomposition (SVD) [138] and SVD++ [242] achieve the most precise rating

predictions.

Research has explored different ways of extending the rating-only-based systems with additional data ources

to represent users and items. Non-text-review information include social information [484], tags [167, 17] and

descriptions [7]. However, text found in reviews is the most promising type of information to augment rating-based

datasets and models [580, 72, 182]. Many works are based on that approach. Some strategies consist in extracting

relevant information from the text review before integrating it into a recommender system. This information can
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narrow-down to specific content, such as topics [335, 20, 74] or sentiments [393, 577, 100].

Further strategies rely directly on the words found in reviews without trying to focus on specific informative el-

ements (like topics, overall sentiment, or aspect-based opinion). Considering integrating the information at the

word level provides potentially richer compositionality power. The literature contains examples of approaches build-

ing latent representations of sentences with neural networks before integrating these into matrix factorization CF

[235, 587, 69, 305].

Even if a few works combine text information with review information in memory-based CF [234, 283, 352], Terzi

et al. [501] were the first to design user-based k-NN similarities directly from the words found in text reviews and

therefore their work is the most relevant to us. They introduced six word-based similarity measures ranging from

simple word overlap, to depth of two words [384] in external lexical graphs2, and information content [418, 213,

297]. Even though this is the closest approach to ours, we differed in that sentence similarity relies on continuous

(sentence embedding) rather than discrete (co-occurrence of terms) semantic representations.

Evaluating recommender systems is a critical step in their development and remains an open research topic.

Many offline (automatic) evaluation metrics have been introduced as proxies to approximate online (human) eval-

uation. It has not been shown yet that a metric is universally better than others, though RMSE seems to be the

dominant approach for its simplicity of implementation and understanding. Cremonesi et al. [91] justified why differ-

ent metrics perform differently on different tasks (rating prediction versus item recommendation) and Herlocker et al.

[180] summarized existing metrics targeting specific criteria of recommender systems. Chandar et al. [66] argued

for taking into account user behavior models when designing and selecting metrics. The Fraction of Concordant

Pairs was first introduced by Koren and Sill [243] as an offline metric relevant for evaluating if predicted ratings were

ranked the same way as the ground truth. It was re-used by Wu et al. [542], Beniwal et al. [30].

Besides recommender systems, the field of information retrieval (IR) [58] is relevant to our study. There has

been a large trend of work in IR, including snippet extraction [291] and endorsement [286].

5.3 The more explicit the feedback, the richer the information

Our preferences are only partially reflected by numerical scores. The lowest-level information can be found in

implicit feedback, where data only indicates whether a user has interacted with an item (e.g., movie watched or

not, product bought or not). Numerical explicit feedback provides richer information: 5-points scale ratings enable

systems to ignore the non-rated items, focusing on a linear scale of preferences. Explicit feedback is not limited to

quantitative assessment, and the Web facilitated immediate exchanges of opinion on various topics in online fora

2WordNet was employed [345].
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ITEM j LIKED BY SOME USER u OTHER ITEM REVIEWED BY u, ALONG WITH A SENTENCE u WROTE

Sleeping beauty Ratatouille – “ Ratatouille ” is a thoroughly entertaining movie that is perfect
family fare for the summer .

The Shining Haloween – This is a must movie for all true horror fans .

Groundhog day The Truman Show – “ The Truman Show ” will make you laugh , and keep
you on the edge of your seat , wondering if Truman will ever get out.

Table 5.1: Examples of sentences (right column) written by a user u on some item (in bold) they reviewed and useful
to infer that u likes another item j (left column). An item is “liked” when the rating is above 4/5.

first. Then, social networks3, e-commerce4 and streaming service5 platforms democratized it and nowadays users

and customers get the opportunity to review services and products they had consumed. Two users u and v may

have rated equally the same item rui = rvi but for totally different reasons. For example, one can appreciate the

Matrix franchise for its spectacular action scenes, groundbreaking special effects, dystopian sci-fi plot, cyberpunk

characters, cult dialogues, actors, the philosophical/spiritual themes addressed, the references to films, literature,

myths and religion, etc. A system trained on rating-only data, precise as it is, will never be able to capture those

reasons; hence it will make biased predictions.

Contrary to tags or movie plot descriptions, text reviews are totally free-form and may contain many levels of

preference information (cf. examples shown in Table 5.1). Text reviews include sentences useful to represent users’

tastes or movie features. Some may even contain direct explicit recommendations from a human, which is gold

information from the point of view of the task we address. This motivated integrating such information to design or

explain recommender systems and assess to what extent they can benefit from it.

5.4 Datasets

We experimented with the 2014 Amazon Product Review dataset [175], made of reviews from users on items

with 5-points scale ratings and text reviews. It has been used in related work [525, 524, 589] for its important

size. Specifically, we focused on the movie subset because common knowledge makes it easier to interpret movie

reviews than reviews of other items. Following He et al. [177], López et al. [316] we restricted our study on the

k-core subset, where k = 20. Additionally, we trained and evaluated our method on the k-core subset of the Yelp

review dataset [222], made of reviews of businesses (like restaurants). Table 5.2 shows statistics for the datasets.

The datasets were split into training, validation, and test subsets. Various splitting strategies exist [339], showing

benefits and limitations depending on the nature of the feedback (explicit or implicit), the task (rating prediction or

item recommendation), and the model used. Following previous works [501, 316], we preserved time ordering [460]

by employing the Leave One Last Item strategy. The test and validation sets were respectively made of all users’
3https://www.facebook.com/, https://twitter.com/
4https://www.amazon.com/, https://www.ebay.com/
5https://www.netflix.com/
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Dataset Amazon 20-core Yelp 20-core

Users 3,728 38,595
Items 3,911 27,823

Train reviews 205,158 1,929,332
Validation reviews 3,728 38,595

Test reviews 3,728 38,595
Average sentence # per review 14.1 9.8
Average token # per sentence 46.2 30.5

Table 5.2: Statistics for the 2014 Amazon Movie Review dataset and the Yelp Review dataset. Following Yang et al.
[552], sentences are tokenized with SentencePiece [251].

last and penultimate interactions; the training set consisted of the remaining interactions. In the next section, we

describe how a Universal Sentence Encoder can be used to build representations of sentences found in reviews.

5.5 Semantic matches

5.5.1 Semantic representations of reviews

The Universal Sentence Encoder (USE) is a sentence embedding model pretrained on a variety of NLP tasks with

diverse degrees of supervision, namely Retrieval Question-Answering, Translation Ranking and Natural Language

Inference [52]. It can be thought of as a paraphrase similarity model, and Yang et al. [552] showed such embeddings

were useful for a variety of downstream NLP tasks. We encoded review sentences in a single high-dimensional

space using the USE model. To illustrate the intuition for the relevancy of USE on review sentences, we applied it

to three popular and distinct categories of items. We selected three items per category, according to the genre tag

found on the Internet Movie Database6. The sentences found in the train reviews of the nine items were embedded

in the USE model’s 512 dimensional semantic space and we show in Figure 5.1 their 2D t-SNE [512] projection. We

note that individual items have clustered sentences. On top of that, we observe that the projections of categories

are Y-shaped, indicating some clustering at the category level as well, though sentences at the origin seem to share

a high similarity across categories. We note many of the latter sentences, with low semantic variability, are general

sentences, not specific to any item, such as “I liked it”.

5.5.2 Aggregation of matches per-item category

We computed the k-NN sentence graph G of all the sentences found in the 20-core Amazon movie review trainset,

embedded with USE. It is directed since each edge leaves sentence σ1 and enters their k nearest neighbors σ2.

Following the approach of Yang et al. [552] for transfer learning, we used the cosine distance (defined as 1 minus

6https://www.imdb.com/
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Figure 5.3: Heatmaps of k-NN sentence embedding matches where k = 10. Rows and columns respectively
represent head and tail vertices. Same-item matches are discarded. Left: matches aggregated per movie. Right:
matches aggregated per category.

the cosine similarity)7. Doing so echoes the approach we introduced in Chapter 3 when we evaluated sentence

similarity with SIM (cf. Section 3.9.2 for more details). We call a “semantic match” a pair of connected sentences

in the graph. Figure 5.3 shows the heatmaps of matches in the sub-graph of the nine mentioned items, aggregated

by items (left) and categories (right). Since the items have different numbers of train sentences, the match count

matrices C are normalized with the square root of its row and column weights [190], i.e., the heatmaps correspond

to the matrices computed in Equation (5.1).

diag (C1)
− 1

2 · C · diag
(
C⊤1

)− 1
2 (5.1)

It appears that the relative number of matches is higher for pairs of sentences belonging to the same category of

items.

Visualization and quantitative analysis of matches indicate that one can represent item reviews with USE and

build some recommender system from it.

7USE’s embedding are normalized on the unit sphere.
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5.6 Text-based k-nearest neighbors recommenders

Text-KNN estimates the test rating as the following weighted sum:

r̂ui =

∑
v∈Nk′

i (u)

w (u, v) · rvi∑
v∈Nk′

i (u)

w (u, v)
(5.2)

where w (u, v) is the weight of v for predicting u’s rating. Among all the possibilities to compute w (u, v), we present

below three alternatives based on counting the semantic matches. Nk′

i is the set of k′ nearest neighbor users of

user u who have rated item i.

A simple method, called “baseline” in our experimental setups and introduced by Koren [242], estimates ratings

bui as the overall average µ rating summed to user and item biases (respectively bu and bi). We experimented with

the baseline-aware user k-NN (Text-BKNN) variant:

r̂ui = bui +

∑
v∈Nk′

i (u)

w (u, v) · (rvi − bvi)∑
v∈Nk′

i (u)

w (u, v)
(5.3)

We proposed a user similarity measure based on the representations of sentences seen in Section 5.5.1.

Notations Let G = (V,E) be the k-NN directed graph of sentences. Each directed edge (σ1, σ2) ∈ E has an

associated semantic similarity weight s (σ1, σ2) ∈ [0, 1], detailed in Section 5.7. By extension, s (σ1, σ2) = 0 if

(σ1, σ2) /∈ E. The three approaches experimented with computing w (u, v), denoted “One-to-One”, “Many-to-One”

and “Many-to-Many”, rely on the fact that the set of sentences is partitioned by the set of users. For that reason, let

Su be the set of sentences written by u.

N (σ1) = {v ∈ U : ∃σ2 ∈ Sν , s (σ1, σ2) > 0} is the set of users v whose sentences appear at least once in the neigh-

borhood of sentence σ1.

N (u) =
⋃

σ1∈Su
N (σ1) is the set of users v whose sentences appear at least once in the neighborhood of sentences

written by user u. Indicators are denoted by I.

One-to-One matching First, we considered u and v to have expressed similar preferences if v wrote at least one

sentence in the semantic neighborhood of at least one sentence written by u, i.e.

w (u, v) = I{v ∈ N (u)} (5.4)
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Many-to-One matching Alternatively, we computed the occurrence of v’s sentences in the neighborhood of u’s

sentences, i.e.

w (u, v) =
∑

σ1∈Su

I{v ∈ N (σ1)} (5.5)

Many-to-Many matching Our third approach consisted in counting the number of sentence matches when con-

sidering all pairs of sentences written by u and v. In this case,

w (u, v) = max

 ∑
(σ1,σ2)∈(Su×Sv)

s (σ1, σ2) , 0

 (5.6)

As we shall see in the next section, s (σ1, σ2) is not necessary non-negative, though Equations (5.2) and (5.3)

require non-negative weights.

5.7 Sentence graph

The weight s (σ1, σ2) introduced in section 5.6 corresponds to the semantic similarity of sentence σ2 regarding σ1.

Again, we considered various ways of computing it: “binary”, “continous” and “polarized”.

Binary count The basic sentence weight consisted in counting 1 if and only if the edge from σ1 to σ2 appears in

the graph.

Continuous similarity scores To include finer information about sentence similarity, we experimented with the

edge weight to be the cosine similarity scaled between 0 and 1. We defined s by:

s (σ1, σ2) =
1 + cosine similarity (σ1, σ2)

2

Polarization Supplementary information at the sentence level may be relevant where semantic matching fails. For

instance, the sentences “I love DiCaprio” and “I hate DiCaprio” have a cosine similarity of 0.94. We proposed

to integrate information from a sentiment attribution mechanism α(σ) ∈ [−1, 1] with a polarization function p defined

in equation (5.7). Then, the sentence weight becomes p · s.

p (σ1, σ2) =


1, if |α(σ1)− α(σ2)| ≤ 1

−1, otherwise
(5.7)
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We experimented with a rating-aware sentiment attribution defined in equation (5.8).

α(σ) =


1, if r (σ) ≥ 4

−1, if r (σ) ≤ 2

0, otherwise

(5.8)

r(σ) being the rating of the review σ belongs to.

Item graphs Moreover, we experimented with the methods discussed above, considering graphs made of sen-

tences of a single item, rather than a single “global” graph of sentences from all items. The final user weight w (u, v)

was the sum of the per-item user weights, though other aggregations may be considered.

Normalization Some users write more sentences than others, some items receive more sentences than others,

and users may write a different number of sentences on various items. For all these reasons, bias may appear when

the user weights are computed from counting semantic matches between sentences (or co-occurrence like in the

ablation study in Section 5.10). To mitigate this potential source of bias, we integrated different ad hoc normalizations

in the computation of the user weights.

On the one hand, we tried to normalize w (u, v) by the number of sentences |Sv| written by v. In addition to

this option, we considered normalizing the weights by the number of sentences |Si| written on i or the number of

sentences |Sui| written by u on i when per-item graphs were considered. On the other hand, bias induced by an

imbalance of sentence set sizes could also be mitigated by normalizing the match counting methods introduced

in section 5.6. Concerning the One-to-One matching (Equation (5.4)), we tried to normalize by N (u). When

considering Many-to-One matching, each term in Equation (5.5) was divided by 1 or N (σ1). For the Many-to-

Many matching, the terms in the Equation’s (5.6) sum are divided either by 1, δ− =
∑

σ∈V |s (σ, σ2) | or δ+ =∑
σ∈V |s (σ1, σ) |. The latter two options respectively correspond to extensions of in and out-degrees adapted to

our weighted graph. Normalizing by degrees is unsupervised mitigation of semantic similarity between “common”

sentences, which are irrelevant for the sake of representing user preferences (cf. Section 5.5.1).

5.8 Evaluation measures

Offline evaluation of rating prediction is popularly measured through RMSE. However, Cremonesi et al. [91] showed

the limits of pure error-based metrics.

As an example to understand RMSE’s limitations, consider the toy dataset in Table 5.3. Neighborhood-based

CF clearly indicates that u2 behaves like u0 and the ground truth tells that u2 prefers i1 over i0.
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User
Item

i0 i1 i2 i3

u0 2 4 1 5
u1 5 1 5 1
u2 2.5 3.5 1 5

u3 . . . un 5 5 5 5

Table 5.3: Toy dataset of ratings. Bold values are in the test set, and the remaining values are in the train set.

The baseline asymptotically predicts limn→∞ r̂u2i0(n) = 3+ and limn→∞ r̂u2i1(n) = 3−. Therefore, it yields

limn→∞ RMSE(n) = 0.5, relatively good compared to the uniform random (E [RMSE] = 17
16 ). However, the baseline

is non-personalized when it comes to compare rankings, and always predicts r̂u2i0(n) > r̂u2i1(n). This example

illustrates RMSE’s limitation in reflecting user preferences modeled by systems. This motivates a ranking-based

metric measuring how well the ordering of items is preserved.

We argue that the Fraction of Concordant Pairs (FCP), measuring the proportion of well-ranked item pairs, is a

suitable metric for three reasons. First, it directly and unambiguously measures preferences expressed by users, by

definition. Second, it is grounded in statistics since concordant and discordant pairs have already proved relevant

to comparing two measured quantities [231]. Third, it generalizes to non-binary ordered sets the ROC-AUC binary

metric, known to test whether positive examples are ranked higher than negative examples by classifiers.

With TFCP, we handle equalities the same way as Hug [206], i.e. ((rui, r̂ui) , (ruj , r̂uj)) is:

• Concordant (CP) iif rui ̸= ruj and sgn (rui − ruj) = sgn (r̂ui − r̂uj),

• Discordant (DP) iif rui ̸= ruj and sgn (rui − ruj) ̸= sgn (r̂ui − r̂uj),

• Ignored if rui = ruj

In the toy example, the baseline has a FCP of 0, signaling its inability to model u2’s preferences.

Koren and Sill [243] randomly split the dataset into train and test data, enabling the computation of FCP on

pairs of test items rated by the same user. Yet, modern time-based Leave One Last Item splitting strategies provide

one single test item per user. We adapted FCP to consider, for each user, all the pairs made of the test item

and a train item. We called it Time-based FCP (TFCP). Thereby, the evaluation is equivalent to assessing the

frequency of the model to correctly rank the next rating compared to all past ratings for each user. Denoting

respectively nc and nd the number of concordant and discordant pairs, we reported the per-user macro-averaged

metric: TFCP =
∑
u∈U

nc(u)
nc(u)+nd(u)

.

5.9 Results

Experimental setup We ran a grid search (corresponding to 276 search trials) over the set of parameters and op-

tions described in the previous section. For both Text-KNN and Text-BKNN, we selected the models yielding the best
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Model
Option User similarity Sentence weight Polarization Normalization Type of graph

Text-KNN-R Many-to-Many Continuous Yes Out-degree Global graphText-BKNN-R One-to-One Binary No 1
Text-KNN-F Many-to-Many Continuous Yes In-degree and |Sv| Item-graphsText-BKNN-F

Table 5.4: Result of the hyperparameters (columns) tuning when models (rows) are optimized on each validation
metric (Amazon dataset). For details about the normalization methods explored, see Section 5.7.

Amazon Amazon

Figure 5.4: Bar charts of the models’ test scores (average and standard deviation) on the Amazon dataset.

validation RMSE (-R), and TFCP (-F) on the Amazon 20-core dataset. The set of parameters resulting from the tun-

ing is found in Table 5.4 and discussed in Section 5.10. We compared our approach to three baselines (two random

systems: Uniform, Normal, and a popularity-based baseline, defined in Section 5.6), two popular memory-based

methods (the rating-based KNN and BKNN, with MSD as similarity), and three state-of-the-art8 model-based sys-

tems (SVD, SVD++ and NARRE [69]). NARRE is a Deep Learning model relying on a neural attention mechanism

to make recommendations and decide which reviews are most relevant concurrently. Unless specified otherwise,

their hyperparameters are the default parameters from Hug [206]. Specifically, all k-NN regressors had a number of

user neighbors k′ = 40 and text k-NN graphs used a number of sentence neighbors k = 10. For random baselines,

SVD and SVD++, we repeated 10 times training and evaluation with different random seeds. In order to assess

how the best set of hyperparameters found on the Amazon dataset generalizes to other datasets, we trained and

evaluated Text-KNN-F and Text-BKNN-F on the Yelp dataset, i.e., without any hyperparameter tuning specific to that

dataset. Figure 5.4 and Figure 5.5 compare the performances of different models over both metrics.

8Relative to error-based metrics and rating prediction tasks.
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Yelp
Yelp

Figure 5.5: Bar charts of the models’ test scores (average and standard deviation) on the Yelp dataset.

