Computer Vision and Pattern Recognition
See recent articles
Showing new listings for Thursday, 3 April 2025
- [1] arXiv:2504.01023 [pdf, html, other]
-
Title: Omnidirectional Depth-Aided Occupancy Prediction based on Cylindrical Voxel for Autonomous DrivingChaofan Wu, Jiaheng Li, Jinghao Cao, Ming Li, Yongkang Feng, Jiayu Wu Shuwen Xu, Zihang Gao, Sidan Du, Yang LiSubjects: Computer Vision and Pattern Recognition (cs.CV); Robotics (cs.RO)
Accurate 3D perception is essential for autonomous driving. Traditional methods often struggle with geometric ambiguity due to a lack of geometric prior. To address these challenges, we use omnidirectional depth estimation to introduce geometric prior. Based on the depth information, we propose a Sketch-Coloring framework OmniDepth-Occ. Additionally, our approach introduces a cylindrical voxel representation based on polar coordinate to better align with the radial nature of panoramic camera views. To address the lack of fisheye camera dataset in autonomous driving tasks, we also build a virtual scene dataset with six fisheye cameras, and the data volume has reached twice that of SemanticKITTI. Experimental results demonstrate that our Sketch-Coloring network significantly enhances 3D perception performance.
- [2] arXiv:2504.01024 [pdf, html, other]
-
Title: Gaze-Guided 3D Hand Motion Prediction for Detecting Intent in Egocentric Grasping TasksSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Robotics (cs.RO)
Human intention detection with hand motion prediction is critical to drive the upper-extremity assistive robots in neurorehabilitation applications. However, the traditional methods relying on physiological signal measurement are restrictive and often lack environmental context. We propose a novel approach that predicts future sequences of both hand poses and joint positions. This method integrates gaze information, historical hand motion sequences, and environmental object data, adapting dynamically to the assistive needs of the patient without prior knowledge of the intended object for grasping. Specifically, we use a vector-quantized variational autoencoder for robust hand pose encoding with an autoregressive generative transformer for effective hand motion sequence prediction. We demonstrate the usability of these novel techniques in a pilot study with healthy subjects. To train and evaluate the proposed method, we collect a dataset consisting of various types of grasp actions on different objects from multiple subjects. Through extensive experiments, we demonstrate that the proposed method can successfully predict sequential hand movement. Especially, the gaze information shows significant enhancements in prediction capabilities, particularly with fewer input frames, highlighting the potential of the proposed method for real-world applications.
- [3] arXiv:2504.01028 [pdf, html, other]
-
Title: Improving Applicability of Deep Learning based Token Classification models during TrainingSubjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)
This paper shows that further evaluation metrics during model training are needed to decide about its applicability in inference. As an example, a LayoutLM-based model is trained for token classification in documents. The documents are German receipts. We show that conventional classification metrics, represented by the F1-Score in our experiments, are insufficient for evaluating the applicability of machine learning models in practice. To address this problem, we introduce a novel metric, Document Integrity Precision (DIP), as a solution for visual document understanding and the token classification task. To the best of our knowledge, nothing comparable has been introduced in this context. DIP is a rigorous metric, describing how many documents of the test dataset require manual interventions. It enables AI researchers and software developers to conduct an in-depth investigation of the level of process automation in business software. In order to validate DIP, we conduct experiments with our created models to highlight and analyze the impact and relevance of DIP to evaluate if the model should be deployed or not in different training settings. Our results demonstrate that existing metrics barely change for isolated model impairments, whereas DIP indicates that the model requires substantial human interventions in deployment. The larger the set of entities being predicted, the less sensitive conventional metrics are, entailing poor automation quality. DIP, in contrast, remains a single value to be interpreted for entire entity sets. This highlights the importance of having metrics that focus on the business task for model training in production. Since DIP is created for the token classification task, more research is needed to find suitable metrics for other training tasks.
- [4] arXiv:2504.01040 [pdf, html, other]
-
Title: Cal or No Cal? -- Real-Time Miscalibration Detection of LiDAR and Camera SensorsSubjects: Computer Vision and Pattern Recognition (cs.CV); Robotics (cs.RO)
The goal of extrinsic calibration is the alignment of sensor data to ensure an accurate representation of the surroundings and enable sensor fusion applications. From a safety perspective, sensor calibration is a key enabler of autonomous driving. In the current state of the art, a trend from target-based offline calibration towards targetless online calibration can be observed. However, online calibration is subject to strict real-time and resource constraints which are not met by state-of-the-art methods. This is mainly due to the high number of parameters to estimate, the reliance on geometric features, or the dependence on specific vehicle maneuvers. To meet these requirements and ensure the vehicle's safety at any time, we propose a miscalibration detection framework that shifts the focus from the direct regression of calibration parameters to a binary classification of the calibration state, i.e., calibrated or miscalibrated. Therefore, we propose a contrastive learning approach that compares embedded features in a latent space to classify the calibration state of two different sensor modalities. Moreover, we provide a comprehensive analysis of the feature embeddings and challenging calibration errors that highlight the performance of our approach. As a result, our method outperforms the current state-of-the-art in terms of detection performance, inference time, and resource demand. The code is open source and available on this https URL.
