Numpy MaskedArray.masked_not_equal() function | Python Last Updated : 27 Sep, 2019 Comments Improve Suggest changes Like Article Like Report In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arrays that may have missing or invalid entries. numpy.MaskedArray.masked_not_equal() function is used to mask an array where not equal to a given value.This function is a shortcut to masked_where, with condition = (arr != value). Syntax : numpy.ma.masked_not_equal(arr, value, copy=True) Parameters: arr : [ndarray] Input array which we want to mask. value : [int] It is used to mask the array element which are != value. copy : [bool] If True (default) make a copy of arr in the result. If False modify arr in place and return a view. Return : [ MaskedArray] The resultant array after masking. Code #1 : Python3 # Python program explaining # numpy.MaskedArray.masked_not_equal() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input array in_arr = geek.array([1, 2, 3, -1, 2]) print ("Input array : ", in_arr) # applying MaskedArray.masked_not_equal methods # to input array where value != 2 mask_arr = ma.masked_not_equal(in_arr, 2) print ("Masked array : ", mask_arr) Output: Input array : [ 1 2 3 -1 2] Masked array : [-- 2 -- -- 2] Code #2 : Python3 # Python program explaining # numpy.MaskedArray.masked_not_equal() method # importing numpy as geek # and numpy.ma module as ma import numpy as geek import numpy.ma as ma # creating input array in_arr = geek.array([5e8, 3e-5, -45.0, 4e4, 5e2]) print ("Input array : ", in_arr) # applying MaskedArray.masked_not_equal methods # to input array where value != 5e2 mask_arr = ma.masked_not_equal(in_arr, 5e2) print ("Masked array : ", mask_arr) Output: Input array : [ 5.0e+08 3.0e-05 -4.5e+01 4.0e+04 5.0e+02] Masked array : [-- -- -- -- 500.0] Comment More infoAdvertise with us Next Article Numpy MaskedArray.masked_not_equal() function | Python jana_sayantan Follow Improve Article Tags : Python Python-numpy Practice Tags : python Similar Reads Numpy MaskedArray.masked_equal() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 2 min read Numpy MaskedArray.masked_less_equal() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 2 min read Numpy MaskedArray.masked_greater_equal() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 2 min read Numpy MaskedArray.allequal() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read Numpy MaskedArray.masked_less() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 2 min read Numpy MaskedArray.masked_where() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 3 min read Numpy MaskedArray.all() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays. Masked arrays are arr 3 min read numpy.ma.MaskedArray.nonzero() function - Python numpy.ma.MaskedArray.nonzero() function return the indices of unmasked elements that are not zero. This function returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that dimension. Syntax : numpy.ma.MaskedArray.nonzero(self) Return : [tuple] Indices 1 min read numpy.ma.MaskedArray.count() function - Python numpy.ma.MaskedArray.count() function count the non-masked elements of the array along the given axis. Syntax : numpy.ma.MaskedArray.count(self, axis=None, keepdims = no value) Parameters : axis : [None or int or tuple of ints, optional] Axis along which the count is performed. The default axis is N 2 min read Numpy MaskedArray.masked_greater() function | Python In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor may have failed to record a data, or recorded an invalid value. The numpy.ma module provides a convenient way to address this issue, by introducing masked arrays.Masked arrays are arra 2 min read Like