
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 25(12), 1315–1330 (DECEMBER 1995)

Ropes: an Alternative to Strings

hans-j. boehm, russ atkinson and michael plass
Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304, U.S.A. (email:

boehmKparc.xerox.com)

SUMMARY

Programming languages generally provide a ‘string’ or ‘text’ type to allow manipulation of
sequences of characters. This type is usually of crucial importance, since it is normally mentioned
in most interfaces between system components. We claim that the traditional implementations of
strings, and often the supported functionality, are not well suited to such general-purpose use.
They should be confined to applications with specific, and unusual, performance requirements.
We present ‘ropes’ or ‘heavyweight’ strings as an alternative that, in our experience leads to
systems that are more robust, both in functionality and in performance.

Ropes have been in use in the Cedar environment almost since its inception, but this appears
to be neither well-known, nor discussed in the literature. The algorithms have been gradually
refined. We have also recently built a second similar, but somewhat lighter weight, C-language
implementation, which is included in our publically released garbage collector distribution.1 We
describe the algorithms used in both, and give some performance measurements for the C version.

key words: character strings; concatenation; Cedar; immutable; C; balanced trees

WHAT’S WRONG WITH STRINGS?

Programming languages such as C and traditional Pascal provide a built-in notion
of strings as essentially fixed length arrays of characters. The language itself provides
the array primitives for accessing such strings, plus often a collection of library
routines for higher level operations such as string concatenation. Thus the implemen-
tation is essentially constrained to represent strings as contiguous arrays of characters,
with or without additional space for a length, expansion room, etc.

There is no question that such data structures are occasionally appropriate, and
that an ‘array of characters’ data structure should be provided. On the other hand,
since the character string type will be used pervasively to communicate between
modules of a large system, we desire the following characteristics:

1. Immutable strings, i.e. strings that cannot be modified in place, should be well
supported. A procedure should be able to operate on a string it was passed
without danger of accidentally modifying the caller’s data structures. This
becomes particularly important in the presence of concurrency, where in-place
updates to strings would often have to be properly synchronized. (Although
they are not the norm, immutable strings have been provided by SNOBOL and
BASIC since the mid 1960s. Thus this idea is hardly new.)

2. Commonly occurring operations on strings should be efficient. In particular

CCC 0038–0644/95/121315–16 Received 26 July 1994
 1995 by John Wiley & Sons, Ltd. Revised 7 April 1995



1316 h.-j. boehm, r. atkinson and m. plass

(non-destructive) concatenation of strings and non-destructive substring oper-
ations should be fast, and should not require excessive amounts of space.

3. Common string operations should scale to long strings. There should be no
practical bound on the length of strings. Performance should remain acceptable
for long strings. (All of us have seen symptoms of the violation of this
requirement. For instance, the vi editor on most UNIX(TM) systems is unusable
on many text files due to a line length limit. An unchecked input limit in
fingerd supported the Morris internet worm.2 A six-month-old child randomly
typing at a workstation would routinely crash some older UNIX kernels due
to a buffer size limitation, etc.)

4. It should be as easy as possible to treat some other representation of ‘sequence
of character’ (e.g. a file) as a string. Functions on strings should be maxi-
mally reusable.

Strings represented as contiguous arrays of characters, as in C or Pascal, violate
most of these. Immutable strings may or may not be supported at the language
level. Concatenation of two immutable strings often involves copying both, and thus
becomes intolerably inefficient, in both time and space, for long strings. The substring
operation usually (though not necessarily) exhibits similar problems. Since strings
are stored contiguously, any copying of strings results in the allocation of large
chunks of storage, which may also result in substantial memory fragmentation. (For
long strings, we have observed this to be a problem even for some compacting
garbage collectors, since they are likely to avoid moving very large objects.)

As mentioned above, it is very common for application programs not to scale to
long string inputs at all. When they do, they commonly use special purpose data
structures to represent those strings in order to obtain acceptable performance. We
are not aware of any standard UNIX text editors that use a general purpose string
representation for the file being edited. Doing so would make character insertion in
long files intolerably slow. The approach we propose makes that practical.

In order to maximize reusability of string functions, it should be easy to coerce
other representations into standard strings. This is always possible by copying the
characters and building the appropriate string representation. But this is undesirable
if, for example, the original sequence is a long file, such that only the first few
characters are likely to be examined. We would like to be able to convert files into
strings without first reading them.

