Find duplicates in an Array with values 1 to N using counting sort
Last Updated :
07 Nov, 2023
Given a constant array of N elements which contain elements from 1 to N - 1, with any of these numbers appearing any number of times.
Examples:
Input: N = 5, arr[] = {1, 3, 4, 2, 2}
Output: 2
Explanation:
2 is the number occurring more than once.
Input: N = 5, arr[] = {3, 1, 3, 4, 2}
Output: 3
Explanation:
3 is the number occurring more than once.
Naive Approach: The naive method is to first sort the given array and then look for adjacent positions of the array to find the duplicate number.
Below is the implementation of the approach:
C++
// C++ code for the approach
#include <bits/stdc++.h>
using namespace std;
// Function to find duplicate
int findDuplicates(int arr[], int n) {
// sort the array
sort(arr, arr + n);
// boolean flag to check if duplicate exists or not
bool flag = false;
// find duplicates by checking adjacent elements
for (int i = 0; i < n - 1; i++) {
if (arr[i] == arr[i + 1]) {
flag = true;
return arr[i];
}
}
// if there is no duplicate
if (!flag) {
return -1;
}
}
// Driver code
int main() {
// Input array
int arr[] = { 1, 3, 4, 2, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << findDuplicates(arr, n);
return 0;
}
Java
// Java code for the approach
import java.util.Arrays;
public class GFG {
// Function to find duplicate
public static int findDuplicates(int[] arr, int n)
{
// sort the array
Arrays.sort(arr);
// boolean flag to check if duplicate exists or not
boolean flag = false;
// find duplicates by checking adjacent elements
for (int i = 0; i < n - 1; i++) {
if (arr[i] == arr[i + 1]) {
flag = true;
return arr[i];
}
}
// if there is no duplicate
if (!flag) {
return -1;
}
return -1;
}
// Driver code
public static void main(String[] args)
{
// Input array
int[] arr = { 1, 3, 4, 2, 2 };
int n = arr.length;
// Function call
System.out.println(findDuplicates(arr, n));
}
}
Python3
# Python code for the approach
# Function to find duplicate
def find_duplicates(arr):
# sort the array
arr.sort()
# find duplicates by checking adjacent elements
for i in range(len(arr)-1):
if arr[i] == arr[i+1]:
return arr[i]
return -1
# Drive function
arr = [1, 3, 4, 2, 2]
n = len(arr)
print(find_duplicates(arr))
# This code is contributed by shiv1o43g
C#
using System;
public class GFG
{
// Function to find duplicate
public static int FindDuplicates(int[] arr, int n)
{
// Sort the array
Array.Sort(arr);
// Boolean flag to check if duplicate exists or not
bool flag = false;
// Find duplicates by checking adjacent elements
for (int i = 0; i < n - 1; i++)
{
if (arr[i] == arr[i + 1])
{
flag = true;
return arr[i];
}
}
// If there is no duplicate
if (!flag)
{
return -1;
}
return -1;
}
// Driver code
public static void Main(string[] args)
{
// Input array
int[] arr = { 1, 3, 4, 2, 2 };
int n = arr.Length;
// Function call
Console.WriteLine(FindDuplicates(arr, n));
}
}
JavaScript
function findDuplicates(arr) {
// sort the array
arr.sort();
// find duplicates by checking adjacent elements
for (let i = 0; i < arr.length - 1; i++) {
if (arr[i] === arr[i + 1]) {
return arr[i];
}
}
return -1;
}
// Drive function
let arr = [1, 3, 4, 2, 2];
let n = arr.length;
console.log(findDuplicates(arr));
// This code is contributed by Dwaipayan Bandyopadhyay
Time Complexity: O(N*log N)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above method the idea is to use the concept of Counting Sort. Since the range of elements in the array is known, hence we could use this sorting technique to improvise the time complexity.
The idea is to initialize another array(say count[]) with the same size N and initialize all the elements as 0. Then count the occurrences of each element of the array and update the count in the count[]. Print all the element whose count is greater than 1.
