C++ Program for Search an element in a sorted and rotated array
Last Updated :
19 Sep, 2023
An element in a sorted array can be found in O(log n) time via binary search. But suppose we rotate an ascending order sorted array at some pivot unknown to you beforehand. So for instance, 1 2 3 4 5 might become 3 4 5 1 2. Devise a way to find an element in the rotated array in O(log n) time.
Example:
Input : arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3};
key = 3
Output : Found at index 8
Input : arr[] = {5, 6, 7, 8, 9, 10, 1, 2, 3};
key = 30
Output : Not found
Input : arr[] = {30, 40, 50, 10, 20}
key = 10
Output : Found at index 3
All solutions provided here assume that all elements in the array are distinct.
Basic Solution:
Approach:
- The idea is to find the pivot point, divide the array in two sub-arrays and perform binary search.
- The main idea for finding pivot is - for a sorted (in increasing order) and pivoted array, pivot element is the only element for which next element to it is smaller than it.
- Using the above statement and binary search pivot can be found.
- After the pivot is found out divide the array in two sub-arrays.
- Now the individual sub - arrays are sorted so the element can be searched using Binary Search.
Implementation:
Input arr[] = {3, 4, 5, 1, 2}
Element to Search = 1
1) Find out pivot point and divide the array in two
sub-arrays. (pivot = 2) /*Index of 5*/
2) Now call binary search for one of the two sub-arrays.
(a) If element is greater than 0th element then
search in left array
(b) Else Search in right array
(1 will go in else as 1 < 0th element(3))
3) If element is found in selected sub-array then return index
Else return -1.
Below is the implementation of the above approach:
C++
/* C++ Program to search an element
in a sorted and pivoted array*/
#include <bits/stdc++.h>
using namespace std;
/* Standard Binary Search function*/
int binarySearch(int arr[], int low,
int high, int key)
{
if (high < low)
return -1;
int mid = (low + high) / 2; /*low + (high - low)/2;*/
if (key == arr[mid])
return mid;
if (key > arr[mid])
return binarySearch(arr, (mid + 1), high, key);
// else
return binarySearch(arr, low, (mid - 1), key);
}
/* Function to get pivot. For array 3, 4, 5, 6, 1, 2
it returns 3 (index of 6) */
int findPivot(int arr[], int low, int high)
{
// base cases
if (high < low)
return -1;
if (high == low)
return low;
int mid = (low + high) / 2; /*low + (high - low)/2;*/
if (mid < high && arr[mid] > arr[mid + 1])
return mid;
if (mid > low && arr[mid] < arr[mid - 1])
return (mid - 1);
if (arr[low] >= arr[mid])
return findPivot(arr, low, mid - 1);
return findPivot(arr, mid + 1, high);
}
/* Searches an element key in a pivoted
sorted array arr[] of size n */
int pivotedBinarySearch(int arr[], int n, int key)
{
int pivot = findPivot(arr, 0, n - 1);
// If we didn't find a pivot,
// then array is not rotated at all
if (pivot == -1)
return binarySearch(arr, 0, n - 1, key);
// If we found a pivot, then first compare with pivot
// and then search in two subarrays around pivot
if (arr[pivot] == key)
return pivot;
if (arr[0] <= key)
return binarySearch(arr, 0, pivot - 1, key);
return binarySearch(arr, pivot + 1, n - 1, key);
}
/* Driver program to check above functions */
int main()
{
// Let us search 3 in below array
int arr1[] = { 5, 6, 7, 8, 9, 10, 1, 2, 3 };
int n = sizeof(arr1) / sizeof(arr1[0]);
int key = 3;
// Function calling
cout << "Index of the element is : "
<< pivotedBinarySearch(arr1, n, key);
return 0;
}
Output:
Index of the element is : 8
Complexity Analysis:
- Time Complexity: O(log n).
Binary Search requires log n comparisons to find the element. So time complexity is O(log n). - Space Complexity:O(1), No extra space is required.
Thanks to Ajay Mishra for initial solution.
Improved Solution:
Approach: Instead of two or more pass of binary search the result can be found in one pass of binary search. The binary search needs to be modified to perform the search. The idea is to create a recursive function that takes l and r as range in input and the key.
1) Find middle point mid = (l + h)/2
2) If key is present at middle point, return mid.
3) Else If arr[l..mid] is sorted
a) If key to be searched lies in range from arr[l]
to arr[mid], recur for arr[l..mid].
b) Else recur for arr[mid+1..h]
4) Else (arr[mid+1..h] must be sorted)
a) If key to be searched lies in range from arr[mid+1]
to arr[h], recur for arr[mid+1..h].