AN ALTERNATIVE

In order to allow concatenation of strings to be efficient in both time and space, it
must be possible for the result to share much of the data structure with its arguments.
This implies that fully manual storage management (e.g. based on explicitmalloc/free)
is impractical. (It can be argued that this is true even with conventional string
representations. Manual storage management typically results in much needless string
copying.) Though an explicitly reference counted implementation can be built, we
will assume automatic garbage collection.

Since concatenation may not copy its arguments, the natural alternative is to
represent such a string as an ordered tree, with each internal node representing the
concatenation of its children, and the leaves consisting offlat strings, usually



1317ropes: an alternative to strings

represented as contiguous arrays of characters. Thus the string represented by a tree
is the concatenation of its leaves in left-to-right order, as shown inFigure 1.

We refer to character strings represented as a tree of concatenation nodes as
ropes. (This is a little sloppy. A rope may contain shared subtrees, and is thus really
a directed acyclic graph, where the out-edges of each vertex are ordered. We will
continue to be sloppy.)

Ropes can be viewed as search trees that are indexed by position. If each vertex
contains the length of the string represented by the subtree, then minimal modifi-
cations of the search tree algorithms yield the following operations on ropes:

1. Fetch ith character. A simple search tree look-up. Rather than examining the
subtree containing the right key, we examine the tree containing the proper
position, as determined by the length fields.

2. Concatenate two ropes. Search tree concatenation as defined in Reference3.
3. Substring. Two search tree split operations, as defined in Reference3.
4. Iterate over each character. Left-to-right tree traversal.

The first three of the above operations can be performed in a time logarithmic in
the length of the argument, using, for example, B-trees or AVL trees.3,4 Note that
since strings are immutable, any nodes that would be modified in the standard
version of the algorithm, as well as their ancestors, are copied. Only logarithmically
many nodes need be copied.

The last can be performed in linear time for essentially any search tree variant.
Thus both concatenation and substring operations (other than for very short substrings)
are asymptotically faster than for conventional flat strings. The last exhibits roughly
the same performance. The first is somewhat slower, but usually infrequent.

In practice, we modify this in two ways. Concatenation is often a sufficiently
important operation that it should run in unit, not logarithmic, time. Long output
strings are typically built by concatenating short ones. For example, compilers
generating assembly language output may do so by concatenating strings in memory.5

Hence binary concatenation normally simply adds a root node, and does not rebalance
the tree. The rebalancing operation is either performed selectively, or invoked
explicitly. Effectively this trades speed of the substring and fetch operations for
better concatenation performance. Iteration over a rope is basically unaffected.

(Theoretically it is possible to guarantee that the first three operations run in
amortized logarithmic time, the iteration operation runs in linear time, and individual
concatenations are performed in constant time by using a ‘splay tree’ based
representation,6,7 in which each node represents the concatenation of a (possibly

Figure 1. Rope representation of ‘The quick brown fox’



1318 h.-j. boehm, r. atkinson and m. plass

empty) rope, a (non-empty) flat string, and another rope. This appears impractical
in our situation, since the fetch operation requires large amounts of allocation and
data structure modification. Furthermore, in a multithreaded environment, the fetch
operation appears to require locking.)

It is useful to introduce additional kinds of tree nodes. At a minimum, we allow
a second kind of leaf node containing at least a length and a user-defined function
for computing theith character in the string. This allows other representations of
character sequences (e.g. files) to be treated as ropes without copying. It may further
be useful to introduce substring nodes, so that long substrings of flat ropes do not
require copying.

ALGORITHMS

We briefly discuss the implementation of the more common operations. We will
largely ignore nodes containing user-defined functions, in that they do not affect the
algorithms significantly. We assume that all leaves are non-empty. We exclude empty
ropes from consideration; they are a trivial special case.

Note that all operations are completely non-destructive. They may be performed
without locking in a multithreaded environment.

