How to convert pandas DataFrame into JSON in Python?
Last Updated :
12 Jun, 2025
We are given a pandas DataFrame, and our task is to convert it into JSON format using different orientations and custom options. JSON (JavaScript Object Notation) is a lightweight, human-readable format used for data exchange. With Pandas, this can be done easily using the to_json() method. For example:
Python
import pandas as pd
df = pd.DataFrame({
'Name': ['John', 'Anna', 'Peter'],
'Age': [28, 24, 35],
'City': ['New York', 'Paris', 'Berlin']
})
a = df.to_json()
print(a)
Output:
{"Name":{"0":"John","1":"Anna","2":"Peter"},"Age":{"0":28,"1":24,"2":35},"City":{"0":"New York","1":"Paris","2":"Berlin"}}
This example shows how easy it is to convert a DataFrame into JSON format using the to_json() method where both columns and rows are represented as key-value pairs. Now, let’s dive deeper into the process and explore different options available for customization.
Using the to_json() Method
The to_json() function converts a DataFrame into a JSON string or file. Key parameters include:
path_or_buf: File path or buffer. If not specified, JSON string is returned.
orient: Defines JSON structure (e.g., 'records', 'index', 'columns', etc.).
date_format: 'iso' or 'epoch' format for datetime values.
double_precision: Controls decimal places for floats.
force_ascii: Escapes non-ASCII characters if True.
date_unit: Sets time unit for datetime ('ms', 's', 'us', 'ns').
indent: Pretty prints JSON with indentation.
Customizing The JSON Method with orient
The orient parameter allows you to control how the DataFrame is structured in the resulting JSON. Pandas to_json() provides multiple format options through the orient parameter. Here are some common orientations:
1. 'records' (Row-wise Objects)
Converts each row into a dictionary, making it ideal for JSON structures that prioritize row-based data. Each row is a JSON object in an array.
Python
df.to_json(orient='records')
Output:
[{"Name":"John","Age":28,"City":"New York"}, {"Name":"Anna","Age":24,"City":"Paris"}, {"Name":"Peter","Age":35,"City":"Berlin"}]
2. 'index' – Index as Keys
Uses the DataFrame index as JSON keys, with each index mapping to a dictionary representing a row. This structure is useful for indexed data.
Python
df.to_json(orient='index')
Output:
{"0":{"Name":"John","Age":28,"City":"New York"}, "1":{"Name":"Anna","Age":24,"City":"Paris"}, "2":{"Name":"Peter","Age":35,"City":"Berlin"}}
Converts each column into a key with an array of values, creating a dictionary that maps column names to lists of their values.
Python
df.to_json(orient='columns')
Output:
{"Name":{"0":"John","1":"Anna","2":"Peter"}, "Age":{"0":28,"1":24,"2":35}, "City":{"0":"New York","1":"Paris","2":"Berlin"}}
4. 'split' – Structured Parts
Organizes the output into three distinct parts—index, columns, and data—which helps reconstruct the DataFrame more easily.
Python
df.to_json(orient='split')
Output:
{"columns":["Name","Age","City"], "index":[0,1,2], "data":[["John",28,"New York"],["Anna",24,"Paris"],["Peter",35,"Berlin"]]}
5. 'values' – Values Only
Python
df.to_json(orient='values')
Output:
[["John",28,"New York"],["Anna",24,"Paris"],["Peter",35,"Berlin"]]
6. 'table' – Table Schema
Follows a table schema with metadata, which includes schema details and the data. This format is suitable for preserving DataFrame structure.
Python
df.to_json(orient='table')
Output:
{
"schema": {
"fields": [...],
"primaryKey": ["index"],
"pandas_version": "1.4.0"
},
"data": [
{"index": 0, "Name": "John", "Age": 28, "City": "New York"},
...
]
}
Customizing Output with Parameters
Pandas gives several powerful options for customizing the JSON output using to_json() parameters. These options let you choose how precise, readable, compact, or compatible your JSON output should be:
- orient: Controls the JSON structure. Options include 'records', 'index', 'columns', 'split', 'values', 'table'.
- date_format: Convert datetime values to either ISO ('iso') or Unix timestamp ('epoch').
- double_precision: Set how many decimal points to include for float values.
- force_ascii: If True, non-ASCII characters are escaped (e.g., for ASCII-only systems).
- date_unit: Sets the unit for datetime output—milliseconds ('ms'), seconds ('s'), microseconds ('us'), or nanoseconds ('ns').
- indent: Pretty-prints the output with indentation, useful for logging or readability.
- path_or_buf: If a file path is passed here, the output is saved directly to that file instead of returned as a string.
These parameters work together to make the output more suitable for your specific use case—whether for APIs, config files, storage, or human review.