- [5] arXiv:2504.01044 [pdf, html, other]
-
Title: Coarse-to-Fine Learning for Multi-Pipette Localisation in Robot-Assisted In Vivo Patch-ClampLan Wei, Gema Vera Gonzalez, Phatsimo Kgwarae, Alexander Timms, Denis Zahorovsky, Simon Schultz, Dandan ZhangSubjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG); Robotics (cs.RO)
In vivo image-guided multi-pipette patch-clamp is essential for studying cellular interactions and network dynamics in neuroscience. However, current procedures mainly rely on manual expertise, which limits accessibility and scalability. Robotic automation presents a promising solution, but achieving precise real-time detection of multiple pipettes remains a challenge. Existing methods focus on ex vivo experiments or single pipette use, making them inadequate for in vivo multi-pipette scenarios. To address these challenges, we propose a heatmap-augmented coarse-to-fine learning technique to facilitate multi-pipette real-time localisation for robot-assisted in vivo patch-clamp. More specifically, we introduce a Generative Adversarial Network (GAN)-based module to remove background noise and enhance pipette visibility. We then introduce a two-stage Transformer model that starts with predicting the coarse heatmap of the pipette tips, followed by the fine-grained coordination regression module for precise tip localisation. To ensure robust training, we use the Hungarian algorithm for optimal matching between the predicted and actual locations of tips. Experimental results demonstrate that our method achieved > 98% accuracy within 10 {\mu}m, and > 89% accuracy within 5 {\mu}m for the localisation of multi-pipette tips. The average MSE is 2.52 {\mu}m.
- [6] arXiv:2504.01047 [pdf, other]
-
Title: Predicting Movie Production Years through Facial Recognition of Actors with Machine LearningSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
This study used machine learning algorithms to identify actors and extract the age of actors from images taken randomly from movies. The use of images taken from Arab movies includes challenges such as non-uniform lighting, different and multiple poses for the actors and multiple elements with the actor or a group of actors. Additionally, the use of make-up, wigs, beards, and wearing different accessories and costumes made it difficult for the system to identify the personality of the same actor. The Arab Actors Dataset-AAD comprises 574 images sourced from various movies, encompassing both black and white as well as color compositions. The images depict complete scenes or fragments thereof. Multiple models were employed for feature extraction, and diverse machine learning algorithms were utilized during the classification and prediction stages to determine the most effective algorithm for handling such image types. The study demonstrated the effectiveness of the Logistic Regression model exhibited the best performance compared to other models in the training phase, as evidenced by its AUC, precision, CA and F1score values of 99%, 86%, 85.5% and 84.2% respectively. The findings of this study can be used to improve the precision and reliability of facial recognition technology for various uses as with movies search services, movie suggestion algorithms, and genre classification of movies.
- [7] arXiv:2504.01048 [pdf, html, other]
-
Title: How does Watermarking Affect Visual Language Models in Document Understanding?Subjects: Computer Vision and Pattern Recognition (cs.CV); Cryptography and Security (cs.CR); Machine Learning (cs.LG)
Visual Language Models (VLMs) have become foundational models for document understanding tasks, widely used in the processing of complex multimodal documents across domains such as finance, law, and academia. However, documents often contain noise-like information, such as watermarks, which inevitably leads us to inquire: \emph{Do watermarks degrade the performance of VLMs in document understanding?} To address this, we propose a novel evaluation framework to investigate the effect of visible watermarks on VLMs performance. We takes into account various factors, including different types of document data, the positions of watermarks within documents and variations in watermark content. Our experimental results reveal that VLMs performance can be significantly compromised by watermarks, with performance drop rates reaching up to 36\%. We discover that \emph{scattered} watermarks cause stronger interference than centralized ones, and that \emph{semantic contents} in watermarks creates greater disruption than simple visual occlusion. Through attention mechanism analysis and embedding similarity examination, we find that the performance drops are mainly attributed to that watermarks 1) force widespread attention redistribution, and 2) alter semantic representation in the embedding space. Our research not only highlights significant challenges in deploying VLMs for document understanding, but also provides insights towards developing robust inference mechanisms on watermarked documents.
- [8] arXiv:2504.01049 [pdf, html, other]
-
Title: SViQA: A Unified Speech-Vision Multimodal Model for Textless Visual Question AnsweringSubjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
Multimodal models integrating speech and vision hold significant potential for advancing human-computer interaction, particularly in Speech-Based Visual Question Answering (SBVQA) where spoken questions about images require direct audio-visual understanding. Existing approaches predominantly focus on text-visual integration, leaving speech-visual modality gaps underexplored due to their inherent heterogeneity. To this end, we introduce SViQA, a unified speech-vision model that directly processes spoken questions without text transcription. Building upon the LLaVA architecture, our framework bridges auditory and visual modalities through two key innovations: (1) end-to-end speech feature extraction eliminating intermediate text conversion, and (2) cross-modal alignment optimization enabling effective fusion of speech signals with visual content. Extensive experimental results on the SBVQA benchmark demonstrate the proposed SViQA's state-of-the-art performance, achieving 75.62% accuracy, and competitive multimodal generalization. Leveraging speech-text mixed input boosts performance to 78.85%, a 3.23% improvement over pure speech input, highlighting SViQA's enhanced robustness and effective cross-modal attention alignment.