Concatenation
In the general case, concatenation involves simply allocating a concatenation node

containing two pointers to the two arguments. For performance reasons, it is desirable
to deal with the common case in which the right argument is a short flat string
specially. If both arguments are short leaves, we produce a flat rope (leaf) consisting
of the concatenation. This greatly reduces space consumption and traversal times. If
the left argument is a concatenation node whose right son is a short leaf, and the
right argument is also a short leaf, then we concatenate the two leaves, and then
concatenate the result to the left son of the left argument. Together, these two
special cases guarantee that if a rope is built by repeatedly concatenating individual
characters to its end, we still obtain a rope with leaves of reasonable size. They
also greatly reduce the imbalance of the resulting trees.

Since the length of ropes is, in practice, bounded by the word size of the machine,
we can place a bound on the depth of balanced ropes. The concatenation operation
checks whether the resulting tree significantly exceeds this bound. If so, the rope is
explicitly rebalanced (see below). This has several benefits:

1. The balancing operation is only invoked implicitly for long ropes, and then
rarely. Each balancing operation will normally reduce the depth of the rope to
considerably below the threshold.

2. Recursive operations on ropes require a bounded amount of stack space.
3. Paths in the tree can be represented in a fixed amount of space. This is

important for the C implementation (see below).

Substring
The substring operation on structured ropes can be easily implemented. We assume

that the substring operation on leaves simply copies the relevant section of the leaf,
and deals with negative start arguments and over-length arguments correctly.



1319ropes: an alternative to strings

substr(concat(rope1,rope2),start,len) =
let

left = if start # 0 and len $ length(rope1) then
rope1

else
substr(rope1,start,len)

right = if start # length(rope1)
and start + len $ length(rope1) + length(rope2) then
rope2

else
substr(rope2,start-length(rope1), len-length(left))

in
concat(left,right)

This involves one recursive call for each tree node along the left or right boundary
of the substring. Hence its running time is bounded asymptotically by the tree height.

There is a trade-off between this kind of eager substring computation, and one in
which substrings are computed lazily by introducing special substring nodes, rep-
resenting unevaluated substrings. In practice we want to use lazy substring compu-
tations at least when we compute long substrings of very long flat ropes (e.g. a
function node representing a lazily-read file).

Rebalancing

Rebalancing produces a balanced version of the argument rope. The original
is unaffected.

We define the depth of a leaf to be 0, and the depth of a concatenation to be
one plus the maximum depth of its children. LetFn be thenth Fibonacci number.
A rope of depthn is balanced if its length is at leastFn+2, e.g. a balanced rope
of depth 1 must have length at least 2. Note that balanced ropes may contain
unbalanced subropes.

The rebalancing operation maintains an ordered sequence of (empty or) balanced
ropes, one for each length interval [Fn, Fn+1), for n $ 2. We traverse the rope from
left to right, inserting each leaf into the appropriate sequence position, depending
on its length. The concatenation of the sequence of ropes in order of decreasing
length is equivalent to the prefix of the rope we have traversed so far. Each new
leaf x is inserted into the appropriate entry of the sequence. Assume thatx’s length
is in the interval [Fn, Fn+1), and thus it should be put in slotn (which also
corresponds to maximum depthn − 2). If all lower and equal numbered levels are
empty, then this can be done directly. If not, then we concatenate ropes in slots
2,. . .,(n − 1) (concatenating onto the left), and concatenatex to the right of the
result. We then continue to concatenate ropes from the sequence in increasing order
to the left of this result, until the result fits into an empty slot in the sequence.

The concatenation we form in this manner is guaranteed to be balanced. The
concatenations formed before the addition ofx each have depth at most one more
than is warranted by their length. If slotn − 1 is empty then the concatenation of
shorter ropes has depth at mostn − 3, so the concatenation withx has depthn − 2,
and is thus balanced. If slotn − 1 is full, then the final depth after addingx may



1320 h.-j. boehm, r. atkinson and m. plass

be n − 1, but the resulting length is guaranteed to be at leastFn+1, again guaranteeing
balance. Subsequent concatenations (if any) involve concatenating two balanced ropes
with lengths at leastFm and Fm−1 and producing a rope of depthm− 1, which must
again be balanced.

Figure 2 shows this algorithm applied to a representation of ‘abcdef’. We have
shown only slots 2, . . ,5, which correspond to the length intervals [1,2), [2,3), [3,5),
and [5,8), and maximum depths 0, 1, 2, and 3, respectively. Note that the original
was already balanced by our definition, as is likely to be the case for small examples.