Example: All orient types on a simple DataFrame
Python
import numpy as np
import pandas as pd
data = np.array([["1", "2"], ["3", "4"]])
df = pd.DataFrame(data, columns=['col1', 'col2'])
print(df.to_json()) # Default (columns)
print(df.to_json(orient='split'))
print(df.to_json(orient='records'))
print(df.to_json(orient='index'))
print(df.to_json(orient='columns'))
print(df.to_json(orient='values'))
print(df.to_json(orient='table'))
Output{"col1":{"0":"1","1":"3"},"col2":{"0":"2","1":"4"}}
{"columns":["col1","col2"],"index":[0,1],"data":[["1","2"],["3","4"]]}
[{"col1":"1","col2":"2"},{"col1":"3","col2":"4"}]
{"0":{"col1":"1","col2":"2"...
Example: Using Other Parameters
Python
import pandas as pd
data = {
'Name': ['John', 'Jane', 'Bob'],
'Age': [30, 25, 40],
'Salary': [50000.0, 60000.0, 70000.0],
'Join_date': ['2022-01-01', '2021-06-15', '2020-11-30']
}
df = pd.DataFrame(data)
print(df.to_json()) # Basic
print(df.to_json(orient='records')) # Row-wise
print(df.to_json(date_format='iso')) # ISO date format
print(df.to_json(double_precision=2)) # Limit float decimals
print(df.to_json(force_ascii=False)) # Allow Unicode
print(df.to_json(date_unit='ms')) # Milliseconds unit
print(df.to_json(indent=4)) # Pretty print
df.to_json(path_or_buf='output.json') # Save to file
Output{"Name":{"0":"John","1":"Jane","2":"Bob"},"Age":{"0":30,"1":25,"2":40},"Salary":{"0":50000.0,"1":60000.0,"2":70000.0},"Join_date":{"0":"2022-01-01","1":"2021-06-15","2":"2020-11-30"}}
[{"Name":"John",...
Key Takeaways:
- The to_json() method in Pandas provides a flexible way to convert a DataFrame into different JSON formats.
- The orient parameter allows you to customize how rows and columns are represented in the output.
- Special data types like missing values (NaN, None) are handled gracefully by converting them to null.
- Depending on your use case (e.g., web APIs or data storage), you can choose from various orientations like 'records', 'index', 'columns', etc.
Similar Reads
How to convert pandas DataFrame into SQL in Python? In this article, we aim to convert the data frame into an SQL database and then try to read the content from the SQL database using SQL queries or through a table. Convert Pandas DataFrame into SQL in PythonBelow are some steps by which we can export Python dataframe to SQL file in Python: Step 1: I
4 min read
Python - Convert dict of list to Pandas dataframe In this article, we will discuss how to convert a dictionary of lists to a pandas dataframe. Method 1: Using DataFrame.from_dict() We will use the from_dict method. This method will construct DataFrame from dict of array-like or dicts. Syntax: pandas.DataFrame.from_dict(dictionary) where dictionary
2 min read
How to Convert Pandas DataFrame into a List? In this article, we will explore the process of converting a Pandas DataFrame into a List, We'll delve into the methods and techniques involved in this conversion, shedding light on the versatility and capabilities of Pandas for handling data structures in Python.Ways to convert Pandas DataFrame Int
7 min read
How to Convert Dataframe column into an index in Python-Pandas? Pandas provide a convenient way to handle data and its transformation. Let's see how can we convert a data frame column to row name or index in Pandas. Create a dataframe first with dict of lists.  Python3 # importing pandas as pd import pandas as pd # Creating a dict of lists data = {'Name':["Akas
2 min read
How to Convert String to Integer in Pandas DataFrame? Let's see methods to convert string to an integer in Pandas DataFrame: Method 1: Use of Series.astype() method. Syntax: Series.astype(dtype, copy=True, errors=âraiseâ) Parameters: This method will take following parameters: dtype: Data type to convert the series into. (for example str, float, int).c
3 min read
How to Convert Integers to Strings in Pandas DataFrame? In this article, we'll look at different methods to convert an integer into a string in a Pandas dataframe. In Pandas, there are different functions that we can use to achieve this task : map(str)astype(str)apply(str)applymap(str) Example 1 : In this example, we'll convert each value of a column of
3 min read
How to Convert Index to Column in Pandas Dataframe? Pandas is a powerful tool which is used for data analysis and is built on top of the python library. The Pandas library enables users to create and manipulate dataframes (Tables of data) and time series effectively and efficiently. These dataframes can be used for training and testing machine learni
2 min read
How to Parse Data From JSON into Python? JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to read and write for machines to parse and generate. Basically it is used to represent data in a specified format to access and work with data easily. Here we will learn, how to create and parse data f
2 min read
Convert JSON to Pandas DataFrame When working with data, it's common to encounter JSON (JavaScript Object Notation) files, which are widely used for storing and exchanging data. Pandas, a powerful data manipulation library in Python, provides a convenient way to convert JSON data into a Pandas data frame. In this article, we'll exp
4 min read
How to Convert Pandas to PySpark DataFrame ? In this article, we will learn How to Convert Pandas to PySpark DataFrame. Sometimes we will get csv, xlsx, etc. format data, and we have to store it in PySpark DataFrame and that can be done by loading data in Pandas then converted PySpark DataFrame. For conversion, we pass the Pandas dataframe int
3 min read