Below is the implementation of the above approach:
C++
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find the duplicate
// number using counting sort method
int findDuplicate(int arr[], int n)
{
int countArr[n + 1], i;
// Initialize all the elements
// of the countArr to 0
for (i = 0; i <= n; i++)
countArr[i] = 0;
// Count the occurrences of each
// element of the array
for (i = 0; i <= n; i++)
countArr[arr[i]]++;
bool a = false;
// Find the element with more
// than one count
for (i = 1; i <= n; i++) {
if (countArr[i] > 1) {
a = true;
cout << i << ' ';
}
}
// If unique elements are there
// print "-1"
if (!a)
cout << "-1";
}
// Driver Code
int main()
{
// Given N
int n = 4;
// Given array arr[]
int arr[] = { 1, 3, 4, 2, 2 };
// Function Call
findDuplicate(arr, n);
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG {
// Function to find the duplicate number
// using counting sort method
public static int
findDuplicate(int arr[], int n)
{
int countArr[] = new int[n + 1], i;
// Initialize all the elements of the
// countArr to 0
for (i = 0; i <= n; i++)
countArr[i] = 0;
// Count the occurrences of each
// element of the array
for (i = 0; i <= n; i++)
countArr[arr[i]]++;
bool a = false;
// Find the element with more
// than one count
for (i = 1; i <= n; i++) {
if (countArr[i] > 1) {
a = true;
System.out.print(i + " ");
}
}
if (!a)
System.out.println("-1");
}
// Driver Code
public static void main(String[] args)
{
int n = 4;
int arr[] = { 1, 3, 4, 2, 2 };
// Function Call
findDuplicate(arr, n);
}
}
Python3
# Python3 program for the above approach
# Function to find the duplicate
# number using counting sort method
def findDuplicate(arr, n):
# Initialize all the elements
# of the countArr to 0
countArr = [0] * (n + 1)
# Count the occurrences of each
# element of the array
for i in range(n + 1):
countArr[arr[i]] += 1
a = False
# Find the element with more
# than one count
for i in range(1, n + 1):
if(countArr[i] > 1):
a = True
print(i, end = " ")
# If unique elements are there
# print "-1"
if(not a):
print(-1)
# Driver code
if __name__ == '__main__':
# Given N
n = 4
# Given array arr[]
arr = [ 1, 3, 4, 2, 2 ]
# Function Call
findDuplicate(arr, n)
# This code is contributed by Shivam Singh
C#
// C# program for the above approach
using System;
class GFG{
// Function to find the duplicate number
// using counting sort method
static void findDuplicate(int []arr, int n)
{
int []countArr = new int[n + 1];
int i;
// Initialize all the elements of the
// countArr to 0
for(i = 0; i <= n; i++)
countArr[i] = 0;
// Count the occurrences of each
// element of the array
for(i = 0; i <= n; i++)
countArr[arr[i]]++;
bool a = false;
// Find the element with more
// than one count
for(i = 1; i <= n; i++)
{
if (countArr[i] > 1)
{
a = true;
Console.Write(i + " ");
}
}
if (!a)
Console.WriteLine("-1");
}
// Driver Code
public static void Main(String[] args)
{
int n = 4;
int []arr = { 1, 3, 4, 2, 2 };
// Function Call
findDuplicate(arr, n);
}
}
// This code is contributed by Amit Katiyar
JavaScript
<script>
// JavaScript program for the above approach
// Function to find the duplicate number
// using counting sort method
function
findDuplicate(arr, n)
{
let countArr = Array.from({length: n+1}, (_, i) => 0), i;
// Initialize all the elements of the
// countArr to 0
for (i = 0; i <= n; i++)
countArr[i] = 0;
// Count the occurrences of each
// element of the array
for (i = 0; i <= n; i++)
countArr[arr[i]]++;
let a = false;
// Find the element with more
// than one count
for (i = 1; i <= n; i++) {
if (countArr[i] > 1) {
a = true;
document.write(i + " ");
}
}
if (!a)
document.write("-1");
}
// Driver Code
let n = 4;
let arr = [ 1, 3, 4, 2, 2 ];
// Function Call
findDuplicate(arr, n);
</script>
Time Complexity: O(N)
Auxiliary Space: O(N)
Related articles:
Approch 3 : The given code use a hashing technique to locate duplicates in an array. To be more precise, the frequency of each element in the array is stored using an unordered map. An element is considered to be duplicated if its frequency is more than 1, in which case the method returns that element.