The above argument almost applies when we add a balanced treeb instead of a
leaf to the sequence. We may introduce one additional tree level immediately above
the insertion point forb, adding one to the depth of the final tree. In practice we
insert already balanced trees as a unit, and thus avoid rebuilding the entire tree in
response to a rebalancing operation.

The final step in balancing a rope is to concatenate the sequence of ropes in
order of increasing size. The resulting rope will not be balanced in the above sense,
but its depth will exceed the desired value by at most 2. One additional root node
may be introduced by the final concatenation. (Indeed, this is necessary. Consider
concatenating a small leaf to a large balanced tree to another small leaf. We must
add 2 to the depth of the resulting tree unless we re-examine the balanced tree.
Note that only trees that are balanced by our original strict definition are not
re-examined.)

Many variations of this approach are possible. Our balance condition was expressed
in terms of length, and our algorithm tends to move long flat ropes close to the
root. One could also rebalance purely in terms of node count.

C CORDS

We implemented a version of the above as a C library. Since this implementation
is lighter-weight than Cedar ropes, and heavier than C strings, we dubbed the
resulting objects ‘cords’.

Figure 2. Balancing ‘abcdef’



1321ropes: an alternative to strings

The C implementation operates under certain constraints. The compiler dictates
that a string constant is represented as a pointer to a NUL-terminated contiguous
array of characters. For our package to be practical, C string constants must double
as cord constants, whenever possible. Hence cords are also declared to be character
pointers (‘const char*’ to be exact), as are C strings, but are actually represented as
either a NULL pointer, denoting the empty cord, or in one of the three ways shown
in Figure 3.

The first is a pointer to anon-emptyC string, the second is essentially a pointer
to a function closure for computing theith character in the cord, and the third a
pointer to a concatenation node. Concatenation nodes contain a one byte depth field,
which is guaranteed to be sufficient, given the word length and balancing constraint.
A one byte ‘length of left child’ field is included, and eliminates nearly all calls to
compute the length of C strings during cord traversals. A zero value in this field
indicates a long left child.

Cords are balanced exactly as described above. The substring operation may
operate lazily and introduce a special variant of a closure node whose environment
(pointed to by the client data field) contains a pointer to a (flat) cord, and a starting
position within that cord. Substring operations on long flat cords do not copy
characters. This special variant is recognized by the substring operation, so that
nested substring operations do not result in nested substring nodes.

This design has several benefits:

Figure 3. Cord representation variants



1322 h.-j. boehm, r. atkinson and m. plass

1. String constants (or other non-empty C strings) may be passed directly to
procedures expecting cords. Unfortunately, empty C strings must be converted
to a NULL pointer. Erroneous uses of empty C strings could nearly always be
cleanly detected, at minimal cost, in a debugging version of the library.

2. Unlike C strings,NUL characters may be embedded inside cords using the
closure variant.

3. Concatenation and closure nodes are small.
4. The lengths of non-flat cords may be cheaply computed. Lengths of C strings

at leaves may often be cheaply computed from the context in which they
appear. (For example, the substring operation can usually do so.)

We use the concatenation optimizations described above. Ropes are balanced either
in response to an explicit call, or when the depth of a rope exceeds a threshold
larger than the depth of any balanced rope.

Since C does not provide function closures directly, it is clumsy to write client
code that invokes an iterator function to traverse a string, tempting programmers to
use the significantly slower fetch operation instead. (The recursive version of this
operation is even slower than one might think on register window machines.) We
sidestep this issue by introducing acord position abstraction. Abstractly, this is a
pair consisting of a cord, and a character index in the cord. Concretely, a cord
position is represented by these, plus the path from the root of the cord to the leaf
containing the index, and some cached information about the current leaf. Cord
positions provide fast operations for retrieving the current character, and advancing
the position to the next (or previous) character.

The implementation uses a recent version of the conservative garbage collector
described in References8 and 9, as does the current Cedar implementation. It is
available by anonymous ftp, together with the garbage collector, and a toy text
editor built on cords.1 This editor maintains a complete edit history as simply a
stack of cords, each cord representing the entire file contents. Performance is usually
more than adequate, even on multi-megabyte files. Memory use is moderate, both
since history entries share nearly all of their space, and because large files can be
read lazily, and not kept in memory. This implementation is, however, not nearly
as mature as the Cedar implementation.