b) Else recur for arr[l..mid]
Below is the implementation of above idea:
C++
// Search an element in sorted and rotated
// array using single pass of Binary Search
#include <bits/stdc++.h>
using namespace std;
// Returns index of key in arr[l..h] if
// key is present, otherwise returns -1
int search(int arr[], int l, int h, int key)
{
if (l > h)
return -1;
int mid = (l + h) / 2;
if (arr[mid] == key)
return mid;
/* If arr[l...mid] is sorted */
if (arr[l] <= arr[mid]) {
/* As this subarray is sorted, we can quickly
check if key lies in half or other half */
if (key >= arr[l] && key <= arr[mid])
return search(arr, l, mid - 1, key);
/*If key not lies in first half subarray,
Divide other half into two subarrays,
such that we can quickly check if key lies
in other half */
return search(arr, mid + 1, h, key);
}
/* If arr[l..mid] first subarray is not sorted, then arr[mid... h]
must be sorted subarray */
if (key >= arr[mid] && key <= arr[h])
return search(arr, mid + 1, h, key);
return search(arr, l, mid - 1, key);
}
// Driver program
int main()
{
int arr[] = { 4, 5, 6, 7, 8, 9, 1, 2, 3 };
int n = sizeof(arr) / sizeof(arr[0]);
int key = 6;
int i = search(arr, 0, n - 1, key);
if (i != -1)
cout << "Index: " << i << endl;
else
cout << "Key not found";
}
Output:
Index: 2
Complexity Analysis:
- Time Complexity: O(log n).
Binary Search requires log n comparisons to find the element. So time complexity is O(log n). - Space Complexity: O(1).
As no extra space is required.
Thanks to Gaurav Ahirwar for suggesting above solution.
How to handle duplicates?
It doesn't look possible to search in O(Logn) time in all cases when duplicates are allowed. For example consider searching 0 in {2, 2, 2, 2, 2, 2, 2, 2, 0, 2} and {2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}.
It doesn’t look possible to decide whether to recur for the left half or right half by doing a constant number of comparisons at the middle.
Similar Articles:
Please write comments if you find any bug in the above codes/algorithms, or find other ways to solve the same problem.
Please refer complete article on
Search an element in a sorted and rotated array for more details!
Similar Reads
C++ Program for Check if an array is sorted and rotated Given an array of N distinct integers. The task is to write a program to check if this array is sorted and rotated counter-clockwise. A sorted array is not considered as sorted and rotated, i.e., there should at least one rotation.Examples: Input : arr[] = { 3, 4, 5, 1, 2 } Output : YES The above ar
5 min read
How to Find All Indexes of an Element in an Array in C++? In C++, an array is a collection of elements of the same type placed in contiguous memory locations. In this article, we will learn how to find all indexes of a specific element in an array in C++. Example: Input: myArray = {1, 2, 2, 3, 3, 3, 4, 4, 4, 4}; target = 3Output: The element 3 occurred at
2 min read
C++ Program to Find the Mth element of the Array after K left rotations Given non-negative integers K, M, and an array arr[] with N elements find the Mth element of the array after K left rotations. Examples: Input: arr[] = {3, 4, 5, 23}, K = 2, M = 1Output: 5Explanation:Â The array after first left rotation a1[ ] = {4, 5, 23, 3}The array after second left rotation a2[ ]
3 min read
Can Binary Search be applied in an Unsorted Array? Binary Search is a search algorithm that is specifically designed for searching in sorted data structures. This searching algorithm is much more efficient than Linear Search as they repeatedly target the center of the search structure and divide the search space in half. It has logarithmic time comp
9 min read
C++ Program to cyclically rotate an array by one Given an array, cyclically rotate the array clockwise by one. Examples: Input: arr[] = {1, 2, 3, 4, 5} Output: arr[] = {5, 1, 2, 3, 4}Recommended: Please solve it on "PRACTICE" first, before moving on to the solution. Following are steps. 1) Store last element in a variable say x. 2) Shift all eleme
3 min read
C++ Program to Print array after it is right rotated K times Given an Array of size N and a values K, around which we need to right rotate the array. How to quickly print the right rotated array?Examples :Â Â Input: Array[] = {1, 3, 5, 7, 9}, K = 2. Output: 7 9 1 3 5 Explanation: After 1st rotation - {9, 1, 3, 5, 7} After 2nd rotation - {7, 9, 1, 3, 5} Input:
2 min read
C++ Program to Count of rotations required to generate a sorted array Given an array arr[], the task is to find the number of rotations required to convert the given array to sorted form.Examples: Input: arr[] = {4, 5, 1, 2, 3}Â Output: 2Â Explanation:Â Sorted array {1, 2, 3, 4, 5} after 2 anti-clockwise rotations. Input: arr[] = {2, 1, 2, 2, 2}Â Output: 1Â Explanation:Â So
4 min read
C++ Program to Modify given array to a non-decreasing array by rotation Given an array arr[] of size N (consisting of duplicates), the task is to check if the given array can be converted to a non-decreasing array by rotating it. If it's not possible to do so, then print "No". Otherwise, print "Yes". Examples: Input: arr[] = {3, 4, 5, 1, 2}Output: YesExplanation:Â After
2 min read
C++ Program For Binary Search Binary Search is a popular searching algorithm which is used for finding the position of any given element in a sorted array. It is a type of interval searching algorithm that keep dividing the number of elements to be search into half by considering only the part of the array where there is the pro
5 min read
C++ Program for Block swap algorithm for array rotation Write a function rotate(ar[], d, n) that rotates arr[] of size n by d elements. Rotation of the above array by 2 will make array Algorithm : Initialize A = arr[0..d-1] and B = arr[d..n-1] 1) Do following until size of A is equal to size of B a) If A is shorter, divide B into Bl and Br such that Br i
4 min read