Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Feb 2015 (v1), last revised 29 Jul 2015 (this version, v3)]
Title:Don't Just Listen, Use Your Imagination: Leveraging Visual Common Sense for Non-Visual Tasks
View PDFAbstract:Artificial agents today can answer factual questions. But they fall short on questions that require common sense reasoning. Perhaps this is because most existing common sense databases rely on text to learn and represent knowledge. But much of common sense knowledge is unwritten - partly because it tends not to be interesting enough to talk about, and partly because some common sense is unnatural to articulate in text. While unwritten, it is not unseen. In this paper we leverage semantic common sense knowledge learned from images - i.e. visual common sense - in two textual tasks: fill-in-the-blank and visual paraphrasing. We propose to "imagine" the scene behind the text, and leverage visual cues from the "imagined" scenes in addition to textual cues while answering these questions. We imagine the scenes as a visual abstraction. Our approach outperforms a strong text-only baseline on these tasks. Our proposed tasks can serve as benchmarks to quantitatively evaluate progress in solving tasks that go "beyond recognition". Our code and datasets are publicly available.
Submission history
From: Xiao Lin [view email][v1] Sat, 21 Feb 2015 15:25:40 UTC (1,463 KB)
[v2] Tue, 5 May 2015 18:54:05 UTC (3,267 KB)
[v3] Wed, 29 Jul 2015 03:04:19 UTC (3,267 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.