- [9] arXiv:2504.01053 [pdf, html, other]
-
Title: Knowledge-Base based Semantic Image Transmission Using CLIPSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
This paper proposes a novel knowledge-Base (KB) assisted semantic communication framework for image transmission. At the receiver, a Facebook AI Similarity Search (FAISS) based vector database is constructed by extracting semantic embeddings from images using the Contrastive Language-Image Pre-Training (CLIP) model. During transmission, the transmitter first extracts a 512-dimensional semantic feature using the CLIP model, then compresses it with a lightweight neural network for transmission. After receiving the signal, the receiver reconstructs the feature back to 512 dimensions and performs similarity matching from the KB to retrieve the most semantically similar image. Semantic transmission success is determined by category consistency between the transmitted and retrieved images, rather than traditional metrics like Peak Signal-to-Noise Ratio (PSNR). The proposed system prioritizes semantic accuracy, offering a new evaluation paradigm for semantic-aware communication systems. Experimental validation on CIFAR100 demonstrates the effectiveness of the framework in achieving semantic image transmission.
- [10] arXiv:2504.01081 [pdf, html, other]
-
Title: ShieldGemma 2: Robust and Tractable Image Content ModerationWenjun Zeng, Dana Kurniawan, Ryan Mullins, Yuchi Liu, Tamoghna Saha, Dirichi Ike-Njoku, Jindong Gu, Yiwen Song, Cai Xu, Jingjing Zhou, Aparna Joshi, Shravan Dheep, Mani Malek, Hamid Palangi, Joon Baek, Rick Pereira, Karthik NarasimhanSubjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL); Image and Video Processing (eess.IV)
We introduce ShieldGemma 2, a 4B parameter image content moderation model built on Gemma 3. This model provides robust safety risk predictions across the following key harm categories: Sexually Explicit, Violence \& Gore, and Dangerous Content for synthetic images (e.g. output of any image generation model) and natural images (e.g. any image input to a Vision-Language Model). We evaluated on both internal and external benchmarks to demonstrate state-of-the-art performance compared to LlavaGuard \citep{helff2024llavaguard}, GPT-4o mini \citep{hurst2024gpt}, and the base Gemma 3 model \citep{gemma_2025} based on our policies. Additionally, we present a novel adversarial data generation pipeline which enables a controlled, diverse, and robust image generation. ShieldGemma 2 provides an open image moderation tool to advance multimodal safety and responsible AI development.
- [11] arXiv:2504.01128 [pdf, html, other]
-
Title: RipVIS: Rip Currents Video Instance Segmentation Benchmark for Beach Monitoring and SafetySubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Rip currents are strong, localized and narrow currents of water that flow outwards into the sea, causing numerous beach-related injuries and fatalities worldwide. Accurate identification of rip currents remains challenging due to their amorphous nature and the lack of annotated data, which often requires expert knowledge. To address these issues, we present RipVIS, a large-scale video instance segmentation benchmark explicitly designed for rip current segmentation. RipVIS is an order of magnitude larger than previous datasets, featuring $184$ videos ($212,328$ frames), of which $150$ videos ($163,528$ frames) are with rip currents, collected from various sources, including drones, mobile phones, and fixed beach cameras. Our dataset encompasses diverse visual contexts, such as wave-breaking patterns, sediment flows, and water color variations, across multiple global locations, including USA, Mexico, Costa Rica, Portugal, Italy, Greece, Romania, Sri Lanka, Australia and New Zealand. Most videos are annotated at $5$ FPS to ensure accuracy in dynamic scenarios, supplemented by an additional $34$ videos ($48,800$ frames) without rip currents. We conduct comprehensive experiments with Mask R-CNN, Cascade Mask R-CNN, SparseInst and YOLO11, fine-tuning these models for the task of rip current segmentation. Results are reported in terms of multiple metrics, with a particular focus on the $F_2$ score to prioritize recall and reduce false negatives. To enhance segmentation performance, we introduce a novel post-processing step based on Temporal Confidence Aggregation (TCA). RipVIS aims to set a new standard for rip current segmentation, contributing towards safer beach environments. We offer a benchmark website to share data, models, and results with the research community, encouraging ongoing collaboration and future contributions, at this https URL.
- [12] arXiv:2504.01213 [pdf, html, other]
-
Title: GRU-AUNet: A Domain Adaptation Framework for Contactless Fingerprint Presentation Attack DetectionSubjects: Computer Vision and Pattern Recognition (cs.CV)
Although contactless fingerprints offer user comfort, they are more vulnerable to spoofing. The current solution for anti-spoofing in the area of contactless fingerprints relies on domain adaptation learning, limiting their generalization and scalability. To address these limitations, we introduce GRU-AUNet, a domain adaptation approach that integrates a Swin Transformer-based UNet architecture with GRU-enhanced attention mechanisms, a Dynamic Filter Network in the bottleneck, and a combined Focal and Contrastive Loss function. Trained in both genuine and spoof fingerprint images, GRU-AUNet demonstrates robust resilience against presentation attacks, achieving an average BPCER of 0.09\% and APCER of 1.2\% in the CLARKSON, COLFISPOOF, and IIITD datasets, outperforming state-of-the-art domain adaptation methods.
- [13] arXiv:2504.01214 [pdf, html, other]
-
Title: PolygoNet: Leveraging Simplified Polygonal Representation for Effective Image ClassificationSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
Deep learning models have achieved significant success in various image related tasks. However, they often encounter challenges related to computational complexity and overfitting. In this paper, we propose an efficient approach that leverages polygonal representations of images using dominant points or contour coordinates. By transforming input images into these compact forms, our method significantly reduces computational requirements, accelerates training, and conserves resources making it suitable for real time and resource constrained applications. These representations inherently capture essential image features while filtering noise, providing a natural regularization effect that mitigates overfitting. The resulting lightweight models achieve performance comparable to state of the art methods using full resolution images while enabling deployment on edge devices. Extensive experiments on benchmark datasets validate the effectiveness of our approach in reducing complexity, improving generalization, and facilitating edge computing applications. This work demonstrates the potential of polygonal representations in advancing efficient and scalable deep learning solutions for real world scenarios. The code for the experiments of the paper is provided in this https URL.