5.10 Discussion

Quantitative evaluation indicates that our approach is comparable to previous text-agnostic memory-based systems

for both RMSE and TFCP. A general trend is that model-based systems give better RMSE but worse TFCP. Surpris-

ingly, RMSE suggests the baseline’s performance is better than all memory-based system, although being a naive

approach. This echoes our analysis in Section 5.8 and validates the motivation behind the ranking-based evalua-

tion. TFCP does indeed rank the non-“rankingwise personalized” baseline in penultimate place among non-random

systems. Similarly, NARRE outperformed all other systems when evaluated with RMSE while being only slightly

better than random predictions regarding TFCP. For further analysis of the correlation between RMSE and TFCP,

Figure 5.6 shows Spearman’s ρ and Kendall’s τ correlation coefficients of the rankings produced by the metrics.

RMSE and TFCP produce decorrelated rankings.

After hyperparameter tuning on the Amazon dataset, our systems are ranked first on TFCP, while showing com-

petitive RMSE scores. In particular, the metric ranks text-based systems as the best among memory-based. Even

when trained and evaluated on the Yelp dataset, our models rank first and third if we do not tune the hyperparame-

ters specifically for that dataset.

Furthermore, results show that one can tune our approach’s hyperparameters to optimize each metric. Doing

so enables text-based models to yield better evaluation scores than their text-agnostic versions (e.g., once opti-

mized for a metric, text-BKNN has a better score than BKNN), except for KNN on the RMSE metric. There is no

winner-take-all hyperparameter set, achieving best results on both RMSE and TFCP. We observed that three out

of four of the tuned text-based models involved the Many-to-Many matching and polarization. The latter signals the
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Figure 5.6: Correlation coefficients of the rankings produced by the metrics when considering the systems in Fig-
ure 5.4.

relevancy of sentiment awareness for sentence comparison. Incidentally, the TFCP-optimized text-based models

with rating-agnostic computation of user similarity (i.e. without polarization) had TFCP = 0.849 when trained and

evaluated on the Amazon dataset. When optimizing TFCP, both Text-KNN and Text-BKNN made the same set of

hyperparameters stand out (cf. Table 5.4’s second row). According to this metric, the best way of computing user

similarity with semantic matches is to use the fine-grained Many-to-Many match count, with continuous similarity

and polarization information, when per-item graphs are considered. On the contrary, the best Text-based model for

RMSE (Text-BKNN-R) was obtained with the coarse-grained One-to-One matching, using minimal information from

the binary count. It is worth noting that in the latter case, the global graph is preferred. Plus, we also considered

filtering out matches with sentence similarity below a certain threshold, but interestingly, early experiments showed

no quantitative benefit.

Ablation study We observed that our best text-based models involved per-item graphs instead of the global graph.

To assess the benefit of semantic similarity, we studied the performance of three naive implementations counting

the co-occurrence of sentences written by a pair of users u and v on an item i. The weights w (u, v) was computed

by summing user weights wi (u, v) over all items i. The implementations we tried were:

• wi (u, v) = I{|Sui| > 0 and |Svi| > 0}, i.e. the similarity between users u and v relative to item i is 1 if both

users reviewed i, and 0 otherwise.

• wi (u, v) = |Sui| · I{|Svi| > 0}, i.e. the similarity between users u and v relative to item i is proportional to the

number of sentences written by u on i if v reviewed i, and 0 otherwise.

• wi (u, v) = |Sui| · |Svi|, i.e. the similarity between users u and v relative to item i is proportional to the number
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of sentences written by u and v on i.

After selecting the best option on the Amazon validation set, we found the best test scores to be RMSE =

1.197 and TFCP = 0.787. Even though the evaluation scores indicate existing signals from this similarity-agnostic

approach, we see significant improvement and interest of integrating semantic similarity and finer relationships

between sentences.

Explainability Besides quantitative performances, our text-based approach has benefits regarding the explain-

ability of automatic recommendation. Table 5.5, Table 5.6, Table 5.7 and Table 5.8 show pairs of sentences from

the Amazon train reviews written by some user u and u’s nearest user neighbor v. Both users u and v liked u’s

test item j, i.e. ruj ≥ 4 and rvj ≥ 4. We manually selected sentence pairs counted as semantic matches by the

system and relevant for explaining why the system predicts that u’s opinion on j (r̂uj) should resemble v’s opinion

on j (rvj), through a high user similarity w (u, v). For readers unaware of the items, we added relevant attributes and

commonalities relative to items. Table 5.5 and Table 5.6 correspond to the case of per-item graphs while table 5.7

and table 5.8 gather matches between sentences from different items in the global graph. The latter tables differ

from each other in whether tail sentences (written by v) review u’s test item j or not, which is equivalent for the

recommender system but may matter in human interpretation.

5.10.1 Qualitative analysis of random semantic matches

Table 5.9 provides random matches found in 5 random per-item graphs. The first two examples have lower semantic

similarity than the last three examples. Both sentences of the first example are descriptive, and the association

focuses on the “killing” aspect. The second match is even unclearer; the only commonality is a mention of some

female character/actress. The third example is made of a long and detailed tail sentence. The explicit reference

to the Madea cinematic universe and the emphasized funniness are expressed in both sentences. The fourth

pair of sentences refers to both the item’s name they review as well as the “family” audience. We remark that

mentionning an item name or title in review sentences may mislead the whole system, as it can trigger irrelevant

semantic matches, especially if names are long. The fifth example includes a direct recommendation for lovers of

suspense in both sentences.

5 random matches found in the global graph are shown in Table 5.10. The first match shows a pair of sen-

tences reviewing the same item in which the item’s name does not appear. Even if the director’s name is common

to both sentences, references to the Battle of Mount Austen are phrased with different vocabulary. Indeed, the

head sentence refers to “empathy and apathy” during “the conflict at Guadalcanal” while the tail sentence

describes “lush beauty of the South Pacific” contrasting with “the destruction of war”. The second and

third examples are short sentences with almost identical head and tail sentences. These matches convey limited
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u’S TEST ITEM j TRAIN ITEM i
CO-REVIEWED
BY u AND v

COMMONALITY
SHARED BY BOTH i
AND j

MATCHING SENTENCES IN THE TRAIN SET

Justice League:
The Flashpoint
Paradox

Green Lantern:
First Flight

Animated
superhero film

You simply must check out this awesome super-
hero epic .

Personally , it’s the finest superhero animated ef-
fort ever brought to screen .

Fort Apache The Searchers

Western film
directed by John
Ford and starring
John Wayne

That aside , and at the risk of repeating myself it’s
vintage John Ford and John Wayne with some
magnificent scenery .

This is one of John Ford’s and one of John
Wayne’s best movies .

Peter Pan Monsters, Inc. Animated film

This is a movie that I ’ d suggest any family to
pop in and have a family movie night .

a great family movie .

Killing Them Softly Django
Unchained Violence & Gore

This movie is Bloody , gory , violent , emotional ,
serious and hilarious .

All in all . . . . a really good movie , but a bit
bloody .

1776 Downfall Historical drama
film

It is almost a must see for historians and those
with an interest in history .

Should be required viewing for high school his-
tory students .

Black Swan Coraline
Dark drama film
with frightening &
intense scenes

It can be immensely dark and scary at times -
even for adults !

The story and the situations became spooky . .
. ( button eyes ) , and may be a little intense for
younger children .

Shallow Hal
Bridget Jones’s
Diary Romantic comedy

It was wonderfully funny and romantic .

This is a totally winning romantic comedy !

Clash by Night Niagara
’50s film noir
starring Marilyn
Monroe

Great acting by all parties : Monroe , Cotten ,
Peters et .

Monroe aside , this movie is definitely a Joseph
Cotten vehicle and may be his finest acting job
from a long career .

Rocky III Rocky II Installment in
Rocky franchise

Sylvester Stallone delivered a movie with great
screenplay , great characters , a great plot and
all together a wonderful movie everyone will re-
member .

Stallone is good in all his roles , the playing of
Rocky as a working class bum made good is
bang on .

Table 5.5: Examples of semantic matches when our system considers per-item graphs. The last column shows
the head sentence first (written by u) and the tail sentence then (written by v). Additional examples from the same
setup are shown in Table 5.6.
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u’S TEST ITEM j TRAIN ITEM i
CO-REVIEWED
BY u AND v

COMMONALITY
SHARED BY BOTH i
AND j

MATCHING SENTENCES IN THE TRAIN SET

Fahrenheit 9/11 Bowling for
Columbine

Documentary film
directed by political
commentator and
left-wing activist
Michael Moore

Charlton Heston , like any old republican relic , is
a bitter twisted old man .

Anyone who actually thinks that Michael Moore
was being unfair to Charlton Heston in his inter-
view just can ’ t accept the fact that Heston leads
a extremist group that can ’ t possibly defend it’s
policy goals .

Evil Dead (2013,
soft reboot)

Evil Dead II
(1987)

Installment in Evil
dead franchise

evil dead 2 is just like the first one with the thrills
and chills we have come to love and expect .

Evil Dead 2 is ok , but not as good as the first .

Beauty and the
Beast 2 Robin Hood

Animated film
produced by
Disney

All the characters are likable & funny .

This is a fun movie with a lot of likable characters
and fun songs .

The Alamo Rio Bravo
Western film
starring John
Wayne

The plot is pretty good with John Wayne leading
the action .

John Wayne is great as usual .

Imitation of Life Peyton Place
’50s american
drama film starring
Lana Turner

Lana Turner’s performance does sometimes bor-
der on camp , but would we have her any other
way ?

Lana Turner gives her best performance , while
Hope Lange steals the movie as a haunting and
wonderfullytouching Selena .

Westworld Futureworld
Installment in
Westworld
franchise

You have to watch Westworld first . . . . . . . . . .
. then Futureworld , the sequal .

" Westworld " was a great movie that was highly
acclaimed , but there has been much criticism
over its sequel " Futureworld " , and I can ’ t see
why - it’s a great movie !

Table 5.6: Examples of semantic matches when our system considers per-item graphs. The last column shows
the head sentence first (written by u) and the tail sentence then (written by v). Additional examples from the same
setup are shown in Table 5.5.

122



u’S TEST ITEM j ATTRIBUTE OF j MATCHING SENTENCES IN THE TRAIN SET

Hancock Action film

To Live – Usually I ’ m bouncing off the walls and watching a crazy
action flick .

Gladiator – Sometimes I just fast forward straight to the epic battle
scenes .

Non-Stop Action thriller film

The Debt – Plot is very slow developing , so slow and uninteresting
, did not even finish watching .

Whiteout – Plot was so S-L-O-W and dull .

Dune Action-adventure
science-ficton film

Oblivion – Good action and story line .

Serenity – great action and story line .

Evil Dead Horror film
Suspiria – A legend in the horror movie genre .

Prince of Darkness – A horror movie classic .

Rocky II
Written by and
starring Sylvester
Stallone

Rambo III – His range may be limited , as we saw in his ’ comedy
’ films , but when he sticks to his forte , playing great heroes ,
Stallone is the greatest ever .

Rocky – But Stallone gives just about the best performance of his
career here .

The Living
Daylights

Entry in the James
Bond (a.k.a. 007 )
series

Never Say Never Again – " Never Again " ultimately retains a very
watchable magic featuring the original Agent 007 one last time .

Goldfinger – After the first two 007 films , this third Bond adventure
cemented forever the style and fun of the series .

My Neighbor
Totoro Animated film

Popeye – Hey parents , want a good , clean , wholesome movie for
your kids ?

Kiki’s Delivery Service – An excellent movie for kids that parents
don ’ t have to worry about .

Table 5.7: Examples of semantic matches when our system considers the global graph. The last column shows
the head sentence first (written by u) and the tail sentence then (written by v), along with the respective item’s review
they belong to. Here, tail sentences do not review j but express attributes also present in j and indicated in the
second column.
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HEAD SENTENCE σ1 WRITTEN BY u ON SOME ITEM i TAIL SENTENCE σ2 WRITTEN BY v ON u’S TEST ITEM j
AND MATCHING σ1

Cemetery Man – This highly entertaining little zombie
movie from Italy has all the elements that make it a won-
derfully dark horror - comedy in the same vein asEvil
Dead 2 : Dead by DawnandAn American Werewolf in
London .

The Horde – one of the best horror zombie movies of
all the times , this movie is equal than 28 days later , in
these days European horror movies are the best of the
best . . good for Friday at night

Charlie’s Angels – I like drew barrymore , she is the
best angel out of the three .

Fever Pitch – Drew Barrymore , as always , is phe-
nomenal .

Ice Age – While not perfect , it is full of laughs and
beautiful computer animation .

Finding Nemo – Highlights : Spectacular computer an-
imation ; hilarious , well - developed characters ; origi-
nal plot .

Monsters, Inc. – Great for parents and kids ( or people
without kids ) .

Toy Story 3 – Great for kids and adults alike .

Island in the Sky – The Dukea does a great job in his
role as Dooley - the plane’s captain .

The Alamo – The Duke turns out one of his best per-
formances , as well as putting together this film .

I Am Legend – At the end of the movie you fail to re-
alise it was just one man , Will Smith in most of the
scences and yet the movie is neither boring , or lacking
in elements that make for a great thriller .

Hancock – Will Smith adds a lot of flare to the movie ,
when it could ’ ve been bland and cheesy .

War of the Worlds – The special effects were great
and the acting was believable .

Munich – The acting , story line and special effects
were great .

Red River – I think this is my favorite early John Wayne
film ( it’s not exactly early , but it was one of his earlier
big hits ) .

The Searchers – This is John Wayne’s favorite " John
Wayne movie , " and his acting is superb .

Bubba Ho-Tep – Fans of Bruce Campbell will love this
movie , but I don ’ t know how fans of the King will take
it .

My Name Is Bruce – First of all if your not a bruce
campbell fan or dont enjoy his movies then you proba-
bly wont like this one as it is trademark campbell . . . .

a A nickname for the American actor John Wayne

Table 5.8: Examples of semantic matches when our system considers the global graph. Sentences are preceded
by the item they review. v represents u’s nearest user neighbor. Here, tail sentences review j, though tail sentences
can just as well review other items and be counted as semantic matches. as in Table 5.7.
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ITEM SEMANTIC SIMILARITY MATCHING SENTENCES IN THE TRAIN SET

Spartan 0.69

/ / Spoiler alert / / Our hero , of course , is a loner - - which is a
sure tip - off that anyone he sort of becomes close to is going to
get killed .

Kilmer’s character survives and even thrives in this morass be-
cause he is an unsentimental machine , the " Spartan " ideal of
an all - male world where it’s kill or be killed , and there’s plenty
of both - even a suicide .

Shopgirl 0.66
I have a feeling there is probably more of her left on the cutting
room floor .

It’s no surprise that she’s on medication for depression .

Madea’s
Witness
Protection

0.87

This movie is a very funny movie and Madea is trying to be a
private Detective and she finally gets her man

This Madea was the first time in the series to be released in
the summer and did pretty well as the second highest grossing
Madea film ever behind Madea Goes to Jail and this one actually
crossed over with other audiences and other demographics be-
sides his usual african - american audience and this one was the
funniest film of the series and Tyler Perry’s best film yet .

Radio 0.82

’ Radio ’ is a wonderful film that the whole family can enjoy and
learn from together !

Radio is good , touching and very sad at times but it has a lot to
learn about standing on its own as a family classic .

The Gift 0.75

Highly recommended for suspense fans .

I would reccomend that anyone who likes mystery or suspense
thrillers should go see this .

Table 5.9: Random examples of semantic matches when our system considers per-item graphs. The last column
shows the head sentence first and the tail sentence then.

information when taken out of context. The last two matching pairs are triggered by common vocabulary or clauses

but can’t be considered matches in users’ preferences.

5.10.2 Domain-specific sentence embeddings

In addition to the pretrained USE model, we experimented with domain-specific embeddings. First, we fine-tuned

a pretrained T5 [405] LM on an item prediction classification task using the 2018 version of the Amazon Product

Review dataset. We then applied our method to the representations learned by the fine-tuned T5 model in the

hope that these representations would be finer than the more general USE representations. Results of baselines

and our best models (cf. Figure 5.7) show that there is no clear advantage to using domain-specific sentence

representations over general embeddings.
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SEMANTIC SIMILARITY MATCHING SENTENCES IN THE TRAIN SET

0.81

The Thin Red Line – / / Director Terrence Malick focuses on the conflict at
Guadalcanal from ground up and showing empathy and apathy along the way
.

The Thin Red Line – Mr . Malick captures the lush beauty of the South Pacific
and uses it to perfectly contrast with the destruction of war .

1.00
Seabiscuit – This is one of my all time favorite movies .

The Jazz Singer – This is one of my all - time favorite movies .

0.86
Tropic Thunder – it stole the show .

My Week with Marilyn –steals the show .

0.75

Heist – It’s a known fact that he uses a metronome in order to keep his dialogue
to have a certain rhythm to it .

Black Dynamite – He draws attention to it by repeatedly glaring at the mic
throughout the scene , but doesn ’ t miss a beat of the dialogue .

0.88

Grown Ups – Now I will say from the get go this film is not for everybody and I
have noticed that some people just don ’ t get this film .

Barbarella – This film is definately not for everyone & I ’ d honestly recommend
that most people rent it before they but it .

Table 5.10: Random examples of semantic matches when our system considers the global graph. The second
column shows the head sentence first and the tail sentence then, along with the respective item they review.

Figure 5.7: Bar chart of the models’ test TFCP scores (average and standard deviation) on the 2018 version of the
Amazon dataset, when we considered domain-specific embeddings rather than USE’s embeddings.
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5.11 Limitations

Regarding scalability and time complexity, the first limiting phase is the embedding of sentences. Embedding

sentences with an on-the-shelf pretrained USE took a few hours using Apache Beam9 on 1, 000 machines. Besides

this step, the bottleneck characteristic of our method is the computing of sentence k-NN graphs. When per-item

graphs are considered, we iterated Scikit-learn’s 10-NN graph algorithm10 on an average of ∼ 700 train sentences

per item. For reasonable amounts of items, this can be achieved quickly, though this becomes more demanding for

large item sets. It took 3 minutes to compute all sentence graphs on the Amazon dataset and 23 minutes on the Yelp

dataset. The global graph, though, is much heavier to compute. We used the ScaNN similarity search method [162]

to compute the 10-NN global graph at scale on ∼ 2.9 million sentences for the Amazon dataset and ∼ 20 million

sentences for the Yelp dataset. The computations were enabled by several hours of computing time on a 1TB RAM

server. By comparison, the NARRE Deep Learning model was trained during 10 epochs with respective average

epoch runtime of 17 minutes and 168 minutes for the Amazon and Yelp datasets, using an NVIDIA A100 GPU.

A second limitation to this work that we reserved for future work is a missing stronger theoretical background on

FCP’s relevance compared to RMSE, especially for contexts where the rating distribution is skewed (as is the case

for the Amazon dataset).

Chapter 5 conclusion

This study explored, for the first time to our knowledge, the direct integration of semantic similarities from

review text in recommender systems, through the representation power of modern pretrained NLP models.

Our experiments quantitatively showed the benefits of this approach relative to memory-based models. Fur-

ther, preference representation from text is a step toward better explainability of machine learning systems.

Lastly, we argued in favor of ranking-based metrics to evaluate rating-prediction systems.