Algorithm Steps of given approch :
- Create an unordered map called freq to store the frequency of each element in the array.
- Iterate over the input array using a for loop.
- For each element in the array, increment its frequency in the freq map using the ++freq[arr[i]] notation.
- If the frequency of the current element is greater than 1, return the element as it is a duplicate.
- If no duplicates are found, return -1.
- End of the program.
C++
// c++ code implemenation for above approach
#include <bits/stdc++.h>
using namespace std;
int findDuplicates(int arr[], int n) {
unordered_map<int, int> freq;
for(int i=0; i<n; i++) {
if(++freq[arr[i]] > 1) {
return arr[i];
}
}
return -1;
}
int main() {
int arr[] = {1, 3, 4, 2, 2};
int n = sizeof(arr) / sizeof(arr[0]);
// Fucntion calling
cout << findDuplicates(arr, n);
return 0;
}
Java
import java.util.HashMap;
import java.util.Map;
public class Main {
public static int findDuplicates(int[] arr) {
// Create a HashMap to store the frequency of each element in the array.
Map<Integer, Integer> freq = new HashMap<>();
// Iterate through the array.
for (int i = 0; i < arr.length; i++) {
// Check if the element is already in the HashMap.
if (freq.containsKey(arr[i])) {
// If it's already in the HashMap, increment its frequency.
freq.put(arr[i], freq.get(arr[i]) + 1);
// If the frequency becomes greater than 1, this is a duplicate, so return it.
if (freq.get(arr[i]) > 1) {
return arr[i];
}
} else {
// If the element is not in the HashMap, add it with a frequency of 1.
freq.put(arr[i], 1);
}
}
// If no duplicates are found, return -1.
return -1;
}
public static void main(String[] args) {
int[] arr = {1, 3, 4, 2, 2};
// Call the findDuplicates function and print the result.
System.out.println(findDuplicates(arr));
}
}
Python
def find_duplicates(arr):
# Create a dictionary to store the frequency of each element
freq = {}
# Iterate through the elements in the array
for num in arr:
# If the element is already in the dictionary, it's a duplicate
if num in freq:
return num
# Otherwise, add it to the dictionary with a frequency of 1
else:
freq[num] = 1
# If no duplicates are found, return -1
return -1
def main():
arr = [1, 3, 4, 2, 2]
# Call the function and print the result
result = find_duplicates(arr)
print(result)
if __name__ == "__main__":
main()
C#
using System;
using System.Collections.Generic;
class Program
{
static int FindDuplicates(int[] arr)
{
Dictionary<int, int> freq = new Dictionary<int, int>();
foreach (int num in arr)
{
if (freq.ContainsKey(num))
{
freq[num]++;
if (freq[num] > 1)
{
return num;
}
}
else
{
freq[num] = 1;
}
}
return -1;
}
static void Main()
{
int[] arr = { 1, 3, 4, 2, 2 };
int result = FindDuplicates(arr);
Console.WriteLine(result);
}
}
JavaScript
function findDuplicates(arr) {
// Create an object to store the frequency of each element in the array.
const freq = {};
// Iterate through the array.
for (let i = 0; i < arr.length; i++) {
// Check if the element is already in the object.
if (freq.hasOwnProperty(arr[i])) {
// If it's already in the object, increment its frequency.
freq[arr[i]]++;
// If the frequency becomes greater than 1, this is a duplicate, so return it.
if (freq[arr[i]] > 1) {
return arr[i];
}
} else {
// If the element is not in the object, add it with a frequency of 1.
freq[arr[i]] = 1;
}
}
// If no duplicates are found, return -1.
return -1;
}
const arr = [1, 3, 4, 2, 2];
// Call the findDuplicates function and print the result.
console.log(findDuplicates(arr));
Time Complexity : O(n), where n is the size of the input array.