- [14] arXiv:2504.01220 [pdf, html, other]
-
Title: rPPG-SysDiaGAN: Systolic-Diastolic Feature Localization in rPPG Using Generative Adversarial Network with Multi-Domain DiscriminatorSubjects: Computer Vision and Pattern Recognition (cs.CV)
Remote photoplethysmography (rPPG) offers a novel approach to noninvasive monitoring of vital signs, such as respiratory rate, utilizing a camera. Although several supervised and self-supervised methods have been proposed, they often fail to accurately reconstruct the PPG signal, particularly in distinguishing between systolic and diastolic components. Their primary focus tends to be solely on extracting heart rate, which may not accurately represent the complete PPG signal. To address this limitation, this paper proposes a novel deep learning architecture using Generative Adversarial Networks by introducing multi-discriminators to extract rPPG signals from facial videos. These discriminators focus on the time domain, the frequency domain, and the second derivative of the original time domain signal. The discriminator integrates four loss functions: variance loss to mitigate local minima caused by noise; dynamic time warping loss to address local minima induced by alignment and sequences of variable lengths; Sparsity Loss for heart rate adjustment, and Variance Loss to ensure a uniform distribution across the desired frequency domain and time interval between systolic and diastolic phases of the PPG signal.
- [15] arXiv:2504.01228 [pdf, html, other]
-
Title: TenAd: A Tensor-based Low-rank Black Box Adversarial Attack for Video ClassificationSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Deep learning models have achieved remarkable success in computer vision but remain vulnerable to adversarial attacks, particularly in black-box settings where model details are unknown. Existing adversarial attack methods(even those works with key frames) often treat video data as simple vectors, ignoring their inherent multi-dimensional structure, and require a large number of queries, making them inefficient and detectable. In this paper, we propose \textbf{TenAd}, a novel tensor-based low-rank adversarial attack that leverages the multi-dimensional properties of video data by representing videos as fourth-order tensors. By exploiting low-rank attack, our method significantly reduces the search space and the number of queries needed to generate adversarial examples in black-box settings. Experimental results on standard video classification datasets demonstrate that \textbf{TenAd} effectively generates imperceptible adversarial perturbations while achieving higher attack success rates and query efficiency compared to state-of-the-art methods. Our approach outperforms existing black-box adversarial attacks in terms of success rate, query efficiency, and perturbation imperceptibility, highlighting the potential of tensor-based methods for adversarial attacks on video models.
- [16] arXiv:2504.01243 [pdf, html, other]
-
Title: FUSION: Frequency-guided Underwater Spatial Image recOnstructioNSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine Learning (cs.LG); Robotics (cs.RO)
Underwater images suffer from severe degradations, including color distortions, reduced visibility, and loss of structural details due to wavelength-dependent attenuation and scattering. Existing enhancement methods primarily focus on spatial-domain processing, neglecting the frequency domain's potential to capture global color distributions and long-range dependencies. To address these limitations, we propose FUSION, a dual-domain deep learning framework that jointly leverages spatial and frequency domain information. FUSION independently processes each RGB channel through multi-scale convolutional kernels and adaptive attention mechanisms in the spatial domain, while simultaneously extracting global structural information via FFT-based frequency attention. A Frequency Guided Fusion module integrates complementary features from both domains, followed by inter-channel fusion and adaptive channel recalibration to ensure balanced color distributions. Extensive experiments on benchmark datasets (UIEB, EUVP, SUIM-E) demonstrate that FUSION achieves state-of-the-art performance, consistently outperforming existing methods in reconstruction fidelity (highest PSNR of 23.717 dB and SSIM of 0.883 on UIEB), perceptual quality (lowest LPIPS of 0.112 on UIEB), and visual enhancement metrics (best UIQM of 3.414 on UIEB), while requiring significantly fewer parameters (0.28M) and lower computational complexity, demonstrating its suitability for real-time underwater imaging applications.
- [17] arXiv:2504.01298 [pdf, html, other]
-
Title: Direction-Aware Hybrid Representation Learning for 3D Hand Pose and Shape EstimationComments: Accepted to CVPR 2025 workshopSubjects: Computer Vision and Pattern Recognition (cs.CV)
Most model-based 3D hand pose and shape estimation methods directly regress the parametric model parameters from an image to obtain 3D joints under weak supervision. However, these methods involve solving a complex optimization problem with many local minima, making training difficult. To address this challenge, we propose learning direction-aware hybrid features (DaHyF) that fuse implicit image features and explicit 2D joint coordinate features. This fusion is enhanced by the pixel direction information in the camera coordinate system to estimate pose, shape, and camera viewpoint. Our method directly predicts 3D hand poses with DaHyF representation and reduces jittering during motion capture using prediction confidence based on contrastive learning. We evaluate our method on the FreiHAND dataset and show that it outperforms existing state-of-the-art methods by more than 33% in accuracy. DaHyF also achieves the top ranking on both the HO3Dv2 and HO3Dv3 leaderboards for the metric of Mean Joint Error (after scale and translation alignment). Compared to the second-best results, the largest improvement observed is 10%. We also demonstrate its effectiveness in real-time motion capture scenarios with hand position variability, occlusion, and motion blur.