Future work includes evaluating explanations from our approach as well as building better representations

of users and items, for example, by using more recent advances in language modeling or by joint tuning of a

LM with the recommendation task. Unsupervised techniques could also help filter out irrelevant or redundant

text. For instance, rationale extraction systems such as WT5 [355] could be employed as a preprocessing

step to select sentences more likely to represent meaningful preferences. Another promising advance at

the intersection of text and recommenders that could be built on is entity prediction, following the work of

Zemlyanskiy et al. [566]. More generally, our work highlights an exciting and emerging intersection between

the fields of Natural Language Understanding and recommender systems.

9https://beam.apache.org/
10https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.kneighbors_graph.html
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Chapter 6

General conclusion and perspectives

Industrial revolutions transform societies by relying on emerging technologies. Scientific breakthroughs coupled

with innovative engineering bring humans to design and implement novel machines, as well as usages impacting

people’s lives. After the digital revolution democratized computers and made Internet users globally connected, the

Fourth Industrial Revolution, driven by Artificial Intelligence, seeks to blur the boundaries between the physical and

digital worlds. In this game, Natural Language Processing plays a key role. Indeed, machines will be incredibly

powerful and/or useful when they become able to hold complex reasoning automatically, and perhaps someday

even think. Even though “the ability to speak does not make you intelligent.”1, language has long been thought of

as a crucial part of the reasoning process. In The Theaetetus, Plato defined “thinking” with the Ancient Greek word

λόγος
2 (“reason”, “speech”, “computation”).

“So then, I, for my part, refer to thinking as speaking, and opinion as speech.”

In Chapter 2, we saw that computer scientists, together with mathematicians, linguists, and neuroscientists,

have proposed algorithms to bridge the gap between machines and humans through automatic natural language

understanding and generation. Recent progress in Machine Learning, enabled by weakly supervised Deep Learning

architectures, software and hardware advances as well as increasingly larger datasets, have made NLP ripe for

hitherto unseen applications. This thesis explored a subset of the possibilities offered by pretrained NLP models,

focusing on assisting humans in their online interactions.

Chapter 3 introduced an original method (CAE-T5) to address toxic-to-civil transfer with pretrained Language

Models, in the hope that it will nudge healthier conversations online. Specifically, we tackled the problem in a self-

supervised manner, where the dataset we had access to was made of comments annotated in toxicity only. Given

these unpaired examples, we were able to fine-tune a pretrained T5 model with an end-to-end denoising objective

function requiring no previous sentence alignment. Even though human and automatic evaluations show that our
1Quote from Star Wars: Episode I – The Phantom Menace
2lógos
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approach significantly outperforms baselines, issues regarding hallucination remain to be solved before the system

can be implemented in real use cases. At the time of our project, no parallel dataset existed, but posterior works

released small paired datasets, which we then used to train a strongly supervised sequence-to-sequence model

(SED-T5). Chapter 4 revealed that this latter approach shows less hallucination but at the cost of lower fluency and

detoxification accuracy. Future work should investigate ensembling CAE-T5 and SED-T5, or even training a single

incompletely supervised model leveraging both ideas (cf. Section 2.4.2).

Besides, a new task was presented in Chapter 4. We released the first dataset annotated in toxicity at the

span level in the hope that it will help future developments in this direction. We described the setup along with an

evaluation metric suited to the task. We also experimented with a few baselines that were released too. In particular,

we showed that weakly supervised models trained on potentially larger datasets annotated at the post level only

could almost reach the performance of strongly supervised models. Furthermore, the TOXICSPANS dataset proved

useful for assessing the mitigation of explicit toxicity in toxic-to-civil transfer. The takeaways were twofold: first,

models often successfully detect toxic spans and try to rephrase them, and then humans did rephrase almost all

cases of explicit toxicity in the toxic posts they were given. The outcome of the online competition we organized using

TOXICSPANS in a new shared task (cf. Appendix A) has been satisfying. The strong participation both indicated the

community’s high interest and helped us identify avenues worth exploring. First, low performance from both human

crowdworkers and Machine Learning systems on highly-context-dependent posts could be targeted with automatic

context sensitivity estimation, as described in Xenos et al. [544]. Then, as systems struggle to predict empty toxic

span when the post is either non-toxic, implicitly toxic, or toxic in its entirety, span detection models could benefit

from a pre-filtering process detecting if a post falls in one of these categories.

Finally, Chapter 5 describes an unprecedented way of predicting items’ ratings from users according to their

reviews of past items. We demonstrated that our method may not only outperforms rating-only-based recommender

systems but also provide explanations for the predictions. Additionally, we investigated a concrete application lever-

aging the metric space of semantic embeddings produced by a pretrained sentence encoder. Our approach based

on k-Nearast Neighbors illustrates a substantial procedure using graph techniques and deep semantic represen-

tations. In the future, we wish to find efficient unsupervised strategies to select sentences written by users best

representing their tastes. Our node ranking experiments were inconclusive but we think that a clever combination of

PageRank and Language Models may lead to effective solutions.

All in all, this thesis was a journey in the hot field of Natural Language Processing. This field and our contri-

butions provide evidence that Artificial Intelligence can assist people in their interactions online by improving social

exchanges, moderating conversations, and offering explainable recommendations based on what Internet users

express. There remain ethical concerns that should be addressed in a multidisciplinary approach, such as potential

bias in the definition of toxicity, risks of automated moderation being used for political censorship, or energy-intensive

computing to run our models.
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The main challenges encountered throughout this thesis outlined the following general perspectives regarding

evaluation, datasets, and modeling. First, evaluation metrics, especially when no or few paired examples are avail-

able, remain an open topic and raise central issues to the development of weakly supervised Machine Learning

algorithms. Then, while we focused here on the English language, we are excited by the increasing number of mul-

tilingual resources (regarding data and pretrained models) currently available and wish to see our works transferred

to more languages. Lastly, we would be happy to analyze the few-shot performances of large pretrained Language

Models on the three tasks studied here: style transfer, TOXICSPANS prediction, and rating prediction.
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Appendix A

SemEval-2021 Task 5: Toxic Spans

Detection

A.1 Task description

The Toxic Spans Detection task of SemEval-2021 required participants to predict the spans of toxic posts that were

responsible for the toxic label of the posts, when detecting such spans is possible1. Systems had to extract a list of

toxic spans, or an empty list, per post. The task could be addressed as supervised sequence labeling, using training

data with gold toxic spans provided by us. It could also be treated as rationale extraction, using classifiers trained

on potentially larger external datasets of posts manually annotated as toxic or not, without toxic span annotations.

Participants submitted their predicted spans for a held-out test set, and were scored using character-based F1 (cf.

Section 4.5).

The evaluation period started on January 10, 2021, and finished on January 31, 2021. In the first week, 10

submissions were allowed per day per team. In the second week, this number was reduced to 5, and further to 1

during the final week. We chose to allow an extended evaluation period combined with multiple team submissions

to promote the competition. However, we also dicided on a decreasing submission limit to make it harder for

participants to overfit the test set. As shown in Figure A.1, the number of submissions dropped over time due to this

constraint, but the interest was continuous, and there were submissions until the last day. Despite the decreasing

total number of submissions per day, the top daily score increased, reaching its maximum on the last day (see

Figure A.2).

1Although we defined the task at the word level, gold labels were provided at the character level, counting from zero.
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Figure A.1: Number of submissions per evaluation day.

Figure A.2: The evaluation score (character F1) of the best submission per day during the evaluation period.
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A.2 Participation overview

We received 479 individual participation requests, 92 team formations, and 1, 449 submissions. 91 teams submit-

ted valid predictions (1, 385 valid submissions in total) and were scored; out of these, only 36 submitted system

descriptions.

A.2.1 The HITSZ-HLT submission

The best performing team (HITSZ-HLT) formulated the problem as a combination of token labeling and span extrac-

tion [595].

For their token labeling approach, the team used two systems based on BERT [107]. Both systems had a

Conditional Random Field (CRF) layer [496] on top, but one of the two also had an LSTM layer [193] between BERT

and the CRF layer. In both approaches, word-level BIO tags were used, i.e., words were labeled as B (beginning

word of a toxic span), I (inside word of a toxic span), or O (outside of any toxic span).

For their span extraction approach, the team also used BERT. Roughly speaking, in this case, BERT produces

probabilities indicating how likely it is for each token to be the beginning or end of a toxic span. Then a heuristic

search algorithm, originally developed for target extraction in sentiment analysis by Hu et al. [201], selects the best

combinations of candidate begin and end tokens, aiming to output the most likely set of toxic spans per post.

The character predictions of the three systems described above were combined with majority voting per charac-

ter. That is, if any two systems considered a character to be part of a toxic span, then the ensemble classified the

character as toxic; otherwise, the ensemble classified it as non-toxic.

A.2.2 The S-NLP submission

The team with the second best performing system (S-NLP) consists of individual participants who grouped and

submitted an ensemble of their systems [361]. The ensemble combines two approaches, both of which are based

on a RoBERTa model [311]. The latter is first fine-tuned to classify posts as toxic or non-toxic, using three Kaggle

toxicity datasets2. For toxic span detection, RoBERTa’s subword representations from three different layers (1, 6,

12) are summed to produce the corresponding word embeddings. A binary classifier on top of RoBERTa, operating

on the word embeddings, predicts whether a word belongs to a toxic span or not.

For the first component of the ensemble, the word embeddings obtained from RoBERTa’s subword representa-

tions are concatenated with FLAIR [5] and FastText [38] embeddings.3 The resulting embeddings are passed on to

a two-layer stacked BiLSTM with a CRF layer on top to generate a BIO tag per word.

2https://github.com/unitaryai/detoxify
3In the latter case, in-vocabulary word embeddings were imported to Word2vec for efficiency, and out of vocabulary words were handled with

BPEs [457].

135

https://github.com/unitaryai/detoxify


The second component of the ensemble used the RoBERTa model as a teacher to produce silver toxic spans

for 30, 000 unlabelled toxic posts [48]. RoBERTa was then retrained as a student on the augmented dataset (30, 000

posts with silver labels and the training posts we provided) to predict toxic offsets.

The ensemble returns the intersection of the toxic spans identified by the two components.

A.2.3 Additional interesting approaches

We now discuss some of the most interesting alternative approaches tried by the participants, even if they did not

lead to high scores.

Rationales Some participants experimented with training toxicity classifiers on external datasets containing posts

labeled as toxic or non-toxic; and then employing model-specific or model-agnostic rationale extraction mechanisms

to produce toxic spans as explanations of the decisions of the classifier. The model-specific rationale mechanism

of Rusert [434] used the attention scores of an LSTM toxicity classifier to detect the toxic spans. Pluciński and

Klimczak [392] used the same approach, but also employed an orthogonalisation technique [349]. The model-

agnostic rationale mechanism of Rusert [434] combined an LSTM classifier with a token-masking approach that

we call Input Erasure (IE), due to its similarities to the method of Li et al. [287]. The model-agnostic approach of

Pluciński and Klimczak [392] combined SHAP [318] with a fine-tuned BERT model. Ding and Jurgens [110] and

Benlahbib et al. [31] also experimented with model-agnostic approaches, but they combined LIME [420] with a

Logistic Regression (LR) or with a linear Support Vector Machine (SVM) toxicity classifier. All the above-mentioned

approaches used a threshold to turn the explanation scores (e.g., attention or LIME scores) of the words into binary

decisions (toxic/non-toxic words).

Lexicon-based No team relied on a purely lexicon-based approach, but few experimented with lexicon-based base-

lines [595, 369] or used such components in ensembles [413]. Three kinds of lexicon-based methods were used.

First, the lexicon was handcrafted by domain experts [474], and it was simply employed as a list of toxic words for

lookup operations [369]. Second, the lexicon was compiled using the set of tokens labeled as toxic in our span-

annotated training set, and it was used as a lookup table [57], possibly also storing the frequency of each lexicon

token in the training set [595]. The former two were also combined [413]. Third, the least supervised lexicons were

built with statistical analysis on the occurrences of tokens in a training set solely annotated at the comment level

(toxic/non-toxic post) [434]. An added value of these approaches is that easy-to-use resources (toxicity lexicons)

are built and shared publicly, such as the one suggested by Pluciński and Klimczak [392].4

Custom losses Zhen Wang and Liu [586] experimented with a new custom loss, which weighted false toxicity

predictions based on their location in the text. If a false prediction was located near a ground truth toxic span, then

it would contribute less to the overall loss for that post compared to one located further away. The loss function

4https://github.com/Orthrus-Lexicon/Toxic
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used by Kuyumcu et al. [257] to train their system is the Tversky Similarity Index [508], a generalization of the

Sørensen–Dice coefficient and the Jaccard index, which the authors adjusted to weigh up false negatives.

Data augmentation The vast majority of the participating teams employed additional training data annotated at the

post level. That is, either to build lexicons [434], to leverage unsupervised rationale extraction methods [434, 392,

110, 31], or to filter posts [322] that were not labeled as toxic by a toxicity classifier. Suman and Jain [489] astutely

produced silver data from external sources to augment the initial golden annotated dataset, training their model

iteratively in a semi-supervised manner.

A.3 Results

Table A.1 shows the scores and ranks of all participating teams that described their approach, i.e., 36 out of 91

teams that participated. HITSZ-HLT (Section A.2.1) was ranked first, followed by S-NLP (Section A.2.2) that scored

0.06% lower. The rest of the teams followed with scores lower than 70%.

The score of the median system is 67.58%, which is not far below the top scored team (−3.22 percent units),

while it is far above the last two (+17.52 percent units). The standard deviation of system scores above the median

is much lower (0.94) than that of the systems below the median (4.12). Most teams that were excluded from the table

(because they did not describe their methods) scored lower than the median. However, there were also top-scoring

teams among those that were excluded, such as a team with a RoBERTa-based token-level ensemble that was

ranked 4th.5

A.4 Analysis and discussion

Overall we were happy to see the degree of involvement in this shared task and the resulting diversity of approaches

to this problem. We include some of our observations regarding the evaluation administration and what we have

learned from the results.

A.4.1 Participation

We reached out to teams that decided not to submit a description paper, and the vast majority were students who

were time-limited. The fact that students participated in the task is promising, and we plan to consider more ways

to introduce SemEval tasks in classrooms. On the other hand, 60% of the participants chose not to describe their

approach, which is problematic and should be addressed. A team could take advantage of such an option to create

5We asked for details from participants that did not submit description paper, but not all of them replied.
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RANK TEAM F1 SCORE (%)

1 HITSZ-HLT 70.83
2 S-NLP 70.77
3 hitmi&t 69.85
5 YNU-HPCC 69.63
7 Cisco 69.22
8 MedAI 69.03
9 IITKDetox 68.95
13 GHOST 68.59
14 HLE-UPC 68.54
15 UTNLP 68.44
16 YoungSheldon 68.42
17 Lone Pine 68.38
18 sk 68.32
20 WLV-RIT 68.01
21 CSECUDSG 67.95
22 LISAC FSDM USMBA 67.84
23 UoT-UWF-PartAI 67.70
25 uob 67.61

MEDIAN The median score 67.58

26 UAntwerp 67.55
27 MIPT-NSU-UTMN 67.55
28 NLRG 67.53
30 HamiltonDinggg 67.15
33 lz1904 67.00
34 UIT-E10dot3 66.99
36 UniParma 66.72
37 hub 66.40
38 GoldenWindPlymouth 66.37
41 AStarTwice 66.16
44 sefamerve_arge 66.01
46 UPB 65.73
49 Entity 65.61
57 BennettNLP (Fuchsia) 64.53
58 TeamGriek 64.31
63 UIT-ISE-NLP 62.23
75 NLP_UIowa 50.09
90 macech 7.33

Table A.1: Official rank and F1 score (%) of the 36 participating teams that submitted system description papers.
(There were 91 teams with submissions in total.) The median is shown in blue.
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duplicate submissions and bypass any submission limits. More importantly, potentially interesting approaches are

not discussed and properly compared to others.

It is also worth mentioning that the extended timeline allowed participants to join forces. For instance, a number

of participants decided to combine their systems and form the 2nd ranked S-NLP. Their ensemble scored higher

than all their standalone systems, though their best standalone system would still be ranked 2nd. In any case, we

welcome the collaboration between participants, which may provide further insights regarding effective combinations

of architectures.

A.4.2 General remarks on the approaches

Except for lexicon-based baselines, we observed that the vast majority of systems adopted the recent paradigm

in NLP: fine-tuning large off-the-shelf transformers [515] pretrained on massive corpora. Non-transformer-based

approaches, mostly LSTMs with pretrained word embeddings, were also used. The nature of the task, similar to

the well-studied Named Entity Recognition task, led many competitors to use a CRF layer on top of the model (e.g.,

transformers or LSTMs) of their choice.

A.4.3 Performance

The winning team (HITSZ-HLT) combined BERT with two approaches for their ensemble: a token labeling approach

(two versions, with/without an LSTM between BERT and the CRF) and a span extraction approach (Section A.2.1).

The comparison of the two showed that span extraction is slightly better on posts with a single span, but token

labeling is clearly better on multi-span posts [595]. The complementary nature of the two approaches is probably

what makes even a simple majority voting ensemble better than its competitors.

The system ranked second (S-NLP) also employed an ensemble, using a RoBERTa model initially fine-tuned to

classify posts as toxic or non-toxic as the starting point [361]. The ensemble combined (i) the resulting RoBERTa

model, now fine-tuned to predict toxic spans, with additional FLAIR and FastText embeddings, and (ii) a RoBERTa

model retrained as a student to predict toxic spans (Section A.2.2). Although the two standalone models achieved

higher scores than the standalone models of the top-ranked team (HITSZ-HLT), the ensemble did not yield significant

improvements. This may be due to the student’s decisions not being that complementary to the teacher’s, as the

team notes [361].

Teams that experimented with rationale extraction mechanisms (Section A.2.3) did not find this approach ad-

vantageous compared to supervised sequence labeling in terms of F1 scores. However, the reported results of

the rationale-based systems show that this approach is promising, especially because it does not require any data

annotated at the span level. Hence, we explored this direction in Section 4.7.2. Table A.2 shows the F1 scores

of all the rationale-based systems that were reported by participants. The binary toxic post classifiers that were
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TBC RE F1 SCORE (%) Report

LSTM IE 38.29 Rusert [434]
LSTM ATT 49.70 Pluciński and Klimczak [392]
LSTM ATT 50.07 Rusert [434]

LR LIME 58.88 Benlahbib et al. [31]
SVM LIME 59.21 Benlahbib et al. [31]
BERT SHAP 59.87 Pluciński and Klimczak [392]

Table A.2: F1 on the evaluation set for systems employing rationale extraction (RE) mechanisms combined with
post-level toxicity binary classifiers (TBC). Rationales are obtained via Input Erasure (IE), Attention (ATT), LIME, or
SHAP. The binary classifier is an LSTM, Logistic Regression (LR), SVM, or BERT.