CEDAR ROPES

Cedar ropes are explicitly supported by the language. The representation of normal
flat ropes (leaves) coincides with that of a built-in flat string type ‘text’. String
constants have the type ‘rope’ or ‘text’, depending on context.

Concatenation is implemented with the optimizations described above. Balancing
is also similar to what is described above.

In addition to the representation variants used for cords, a Cedar rope may be
represented by a replacement node, denoting a lazy replacement of a substring of a
rope by another rope. It is unclear that this variant is necessary, since it could also
be represented by a concatenation with substrings.

Instead of leaves containing user-defined functions, Cedar ropes may be represented
by ‘object’ nodes that contain ‘member’ functions to perform several different
operations, including fetching a specific character. (All of the operations other than
‘fetch’ have defaults provided.) This makes such nodes a bit more expensive to



1323ropes: an alternative to strings

manipulate, but makes certain operations (e.g. traversal and copying characters to a
flat buffer) considerably cheaper.

Cedar substring nodes are completely separate from function nodes, and must be
treated distinctly. As a result, they can be, and are, more heavily used. The substring
operation descends into the tree until it finds the smallest roper that entirely contains
the desired substring. It then returns a substring node that refers tor.

Rope traversal is accomplished primarily with a mapping function that applies a
user-defined function to each character. Since Cedar allows nested functions to be
passed as arguments, this provides a much cleaner interface than in C.

The vast majority of interfaces that deal with sequences of characters traffic in
ropes. Rope nodes are the single most commonly occurring object in most Cedar
heaps, both in terms of their number and their total size.

Much of the Cedar environment is available as Reference10.

PERFORMANCE

The Cedar system makes heavy use of ropes throughout. The text editor represents
an unstructured text file as a single rope. The performance of the system is
quite competitive.

Similarly, the above-mentioned toy editor performs quite well, even on very large
files. In order to give some more quantitative comparisons of the techniques we
advocate with conventional string programming techniques, we measured operations
likely to be common in either case.

Figure 4 reports the cost of string concatenations in CPU microseconds on a Sun
SPARCstation 2. We measured the cost of concatenating two strings or ropes of
various lengths. The top three lines reflect the cost of non-destructive concatenation
using the standard C library with several different memory allocators. The bottom
two correspond to rope concatenation, again with slightly different allocation over-
head. More detailed explanations of all the measurements are deferred to the appendix.

Figure 5gives the time required to build a single C cord or conventional C string a
character at a time, using various common, though not necessarily good, programming
techniques. These correspond roughly to the techniques that might be used when
reading in a text file or a command line, and buiding an in-memory version of the
string. The vertical axis measures the time required to build a string of the indicated
length. Note that not all operations are strictly comparable in functionality.

The lines labelledUNBUFFERED and BUFFERED were obtained using the standard
C realloc and strcat functions to build up the string either 1 or 128 characters at a
time. The line labelledSIMPLE builds up the string in place (which is fastest, but
not always practical).GEOMETRIC does the same, but starts with a small buffer and
repeatedly doubles it. The remaining two lines use theCORD package, either by
naı̈vely concatenating individual characters to a string (CAT BUILD), or by using an
interface explicitly designed for the purpose (BUFFERED CORD). Note thatBUFFERED
CORD provides essentially the same performance asGEOMETRIC, and that CAT
BUILD might still be tolerable for 100,000 character strings, whereUNBUFFERED is
completely unacceptable.

Finally, Figure 6 gives the time required to completely traverse a C style string
or cord of a given length. Times are again given per string traversal. The top four



1324 h.-j. boehm, r. atkinson and m. plass

Figure 4. Concatenation time

lines represent cord traversals, with varying programming sophistication. The bottom
line represents a simple C traversal of a contiguous string of the same length.

PREVIOUS WORK

Many imperative programming languages have recognized the desirability of an
immutable string type. The earliest language with immutable strings that we could
find was SNOBOL,11,12 followed by BASIC and XPL. SNOBOL implementations
included flat immutable strings, together with a fast substring operation, and pro-
visions for fast concatenation in special cases. The same is true of SAIL13 and a
number of other later language designs such as CLU,14 Icon15 and standard ML.
The CLU design directly inspired Cedar ropes. But all implementations of which
we are aware use flat representations, and hence cannot, for example, efficiently
insert a character into the middle of a 100,000 character string.