- [18] arXiv:2504.01308 [pdf, html, other]
-
Title: Safeguarding Vision-Language Models: Mitigating Vulnerabilities to Gaussian Noise in Perturbation-based AttacksSubjects: Computer Vision and Pattern Recognition (cs.CV)
Vision-Language Models (VLMs) extend the capabilities of Large Language Models (LLMs) by incorporating visual information, yet they remain vulnerable to jailbreak attacks, especially when processing noisy or corrupted images. Although existing VLMs adopt security measures during training to mitigate such attacks, vulnerabilities associated with noise-augmented visual inputs are overlooked. In this work, we identify that missing noise-augmented training causes critical security gaps: many VLMs are susceptible to even simple perturbations such as Gaussian noise. To address this challenge, we propose Robust-VLGuard, a multimodal safety dataset with aligned / misaligned image-text pairs, combined with noise-augmented fine-tuning that reduces attack success rates while preserving functionality of VLM. For stronger optimization-based visual perturbation attacks, we propose DiffPure-VLM, leveraging diffusion models to convert adversarial perturbations into Gaussian-like noise, which can be defended by VLMs with noise-augmented safety fine-tuning. Experimental results demonstrate that the distribution-shifting property of diffusion model aligns well with our fine-tuned VLMs, significantly mitigating adversarial perturbations across varying intensities. The dataset and code are available at this https URL.
- [19] arXiv:2504.01321 [pdf, html, other]
-
Title: COST: Contrastive One-Stage Transformer for Vision-Language Small Object TrackingComments: Preprint submitted to Elsevier. this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Transformer has recently demonstrated great potential in improving vision-language (VL) tracking algorithms. However, most of the existing VL trackers rely on carefully designed mechanisms to perform the multi-stage multi-modal fusion. Additionally, direct multi-modal fusion without alignment ignores distribution discrepancy between modalities in feature space, potentially leading to suboptimal representations. In this work, we propose COST, a contrastive one-stage transformer fusion framework for VL tracking, aiming to learn semantically consistent and unified VL representations. Specifically, we introduce a contrastive alignment strategy that maximizes mutual information (MI) between a video and its corresponding language description. This enables effective cross-modal alignment, yielding semantically consistent features in the representation space. By leveraging a visual-linguistic transformer, we establish an efficient multi-modal fusion and reasoning mechanism, empirically demonstrating that a simple stack of transformer encoders effectively enables unified VL representations. Moreover, we contribute a newly collected VL tracking benchmark dataset for small object tracking, named VL-SOT500, with bounding boxes and language descriptions. Our dataset comprises two challenging subsets, VL-SOT230 and VL-SOT270, dedicated to evaluating generic and high-speed small object tracking, respectively. Small object tracking is notoriously challenging due to weak appearance and limited features, and this dataset is, to the best of our knowledge, the first to explore the usage of language cues to enhance visual representation for small object tracking. Extensive experiments demonstrate that COST achieves state-of-the-art performance on five existing VL tracking datasets, as well as on our proposed VL-SOT500 dataset. Source codes and dataset will be made publicly available.
- [20] arXiv:2504.01324 [pdf, html, other]
-
Title: On Data Synthesis and Post-training for Visual Abstract ReasoningSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)
This paper is a pioneering work attempting to address abstract visual reasoning (AVR) problems for large vision-language models (VLMs). We make a common LLaVA-NeXT 7B model capable of perceiving and reasoning about specific AVR problems, surpassing both open-sourced (e.g., Qwen-2-VL-72B) and closed-sourced powerful VLMs (e.g., GPT-4o) with significant margin. This is a great breakthrough since almost all previous VLMs fail or show nearly random performance on representative AVR benchmarks. Our key success is our innovative data synthesis and post-training process, aiming to fully relieve the task difficulty and elicit the model to learn, step by step. Our 7B model is also shown to be behave well on AVR without sacrificing common multimodal comprehension abilities. We hope our paper could serve as an early effort in this area and would inspire further research in abstract visual reasoning.
- [21] arXiv:2504.01326 [pdf, html, other]
-
Title: CFMD: Dynamic Cross-layer Feature Fusion for Salient Object DetectionSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Cross-layer feature pyramid networks (CFPNs) have achieved notable progress in multi-scale feature fusion and boundary detail preservation for salient object detection. However, traditional CFPNs still suffer from two core limitations: (1) a computational bottleneck caused by complex feature weighting operations, and (2) degraded boundary accuracy due to feature blurring in the upsampling process. To address these challenges, we propose CFMD, a novel cross-layer feature pyramid network that introduces two key innovations. First, we design a context-aware feature aggregation module (CFLMA), which incorporates the state-of-the-art Mamba architecture to construct a dynamic weight distribution mechanism. This module adaptively adjusts feature importance based on image context, significantly improving both representation efficiency and generalization. Second, we introduce an adaptive dynamic upsampling unit (CFLMD) that preserves spatial details during resolution recovery. By adjusting the upsampling range dynamically and initializing with a bilinear strategy, the module effectively reduces feature overlap and maintains fine-grained boundary structures. Extensive experiments on three standard benchmarks using three mainstream backbone networks demonstrate that CFMD achieves substantial improvements in pixel-level accuracy and boundary segmentation quality, especially in complex scenes. The results validate the effectiveness of CFMD in jointly enhancing computational efficiency and segmentation performance, highlighting its strong potential in salient object detection tasks.