Lexicon Name F1 SCORE (%) Report

WIEGAND 1 † 33.07 Zhu et al. [595]
WORD-MATCH 40.86 Ranasinghe et al. [413]
FREQ-RATIO † 41.55 Rusert [434]
LOOKUP ‡ 41.61 Burtenshaw and Kestemont [57]
WIEGAND 2 † 50.98 Zhu et al. [595]
ORTHRUS 61.07 Palomino et al. [369]
HITSZ-HLT ‡ 64.98 Zhu et al. [595]
+WORDNET 64.09 Zhu et al. [595]
+GLOVE 64.19 Zhu et al. [595]

Table A.3: F1 on the evaluation set for lexicon-based systems. Systems that are followed by † and ‡ use exclusively
external and internal resources, respectively.

used were LSTM, Logistic Regression (LR), Support Vector Machines (SVM), and BERT. The attention scores

of an LSTM were used with [392] and without an orthogonality method [434], with the latter being slightly better;

these are model-specific rational extraction methods (Section A.2.3). Model-agnostic approaches (Input Erasure,

LIME, SHAP) were better than the model-specific ones. The best rationale-based method employed a BERT model,

fine-tuned for toxic post classification and SHAP.

Lexicon-based approaches were only used as baselines or components in ensembles, as already noted. In

principle, all lexicon-based systems are extremely efficient and interpretable. Table A.3 shows they can also achieve

surprisingly high scores.

A.4.4 Error analysis

A common theme across many competitor reports was the serious challenge posed by comments with no toxic

spans. It is not readily evident why this is a common occurrence in the task, and certainly, the way that annotation

consensus is used to combine annotations can be a contributing factor. However, many systems seemed deter-

mined to tag some spans and many authors noted that performance on posts with no tagged span was extremely

poor compared to performance on posts with tagged spans.

Many systems were also reluctant to tag function words like “of” and “and”, which can be included in multi-word
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Type Description

INCONSISTENCIES Not all the occurrences of the same toxic span are annotated in the same post.
FALSE NEGATIVES Toxic words missed.
FALSE POSITIVES Non-toxic words labeled.

Table A.4: The types and descriptions of the annotation mistakes that were detected by some of the participants.

spans (e.g., “piece of crap’), leading to a decline in performance as measured by the chosen F1 measure. The

overwhelming presence of single-word gold spans in the training set favors short spans. But the majority of the

short spans comprise common cuss, or clearly abusive words, which can be directly classified as toxic [146]; by

contrast, the infrequent longer spans are rather context-dependent and more challenging to detect. This probably

also contributed to the performance of the best system (HITSZ-HLT), since one of the two components of that

ensemble handled better long spans, as already discussed in Section A.4.3.

Annotation mistakes reported are summarized in Table A.4.

Participants that were notable for their effort in error analysis include Bansal et al. [18], Hoang and Nguyen [191],

Ding and Jurgens [110], and Ghosh and Kumar [146], where an additional effort was made to examine their model’s

ability to correctly tag words in toxic and non-toxic contexts. Interestingly Sans and Farràs [441] also noted in their

analysis that racial and ethnic terms are labeled in biased ways that reflect patterns not only in the training toxic

spans but also in external data used to pretrain underlying transformer models.

141



142



Bibliography

[1] A. Abid, M. F. Balin, and J. Zou. Concrete autoencoders for differentiable feature selection and reconstruction.

arXiv preprint arXiv:1901.09346, 2019. 33

[2] D. Adiwardana et al. Towards a human-like open-domain chatbot. CoRR, abs/2001.09977, 2020. URL

https://arxiv.org/abs/2001.09977. 29

[3] C. C. Aggarwal et al. Recommender systems, volume 1. Springer, 2016. 106

[4] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling. Prentice-Hall, Inc., USA,

1972. ISBN 0139145567. 19

[5] A. Akbik et al. Flair: An easy-to-use framework for state-of-the-art nlp. In NAACL Demonstrations, pages

54–59, 2019. 135

[6] G. Alain and Y. Bengio. What regularized auto-encoders learn from the data-generating distribution. The

Journal of Machine Learning Research, 15(1):3563–3593, 2014. 33

[7] G. Alshammari et al. A switching multi-level method for the long tail recommendation problem. Journal of

Intelligent and Fuzzy Systems, 37:7189–7198, 2019. ISSN 1064-1246. doi: 10.3233/JIFS-179331. URL

https://uwe-repository.worktribe.com/output/847155. Comments and Suggestions : The final publica-

tion is available at IOS Press through http://dx.doi.org/10.3233/JIFS-179331. 108

[8] F. Alva-Manchego et al. ASSET: A dataset for tuning and evaluation of sentence simplification models with

multiple rewriting transformations. In Proceedings of the 58th Annual Meeting of the Association for Com-

putational Linguistics, pages 4668–4679, Online, July 2020. Association for Computational Linguistics. doi:

10.18653/v1/2020.acl-main.424. URL https://aclanthology.org/2020.acl-main.424. 81

[9] R. Ando and T. Zhang. A high-performance semi-supervised learning method for text chunking. In Proceed-

ings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages 1–9, Ann

Arbor, Michigan, June 2005. Association for Computational Linguistics. doi: 10.3115/1219840.1219841. URL

https://www.aclweb.org/anthology/P05-1001. 32

143

https://arxiv.org/abs/2001.09977
https://uwe-repository.worktribe.com/output/847155
https://aclanthology.org/2020.acl-main.424
https://www.aclweb.org/anthology/P05-1001


[10] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In B. Schölkopf, J. Platt, and T. Hoffman,

editors, Advances in Neural Information Processing Systems, volume 19. MIT Press, 2006. URL https:

//proceedings.neurips.cc/paper/2006/file/0afa92fc0f8a9cf051bf2961b06ac56b-Paper.pdf. 32

[11] M. Artetxe, G. Labaka, E. Agirre, and K. Cho. Unsupervised neural machine translation. In 6th International

Conference on Learning Representations, ICLR 2018, 2018. 61, 80

[12] M. Aßenmacher and C. Heumann. On the comparability of pre-trained language models. arXiv preprint

arXiv:2001.00781, 2020. 46

[13] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016. 54

[14] A. Baevski et al. Cloze-driven pretraining of self-attention networks. In Proceedings of the 2019 Conference

on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 5360–5369, Hong Kong, China, Nov. 2019. Association for

Computational Linguistics. doi: 10.18653/v1/D19-1539. URL https://aclanthology.org/D19-1539. 39

[15] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In

Proceedings of the International Conference on Learning Representations, 2014. 58, 62

[16] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In

3rd International Conference on Learning Representations, ICLR 2015, Jan. 2015. Conference date: 07-05-

2015 Through 09-05-2015. 53

[17] K. Balog, F. Radlinski, and S. Arakelyan. Transparent, scrutable and explainable user models for person-

alized recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR’19, page 265–274, New York, NY, USA, 2019. Asso-

ciation for Computing Machinery. ISBN 9781450361729. doi: 10.1145/3331184.3331211. URL https:

//doi.org/10.1145/3331184.3331211. 108

[18] A. Bansal, A. Kaushik, and A. Modi. IITK@Detox at SemEval-2021 Task 5: Semi-supervised learning and

dice loss for toxic spans detection. In SemEval, 2021. 141

[19] H. Bao et al. Unilmv2: Pseudo-masked language models for unified language model pre-training. In Pro-

ceedings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org, 2020. 23, 32, 33,

34, 42

[20] Y. Bao, H. Fang, and J. Zhang. Topicmf: Simultaneously exploiting ratings and reviews for recommendation.

Proceedings of the AAAI Conference on Artificial Intelligence, 28(1), Jun. 2014. URL https://ojs.aaai.

org/index.php/AAAI/article/view/8715. 109

144

https://proceedings.neurips.cc/paper/2006/file/0afa92fc0f8a9cf051bf2961b06ac56b-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/0afa92fc0f8a9cf051bf2961b06ac56b-Paper.pdf
https://aclanthology.org/D19-1539
https://doi.org/10.1145/3331184.3331211
https://doi.org/10.1145/3331184.3331211
https://ojs.aaai.org/index.php/AAAI/article/view/8715
https://ojs.aaai.org/index.php/AAAI/article/view/8715


[21] R. Bar-Haim et al. The second pascal recognising textual entailment challenge. In Proceedings of the second

PASCAL challenges workshop on recognising textual entailment, volume 6, pages 6–4. Venice, 2006. 22

[22] C. Baziotis, I. Androutsopoulos, I. Konstas, and A. Potamianos. SEQˆ3: Differentiable sequence-to-sequence-

to-sequence autoencoder for unsupervised abstractive sentence compression. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, Volume 1 (Long and Short Papers), pages 673–681, Minneapolis, Minnesota, June

2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1071. URL https://www.aclweb.

org/anthology/N19-1071. 32

[23] C. Baziotis, I. Androutsopoulos, I. Konstas, and A. Potamianos. Seq3: Differentiable sequence-to-sequence-

to-sequence autoencoder for unsupervised abstractive sentence compression. In Proceedings of NAACL-

HLT, pages 673–681, 2019. 61

[24] R. Bellman. The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6):

503–515, 1954. 50

[25] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult.

IEEE transactions on neural networks, 5(2):157–166, 1994. 52

[26] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. J. Mach. Learn.

Res., 3(null):1137–1155, mar 2003. ISSN 1532-4435. 23, 29, 35, 51

[27] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep networks. Advances

in neural information processing systems, 19, 2006. 50

[28] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE

transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013. URL http://arxiv.org/

abs/1206.5538. cite arxiv:1206.5538. 28, 50

[29] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In

Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1,

NIPS’13, page 899–907, Red Hook, NY, USA, 2013. Curran Associates Inc. 33

[30] R. Beniwal, R. Khairwal, R. Mahajan, and S. P. Narayan Singh. A comparison of similarity measures for

neighbourhood based collaborative filtering recommender systems. In 2021 Asian Conference on Innovation

in Technology (ASIANCON), pages 1–6, 2021. doi: 10.1109/ASIANCON51346.2021.9544901. 109

[31] A. Benlahbib, H. Alami, and A. Alami. LISAC FSDM USMBA at SemEval 2021 Task 5: Tackling toxic spans

detection challenge with supervised spanBERT-based model and unsupervised LIME-based model. In Se-

mEval, 2021. 136, 137, 140

145

https://www.aclweb.org/anthology/N19-1071
https://www.aclweb.org/anthology/N19-1071
http://arxiv.org/abs/1206.5538
http://arxiv.org/abs/1206.5538


[32] L. Bentivogli, P. Clark, I. Dagan, and D. Giampiccolo. The fifth pascal recognizing textual entailment challenge.

In TAC, 2009. 22

[33] L. Bertinetto et al. Learning feed-forward one-shot learners. In D. Lee et al., editors, Advances in Neural

Information Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.

neurips.cc/paper/2016/file/839ab46820b524afda05122893c2fe8e-Paper.pdf. 44

[34] M. Bhandari et al. Re-evaluating evaluation in text summarization. In Proceedings of the 2020 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP), pages 9347–9359, Online, Nov.

2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.751. URL https:

//aclanthology.org/2020.emnlp-main.751. 81

[35] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning, volume 4. Springer, 2006. 28

[36] S. Black et al. GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow, Mar. 2021.

URL https://doi.org/10.5281/zenodo.5297715. 38

[37] A. Bogdanoff. Saying goodbye to civil comments, 12 2017. URL http://medium.com/@aja_15265/

saying-goodbye-to-civil-comments-41859d3a2b1d. Accessed: 2021-04-15. 86

[38] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword information. TACL,

5:135–146, 2017. ISSN 2307-387X. 135

[39] O. Bojar et al. Findings of the 2013 Workshop on Statistical Machine Translation. In Proceedings of the

Eighth Workshop on Statistical Machine Translation, pages 1–44, Sofia, Bulgaria, Aug. 2013. Association for

Computational Linguistics. URL https://www.aclweb.org/anthology/W13-2201. 22

[40] O. Bojar et al. Findings of the 2014 workshop on statistical machine translation. In Proceedings of the Ninth

Workshop on Statistical Machine Translation, pages 12–58, Baltimore, Maryland, USA, June 2014. Associa-

tion for Computational Linguistics. doi: 10.3115/v1/W14-3302. URL https://www.aclweb.org/anthology/

W14-3302. 22

[41] O. Bojar et al. Findings of the 2015 workshop on statistical machine translation. In Proceedings of the Tenth

Workshop on Statistical Machine Translation, pages 1–46, Lisbon, Portugal, Sept. 2015. Association for Com-

putational Linguistics. doi: 10.18653/v1/W15-3001. URL https://www.aclweb.org/anthology/W15-3001. 22

[42] O. Bojar et al. Findings of the 2016 conference on machine translation. In Proceedings of the First Con-

ference on Machine Translation: Volume 2, Shared Task Papers, pages 131–198, Berlin, Germany, Aug.

2016. Association for Computational Linguistics. doi: 10.18653/v1/W16-2301. URL https://www.aclweb.

org/anthology/W16-2301. 22

146

https://proceedings.neurips.cc/paper/2016/file/839ab46820b524afda05122893c2fe8e-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/839ab46820b524afda05122893c2fe8e-Paper.pdf
https://aclanthology.org/2020.emnlp-main.751
https://aclanthology.org/2020.emnlp-main.751
https://doi.org/10.5281/zenodo.5297715
http://medium.com/@aja_15265/saying-goodbye-to-civil-comments-41859d3a2b1d
http://medium.com/@aja_15265/saying-goodbye-to-civil-comments-41859d3a2b1d
https://www.aclweb.org/anthology/W13-2201
https://www.aclweb.org/anthology/W14-3302
https://www.aclweb.org/anthology/W14-3302
https://www.aclweb.org/anthology/W15-3001
https://www.aclweb.org/anthology/W16-2301
https://www.aclweb.org/anthology/W16-2301


[43] O. Bojar et al. Findings of the 2017 conference on machine translation (WMT17). In Proceedings of the

Second Conference on Machine Translation, pages 169–214, Copenhagen, Denmark, Sept. 2017. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/W17-4717. URL https://www.aclweb.org/anthology/

W17-4717. 22

[44] O. Bojar et al. Findings of the 2018 conference on machine translation (WMT18). In Proceedings of the

Third Conference on Machine Translation: Shared Task Papers, pages 272–303, Belgium, Brussels, Oct.

2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-6401. URL https://www.aclweb.

org/anthology/W18-6401. 22

[45] L. Boltzmann and F. Hasenöhrl. Studien über das gleichgewicht der lebendigen kraft zwischen bewegten

materiellen punkten, 2012. 47

[46] R. Bommasani et al. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258,

2021. 46

[47] E. V. Bonilla, K. Chai, and C. Williams. Multi-task gaussian process prediction. In J. Platt,

D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems, vol-

ume 20. Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/paper/2007/file/

66368270ffd51418ec58bd793f2d9b1b-Paper.pdf. 32

[48] D. Borkan et al. Nuanced metrics for measuring unintended bias with real data for text classification. In WWW,

pages 491–500, San Francisco, USA, 2019. 84, 86, 95, 101, 136

[49] D. Borkan et al. Nuanced metrics for measuring unintended bias with real data for text classification. CoRR,

abs/1903.04561, 2019. URL http://arxiv.org/abs/1903.04561. 58, 66

[50] D. Borkan, J. Sorensen, and L. Vasserman. Exploring the role of human

raters in creating nlp datasets, 11 2019. URL http://medium.com/jigsaw/

creating-labeled-datasets-and-exploring-the-role-of-human-raters-56367b6db298. Accessed:

2021-04-15. 86

[51] H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value decomposition.

Biological cybernetics, 59(4):291–294, 1988. 33

[52] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for learning natural language

inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,

pages 632–642, Lisbon, Portugal, Sept. 2015. Association for Computational Linguistics. doi: 10.18653/v1/

D15-1075. URL https://www.aclweb.org/anthology/D15-1075. 111

147

https://www.aclweb.org/anthology/W17-4717
https://www.aclweb.org/anthology/W17-4717
https://www.aclweb.org/anthology/W18-6401
https://www.aclweb.org/anthology/W18-6401
https://proceedings.neurips.cc/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
http://arxiv.org/abs/1903.04561
http://medium.com/jigsaw/creating-labeled-datasets-and-exploring-the-role-of-human-raters-56367b6db298
http://medium.com/jigsaw/creating-labeled-datasets-and-exploring-the-role-of-human-raters-56367b6db298
https://www.aclweb.org/anthology/D15-1075


[53] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for learning natural language

inference. arXiv preprint arXiv:1508.05326, 2015. 22

[54] S. Bozinovski. Reminder of the first paper on transfer learning in neural networks, 1976. Informatica, 44(3),

2020. 32

[55] P. F. Brown et al. An estimate of an upper bound for the entropy of english. Comput. Linguist., 18(1):31–40,

mar 1992. ISSN 0891-2017. 20

[56] T. Brown et al. Language models are few-shot learners. In H. Larochelle et al., editors, Advances in Neural

Information Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020. URL https:

//proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf. 23, 29,

31, 32, 34, 38, 43, 44, 45, 46

[57] B. Burtenshaw and M. Kestemont. UAntwerp at SemEval-2021 Task 5: Spans are spans, stacking a binary

word level approach to toxic span detection. In SemEval, 2021. 136, 140

[58] S. Buttcher, C. L. Clarke, and G. V. Cormack. Information retrieval: Implementing and evaluating search

engines. Mit Press, 2016. 109

[59] N. Carmeli et al. Constructing explainable opinion graphs from reviews. In Proceedings of the Web Conference

2021, WWW ’21, page 3419–3431, New York, NY, USA, 2021. Association for Computing Machinery. ISBN

9781450383127. doi: 10.1145/3442381.3450081. URL https://doi.org/10.1145/3442381.3450081. 26

[60] R. Caruana. Multitask learning. Machine Learning, 28:41–75, 2004. 45

[61] A. Cauchy et al. Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend.

Sci. Paris, 25(1847):536–538, 1847. 50

[62] D. Cer et al. Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evalua-

tion. arXiv preprint arXiv:1708.00055, 2017. 22

[63] D. Cer et al. Universal sentence encoder. arXiv preprint arXiv:1803.11175, 2018. 23, 51, 67, 80

[64] D. Cer et al. Universal sentence encoder for English. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing: System Demonstrations, pages 169–174, Brussels, Belgium, Nov.

2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-2029. URL https://www.aclweb.

org/anthology/D18-2029. 30

[65] C. F. Chabris and D. J. Simons. The invisible gorilla: And other ways our intuitions deceive us. Harmony,

2010. 53

148

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3442381.3450081
https://www.aclweb.org/anthology/D18-2029
https://www.aclweb.org/anthology/D18-2029


[66] P. Chandar, F. Diaz, and B. S. Thomas. Beyond accuracy: Grounding evaluation metrics for human-machine

learning systems. Advances in Neural Information Processing Systems, 2020. 109

[67] M.-W. Chang, L.-A. Ratinov, D. Roth, and V. Srikumar. Importance of semantic representation: Dataless

classification. In Aaai, volume 2, pages 830–835, 2008. 44

[68] E. Charniak. Statistical techniques for natural language parsing. AI Magazine, 18(4):33–44, 1997. URL

http://dblp.uni-trier.de/db/journals/aim/aim18.html#Charniak97. 19

[69] C. Chen, M. Zhang, Y. Liu, and S. Ma. Neural attentional rating regression with review-level explanations. In

Proceedings of the 2018 World Wide Web Conference, WWW ’18, page 1583–1592, Republic and Canton of

Geneva, CHE, 2018. International World Wide Web Conferences Steering Committee. ISBN 9781450356398.

doi: 10.1145/3178876.3186070. URL https://doi.org/10.1145/3178876.3186070. 109, 117

[70] J. Chen et al. Visualgpt: Data-efficient image captioning by balancing visual input and linguistic knowledge

from pretraining. CoRR, abs/2102.10407, 2021. URL https://arxiv.org/abs/2102.10407. 20

[71] L. Chen and F. Wang. Preference-based clustering reviews for augmenting e-commerce recommendation.