Linked string representations are considered in Reference16. However, its author
considers only linearly linked representations designed for fast in-place updates. Non-
destructive concatenation and substring operations perform poorly on these represen-
tations.

Several authors have discussed general techniques for efficient implementations of
immutable data structures. Most of these rely on the use of balanced ‘tree’ structures,
and copying of modified nodes, as we do. Probably the closest to our work is



1325ropes: an alternative to strings

Figure 5. Build time

Reference17, which discusses non-destructive operations on linear lists using AVL
DAGs. The string case is not specifically discussed (though an editor application is
also used). Our data structure is quite different from that of Reference17 to
accommodate fast concatenation, the small list elements (characters), lazily evaluated
sublists, and the need for proper integration with string constants.

A more sophisticated implementation technique for immutable data structures is
described in Reference18. That approach could be used, for example, to implement
ropes with O(1) space cost for character insertion and deletion, even when the
original rope is retained. However their approach again appears to require locking.

The idea of representing a string as a tree of concatenations has been rediscovered
multiple times, particularly in the context of attribute grammars (cf. Reference5 or
Rodney Farrow’s Linguist system). Here a fast concatenation operation is often
sufficient. We do not know of other published generalizations to a comprehensive
collection of string operations.

Cedar Ropes themselves have evolved since 1982. They are mentioned in passing,
but not described, in References19 and 20. References21 and 22 each contain a
one paragraph description of ropes, with no implementation details (some of which
have changed since then). Reference21 also discusses some applications of ropes.

Variations of ropes have also appeared in DEC SRC programming environments.
Modula-2+ provided both an interface and implementation similar to Cedar ropes.
Modula 323 provides the interfaces, but the current implementation uses a flat



1326 h.-j. boehm, r. atkinson and m. plass

Figure 6. Traversal time

representation. (Though we have not done a thorough study, this choice appears to
at least double the heap space requirements of one of the Modula-3 programs we
did examine.)

CONCLUSIONS

We have argued that it is important to provide an immutable character string type
that provides a cheap concatenation operation, and scales correctly to long strings,
so that modules with string inputs can be truly reusable. It is important that
programming languages either provide this facility or can be easily extended to
provide it. The Cedar language supports it explicitly. It is possible to add it to C
as a library, with some small further loss of type safety. This is much more than
compensated for by the elimination of subscript errors resulting from needless low-
level string manipulation.

It is not clear whether the implementation we suggested above is in any sense
optimal. However, it performs sufficiently well for our purposes, and sufficiently
well that for most purposes it is preferred over traditional ‘flat’ string representations.
Our experience has been that it results in software that is noticeably more robust,
particularly in that it scales correctly to unexpectedly large inputs.



1327ropes: an alternative to strings

acknowledgements

Many other members of PARC CSL have contributed to the Cedar Rope package.
Dan Swinehart and one of the referees helped us track down the history of immutable
strings. Both anonymous referees provided useful suggestions on an earlier draft of
this paper.

APPENDIX

All measurements inFigures 4, 5, and 6 are in user mode CPU microseconds on a
SPARCstation 2 running running SunOS 4.1.2. We used version 4.1 of the package
in Reference1. The machine had enough memory (64 MB) that paging was not an
issue. All programs were compiled with gcc and statically linked. Garbage collection
times are included. The tests were run for enough iterations in the same heap to
force several collections.

Though the measurements are quite repeatable, they should be taken as rough
values, since they depend on many parameters not discussed here. (For instance, the
pointers to the strings were kept in statically-allocated global variables.)

Figure 4

C CONCAT/GC

Non-destructively concatenate a string to itself, using twostrlen calls, an allocation,
and two memcpy calls. This uses version 4.1 of our conservative garbage collector
in its default (more space- than time-efficient) configuation. (The contiguous strings
of length 200,000 were allocated with interior pointer recognition disabled to avoid
anomalous behavior. See Reference9 for a discussion of why this is desirable.)

C CONCAT/BIG HEAP

As above, but the heap was expanded by 4 MB at start-up. This significantly
reduces garbage collection overhead.

C CONCAT/SUN MALLOC

As above, but uses the SunOS 4.1.3 defaultmalloc. Not that this actually performs
slightly worse than evenC CONCAT/GC for short strings, but outperforms the garbage
collected versions for long strings (which force more frequent collection).