- [22] arXiv:2504.01328 [pdf, html, other]
-
Title: Slow-Fast Architecture for Video Multi-Modal Large Language ModelsMin Shi, Shihao Wang, Chieh-Yun Chen, Jitesh Jain, Kai Wang, Junjun Xiong, Guilin Liu, Zhiding Yu, Humphrey ShiComments: Technical reportSubjects: Computer Vision and Pattern Recognition (cs.CV)
Balancing temporal resolution and spatial detail under limited compute budget remains a key challenge for video-based multi-modal large language models (MLLMs). Existing methods typically compress video representations using predefined rules before feeding them into the LLM, resulting in irreversible information loss and often ignoring input instructions. To address this, we propose a novel slow-fast architecture that naturally circumvents this trade-off, enabling the use of more input frames while preserving spatial details. Inspired by how humans first skim a video before focusing on relevant parts, our slow-fast design employs a dual-token strategy: 1) "fast" visual tokens -- a compact set of compressed video features -- are fed into the LLM alongside text embeddings to provide a quick overview; 2) "slow" visual tokens -- uncompressed video features -- are cross-attended by text embeddings through specially designed hybrid decoder layers, enabling instruction-aware extraction of relevant visual details with linear complexity. We conduct systematic exploration to optimize both the overall architecture and key components. Experiments show that our model significantly outperforms self-attention-only baselines, extending the input capacity from 16 to 128 frames with just a 3% increase in computation, and achieving a 16% average performance improvement across five video understanding benchmarks. Our 7B model achieves state-of-the-art performance among models of similar size. Furthermore, our slow-fast architecture is a plug-and-play design that can be integrated into other video MLLMs to improve efficiency and scalability.
- [23] arXiv:2504.01348 [pdf, html, other]
-
Title: Prompt-Guided Attention Head Selection for Focus-Oriented Image RetrievalComments: Accepted to CVPR 2025 PixFoundation WorkshopSubjects: Computer Vision and Pattern Recognition (cs.CV); Information Retrieval (cs.IR)
The goal of this paper is to enhance pretrained Vision Transformer (ViT) models for focus-oriented image retrieval with visual prompting. In real-world image retrieval scenarios, both query and database images often exhibit complexity, with multiple objects and intricate backgrounds. Users often want to retrieve images with specific object, which we define as the Focus-Oriented Image Retrieval (FOIR) task. While a standard image encoder can be employed to extract image features for similarity matching, it may not perform optimally in the multi-object-based FOIR task. This is because each image is represented by a single global feature vector. To overcome this, a prompt-based image retrieval solution is required. We propose an approach called Prompt-guided attention Head Selection (PHS) to leverage the head-wise potential of the multi-head attention mechanism in ViT in a promptable manner. PHS selects specific attention heads by matching their attention maps with user's visual prompts, such as a point, box, or segmentation. This empowers the model to focus on specific object of interest while preserving the surrounding visual context. Notably, PHS does not necessitate model re-training and avoids any image alteration. Experimental results show that PHS substantially improves performance on multiple datasets, offering a practical and training-free solution to enhance model performance in the FOIR task.
- [24] arXiv:2504.01383 [pdf, html, other]
-
Title: v-CLR: View-Consistent Learning for Open-World Instance SegmentationSubjects: Computer Vision and Pattern Recognition (cs.CV)
In this paper, we address the challenging problem of open-world instance segmentation. Existing works have shown that vanilla visual networks are biased toward learning appearance information, \eg texture, to recognize objects. This implicit bias causes the model to fail in detecting novel objects with unseen textures in the open-world setting. To address this challenge, we propose a learning framework, called view-Consistent LeaRning (v-CLR), which aims to enforce the model to learn appearance-invariant representations for robust instance segmentation. In v-CLR, we first introduce additional views for each image, where the texture undergoes significant alterations while preserving the image's underlying structure. We then encourage the model to learn the appearance-invariant representation by enforcing the consistency between object features across different views, for which we obtain class-agnostic object proposals using off-the-shelf unsupervised models that possess strong object-awareness. These proposals enable cross-view object feature matching, greatly reducing the appearance dependency while enhancing the object-awareness. We thoroughly evaluate our method on public benchmarks under both cross-class and cross-dataset settings, achieving state-of-the-art performance. Project page: this https URL
- [25] arXiv:2504.01386 [pdf, html, other]
-
Title: DALIP: Distribution Alignment-based Language-Image Pre-Training for Domain-Specific DataComments: 14 pagesSubjects: Computer Vision and Pattern Recognition (cs.CV)
Recently, Contrastive Language-Image Pre-training (CLIP) has shown promising performance in domain-specific data (e.g., biology), and has attracted increasing research attention. Existing works generally focus on collecting extensive domain-specific data and directly tuning the original CLIP models. Intuitively, such a paradigm takes no full consideration of the characteristics lying in domain-specific data (e.g., fine-grained nature of biological data) and so limits model capability, while mostly losing the original ability of CLIP in the general domain. In this paper, we propose a Distribution Alignment-based Language-Image Pre-Training (DALIP) method for biological data. Specifically, DALIP optimizes CLIP models by matching the similarity between feature distribution of image-text pairs instead of the original [cls] token, which can capture rich yet effective information inherent in image-text pairs as powerful representations, and so better cope with fine-grained nature of biological data. Particularly, our DALIP efficiently approximates feature distribution via its first- and second-order statistics, while presenting a Multi-head Brownian Distance Covariance (MBDC) module to acquire second-order statistics of token features efficiently. Furthermore, we collect a new dataset for plant domain (e.g., specific data in biological domain) comprising 10M plant data with 3M general-domain data (namely PlantMix-13M) according to data mixing laws. Extensive experiments show that DALIP clearly outperforms existing CLIP counterparts in biological domain, while well generalizing to remote sensing and medical imaging domains. Besides, our PlantMix-13M dataset further boosts performance of DALIP in plant domain, while preserving model ability in general domain.