Know.-Based Syst., 50(C):44–59, sep 2013. ISSN 0950-7051. 106

[72] L. Chen, G. Chen, and F. Wang. Recommender systems based on user reviews: The state of the

art. User Modeling and User-Adapted Interaction, 25(2):99–154, jun 2015. ISSN 0924-1868. doi:

10.1007/s11257-015-9155-5. URL https://doi.org/10.1007/s11257-015-9155-5. 106, 108

[73] M. Chen et al. Generative pretraining from pixels. In H. D. III and A. Singh, editors, Proceedings of the 37th

International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,

pages 1691–1703. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/chen20s.html. 46

[74] J. Y. Chin, K. Zhao, S. Joty, and G. Cong. Anr: Aspect-based neural recommender. In Proceedings of the 27th

ACM International Conference on Information and Knowledge Management, CIKM ’18, page 147–156, New

York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450360142. doi: 10.1145/3269206.

3271810. URL https://doi.org/10.1145/3269206.3271810. 109

[75] K. Cho et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 1724–1734, Doha, Qatar, Oct. 2014. Association for Computational Linguistics. doi: 10.3115/v1/

D14-1179. URL https://www.aclweb.org/anthology/D14-1179. 52

[76] E. Choi et al. QuAC: Question answering in context. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 2174–2184, Brussels, Belgium, Oct.-Nov. 2018. Associa-

149

http://dblp.uni-trier.de/db/journals/aim/aim18.html#Charniak97
https://doi.org/10.1145/3178876.3186070
https://arxiv.org/abs/2102.10407
https://doi.org/10.1007/s11257-015-9155-5
https://proceedings.mlr.press/v119/chen20s.html
https://doi.org/10.1145/3269206.3271810
https://www.aclweb.org/anthology/D14-1179


tion for Computational Linguistics. doi: 10.18653/v1/D18-1241. URL https://www.aclweb.org/anthology/

D18-1241. 22

[77] N. Chomsky. Syntactic Structures. Mouton and Co., The Hague, 1957. 19

[78] N. Chomsky. Three factors in language design. LINGUISTIC INQUIRY, 36(1):1–22, 2005. 39

[79] A. Chowdhery et al. Palm: Scaling language modeling with pathways, 2022. URL https://arxiv.org/abs/

2204.02311. 23, 29, 31, 34, 39, 44, 45

[80] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on

sequence modeling, 2014. URL https://arxiv.org/abs/1412.3555. 23, 52

[81] C. Clark et al. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2924–2936, Minneapo-

lis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL

https://www.aclweb.org/anthology/N19-1300. 22

[82] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does BERT look at? an analysis of BERT’s

attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Net-

works for NLP, pages 276–286, Florence, Italy, Aug. 2019. Association for Computational Linguistics. doi:

10.18653/v1/W19-4828. URL https://www.aclweb.org/anthology/W19-4828. 50

[83] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. Pre-training transformers as energy-based cloze models.

In EMNLP, 2020. URL https://www.aclweb.org/anthology/2020.emnlp-main.20.pdf. 23, 31, 33, 34

[84] C. G. Coll, E. L. Bearer, and R. M. Lerner. Nature and nurture: The complex interplay of genetic and environ-

mental influences on human behavior and development. Psychology press, 2014. 43

[85] R. Collobert and J. Weston. A unified architecture for natural language processing: Deep neural networks

with multitask learning. In Proceedings of the 25th International Conference on Machine Learning, ICML ’08,

page 160–167, New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605582054. doi:

10.1145/1390156.1390177. URL https://doi.org/10.1145/1390156.1390177. 30

[86] R. Collobert et al. Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12(null):

2493–2537, nov 2011. ISSN 1532-4435. 30

[87] R. Collobert et al. Natural language processing (almost) from scratch. Journal of machine learning research,

12(ARTICLE):2493–2537, 2011. 50

150

https://www.aclweb.org/anthology/D18-1241
https://www.aclweb.org/anthology/D18-1241
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1412.3555
https://www.aclweb.org/anthology/N19-1300
https://www.aclweb.org/anthology/W19-4828
https://www.aclweb.org/anthology/2020.emnlp-main.20.pdf
https://doi.org/10.1145/1390156.1390177


[88] A. Conneau and G. Lample. Cross-lingual language model pretraining. In Advances in Neural Information

Processing Systems, pages 7057–7067, 2019. 20, 33, 61, 62, 63, 67

[89] A. Conneau et al. Word translation without parallel data. In International Conference on Learning Represen-

tations (ICLR), 2018. 61

[90] T. M. Cover. Elements of information theory. John Wiley & Sons, 1999. 28

[91] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on top-n recommendation

tasks. In Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys ’10, page 39–46,

New York, NY, USA, 2010. Association for Computing Machinery. ISBN 9781605589060. doi: 10.1145/

1864708.1864721. URL https://doi.org/10.1145/1864708.1864721. 108, 109, 115

[92] G. Da San Martino et al. Fine-grained analysis of propaganda in news article. In EMNLP-IJCNLP, pages

5640–5650, 2019. 90

[93] R. Dabre, C. Chu, and A. Kunchukuttan. A survey of multilingual neural machine translation. ACM Comput.

Surv., 53(5), sep 2020. ISSN 0360-0300. doi: 10.1145/3406095. URL https://doi.org/10.1145/3406095.

20

[94] I. Dagan, O. Glickman, and B. Magnini. The pascal recognising textual entailment challenge. In Machine

Learning Challenges Workshop, pages 177–190. Springer, 2005. 22

[95] A. M. Dai and Q. V. Le. Semi-supervised sequence learning. In C. Cortes et al., editors, Advances in Neural

Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.

neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf. 34

[96] N. Dai, J. Liang, X. Qiu, and X. Huang. Style transformer: Unpaired text style transfer without disentan-

gled latent representation. In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 5997–6007, Florence, Italy, July 2019. Association for Computational Linguistics. doi:

10.18653/v1/P19-1601. URL https://www.aclweb.org/anthology/P19-1601. 62, 63, 66, 68, 72, 73

[97] W. Dai, G.-R. Xue, Q. Yang, and Y. Yu. Co-clustering based classification for out-of-domain documents. In Pro-

ceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’07, page 210–219, New York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595936097.

doi: 10.1145/1281192.1281218. URL https://doi.org/10.1145/1281192.1281218. 32

[98] Z. Dai et al. Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, 2019. 61

151

https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1145/3406095
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://www.aclweb.org/anthology/P19-1601
https://doi.org/10.1145/1281192.1281218


[99] S. Dathathri et al. Plug and play language models: A simple approach to controlled text generation. In

International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=

H1edEyBKDS. 62

[100] A. Dau, N. Salim, R. Idris, and A. Osman. Weighted aspect-based opinion mining using deep learning for

recommender system. Expert Systems with Applications, 140:112871, 08 2019. doi: 10.1016/j.eswa.2019.

112871. 109

[101] T. Davidson, D. Warmsley, M. Macy, and I. Weber. Automated hate speech detection and the problem of

offensive language. In Eleventh international aaai conference on web and social media, pages 512–515,

2017. 58

[102] M.-C. De Marneff, M. Simons, and J. Tonhauser. The commitmentbank: Investigating projection in naturally

occurring discourse. proceedings of Sinn und Bedeutung 23, 2019. 22

[103] F. de Saussure and W. Baskin. Course in General Linguistics: Translated by Wade Baskin. Edited by Perry

Meisel and Haun Saussy. Columbia University Press, 2011. URL http://www.jstor.org/stable/10.7312/

saus15726. 39

[104] D. Dementieva et al. Russe-2022: Findings of the first russian detoxification shared task based on parallel

corpora. 81

[105] D. Dementieva et al. Crowdsourcing of parallel corpora: the case of style transfer for detoxification. In

Proceedings of the 2nd Crowd Science Workshop: Trust, Ethics, and Excellence in Crowdsourced Data

Management at Scale co-located with 47th International Conference on Very Large Data Bases (VLDB 2021

(https://vldb.org/2021/)), pages 35–49, Copenhagen, Denmark, 2021. CEUR Workshop Proceedings. URL

http://ceur-ws.org/Vol-2932/paper2.pdf. 81, 84, 97

[106] J.-L. Dessalles. Des intelligences très artificielles. Odile Jacob, 2019. 26

[107] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for

language understanding. In NAACL, pages 4171–4186, Minneapolis, Minnesota, 2019. 23, 91, 135

[108] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers

for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-

pers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:

10.18653/v1/N19-1423. URL https://www.aclweb.org/anthology/N19-1423. 23, 29, 31, 32, 33, 34, 40, 44,

45, 46, 63, 66, 106

152

https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
http://www.jstor.org/stable/10.7312/saus15726
http://www.jstor.org/stable/10.7312/saus15726
http://ceur-ws.org/Vol-2932/paper2.pdf
https://www.aclweb.org/anthology/N19-1423


[109] J. DeYoung et al. ERASER: A benchmark to evaluate rationalized NLP models. In ACL, pages 4443–4458,

Online, 2020. doi: 10.18653/v1/2020.acl-main.408. URL https://aclanthology.org/2020.acl-main.408.

84, 91

[110] H. Ding and D. Jurgens. HamiltonDinggg at SemEval-2021 Task 5: Investigating toxic span detection using

RoBERTa pre-training. In SemEval, 2021. 136, 137, 141

[111] W. B. Dolan and C. Brockett. Automatically constructing a corpus of sentential paraphrases. In Proceedings

of the Third International Workshop on Paraphrasing (IWP2005), 2005. 22

[112] L. Dong et al. Unified language model pre-training for natural language understanding and generation. Ad-

vances in Neural Information Processing Systems, 32, 2019. 23, 32, 33, 34, 38, 42

[113] A. G. D’Sa, I. Illina, and D. Fohr. Towards non-toxic landscapes: Automatic toxic comment detection using

DNN. In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying, pages 21–25,

Marseille, France, 2020. European Language Resources Association (ELRA). ISBN 979-10-95546-56-6.

URL https://aclanthology.org/2020.trac-1.4. 91

[114] Z. Du et al. All NLP tasks are generation tasks: A general pretraining framework. CoRR, abs/2103.10360,

2021. URL https://arxiv.org/abs/2103.10360. 20, 23, 32, 34, 42

[115] N. Durrani, B. Haddow, P. Koehn, and K. Heafield. Edinburgh’s phrase-based machine translation systems for

WMT-14. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 97–104, Baltimore,

Maryland, USA, June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-3309. URL

https://www.aclweb.org/anthology/W14-3309. 22

[116] S. Edunov, M. Ott, M. Auli, and D. Grangier. Understanding back-translation at scale. In Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing, pages 489–500, 2018. 61, 63

[117] W. S. El-Kassas, C. R. Salama, A. A. Rafea, and H. K. Mohamed. Automatic text summarization: A compre-

hensive survey. Expert Syst. Appl., 165:113679, 2021. 20

[118] J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990. ISSN 0364-0213. doi:

https://doi.org/10.1016/0364-0213(90)90002-E. URL https://www.sciencedirect.com/science/article/

pii/036402139090002E. 52

[119] C. Emmery, E. Manjavacas Arevalo, and G. Chrupała. Style obfuscation by invariance. In Proceedings of the

27th International Conference on Computational Linguistics, pages 984–996, Santa Fe, New Mexico, USA,

Aug. 2018. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/C18-1084.

61

153

https://aclanthology.org/2020.acl-main.408
https://aclanthology.org/2020.trac-1.4
https://arxiv.org/abs/2103.10360
https://www.aclweb.org/anthology/W14-3309
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.aclweb.org/anthology/C18-1084


[120] D. Erhan et al. Why does unsupervised pre-training help deep learning? Journal of Machine Learning

Research, 11(19):625–660, 2010. URL http://jmlr.org/papers/v11/erhan10a.html. 34

[121] T. Evgeniou and M. Pontil. Regularized multi–task learning. In Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’04, page 109–117, New York, NY,

USA, 2004. Association for Computing Machinery. ISBN 1581138881. doi: 10.1145/1014052.1014067. URL

https://doi.org/10.1145/1014052.1014067. 32

[122] A. R. Fabbri et al. SummEval: Re-evaluating summarization evaluation. Transactions of the Association for

Computational Linguistics, 9:391–409, 2021. doi: 10.1162/tacl_a_00373. URL https://aclanthology.org/

2021.tacl-1.24. 81

[123] M. Fadaee, A. Bisazza, and C. Monz. Data augmentation for low-resource neural machine translation. In

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers). Association for Computational Linguistics, 2017. doi: 10.18653/v1/p17-2090. URL https://doi.

org/10.18653%2Fv1%2Fp17-2090. 26

[124] Z. Fan, S. Zhou, and B. Xu. Unsupervised pre-traing for sequence to sequence speech recognition. CoRR,

abs/1910.12418, 2019. URL http://arxiv.org/abs/1910.12418. 19

[125] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models with simple

and efficient sparsity, 2021. URL https://arxiv.org/abs/2101.03961. 23, 32, 34, 45

[126] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(4):594–611, 2006. doi: 10.1109/TPAMI.2006.79. 43

[127] J. Ferrando and M. R. Costa-jussà. Attention weights in transformer NMT fail aligning words between se-

quences but largely explain model predictions. In Findings of EMNLP, pages 434–443, Punta Cana, Domini-

can Republic, 2021. URL https://aclanthology.org/2021.findings-emnlp.39. 91

[128] J. Ficler and Y. Goldberg. Controlling linguistic style aspects in neural language generation. In Proceedings of

the Workshop on Stylistic Variation, pages 94–104, Copenhagen, Denmark, Sept. 2017. Association for Com-

putational Linguistics. doi: 10.18653/v1/W17-4912. URL https://www.aclweb.org/anthology/W17-4912. 62

[129] K. Finley. Want to save the comments from trolls? do it yourself, 3 2016. URL http://www.wired.com/2016/

03/want-save-comments-trolls/. Accessed: 2021-04-15. 86

[130] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In

D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning,

volume 70 of Proceedings of Machine Learning Research, pages 1126–1135. PMLR, 06–11 Aug 2017. URL

https://proceedings.mlr.press/v70/finn17a.html. 44

154

http://jmlr.org/papers/v11/erhan10a.html
https://doi.org/10.1145/1014052.1014067
https://aclanthology.org/2021.tacl-1.24
https://aclanthology.org/2021.tacl-1.24
https://doi.org/10.18653%2Fv1%2Fp17-2090
https://doi.org/10.18653%2Fv1%2Fp17-2090
http://arxiv.org/abs/1910.12418
https://arxiv.org/abs/2101.03961
https://aclanthology.org/2021.findings-emnlp.39
https://www.aclweb.org/anthology/W17-4912
http://www.wired.com/2016/03/want-save-comments-trolls/
http://www.wired.com/2016/03/want-save-comments-trolls/
https://proceedings.mlr.press/v70/finn17a.html


[131] R. Fisher and K. Pearson. On an absolute criterion for fitting frequency curves, 1911. URL https://books.

google.fr/books?id=dXXzjgEACAAJ. 28

[132] M. Fitzgerald, A. Boddy, and S. D. Baum. 2020 survey of artificial general intelligence projects for ethics, risk,

and policy, 2020. 44

[133] E. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics,

21:768–780, 1965. 27

[134] P. Fortuna and S. Nunes. A survey on automatic detection of hate speech in text. ACM Computing Surveys

(CSUR), 51(4):1–30, 2018. 58

[135] K. P. F.R.S. Liii. on lines and planes of closest fit to systems of points in space. Philosophical Magazine Series

1, 2:559–572, 1901. 27

[136] Z. Fu et al. Style transfer in text: Exploration and evaluation. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018. 61, 67, 68, 73, 86

[137] K. Fukushima and S. Miyake. Neocognitron: A self-organizing neural network model for a mechanism of

visual pattern recognition. In Competition and cooperation in neural nets, pages 267–285. Springer, 1982. 51

[138] S. Funk. Netflix update: Try this at home. https://sifter.org/simon/journal/20061211.html, 2006. URL

https://sifter.org/simon/journal/20061211.html. 108

[139] B. Gambäck and U. K. Sikdar. Using convolutional neural networks to classify hate-speech. In Proceedings

of the first workshop on abusive language online, pages 85–90, 2017. 58

[140] Z. Gan et al. Semantic compositional networks for visual captioning. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 5630–5639, 2017. 61

[141] J. Gao, W. Fan, J. Jiang, and J. Han. Knowledge transfer via multiple model local structure mapping. In Pro-

ceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’08, page 283–291, New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605581934.

doi: 10.1145/1401890.1401928. URL https://doi.org/10.1145/1401890.1401928. 32

[142] T. Gao, A. Fisch, and D. Chen. Making pre-trained language models better few-shot learners. In Proceedings

of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pages 3816–3830, Online, Aug. 2021.

Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.295. URL https://aclanthology.

org/2021.acl-long.295. 45

155

https://books.google.fr/books?id=dXXzjgEACAAJ
https://books.google.fr/books?id=dXXzjgEACAAJ
https://sifter.org/simon/journal/20061211.html
https://sifter.org/simon/journal/20061211.html
https://doi.org/10.1145/1401890.1401928
https://aclanthology.org/2021.acl-long.295
https://aclanthology.org/2021.acl-long.295


[143] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576,

2015. 59

[144] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and tech-

niques to build intelligent systems. " O’Reilly Media, Inc.", 2019. 33

[145] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to Forget: Continual Prediction with LSTM. Neural

Computation, 12(10):2451–2471, 10 2000. ISSN 0899-7667. doi: 10.1162/089976600300015015. URL https:

//doi.org/10.1162/089976600300015015. 52

[146] S. Ghosh and S. Kumar. Cisco at SemEval-2021 Task 5: What’s toxic?: Leveraging transformers for multiple

toxic span extraction from online comments. In SemEval, 2021. 141

[147] D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan. The third PASCAL recognizing textual entailment chal-

lenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pages 1–9,

Prague, June 2007. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/

W07-1401. 22

[148] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment classification: A deep

learning approach. In Proceedings of the 28th International Conference on International Conference on

Machine Learning, ICML’11, page 513–520, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.