CORD CONCAT

Concatenate a cord to itself. Uses the garbage collector in default configuration.
The cord was built as inBUFFERED CORD below. This matters only in that the
cord is structured, and hence has an easily available length, except in the length 10
and 100 cases. The time per operation is basically constant, except that short strings
require calls tostrlen, and that long strings force a large heap, which tends to reduce
GC overhead.



1328 h.-j. boehm, r. atkinson and m. plass

CORD CONCAT/BIG

Same asCORD CONCAT, except that the heap was expanded by 4 MB at start-up.

Figure 5

All measurements were performed with our garbage collecting allocator. Our
version of C’s realloc explicitly deallocates memory; no other storage was
explicitly deallocated.

UNBUFFERED

Build up a C string by initially allocating a single byte, and then repeatedly
reallocating the buffer and adding the new character to the end with the Cstrcat
function. Note that this copies the string only whenrealloc copies. (Therealloc
implementation copies at geometrically increasing lengths for small strings, and
whenever the new object requires an additional page for large strings.) Every
character involves a traversal of the first string. (This is a highly suboptimal
algorithm, which unfortunately appears to be used occasionally.)

BUFFERED

Build up a C string by initially allocating a single byte, putting new characters
in a buffer, and destructively appending the buffer to the strings when it is full.
Append is implemented using C’srealloc and strcat. The buffer size is 128 bytes.

CAT BUILD

We build a cord. A cord consisting of a single character is repeatedly concatenated
to the cord. (This is usually an amateur programming technique, roughly comparable
to UNBUFFERED. It does have the advantage that nothing is being destructively
updated. Any prefix can be safely saved with a pointer copy.)

BUFFERED CORD

Similar to BUFFERED, but each time the buffer fills, it is concatenated to the
cord. This uses routines provided by the cord implementation for this purpose. The
buffer size is again 128. The resulting cord is explicitly balanced. The interface is
similar to Modula-3 ‘text writers’.23 The implementation is tuned for short strings.

GEOMETRIC

The space allocated to the string is grown by factors of 2, starting at 1.Strcat is
not used, string length is not recomputed.

SIMPLE

Build up a C string by preallocating a sufficiently large buffer and filling it in.
(A commonly used technique. Fails for unexpectedly long strings.)



1329ropes: an alternative to strings

Figure 6

The traversal function computes the exclusive-or of all characters in the string.
Thus the compiler is prevented from optimizing out major parts of the traversal.

CORD TRAV

Traverse a cord built byCONCAT, using the cord position primitives described
above. With the help of some macros provided by the cord package, the traversal
code looks very similar to what is needed for traversing a traditional C string.

B. CORD TRAV

Same asCORD TRAV, but uses the cord fromBUFFERED CORD. The cord is more
balanced with larger leaves.

F. CORD TRAV

Same asCORD TRAV, but does not use the cord position primitives. Instead it
explicitly invokes an iterator function. The iterator function is passed a function that
examines an individual character. It can also be optionally passed a second function
that will accept longer substrings (as C strings) and process more than one character
at a time. In this case such a function was also provided. This takes about 15 more
lines of code thanCORD TRAV. (This code would have to be repeated for each type
of string traversal.)

B.F. CORD TRAV

Same asF. CORD TRAV, but uses the cord fromBUFFERED CORD. This represents
the best case for a cord traversal.

C TRAVERSE

Traverse a C string using explicit inline array subscripting. The C string pointer
was stored in a global, but the resulting load was optimized out by the compiler.

REFERENCES

1. The garbage collector and cord package can be retrieved from ftp://parcftp.xerox.com/pub/gc/gc.tar.Z.
A brief description can be found in ftp://parcftp.xerox.com/pub/gc/gc.html.

2. Eugene H. Spafford, ‘Crisis and aftermath’, in ‘Special Section on the Internet Worm’,Communications
of the ACM32, (6), 678–687, (1989).