Auxiliary Space : O(n).
- Find duplicates in O(n) time and O(1) extra space | Set 1
- Duplicates in an array in O(n) and by using O(1) extra space | Set-2
Similar Reads
Counting Sort - Data Structures and Algorithms Tutorials Counting Sort is a non-comparison-based sorting algorithm. It is particularly efficient when the range of input values is small compared to the number of elements to be sorted. The basic idea behind Counting Sort is to count the frequency of each distinct element in the input array and use that info
9 min read
Median and Mode using Counting Sort Given an n sized unsorted array, find median and mode using counting sort technique. This can be useful when array elements are in limited range. Examples: Input : array a[] = {1, 1, 1, 2, 7, 1} Output : Mode = 1 Median = 1 Note: Median is average of middle two numbers (1 and 1) Input : array a[] =
12 min read
Implementing Counting Sort using map in C++ Counting Sort is one of the best sorting algorithms which can sort in O(n) time complexity but the disadvantage with the counting sort is it's space complexity, for a small collection of values, it will also require a huge amount of unused space. So, we need two things to overcome this: A data struc
2 min read
Counting Sort - Python Counting Sort is a non-comparison-based sorting algorithm. It is particularly efficient when the range of input values is small compared to the number of elements to be sorted. The basic idea behind Counting Sort is to count the frequency of each distinct element in the input array and use that info
6 min read
C Program for Counting Sort Counting sort is a sorting technique based on keys between a specific range. It works by counting the number of objects having distinct key values (kind of hashing). Then doing some arithmetic to calculate the position of each object in the output sequence. Algorithm: Step 1: StartStep 2 : Find Larg
3 min read
Java Program for Counting Sort Counting sort is a sorting technique based on keys between a specific range. It works by counting the number of objects having distinct key values (kind of hashing). Then doing some arithmetic to calculate the position of each object in the output sequence. Java // Java implementation of Counting So
2 min read
Parallel Count Sort What is Parallel Count Sort?Parallel count sort is an efficient algorithm that sorts an array of elements in a parallel manner. It is a variation of the classic count sort algorithm which is used to sort a collection of objects based on their frequency. The algorithm is based on the idea of counting
12 min read
Problem based on Counting Sort
Find duplicates in an Array with values 1 to N using counting sortGiven a constant array of N elements which contain elements from 1 to N - 1, with any of these numbers appearing any number of times.Examples: Input: N = 5, arr[] = {1, 3, 4, 2, 2} Output: 2 Explanation: 2 is the number occurring more than once.Input: N = 5, arr[] = {3, 1, 3, 4, 2} Output: 3 Explana
11 min read
Kth smallest or largest element in unsorted Array using Counting SortGiven an array arr[] and a number K, where K is smaller than the size of the array, we need to find the Kth smallest element in the given array. It is given that array elements can be repeated (not limited to distinct). Examples: Input: arr[] = {7, 10, 4, 3, 20, 15}, K = 3 Output: 7 Input: arr[] = {
7 min read
Sort an array of 0s, 1s and 2s (Simple Counting)Given an array A[] consisting of 0s, 1s, and 2s, write a function that sorts A[]. The functions should put all 0s first, then all 1s, and all 2s in last. Examples: Input: {0, 1, 2, 0, 1, 2}Output: {0, 0, 1, 1, 2, 2} Input: {0, 1, 1, 0, 1, 2, 1, 2, 0, 0, 0, 1}Output: {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2,
11 min read
Counting Sort Visualization using JavaScript GUI(Graphical User Interface) helps in better in understanding than programs. In this article, we will visualize Counting Sort using JavaScript. We will see how the frequencies of elements are stored and how we get the final sorted array. We will also visualize the time complexity of Counting Sort.
4 min read