33

[149] Y. Goldberg. Neural Network Methods for Natural Language Processing, volume 37 of Synthesis Lectures on

Human Language Technologies. Morgan & Claypool, San Rafael, CA, 2017. ISBN 978-1-62705-298-6. doi:

10.2200/S00762ED1V01Y201703HLT037. 46

[150] D. Goldhaber. The nature-nurture debates: Bridging the gap. Cambridge University Press, 2012. 43

[151] H. Gong et al. Reinforcement learning based text style transfer without parallel training corpus. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3168–3180, Minneapo-

lis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1320. URL

https://www.aclweb.org/anthology/N19-1320. 24

[152] H. Gong et al. Reinforcement learning based text style transfer without parallel training corpus. In Proceedings

of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), pages 3168–3180, 2019. 61, 67

[153] I. Goodfellow et al. Generative adversarial nets. Advances in neural information processing systems, 27,

2014. 59

156

https://doi.org/10.1162/089976600300015015
https://doi.org/10.1162/089976600300015015
https://www.aclweb.org/anthology/W07-1401
https://www.aclweb.org/anthology/W07-1401
https://www.aclweb.org/anthology/N19-1320


[154] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. URL http://www.

deeplearningbook.org. 33, 34, 40, 51

[155] J. T. Goodman. A bit of progress in language modeling. Computer Speech & Language, 15(4):403–434,

2001. 35

[156] T. Goucha and A. D. Friederici. The language skeleton after dissecting meaning: A functional segregation

within broca’s area. Neuroimage, 114:294–302, 2015. 51

[157] E. Grave et al. Learning word vectors for 157 languages. In Proceedings of the International Conference on

Language Resources and Evaluation (LREC 2018), 2018. 23, 30

[158] A. Graves. Supervised Sequence Labelling with Recurrent Neural Networks. Studies in computational intelli-

gence. Springer, Berlin, 2012. doi: 10.1007/978-3-642-24797-2. URL https://cds.cern.ch/record/1503877.

52

[159] A. Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013. URL http:

//arxiv.org/abs/1308.0850. 52, 53

[160] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014. 52

[161] Y. Gu, X. Han, Z. Liu, and M. Huang. Ppt: Pre-trained prompt tuning for few-shot learning, 2021. URL

https://arxiv.org/abs/2109.04332. 45

[162] R. Guo et al. Accelerating large-scale inference with anisotropic vector quantization. In International Confer-

ence on Machine Learning, 2020. URL https://arxiv.org/abs/1908.10396. 80, 127

[163] A. Gupta, G. Boleda, M. Baroni, and S. Padó. Distributional vectors encode referential attributes. In Pro-

ceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 12–21,

Lisbon, Portugal, Sept. 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1002. URL

https://www.aclweb.org/anthology/D15-1002. 30

[164] W. Haas. J.r. firth: Papers in linguistics, 1934–1951. xii, 233 pp., 11 plates. london, etc.: Oxford university

press, 1957. 35s. Bulletin of the School of Oriental and African Studies, 21(3):668–671, 1958. doi: 10.1017/

S0041977X00060559. 30

[165] K. Hambardzumyan, H. Khachatrian, and J. May. WARP: Word-level Adversarial ReProgramming. In Pro-

ceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th Inter-

national Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4921–4933,

Online, Aug. 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.381. URL

https://aclanthology.org/2021.acl-long.381. 45

157

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://cds.cern.ch/record/1503877
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
https://arxiv.org/abs/2109.04332
https://arxiv.org/abs/1908.10396
https://www.aclweb.org/anthology/D15-1002
https://aclanthology.org/2021.acl-long.381


[166] B.-O. Han. On language peculiarities: when language evolves that much that speakers find it strange. Studia

Universitatis Petru Maior. Philologia, (18):138, 2015. 18

[167] H. Han, M. Huang, Y. Zhang, and U. A. Bhatti. An extended-tag-induced matrix factorization technique for

recommender systems. Information, 9(6), 2018. ISSN 2078-2489. doi: 10.3390/info9060143. URL https:

//www.mdpi.com/2078-2489/9/6/143. 108

[168] J. Han and C. Moraga. The influence of the sigmoid function parameters on the speed of backpropaga-

tion learning. In Proceedings of the International Workshop on Artificial Neural Networks: From Natural to

Artificial Neural Computation, IWANN ’96, page 195–201, Berlin, Heidelberg, 1995. Springer-Verlag. ISBN

3540594973. 47

[169] X. Han and Y. Tsvetkov. Fortifying toxic speech detectors against veiled toxicity. In EMNLP, pages 7732–7739,

Online, 2020. 86

[170] X. Han et al. Pre-trained models: Past, present and future. AI Open, 2:225–250, 2021. ISSN 2666-

6510. doi: https://doi.org/10.1016/j.aiopen.2021.08.002. URL https://www.sciencedirect.com/science/

article/pii/S2666651021000231. 20, 21

[171] P. Hayes-Roth et al. Speech understanding systems: Summary of results of the five-year research effort,

1976. 36

[172] J. He, X. Wang, G. Neubig, and T. Berg-Kirkpatrick. A probabilistic formulation of unsupervised text style

transfer. arXiv preprint arXiv:2002.03912, 2020. 66

[173] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. 54

[174] P. He, J. Gao, and W. Chen. Debertav3: Improving deberta using electra-style pre-training with gradient-

disentangled embedding sharing, 2021. 23, 31, 33, 34, 40, 46

[175] R. He and J. McAuley. Ups and downs: Modeling the visual evolution of fashion trends with one-class collab-

orative filtering. In Proceedings of the 25th International Conference on World Wide Web, WWW ’16, page

507–517, Republic and Canton of Geneva, CHE, 2016. International World Wide Web Conferences Steer-

ing Committee. ISBN 9781450341431. doi: 10.1145/2872427.2883037. URL https://doi.org/10.1145/

2872427.2883037. 26, 106, 110

[176] R. He and J. McAuley. Ups and downs: Modeling the visual evolution of fashion trends with one-class col-

laborative filtering. In proceedings of the 25th international conference on world wide web, pages 507–517,

2016. 61

158

https://www.mdpi.com/2078-2489/9/6/143
https://www.mdpi.com/2078-2489/9/6/143
https://www.sciencedirect.com/science/article/pii/S2666651021000231
https://www.sciencedirect.com/science/article/pii/S2666651021000231
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037


[177] X. He et al. Neural collaborative filtering. In Proceedings of the 26th international conference on world wide

web, pages 173–182, 2017. 110

[178] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016. 47

[179] S. Herculano-Houzel. The human brain in numbers: a linearly scaled-up primate brain. Frontiers in Human

Neuroscience, 3, 2009. ISSN 1662-5161. doi: 10.3389/neuro.09.031.2009. URL https://www.frontiersin.

org/article/10.3389/neuro.09.031.2009. 46

[180] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering recommender

systems. ACM Trans. Inf. Syst., 22(1):5–53, jan 2004. ISSN 1046-8188. doi: 10.1145/963770.963772. URL

https://doi.org/10.1145/963770.963772. 108, 109

[181] K. M. Hermann et al. Teaching machines to read and comprehend. In C. Cortes et al., editors, Ad-

vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https:

//proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf. 22

[182] M. Hernández-Rubio, I. Cantador, and A. Bellogín. A comparative analysis of recommender systems based

on item aspect opinions extracted from user reviews. User Modeling and User-Adapted Interaction, 29, 04

2019. doi: 10.1007/s11257-018-9214-9. 108

[183] F. Hill, A. Bordes, S. Chopra, and J. Weston. The goldilocks principle: Reading children’s books with explicit

memory representations, 2015. URL https://arxiv.org/abs/1511.02301. 22

[184] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313

(5786):504–507, 2006. doi: 10.1126/science.1127647. URL https://www.science.org/doi/abs/10.1126/

science.1127647. 34

[185] G. E. Hinton and R. Zemel. Autoencoders, minimum description length and helmholtz free energy.

In J. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing Sys-

tems, volume 6. Morgan-Kaufmann, 1993. URL https://proceedings.neurips.cc/paper/1993/file/

9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf. 33

[186] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Distributed Representations, page 77–109. MIT Press,

Cambridge, MA, USA, 1986. ISBN 026268053X. 29

[187] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural computation,

18(7):1527–1554, 2006. 50

[188] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In International conference on

artificial neural networks, pages 44–51. Springer, 2011. 33

159

https://www.frontiersin.org/article/10.3389/neuro.09.031.2009
https://www.frontiersin.org/article/10.3389/neuro.09.031.2009
https://doi.org/10.1145/963770.963772
https://proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://arxiv.org/abs/1511.02301
https://www.science.org/doi/abs/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf


[189] G. E. Hinton et al. Learning distributed representations of concepts. In Proceedings of the eighth annual

conference of the cognitive science society, volume 1, page 12. Amherst, MA, 1986. 50

[190] H. O. Hirschfeld. A connection between correlation and contingency. Mathematical Proceedings of the Cam-

bridge Philosophical Society, 31(4):520–524, 1935. doi: 10.1017/S0305004100013517. 112

[191] P. G. Hoang and L. T. Nguyen. UIT-E10dot3 at SemEval 2021 Task 5: Toxic spans detection with roberta and

spacy’s library base systems. In SemEval, 2021. 141

[192] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780, nov 1997.

ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.

52

[193] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

135

[194] M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking task: Data, models and

evaluation metrics. Journal of Artificial Intelligence Research, 47:853–899, 2013. 81

[195] J. Hoffmann et al. Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/

2203.15556. 23, 31, 34, 39, 45

[196] I. Holloway. Simultaneity as a unique property of visual-spatial language: the simultaneous structure of two-

handed classifier predicates in bimodal asl/english narrative ebooks for deaf children*, 2017. 39

[197] M. Honnibal and I. Montani. spacy 2: Natural language understanding with bloom embeddings, convolutional

neural networks and incremental parsing. To appear, 2017. 91

[198] H. Hosseini, S. Kannan, B. Zhang, and R. Poovendran. Deceiving google’s perspective api built for detecting

toxic comments. In arXiv preprint, 2017. 86

[199] H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of educational

psychology, 24(6):417, 1933. 27

[200] J. Howard and S. Ruder. Universal language model fine-tuning for text classification. In Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 328–

339, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1031.

URL https://www.aclweb.org/anthology/P18-1031. 23, 34

[201] M. Hu et al. Open-domain targeted sentiment analysis via span-based extraction and classification. In ACL,

pages 537–546, 2019. 135

160

https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://www.aclweb.org/anthology/P18-1031


[202] Z. Hu et al. Toward controlled generation of text. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pages 1587–1596. JMLR. org, 2017. 61

[203] M. Huang, X. Zhu, and J. Gao. Challenges in building intelligent open-domain dialog systems. ACM Trans. Inf.

Syst., 38(3), apr 2020. ISSN 1046-8188. doi: 10.1145/3383123. URL https://doi.org/10.1145/3383123.

20

[204] Z. Huang, W. Xu, and K. Yu. Bidirectional lstm-crf models for sequence tagging. ArXiv, abs/1508.01991,

2015. 19

[205] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex. The

Journal of physiology, 195(1):215–243, 1968. 51

[206] N. Hug. Surprise, a Python library for recommender systems. http://surpriselib.com, 2017. 116, 117

[207] S. Iyer, N. Dandekar, and K. Csernai. First quora dataset release: Question pairs, 2017. URL https:

//data.quora.com/First-Quora-Dataset-Release-Question-Pairs. 22

[208] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Reading text in the wild with convolutional neural

networks. International Journal of Computer Vision, 116:1–20, 2015. 51

[209] S. Jain, S. Wiegreffe, Y. Pinter, and B. C. Wallace. Learning to faithfully rationalize by construction. In ACL,

pages 4459–4473, Online, 2020. doi: 10.18653/v1/2020.acl-main.409. URL https://aclanthology.org/

2020.acl-main.409. 84, 91

[210] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):

422–446, oct 2002. ISSN 1046-8188. doi: 10.1145/582415.582418. URL https://doi.org/10.1145/582415.

582418. 108

[211] G. Jawahar, B. Sagot, and D. Seddah. What does BERT learn about the structure of language? In Pro-

ceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3651–3657,

Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1356. URL

https://www.aclweb.org/anthology/P19-1356. 50

[212] F. Jelinek. Statistical Methods for Speech Recognition. MIT Press, Cambridge, MA, USA, 1998. ISBN

0262100665. 35

[213] J. J. Jiang and D. W. Conrath. Semantic similarity based on corpus statistics and lexical taxonomy. In Proceed-

ings of the 10th Research on Computational Linguistics International Conference, pages 19–33, Taipei, Tai-

wan, Aug. 1997. The Association for Computational Linguistics and Chinese Language Processing (ACLCLP).

URL https://www.aclweb.org/anthology/O97-1002. 109

161

https://doi.org/10.1145/3383123
http://surpriselib.com
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/2020.acl-main.409
https://aclanthology.org/2020.acl-main.409
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://www.aclweb.org/anthology/P19-1356
https://www.aclweb.org/anthology/O97-1002


[214] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig. How Can We Know What Language Models Know? Transactions

of the Association for Computational Linguistics, 8:423–438, 07 2020. ISSN 2307-387X. doi: 10.1162/tacl_

a_00324. URL https://doi.org/10.1162/tacl_a_00324. 45

[215] Z. Jin et al. Imat: Unsupervised text attribute transfer via iterative matching and translation. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3088–3100, 2019. 68

[216] V. John, L. Mou, H. Bahuleyan, and O. Vechtomova. Disentangled representation learning for non-parallel text

style transfer. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,

pages 424–434, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/

P19-1041. URL https://www.aclweb.org/anthology/P19-1041. 61, 67, 68

[217] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. IEEE Transactions on Big

Data, 7(3):535–547, 2021. doi: 10.1109/TBDATA.2019.2921572. 80

[218] I. T. Jolliffe. Principal component analysis for special types of data. Springer, 2002. 27

[219] M. Joshi et al. SpanBERT: Improving pre-training by representing and predicting spans. TACL, 8:64–77,

2020. 91, 92, 103

[220] R. Jozefowicz et al. Exploring the limits of language modeling, 2016. URL https://arxiv.org/pdf/1602.

02410.pdf. 29, 35

[221] D. Jurafsky and J. H. Martin. Speech and language processing (3rd (draft) ed.), 2019. 38

[222] Kaggle. Yelp dataset, Mar. 2021. URL https://www.kaggle.com/yelp-dataset/yelp-dataset. 26, 106,

110

[223] L. Kaiser, O. Nachum, A. Roy, and S. Bengio. Learning to remember rare events. CoRR, abs/1703.03129,

2017. URL http://arxiv.org/abs/1703.03129. 44

[224] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network for modelling sentences.

In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 655–665, Baltimore, Maryland, June 2014. Association for Computational Linguistics. doi:

10.3115/v1/P14-1062. URL https://www.aclweb.org/anthology/P14-1062. 51

[225] K. S. Kalyan, A. Rajasekharan, and S. Sangeetha. Ammus: A survey of transformer-based pretrained models

in natural language processing. arXiv preprint arXiv:2108.05542, 2021. 21

[226] E. R. Kandel et al. Principles of neural science, volume 4. McGraw-hill New York, 2000. 47

162

https://doi.org/10.1162/tacl_a_00324
https://www.aclweb.org/anthology/P19-1041
https://arxiv.org/pdf/1602.02410.pdf
https://arxiv.org/pdf/1602.02410.pdf
https://www.kaggle.com/yelp-dataset/yelp-dataset
http://arxiv.org/abs/1703.03129
https://www.aclweb.org/anthology/P14-1062


[227] H. Kane et al. NUBIA: NeUral based interchangeability assessor for text generation. In Proceedings of the

1st Workshop on Evaluating NLG Evaluation, pages 28–37, Online (Dublin, Ireland), Dec. 2020. Association

for Computational Linguistics. URL https://aclanthology.org/2020.evalnlgeval-1.4. 20, 82

[228] J. Kaplan et al. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020. 45

[229] M. Karan and J. Šnajder. Preemptive toxic language detection in Wikipedia comments using thread-level

context. In Proceedings of the Third Workshop on Abusive Language Online, pages 129–134, Florence, Italy,

2019. 86

[230] E. F. Keller. The mirage of a space between nature and nurture. In The Mirage of a Space between Nature

and Nurture. Duke University Press, 2010. 43

[231] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 06 1938. ISSN 0006-3444.

doi: 10.1093/biomet/30.1-2.81. URL https://doi.org/10.1093/biomet/30.1-2.81. 116

[232] N. S. Keskar et al. CTRL - A Conditional Transformer Language Model for Controllable Generation. arXiv

preprint arXiv:1909.05858, 2019. 20, 43, 62, 63

[233] D. Khashabi et al. Looking beyond the surface: A challenge set for reading comprehension over multiple

sentences. In Proceedings of the 2018 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 252–262, New

Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1023. URL

https://www.aclweb.org/anthology/N18-1023. 22

[234] C. W. ki Leung, S. C. fai Chan, and K. F.-L. Chung. Integrating collaborative filtering and sentiment analysis:

A rating inference approach. 2006. 109

[235] D. Kim et al. Convolutional matrix factorization for document context-aware recommendation. In Proceedings

of the 10th ACM Conference on Recommender Systems, RecSys ’16, page 233–240, New York, NY, USA,

2016. Association for Computing Machinery. ISBN 9781450340359. doi: 10.1145/2959100.2959165. URL

https://doi.org/10.1145/2959100.2959165. 109

[236] Y. Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP), pages 1746–1751, Doha, Qatar, Oct.

2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1181. URL https://www.aclweb.org/

anthology/D14-1181. 51

[237] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013. 33

163

https://aclanthology.org/2020.evalnlgeval-1.4
https://doi.org/10.1093/biomet/30.1-2.81
https://www.aclweb.org/anthology/N18-1023
https://doi.org/10.1145/2959100.2959165
https://www.aclweb.org/anthology/D14-1181
https://www.aclweb.org/anthology/D14-1181


[238] D. P. Kingma and M. Welling. An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691,

2019. 33

[239] R. Kiros et al. Skip-thought vectors. In C. Cortes et al., editors, Advances in Neural Information Processing

Systems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/

file/f442d33fa06832082290ad8544a8da27-Paper.pdf. 29

[240] G. Kobayashi, T. Kuribayashi, S. Yokoi, and K. Inui. Attention is not only a weight: Analyzing transformers

with vector norms. In EMNLP, pages 7057–7075, Online, 2020. doi: 10.18653/v1/2020.emnlp-main.574. URL

https://aclanthology.org/2020.emnlp-main.574. 91

[241] P. Koehn. Statistical Machine Translation. Cambridge University Press, 2009. doi: 10.1017/

CBO9780511815829. 20

[242] Y. Koren. Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov.

Data, 4(1), jan 2010. ISSN 1556-4681. doi: 10.1145/1644873.1644874. URL https://doi.org/10.1145/

1644873.1644874. 108, 113

[243] Y. Koren and J. Sill. Collaborative filtering on ordinal user feedback. In IJCAI, 2013. 108, 109, 116

[244] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42

(8):30–37, 2009. doi: 10.1109/MC.2009.263. 108

[245] S. B. Kotsiantis. Supervised machine learning: A review of classification techniques. In Proceedings of the

2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI

Systems with Applications in EHealth, HCI, Information Retrieval and Pervasive Technologies, page 3–24,

NLD, 2007. IOS Press. ISBN 9781586037802. 24

[246] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. Flexrecs: Expressing and combining flexible recommenda-

tions. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD

’09, page 745–758, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585512.

doi: 10.1145/1559845.1559923. URL https://doi.org/10.1145/1559845.1559923. 108

[247] M. A. Kramer. Nonlinear principal component analysis using autoassociative neural networks. AIChE journal,

37(2):233–243, 1991. 33

[248] S. Kramer. History Begins at Sumer: Thirty-Nine Firsts in Recorded History. University of Pennsylvania Press,

Incorporated, 1981. ISBN 9780812212761. URL https://books.google.fr/books?id=RkUFwAEACAAJ. 13

[249] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks.