- [26] arXiv:2504.01396 [pdf, html, other]
-
Title: All Patches Matter, More Patches Better: Enhance AI-Generated Image Detection via Panoptic Patch LearningZheng Yang, Ruoxin Chen, Zhiyuan Yan, Ke-Yue Zhang, Xinghe Fu, Shuang Wu, Xiujun Shu, Taiping Yao, Junchi Yan, Shouhong Ding, Xi LiSubjects: Computer Vision and Pattern Recognition (cs.CV)
The exponential growth of AI-generated images (AIGIs) underscores the urgent need for robust and generalizable detection methods. In this paper, we establish two key principles for AIGI detection through systematic analysis: \textbf{(1) All Patches Matter:} Unlike conventional image classification where discriminative features concentrate on object-centric regions, each patch in AIGIs inherently contains synthetic artifacts due to the uniform generation process, suggesting that every patch serves as an important artifact source for detection. \textbf{(2) More Patches Better}: Leveraging distributed artifacts across more patches improves detection robustness by capturing complementary forensic evidence and reducing over-reliance on specific patches, thereby enhancing robustness and generalization. However, our counterfactual analysis reveals an undesirable phenomenon: naively trained detectors often exhibit a \textbf{Few-Patch Bias}, discriminating between real and synthetic images based on minority patches. We identify \textbf{Lazy Learner} as the root cause: detectors preferentially learn conspicuous artifacts in limited patches while neglecting broader artifact distributions. To address this bias, we propose the \textbf{P}anoptic \textbf{P}atch \textbf{L}earning (PPL) framework, involving: (1) Random Patch Replacement that randomly substitutes synthetic patches with real counterparts to compel models to identify artifacts in underutilized regions, encouraging the broader use of more patches; (2) Patch-wise Contrastive Learning that enforces consistent discriminative capability across all patches, ensuring uniform utilization of all patches. Extensive experiments across two different settings on several benchmarks verify the effectiveness of our approach.
- [27] arXiv:2504.01399 [pdf, html, other]
-
Title: Leveraging Generalizability of Image-to-Image Translation for Enhanced Adversarial DefenseSubjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
In the rapidly evolving field of artificial intelligence, machine learning emerges as a key technology characterized by its vast potential and inherent risks. The stability and reliability of these models are important, as they are frequent targets of security threats. Adversarial attacks, first rigorously defined by Ian Goodfellow et al. in 2013, highlight a critical vulnerability: they can trick machine learning models into making incorrect predictions by applying nearly invisible perturbations to images. Although many studies have focused on constructing sophisticated defensive mechanisms to mitigate such attacks, they often overlook the substantial time and computational costs of training and maintaining these models. Ideally, a defense method should be able to generalize across various, even unseen, adversarial attacks with minimal overhead. Building on our previous work on image-to-image translation-based defenses, this study introduces an improved model that incorporates residual blocks to enhance generalizability. The proposed method requires training only a single model, effectively defends against diverse attack types, and is well-transferable between different target models. Experiments show that our model can restore the classification accuracy from near zero to an average of 72\% while maintaining competitive performance compared to state-of-the-art methods.
- [28] arXiv:2504.01407 [pdf, html, other]
-
Title: TimeSearch: Hierarchical Video Search with Spotlight and Reflection for Human-like Long Video UnderstandingSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Large video-language models (LVLMs) have shown remarkable performance across various video-language tasks. However, they encounter significant challenges when processing long videos because of the large number of video frames involved. Downsampling long videos in either space or time can lead to visual hallucinations, making it difficult to accurately interpret long videos. Motivated by human hierarchical temporal search strategies, we propose \textbf{TimeSearch}, a novel framework enabling LVLMs to understand long videos in a human-like manner. TimeSearch integrates two human-like primitives into a unified autoregressive LVLM: 1) \textbf{Spotlight} efficiently identifies relevant temporal events through a Temporal-Augmented Frame Representation (TAFR), explicitly binding visual features with timestamps; 2) \textbf{Reflection} evaluates the correctness of the identified events, leveraging the inherent temporal self-reflection capabilities of LVLMs. TimeSearch progressively explores key events and prioritizes temporal search based on reflection confidence. Extensive experiments on challenging long-video benchmarks confirm that TimeSearch substantially surpasses previous state-of-the-art, improving the accuracy from 41.8\% to 51.5\% on the LVBench. Additionally, experiments on temporal grounding demonstrate that appropriate TAFR is adequate to effectively stimulate the surprising temporal grounding ability of LVLMs in a simpler yet versatile manner, which improves mIoU on Charades-STA by 11.8\%. The code will be released.