3. D. Knuth, The Art of Computer Programming, Vol. 3, Searching and Sorting, Addision-Wesley, 1973.
4. Samuel W. Bent, Daniel D. Sleator and Robert E. Tarjan, ‘Biased 2-3 trees’,Proceedings of the 21st

Annual Symposium on Foundations of Computer Science, IEEE, 1980, pp. 248–254.
5. H. Boehm and W. Zwaenepoel, ‘Parallel attribute grammar evaluation’,Proceedings of the 7th Inter-

national Conference on Distributed Computing Systems, September 1987, pp. 347–355.
6. Robert R. Tarjan,Data Structures and Network Algorithms, SIAM, 1983.
7. D. Sleator and R. Tarjan, ‘Self-adjusting binary trees’,Proceedings, Fifteenth Annual ACM Symposium

on Theory of Computing, 1983, pp. 235–245.
8. Hans-J. Boehm and Mark Weiser, ‘Garbage collection in an uncooperative environment’,Software—

Practice and Experience18, 807–820 (1988).



1330 h.-j. boehm, r. atkinson and m. plass

9. Hans-J. Boehm, ‘Space efficient conservative garbage collection’,Proceedings of the ACM SIGPLAN
’93 Conference on Programming Language Design and Implementation, SIGPLAN Notices28, (6), 197–
206 (1993).

10. C. Hauser, C. Jacobi, M. Theimer, B. Welch and M. Weiser, ‘Using threads in interactive systems: a
case study’,Xerox PARC Technical Report CSL-93-16 CD. This is a CD-ROM containing both a paper
and a Cedar system that can be run under SunOS. Source code is included for much of the system,
including the Rope package.

11. D. Farber, R. E. Griswold and I. P. Polansky, ‘SNOBOL, a string manipulation language’,Journal of
the Association for Computing Machinery, 11, (1), 21–30 (1964).

12. R. E. Griswold, J. F. Poage and I. P. Polonsky,The SNOBOL4 Programming Language, Second Edition,
Prentice-Hall, 1971.

13. Kurt A. VanLehn (ed.), ‘SAIL user manual’,Report STAN-CS-73-373, Stanford Computer Science
Department, July 1973.

14. B. Liskov, R. Atkinson, T. Bloom, E. Moss, J. C. Schaffert, R. Scheiffler and A. Snyder,CLU Reference
Manual, Springer, 1981.

15. R. E. Griswold and M. T. Griswold,The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

16. Stuart E. Madnick, ‘String processing techniques’,Communications of the ACM,10, (7), 420–424, (1967).
17. Eugene W. Myers, ‘Efficient applicative data types’,Conference Record of the Eleventh Annual ACM

Symposium on Principles of Programming Languages, January 1984, pp. 66–75.
18. D. Driscoll, N. Sarnak, D. Sleator and R. Tarjan, ‘Making data structures persistent’,JCSS,38, (1),

86–124 (1989).
19. Butler W. Lampson, ‘A description of the Cedar programming language: a Cedar language reference

manual’, Xerox PARC Report CSL 83–15, December 1983 (out of print).
20. D. Swinehart, P. Zellweger and R. Hagmann, ‘The structure of Cedar’,Proceedings of the ACM

SIGPLAN ’85 Symposium on Language Issues in Programming Environments, SIGPLAN Notices,20,
(7), 230–244 (1985).

21. D. Swinehart, P. Zellweger, R. Beach and R. Hagmann, ‘A structural view of the Cedar programming
environment’,Xerox PARC Report CSL 86.1, June 1986.

22. W. Teitelman, ‘A tour through Cedar’,IEEE Software, April 1984, pp. 44–73.
23. Greg Nelson (ed.),Systems Programming in Modula-3, Prentice Hall, 1991.


	SUMMARY
	WHAT’S WRONG WITH STRINGS?
	AN ALTERNATIVE
	ALGORITHMS
	Concatenation
	Substring
	Rebalancing

	C CORDS
	CEDAR ROPES
	PERFORMANCE
	PREVIOUS WORK
	CONCLUSIONS
	APPENDIX
	Figure 4
	C CONCAT/GC
	C CONCAT/BIG HEAP
	C CONCAT/SUN MALLOC
	CORD CONCAT
	CORD CONCAT/BIG

	Figure 5
	UNBUFFERED
	BUFFERED
	CAT BUILD
	BUFFERED CORD
	GEOMETRIC
	SIMPLE

	Figure 6
	CORD TRAV
	B. CORD TRAV
	F. CORD TRAV
	B.F. CORD TRAV
	C TRAVERSE