In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information Processing

164

https://proceedings.neurips.cc/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf
https://aclanthology.org/2020.emnlp-main.574
https://doi.org/10.1145/1644873.1644874
https://doi.org/10.1145/1644873.1644874
https://doi.org/10.1145/1559845.1559923
https://books.google.fr/books?id=RkUFwAEACAAJ


Systems, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/

file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf. 14

[250] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks.

Advances in neural information processing systems, 25, 2012. 50

[251] T. Kudo and J. Richardson. SentencePiece: A simple and language independent subword tokenizer and

detokenizer for neural text processing. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing: System Demonstrations, pages 66–71, Brussels, Belgium, Nov. 2018. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/D18-2012. URL https://www.aclweb.org/anthology/

D18-2012. 29, 71, 97, 111

[252] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathematical Statistics, 22(1):

79 – 86, 1951. doi: 10.1214/aoms/1177729694. URL https://doi.org/10.1214/aoms/1177729694. 28

[253] S. Kumar and P. Talukdar. Reordering examples helps during priming-based few-shot learning. In Find-

ings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4507–4518, Online, Aug.

2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.395. URL https:

//aclanthology.org/2021.findings-acl.395. 44

[254] S. Kumar and Y. Tsvetkov. Von mises-fisher loss for training sequence to sequence models with continuous

outputs. arXiv preprint arXiv:1812.04616, 2018. 61

[255] S. Kumar and Y. Tsvetkov. Von mises-fisher loss for training sequence to sequence models with continuous

outputs. In Proc. of ICLR, 2019. URL https://arxiv.org/pdf/1812.04616.pdf. 82

[256] R. Kurzweil. How to create a mind: The secret of human thought revealed, viking, 2012. 49

[257] B. Kuyumcu, S. Delil, and C. aksakallı. Sefamerve_arge at SemEval-2021 Task 5: Toxic span detection using

segmentation based 1-d convolutional neural network model. In SemEval, 2021. 137

[258] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for seg-

menting and labeling sequence data. In Proceedings of the Eighteenth International Conference on Machine

Learning, ICML ’01, page 282–289, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN

1558607781. 19

[259] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by betweenclass

attribute transfer. In In CVPR, 2009. 44

165

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.aclweb.org/anthology/D18-2012
https://www.aclweb.org/anthology/D18-2012
https://doi.org/10.1214/aoms/1177729694
https://aclanthology.org/2021.findings-acl.395
https://aclanthology.org/2021.findings-acl.395
https://arxiv.org/pdf/1812.04616.pdf


[260] G. Lample et al. Neural architectures for named entity recognition. In Proceedings of the 2016 Conference

of the North American Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, pages 260–270, San Diego, California, June 2016. Association for Computational Linguistics. doi:

10.18653/v1/N16-1030. URL https://www.aclweb.org/anthology/N16-1030. 19

[261] G. Lample, A. Conneau, L. Denoyer, and M. Ranzato. Unsupervised machine translation using monolingual

corpora only. In International Conference on Learning Representations (ICLR), 2018. 61

[262] G. Lample et al. Phrase-based & neural unsupervised machine translation. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing (EMNLP), 2018. 61

[263] G. Lample et al. Multiple-attribute text rewriting. In International Conference on Learning Representations,

2019. URL https://openreview.net/forum?id=H1g2NhC5KQ. 61, 62, 63, 66, 86

[264] Z. Lan et al. Albert: A lite bert for self-supervised learning of language representations. In International

Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=H1eA7AEtvS. 23,

31, 33, 34, 40

[265] H. Larochelle, D. Erhan, and Y. Bengio. Zero-data learning of new tasks. In AAAI, 2008. 44

[266] L. Laugier, J. Pavlopoulos, J. Sorensen, and L. Dixon. Civil rephrases of toxic texts with self-supervised trans-

formers. In EACL, pages 1442–1461, Online, 2021. URL https://aclanthology.org/2021.eacl-main.124.

84, 86, 96, 98

[267] L. Laugier, J. Pavlopoulos, J. Sorensen, and L. Dixon. Civil rephrases of toxic texts with self-supervised trans-

formers. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational

Linguistics: Main Volume, pages 1442–1461, Online, Apr. 2021. Association for Computational Linguistics.

doi: 10.18653/v1/2021.eacl-main.124. URL https://aclanthology.org/2021.eacl-main.124. 15, 57

[268] A. Lavie and A. Agarwal. METEOR: An automatic metric for MT evaluation with high levels of correlation

with human judgments. In Proceedings of the Second Workshop on Statistical Machine Translation, pages

228–231, Prague, Czech Republic, June 2007. Association for Computational Linguistics. URL https://www.

aclweb.org/anthology/W07-0734. 20, 82

[269] N. D. Lawrence and J. C. Platt. Learning to learn with the informative vector machine. In Proceedings of

the Twenty-First International Conference on Machine Learning, ICML ’04, page 65, New York, NY, USA,

2004. Association for Computing Machinery. ISBN 1581138385. doi: 10.1145/1015330.1015382. URL https:

//doi.org/10.1145/1015330.1015382. 32

[270] H. Le et al. Flaubert: Unsupervised language model pre-training for french, 2019. 62

166

https://www.aclweb.org/anthology/N16-1030
https://openreview.net/forum?id=H1g2NhC5KQ
https://openreview.net/forum?id=H1eA7AEtvS
https://aclanthology.org/2021.eacl-main.124
https://aclanthology.org/2021.eacl-main.124
https://www.aclweb.org/anthology/W07-0734
https://www.aclweb.org/anthology/W07-0734
https://doi.org/10.1145/1015330.1015382
https://doi.org/10.1145/1015330.1015382


[271] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In E. P. Xing and T. Jebara,

editors, Proceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings

of Machine Learning Research, pages 1188–1196, Bejing, China, 22–24 Jun 2014. PMLR. URL https:

//proceedings.mlr.press/v32/le14.html. 29

[272] T. Le Scao and A. Rush. How many data points is a prompt worth? In Proceedings of the 2021 Con-

ference of the North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 2627–2636, Online, June 2021. Association for Computational Linguistics. doi:

10.18653/v1/2021.naacl-main.208. URL https://aclanthology.org/2021.naacl-main.208. 44

[273] Y. LeCun and M. Ishan. Self-supervised learning: The dark matter of intelligence, 2021. URL https://ai.

facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/. 27

[274] Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series. The handbook of

brain theory and neural networks, 3361(10):1995, 1995. 51

[275] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791. 51

[276] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015. 14

[277] T. Lei, R. Barzilay, and T. Jaakkola. Rationalizing neural predictions. In EMNLP, pages 107–117, Austin,

Texas, 2016. doi: 10.18653/v1/D16-1011. URL https://aclanthology.org/D16-1011. 84

[278] G. W. Leibniz. Memoir using the chain rule. Cited in TMME, 7:321–332, 2010. 50

[279] D. Lepikhin et al. Gshard: Scaling giant models with conditional computation and automatic sharding. In

International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=

qrwe7XHTmYb. 23, 31, 34

[280] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt tuning. In Pro-

ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 3045–3059,

Online and Punta Cana, Dominican Republic, Nov. 2021. Association for Computational Linguistics. doi:

10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243. 23, 45

[281] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics

Doklady, 10(8):707–710, feb 1966. Doklady Akademii Nauk SSSR, V163 No4 845-848 1965. 80

[282] H. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. In Thirteenth International

Conference on the Principles of Knowledge Representation and Reasoning, 2012. 22

167

https://proceedings.mlr.press/v32/le14.html
https://proceedings.mlr.press/v32/le14.html
https://aclanthology.org/2021.naacl-main.208
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://aclanthology.org/D16-1011
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://aclanthology.org/2021.emnlp-main.243


[283] A. Levi, O. Mokryn, C. Diot, and N. Taft. Finding a needle in a haystack of reviews: Cold start context-based ho-

tel recommender system. In Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys

’12, page 115–122, New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450312707.

doi: 10.1145/2365952.2365977. URL https://doi.org/10.1145/2365952.2365977. 109

[284] M. Lewis et al. BART: Denoising sequence-to-sequence pre-training for natural language generation, trans-

lation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Compu-

tational Linguistics, pages 7871–7880, Online, July 2020. Association for Computational Linguistics. doi:

10.18653/v1/2020.acl-main.703. URL https://aclanthology.org/2020.acl-main.703. 23, 31, 33, 34, 38

[285] G. F. A. L’Hospital. Analyse des infiniment petits pour l’intelligence des lignes courbes. chez François Monta-

lant ..., A Paris, seconde edition edition, 1715. 50

[286] C. Li, S. Lin, and M. Shan. Exploiting endorsement information and social influence for item recommendation.

In W. Ma et al., editors, Proceeding of the 34th International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, SIGIR 2011, Beijing, China, July 25-29, 2011, pages 1131–1132. ACM,

2011. doi: 10.1145/2009916.2010084. URL https://doi.org/10.1145/2009916.2010084. 109

[287] J. Li, W. Monroe, and D. Jurafsky. Understanding neural networks through representation erasure. arXiv

preprint arXiv:1612.08220, 2016. 68, 84, 136

[288] J. Li, W. Monroe, and D. Jurafsky. Understanding neural networks through representation erasure. CoRR,

abs/1612.08220, 2016. URL http://arxiv.org/abs/1612.08220. 26

[289] J. Li, R. Jia, H. He, and P. Liang. Delete, retrieve, generate: a simple approach to sentiment and style

transfer. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1865–1874, New

Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1169. URL

https://www.aclweb.org/anthology/N18-1169. 61, 66, 67, 68, 73

[290] J. Li, T. Tang, W. X. Zhao, and J.-R. Wen. Pretrained language model for text generation: A survey. In

Z.-H. Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-

21, pages 4492–4499. International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi:

10.24963/ijcai.2021/612. URL https://doi.org/10.24963/ijcai.2021/612. Survey Track. 21, 38

[291] Q. Li and Y. P. Chen. Personalized text snippet extraction using statistical language models. Pattern Recogn.,

43(1):378–386, jan 2010. ISSN 0031-3203. doi: 10.1016/j.patcog.2009.06.003. URL https://doi.org/10.

1016/j.patcog.2009.06.003. 109

[292] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021. 45

168

https://doi.org/10.1145/2365952.2365977
https://aclanthology.org/2020.acl-main.703
https://doi.org/10.1145/2009916.2010084
http://arxiv.org/abs/1612.08220
https://www.aclweb.org/anthology/N18-1169
https://doi.org/10.24963/ijcai.2021/612
https://doi.org/10.1016/j.patcog.2009.06.003
https://doi.org/10.1016/j.patcog.2009.06.003


[293] J. Liao et al. Generating human readable transcript for automatic speech recognition with pre-trained lan-

guage model. In IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2021,

Toronto, ON, Canada, June 6-11, 2021, pages 7578–7582. IEEE, 2021. doi: 10.1109/ICASSP39728.2021.

9414626. URL https://doi.org/10.1109/ICASSP39728.2021.9414626. 19

[294] O. Lieber, O. Sharir, B. Lenz, and Y. Shoham. Jurassic-1: Technical details and evaluation. Technical report,

AI21 Labs, Aug. 2021. 23, 31, 34, 39, 45

[295] C.-Y. Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches

Out, pages 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/W04-1013. 20, 82

[296] C.-Y. Lin and F. J. Och. Automatic evaluation of machine translation quality using longest common sub-

sequence and skip-bigram statistics. In Proceedings of the 42nd Annual Meeting on Association for Com-

putational Linguistics, ACL ’04, page 605–es, USA, 2004. Association for Computational Linguistics. doi:

10.3115/1218955.1219032. URL https://doi.org/10.3115/1218955.1219032. 20

[297] D. Lin. An information-theoretic definition of similarity. In Proceedings of the Fifteenth International Conference

on Machine Learning, ICML ’98, page 296–304, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers

Inc. ISBN 1558605568. 109

[298] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with implications for

streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining

and Knowledge Discovery, DMKD ’03, page 2–11, New York, NY, USA, 2003. Association for Computing

Machinery. ISBN 9781450374224. doi: 10.1145/882082.882086. URL https://doi.org/10.1145/882082.

882086. 31

[299] T. Lin, Y. Wang, X. Liu, and X. Qiu. A survey of transformers, 2021. URL https://arxiv.org/abs/2106.

04554. 54

[300] T. Lin, Y. Wang, X. Liu, and X. Qiu. A survey of transformers. arXiv preprint arXiv:2106.04554, 2021. 21

[301] G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE

Internet Comput., 7:76–80, 2003. 108

[302] C.-Y. Liou, J.-C. Huang, and W.-C. Yang. Modeling word perception using the elman network. Neurocomput-

ing, 71(16-18):3150–3157, 2008. 33

[303] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, and D.-R. Liou. Autoencoder for words. Neurocomputing, 139:84–96,

2014. 33

169

https://doi.org/10.1109/ICASSP39728.2021.9414626
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.3115/1218955.1219032
https://doi.org/10.1145/882082.882086
https://doi.org/10.1145/882082.882086
https://arxiv.org/abs/2106.04554
https://arxiv.org/abs/2106.04554


[304] D. Liu et al. Revision in continuous space: Unsupervised text style transfer without adversarial learning. arXiv

preprint arXiv:1905.12304, 2019. 68

[305] H. Liu et al. Hybrid neural recommendation with joint deep representation learning of ratings and reviews.

Neurocomputing, 374:77–85, 2020. 109

[306] P. Liu, X. Qiu, and X. Huang. Recurrent neural network for text classification with multi-task learning.

In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, page

2873–2879. AAAI Press, 2016. ISBN 9781577357704. 34

[307] P. Liu et al. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language

processing. arXiv preprint arXiv:2107.13586, 2021. 21, 33, 44

[308] P. J. Liu, Y.-A. Chung, and J. Ren. Summae: Zero-shot abstractive text summarization using length-agnostic

auto-encoders, 2019. 61, 62, 63, 64, 67

[309] X. Liu et al. Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data

Engineering, pages 1–1, 2021. doi: 10.1109/TKDE.2021.3090866. 26

[310] X. Liu et al. GPT understands, too. CoRR, abs/2103.10385, 2021. URL https://arxiv.org/abs/2103.

10385. 45

[311] Y. Liu et al. Roberta: A robustly optimized bert pretraining approach, 2019. URL http://arxiv.org/abs/

1907.11692. cite arxiv:1907.11692. 23, 31, 33, 34, 40, 46, 135

[312] Z. Liu et al. Finbert: A pre-trained financial language representation model for financial text mining. In

C. Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,

IJCAI-20, pages 4513–4519. International Joint Conferences on Artificial Intelligence Organization, 7 2020.

doi: 10.24963/ijcai.2020/622. URL https://doi.org/10.24963/ijcai.2020/622. Special Track on AI in

FinTech. 33

[313] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137, 1982.

27

[314] V. Logacheva et al. Paradetox: Detoxification with parallel data. In Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6804–6818, 2022. 81

[315] L. Logeswaran, H. Lee, and S. Bengio. Content preserving text generation with attribute controls. In Advances

in Neural Information Processing Systems, pages 5103–5113, 2018. 66

[316] F. López et al. Augmenting the user-item graph with textual similarity models. CoRR, abs/2109.09358, 2021.

URL https://arxiv.org/abs/2109.09358. 110

170

https://arxiv.org/abs/2103.10385
https://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.24963/ijcai.2020/622
https://arxiv.org/abs/2109.09358


[317] J. Luketina et al. A survey of reinforcement learning informed by natural language. In Proceedings of the

Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages 6309–6317. Interna-

tional Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/880. URL

https://doi.org/10.24963/ijcai.2019/880. 24

[318] S. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. arXiv preprint

arXiv:1705.07874, 2017. 136

[319] F. Luo et al. A dual reinforcement learning framework for unsupervised text style transfer. In Proceedings of

the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019, 2019. 24

[320] F. Luo et al. A dual reinforcement learning framework for unsupervised text style transfer. In Proceedings of

the 28th International Joint Conference on Artificial Intelligence, pages 5116–5122. AAAI Press, 2019. 61,

68, 73

[321] H. Luo et al. Univilm: A unified video and language pre-training model for multimodal understanding and

generation. CoRR, abs/2002.06353, 2020. URL https://arxiv.org/abs/2002.06353. 20

[322] S. T. Luu and N. Nguyen. UIT-ISE-NLP at SemEval-2021 Task 5: Toxic span detection with BiLSTM - CRF

and toxic BERT comment classification. In SemEval, 2021. 137

[323] Q. Ma, J. Wei, O. Bojar, and Y. Graham. Results of the WMT19 metrics shared task: Segment-level and strong

MT systems pose big challenges. In Proceedings of the Fourth Conference on Machine Translation (Volume

2: Shared Task Papers, Day 1), pages 62–90, Florence, Italy, Aug. 2019. Association for Computational

Linguistics. doi: 10.18653/v1/W19-5302. URL https://www.aclweb.org/anthology/W19-5302. 81

[324] X. Ma and E. Hovy. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1064–

1074, Berlin, Germany, Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1101.

URL https://www.aclweb.org/anthology/P16-1101. 19

[325] X. Ma et al. Flowseq: Non-autoregressive conditional sequence generation with generative flow. In Proceed-

ings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4273–4283, 2019. 82

[326] A. L. Maas et al. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meet-

ing of the Association for Computational Linguistics: Human Language Technologies, pages 142–150, Port-

land, Oregon, USA, June 2011. Association for Computational Linguistics. URL https://www.aclweb.org/

anthology/P11-1015. 61

171

https://doi.org/10.24963/ijcai.2019/880
https://arxiv.org/abs/2002.06353
https://www.aclweb.org/anthology/W19-5302
https://www.aclweb.org/anthology/P16-1101
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015


[327] J. MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceed-

ings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297.

Oakland, CA, USA, 1967. 27

[328] K. Marino, M. Rastegari, A. Farhadi, and R. Mottaghi. Ok-vqa: A visual question answering bench-

mark requiring external knowledge. In IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 3195–3204. Computer Vision Foundation /

IEEE, 2019. URL http://openaccess.thecvf.com/content_CVPR_2019/html/Marino_OK-VQA_A_Visual_

Question_Answering_Benchmark_Requiring_External_Knowledge_CVPR_2019_paper.html. 81

[329] A. A. Markov. Essai d’une recherche statistique sur le texte du roman “Eugene Onegin” illustrant la liaison des

epreuve en chain (‘Example of a statistical investigation of the text of “Eugene Onegin" illustrating the depen-

dence between samples in chain’). Izvistia Imperatorskoi Akademii Nauk (Bulletin de l’Académie Impériale

des Sciences de St.-Pétersbourg), 7:153–162, 1913. English translation by Morris Halle, 1956. 35

[330] L. Martin. Automatic sentence simplification using controllable and unsupervised methods. PhD thesis,

Sorbonne Université, 2021. 80

[331] L. Martin et al. Multilingual unsupervised sentence simplification. arXiv preprint arXiv:2005.00352, 2020. 80

[332] L. Martin et al. Muss: multilingual unsupervised sentence simplification by mining paraphrases. arXiv preprint

arXiv:2005.00352, 2020. 81

[333] G. D. S. Martino et al. A survey on computational propaganda detection. In IJCAI, pages 4826–4832, 2020.

84

[334] B. Mathew et al. Hatexplain: A benchmark dataset for explainable hate speech detection. In AAAI, pages

14867–14875, 2021. URL https://arxiv.org/abs/2012.10289. 84, 86, 91

[335] J. McAuley and J. Leskovec. Hidden factors and hidden topics: Understanding rating dimensions with review

text. In Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13, page 165–172, New

York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450324090. doi: 10.1145/2507157.

2507163. URL https://doi.org/10.1145/2507157.2507163. 109

[336] B. McCann, J. Bradbury, C. Xiong, and R. Socher. Learned in translation: Contextualized word vectors. In

Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, page

6297–6308, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964. 23, 34, 40

[337] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The Bulletin of

Mathematical Biophysics, 5(4):115–133, 1943. doi: 10.1007/bf02478259. 47

172

http://openaccess.thecvf.com/content_CVPR_2019/html/Marino_OK-VQA_A_Visual_Question_Answering_Benchmark_Requiring_External_Knowledge_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Marino_OK-VQA_A_Visual_Question_Answering_Benchmark_Requiring_External_Knowledge_CVPR_2019_paper.html
https://arxiv.org/abs/2012.10289
https://doi.org/10.1145/2507157.2507163


[338] O. Melamud, J. Goldberger, and I. Dagan. context2vec: Learning generic context embedding with bidirectional

LSTM. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pages

51–61, Berlin, Germany, Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/K16-1006.

URL https://www.aclweb.org/anthology/K16-1006. 29, 40

[339] Z. Meng, R. McCreadie, C. Macdonald, and I. Ounis. Exploring data splitting strategies for the evaluation

of recommendation models. In Fourteenth ACM Conference on Recommender Systems, RecSys ’20, page

681–686, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450375832. doi:

10.1145/3383313.3418479. URL https://doi.org/10.1145/3383313.3418479. 110

[340] Z. Miao, Y. Li, X. Wang, and W.-C. Tan. Snippext: Semi-Supervised Opinion Mining with Augmented Data,

page 617–628. Association for Computing Machinery, New York, NY, USA, 2020. ISBN 9781450370233.

URL https://doi.org/10.1145/3366423.3380144. 26

[341] T. Mikolov et al. Recurrent Neural Network Based Language Model. In Proceedings of the 11th Annual

Conference of the International Speech Communication Association, INTERSPEECH 2010, pages 1045–

1048. ISCA, 2010. URL http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html. 52

[342] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space.

In Y. Bengio and Y. LeCun, editors, 1st International Conference on Learning Representations, ICLR 2013,

Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013. URL http://arxiv.org/abs/

1301.3781. 23, 30

[343] T. Mikolov et al. Distributed representations of words and phrases and their compositionality. In Proceedings

of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13, page

3111–3119, Red Hook, NY, USA, 2013. Curran Associates Inc. 23, 30, 34, 46

[344] E. Miller, N. Matsakis, and P. Viola. Learning from one example through shared densities on transforms. In

Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662),

volume 1, pages 464–471 vol.1, 2000. doi: 10.1109/CVPR.2000.855856. 43

[345] G. A. Miller. WordNet: An electronic lexical database. MIT press, 1998. 109

[346] G. A. Miller and J. A. Selfridge. Verbal context and the recall of meaningful material. The American journal of

psychology, 63(2):176–185, 1950. 35

[347] S. Min et al. Neurips 2020 efficientqa competition: Systems, analyses and lessons learned. In H. J. Escalante

and K. Hofmann, editors, Proceedings of the NeurIPS 2020 Competition and Demonstration Track, volume

133 of Proceedings of Machine Learning Research, pages 86–111. PMLR, 06–12 Dec 2021. URL https:

//proceedings.mlr.press/v133/min21a.html. 81

173

https://www.aclweb.org/anthology/K16-1006
https://doi.org/10.1145/3383313.3418479
https://doi.org/10.1145/3366423.3380144
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://proceedings.mlr.press/v133/min21a.html
https://proceedings.mlr.press/v133/min21a.html


[348] A. Miyake and P. Shah. Models of working memory: Mechanisms of active maintenance and executive control,

1999. 53

[349] A. K. Mohankumar et al. Towards transparent and explainable attention models. In ACL, pages 4206–4216,

2020. 136

[350] N. Mostafazadeh et al. A corpus and cloze evaluation for deeper understanding of commonsense stories.

In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 839–849, San Diego, California, June 2016. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/N16-1098. URL https://www.aclweb.org/anthology/

N16-1098. 22

[351] T. Müller, R. Cotterell, A. Fraser, and H. Schütze. Joint lemmatization and morphological tagging with lemming.

In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2268–

2274, Lisbon, Portugal, Sept. 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1272.

URL https://www.aclweb.org/anthology/D15-1272. 19

[352] C.-C. Musat, Y. Liang, and B. Faltings. Recommendation using textual opinions. In Proceedings of the Twenty-

Third International Joint Conference on Artificial Intelligence, IJCAI ’13, page 2684–2690. AAAI Press, 2013.

ISBN 9781577356332. 109

[353] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the

27th International Conference on International Conference on Machine Learning, ICML’10, page 807–814,

Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077. 47

[354] R. Nallapati et al. Abstractive text summarization using sequence-to-sequence rnns and beyond. In Pro-

ceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pages 280–290,

Berlin, Germany, Aug. 2016. Association for Computational Linguistics. doi: 10.18653/v1/K16-1028. URL

https://aclanthology.org/K16-1028. 22

[355] S. Narang et al. Wt5?! training text-to-text models to explain their predictions. CoRR, abs/2004.14546, 2020.

URL https://arxiv.org/abs/2004.14546. 26, 127

[356] S. Narang et al. Do transformer modifications transfer across implementations and applications? In Pro-

ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 5758–5773,

Online and Punta Cana, Dominican Republic, Nov. 2021. Association for Computational Linguistics. doi:

10.18653/v1/2021.emnlp-main.465. URL https://aclanthology.org/2021.emnlp-main.465. 54

[357] S. Narayan, S. B. Cohen, and M. Lapata. Don’t give me the details, just the summary! topic-aware convo-

lutional neural networks for extreme summarization. In Proceedings of the 2018 Conference on Empirical

174

https://www.aclweb.org/anthology/N16-1098
https://www.aclweb.org/anthology/N16-1098
https://www.aclweb.org/anthology/D15-1272
https://aclanthology.org/K16-1028
https://arxiv.org/abs/2004.14546
https://aclanthology.org/2021.emnlp-main.465


Methods in Natural Language Processing, pages 1797–1807, Brussels, Belgium, Oct.-Nov. 2018. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/D18-1206. URL https://www.aclweb.org/anthology/

D18-1206. 22

[358] D. Narayanan et al. Efficient large-scale language model training on GPU clusters. CoRR, abs/2104.04473,

2021. URL https://arxiv.org/abs/2104.04473. 23, 31, 34, 38, 45

[359] U. Naseem, I. Razzak, S. K. Khan, and M. Prasad. A comprehensive survey on word representation models:

From classical to state-of-the-art word representation language models. ACM Trans. Asian Low-Resour.

Lang. Inf. Process., 20(5), jun 2021. ISSN 2375-4699. doi: 10.1145/3434237. URL https://doi.org/10.

1145/3434237. 21

[360] D. Nguyen, D. Nguyen, D. Pham, and S. Pham. A robust transformation-based learning approach using ripple

down rules for part-of-speech tagging. AI Communications, 29(3):409–422, Apr. 2016. ISSN 0921-7126. doi:

10.3233/AIC-150698. 19

[361] V. A. Nguyen, T. Nguyen, H. D. Quang, and Q. H. Pham. S-NLP at semeval-2021 task 5: Toxic spans

detection. In SemEval, 2021. 135, 139

[362] M. A. Nielsen. Neural networks and deep learning, volume 25. Determination press San Francisco, CA, USA,

2015. 46

[363] X. Ning, C. Desrosiers, and G. Karypis. A Comprehensive Survey of Neighborhood-Based Recom-

mendation Methods, pages 37–76. Springer US, Boston, MA, 2015. ISBN 978-1-4899-7637-6. doi:

10.1007/978-1-4899-7637-6_2. URL https://doi.org/10.1007/978-1-4899-7637-6_2. 108

[364] C. Nogueira dos Santos, I. Melnyk, and I. Padhi. Fighting offensive language on social media with unsu-

pervised text style transfer. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 189–194, Melbourne, Australia, July 2018. Association for Com-

putational Linguistics. doi: 10.18653/v1/P18-2031. URL https://www.aclweb.org/anthology/P18-2031. 59,

62, 63, 86

[365] F. J. Och et al. A smorgasbord of features for statistical machine translation. In Proceedings of the Human

Language Technology Conference of the North American Chapter of the Association for Computational Lin-

guistics: HLT-NAACL 2004, pages 161–168, Boston, Massachusetts, USA, May 2 - May 7 2004. Association

for Computational Linguistics. URL https://www.aclweb.org/anthology/N04-1021. 19

[366] A. G. Oettinger. The uses of computers in science. Scientific American, 215(3):160–175, 1966. 18

175

https://www.aclweb.org/anthology/D18-1206
https://www.aclweb.org/anthology/D18-1206
https://arxiv.org/abs/2104.04473
https://doi.org/10.1145/3434237
https://doi.org/10.1145/3434237
https://doi.org/10.1007/978-1-4899-7637-6_2
https://www.aclweb.org/anthology/P18-2031
https://www.aclweb.org/anthology/N04-1021


[367] X. Ouyang et al. ERNIE-M: Enhanced multilingual representation by aligning cross-lingual semantics

with monolingual corpora. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 27–38, Online and Punta Cana, Dominican Republic, Nov. 2021. Association for

Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.3. URL https://aclanthology.org/2021.

emnlp-main.3. 38

[368] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell. Zero-shot learning with semantic out-

put codes. In Y. Bengio et al., editors, Advances in Neural Information Processing Systems, vol-

ume 22. Curran Associates, Inc., 2009. URL https://proceedings.neurips.cc/paper/2009/file/

1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf. 44

[369] M. Palomino, D. Grad, and J. Bedwell. An ensemble approach to identify toxicity in text. In SemEval, 2021.

136, 140

[370] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering,

22(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191. 32

[371] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? sentiment classification using machine learning tech-

niques. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing

(EMNLP 2002), pages 79–86. Association for Computational Linguistics, July 2002. doi: 10.3115/1118693.

1118704. URL https://www.aclweb.org/anthology/W02-1011. 27

[372] R. Y. Pang and K. Gimpel. Unsupervised evaluation metrics and learning criteria for non-parallel textual

transfer. EMNLP-IJCNLP 2019, page 138, 2019. 61, 67

[373] D. Paperno et al. The LAMBADA dataset: Word prediction requiring a broad discourse context. In Pro-

ceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1525–1534, Berlin, Germany, Aug. 2016. Association for Computational Linguistics. doi:

10.18653/v1/P16-1144. URL https://www.aclweb.org/anthology/P16-1144. 22

[374] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine

translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,

pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics. doi:

10.3115/1073083.1073135. URL https://www.aclweb.org/anthology/P02-1040. 20, 67, 82

[375] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to construct deep recurrent neural networks. In

Proceedings of the Second International Conference on Learning Representations (ICLR 2014), 2014. 52

176

https://aclanthology.org/2021.emnlp-main.3
https://aclanthology.org/2021.emnlp-main.3
https://proceedings.neurips.cc/paper/2009/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf
https://www.aclweb.org/anthology/W02-1011
https://www.aclweb.org/anthology/P16-1144
https://www.aclweb.org/anthology/P02-1040


[376] J. Pavlopoulos, P. Malakasiotis, and I. Androutsopoulos. Deep learning for user comment moderation. In

Proceedings of the 1st Workshop on Abusive Language Online, pages 25–35, Vancouver, Canada, 2017. 91,

93

[377] J. Pavlopoulos, P. Malakasiotis, and I. Androutsopoulos. Deeper attention to abusive user content moderation.

In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1125–

1135, Copenhagen, Denmark, Sept. 2017. Association for Computational Linguistics. doi: 10.18653/v1/

D17-1117. URL https://www.aclweb.org/anthology/D17-1117. 58, 84

[378] J. Pavlopoulos, P. Malakasiotis, and I. Androutsopoulos. Deep learning for user comment moderation. In

Proceedings of the First Workshop on Abusive Language Online, pages 25–35, Vancouver, BC, Canada, Aug.

2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-3004. URL https://www.aclweb.

org/anthology/W17-3004. 88

[379] J. Pavlopoulos, N. Thain, L. Dixon, and I. Androutsopoulos. Convai at semeval-2019 task 6: Offensive lan-

guage identification and categorization with perspective and bert. In SemEval, Minneapolis, USA, 2019. 94

[380] J. Pavlopoulos et al. Toxicity detection: Does context really matter? In ACL, pages 4296–4305, Online, 2020.

86

[381] J. Pavlopoulos, J. Sorensen, L. Laugier, and I. Androutsopoulos. SemEval-2021 task 5: Toxic spans detection.

In Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 59–69,

Online, Aug. 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.semeval-1.6. URL https:

//aclanthology.org/2021.semeval-1.6. 15, 83

[382] J. Pavlopoulos et al. From the detection of toxic spans in online discussions to the analysis of toxic-to-civil

transfer. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 3721–3734, Dublin, Ireland, May 2022. Association for Computational Linguistics.

doi: 10.18653/v1/2022.acl-long.259. URL https://aclanthology.org/2022.acl-long.259. 15, 83

[383] M. J. Pazzani. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence

Review, 13:393–408, 2004. 108

[384] T. Pedersen, S. Patwardhan, and J. Michelizzi. Wordnet::similarity - measuring the relatedness of concepts.

pages 1024–1025, Dec. 2004. Proceedings - Nineteenth National Conference on Artificial Intelligence (AAAI-

2004): Sixteenth Innovative Applications of Artificial Intelligence Conference (IAAI-2004) ; Conference date:

25-07-2004 Through 29-07-2004. 109

[385] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word representation. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,

177

https://www.aclweb.org/anthology/D17-1117
https://www.aclweb.org/anthology/W17-3004
https://www.aclweb.org/anthology/W17-3004
https://aclanthology.org/2021.semeval-1.6
https://aclanthology.org/2021.semeval-1.6
https://aclanthology.org/2022.acl-long.259


Doha, Qatar, Oct. 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1162. URL https:

//www.aclweb.org/anthology/D14-1162. 23, 30, 34

[386] D. N. Perkins, G. Salomon, et al. Transfer of learning. International encyclopedia of education, 2:6452–6457,

1992. 26

[387] M. Peters, W. Ammar, C. Bhagavatula, and R. Power. Semi-supervised sequence tagging with bidirectional

language models. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1756–1765, Vancouver, Canada, July 2017. Association for Computational

Linguistics. doi: 10.18653/v1/P17-1161. URL https://www.aclweb.org/anthology/P17-1161. 40

[388] M. Peters et al. Deep contextualized word representations. In Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana, June 2018. Association for Computa-

tional Linguistics. doi: 10.18653/v1/N18-1202. URL https://www.aclweb.org/anthology/N18-1202. 23, 34,

40

[389] F. Petroni et al. Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China, Nov. 2019. Association for Computa-

tional Linguistics. doi: 10.18653/v1/D19-1250. URL https://aclanthology.org/D19-1250. 45

[390] S. Petrov, D. Das, and R. McDonald. A universal part-of-speech tagset. In Proceedings of the Eighth In-

ternational Conference on Language Resources and Evaluation (LREC-2012), pages 2089–2096, Istanbul,

Turkey, May 2012. European Languages Resources Association (ELRA). URL http://www.lrec-conf.org/

proceedings/lrec2012/pdf/274_Paper.pdf. 19

[391] M. T. Pilehvar and os’e Camacho-Collados. Wic: 10, 000 example pairs for evaluating context-sensitive

representations. CoRR, abs/1808.09121, 2018. URL http://arxiv.org/abs/1808.09121. 22
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Résumé: Le traitement automatique du langage na-
turel est motivé par des applications où les ordina-
teurs doivent acquérir une compréhension séman-
tique et syntaxique du langage humain. Récem-
ment, le domaine a été impacté par un changement
de paradigme. Les architectures d’apprentissage
profond couplées à des techniques d’apprentissage
auto-supervisé sont devenues le cœur des modèles
correspondant à l’état de l’art en compréhension et
génération du langage naturel. Parfois considérés
comme des “foundation models”, ces systèmes ou-
vrent la voie à de nouveaux cas d’utilisation. Née d’un
partenariat académique et industriel entre l’Institut
Polytechnique de Paris et Google AI Research, la
présente recherche s’est concentrée sur l’étude de la
façon dont les modèles neuronaux de traitement du
langage naturel pré-entraînés pouvaient être utilisés
pour améliorer les interactions en ligne.
Cette thèse a d’abord exploré comment le transfert
de style auto-supervisé pouvait être appliqué à la re-
formulation non-toxique de commentaires offensants
dans les conversations en ligne. Dans le contexte

de la modération de contenu toxique en ligne, nous
avons proposé une méthode de réglage fin d’un mod-
èle texte-à-texte pré-entraîné (T5) avec une fonction-
objectif consistant en un auto-encodeur débruiteur cy-
clique.
Ensuite, les travaux de recherche ont porté sur l’étude
de l’annotation humaine et la détection automatique
des sous-ensembles de mots toxiques dans les con-
versations en ligne. Nous avons publié un nouveau
jeu de données annoté pour entraîner et évaluer les
systèmes automatiques, ce qui a conduit à une tâche
partagée lors du 15e International Workshop on Se-
mantic Evaluation.
Enfin, nous avons développé un système de recom-
mandation basé sur des avis en ligne, s’inscrivant
dans l’explicabilité des préférences prises en compte
par les recommandations prédites. La méthode
utilise des modèles basés sur la similarité sémantique
textuelle pour représenter les préférences d’un utilisa-
teur sous la forme d’un graphe de fragments de texte,
où les arrêtes sont définies par la similarité séman-
tique.

Title: Analysis and Control of Online Interactions through Neural Natural Language Processing

Keywords: Machine learning, Artificial intelligence, Natural language processing, Computer Science, Artificial
neural networks, Recommender systems

Abstract: Natural Language Processing is motivated
by applications where computers should gain a se-
mantic and syntactic understanding of human lan-
guage. Recently, the field has been impacted by
a paradigm shift. Deep learning architectures cou-
pled with self-supervised training have become the
core of state-of-the-art models used in Natural Lan-
guage Understanding and Natural Language Genera-
tion. Sometimes considered as foundation models,
these systems pave the way for novel use cases.
Driven by an academic-industrial partnership between
the Institut Polytechnique de Paris and Google AI Re-
search, the present research has focused on investi-
gating how pretrained neural Natural Language Pro-
cessing models could be leveraged to improve online
interactions.
This thesis first explored how self-supervised style
transfer could be applied to the toxic-to-civil rephras-

ing of offensive comments found in online conversa-
tions. In the context of toxic content moderation on-
line, we proposed to fine-tune a pretrained text-to-text
model (T5) with a denoising and cyclic auto-encoder
loss.
Then, a subsequent work investigated the human la-
beling and automatic detection of toxic spans in online
conversations. We released a new labeled dataset to
train and evaluate systems, which led to a shared task
at the 15th International Workshop on Semantic Eval-
uation.
Finally, we developed a recommender system based
on online reviews of items, taking part in the topic of
explaining users’ tastes considered by the predicted
recommendations. The method uses textual seman-
tic similarity models to represent a user’s preferences
as a graph of textual snippets, where the edges are
defined by semantic similarity.
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