- [29] arXiv:2504.01428 [pdf, html, other]
-
Title: MuTri: Multi-view Tri-alignment for OCT to OCTA 3D Image TranslationSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Optical coherence tomography angiography (OCTA) shows its great importance in imaging microvascular networks by providing accurate 3D imaging of blood vessels, but it relies upon specialized sensors and expensive devices. For this reason, previous works show the potential to translate the readily available 3D Optical Coherence Tomography (OCT) images into 3D OCTA images. However, existing OCTA translation methods directly learn the mapping from the OCT domain to the OCTA domain in continuous and infinite space with guidance from only a single view, i.e., the OCTA project map, resulting in suboptimal results. To this end, we propose the multi-view Tri-alignment framework for OCT to OCTA 3D image translation in discrete and finite space, named MuTri. In the first stage, we pre-train two vector-quantized variational auto-encoder (VQ- VAE) by reconstructing 3D OCT and 3D OCTA data, providing semantic prior for subsequent multi-view guidances. In the second stage, our multi-view tri-alignment facilitates another VQVAE model to learn the mapping from the OCT domain to the OCTA domain in discrete and finite space. Specifically, a contrastive-inspired semantic alignment is proposed to maximize the mutual information with the pre-trained models from OCT and OCTA views, to facilitate codebook learning. Meanwhile, a vessel structure alignment is proposed to minimize the structure discrepancy with the pre-trained models from the OCTA project map view, benefiting from learning the detailed vessel structure information. We also collect the first large-scale dataset, namely, OCTA2024, which contains a pair of OCT and OCTA volumes from 846 subjects.
- [30] arXiv:2504.01449 [pdf, html, other]
-
Title: Multimodal Point Cloud Semantic Segmentation With Virtual Point EnhancementSubjects: Computer Vision and Pattern Recognition (cs.CV)
LiDAR-based 3D point cloud recognition has been proven beneficial in various applications. However, the sparsity and varying density pose a significant challenge in capturing intricate details of objects, particularly for medium-range and small targets. Therefore, we propose a multi-modal point cloud semantic segmentation method based on Virtual Point Enhancement (VPE), which integrates virtual points generated from images to address these issues. These virtual points are dense but noisy, and directly incorporating them can increase computational burden and degrade performance. Therefore, we introduce a spatial difference-driven adaptive filtering module that selectively extracts valuable pseudo points from these virtual points based on density and distance, enhancing the density of medium-range targets. Subsequently, we propose a noise-robust sparse feature encoder that incorporates noise-robust feature extraction and fine-grained feature enhancement. Noise-robust feature extraction exploits the 2D image space to reduce the impact of noisy points, while fine-grained feature enhancement boosts sparse geometric features through inner-voxel neighborhood point aggregation and downsampled voxel aggregation. The results on the SemanticKITTI and nuScenes, two large-scale benchmark data sets, have validated effectiveness, significantly improving 2.89\% mIoU with the introduction of 7.7\% virtual points on nuScenes.
- [31] arXiv:2504.01452 [pdf, html, other]
-
Title: BiSeg-SAM: Weakly-Supervised Post-Processing Framework for Boosting Binary Segmentation in Segment Anything ModelsComments: 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
Accurate segmentation of polyps and skin lesions is essential for diagnosing colorectal and skin cancers. While various segmentation methods for polyps and skin lesions using fully supervised deep learning techniques have been developed, the pixel-level annotation of medical images by doctors is both time-consuming and costly. Foundational vision models like the Segment Anything Model (SAM) have demonstrated superior performance; however, directly applying SAM to medical segmentation may not yield satisfactory results due to the lack of domain-specific medical knowledge. In this paper, we propose BiSeg-SAM, a SAM-guided weakly supervised prompting and boundary refinement network for the segmentation of polyps and skin lesions. Specifically, we fine-tune SAM combined with a CNN module to learn local features. We introduce a WeakBox with two functions: automatically generating box prompts for the SAM model and using our proposed Multi-choice Mask-to-Box (MM2B) transformation for rough mask-to-box conversion, addressing the mismatch between coarse labels and precise predictions. Additionally, we apply scale consistency (SC) loss for prediction scale alignment. Our DetailRefine module enhances boundary precision and segmentation accuracy by refining coarse predictions using a limited amount of ground truth labels. This comprehensive approach enables BiSeg-SAM to achieve excellent multi-task segmentation performance. Our method demonstrates significant superiority over state-of-the-art (SOTA) methods when tested on five polyp datasets and one skin cancer dataset.
- [32] arXiv:2504.01457 [pdf, other]
-
Title: Deep LG-Track: An Enhanced Localization-Confidence-Guided Multi-Object TrackerComments: 11 pages, 6 fuguresSubjects: Computer Vision and Pattern Recognition (cs.CV)
Multi-object tracking plays a crucial role in various applications, such as autonomous driving and security surveillance. This study introduces Deep LG-Track, a novel multi-object tracker that incorporates three key enhancements to improve the tracking accuracy and robustness. First, an adaptive Kalman filter is developed to dynamically update the covariance of measurement noise based on detection confidence and trajectory disappearance. Second, a novel cost matrix is formulated to adaptively fuse motion and appearance information, leveraging localization confidence and detection confidence as weighting factors. Third, a dynamic appearance feature updating strategy is introduced, adjusting the relative weighting of historical and current appearance features based on appearance clarity and localization accuracy. Comprehensive evaluations on the MOT17 and MOT20 datasets demonstrate that the proposed Deep LG-Track consistently outperforms state-of-the-art trackers across multiple performance metrics, highlighting its effectiveness in multi-object tracking tasks.
- [33] arXiv:2504.01466 [pdf, html, other]
-
Title: Mesh Mamba: A Unified State Space Model for Saliency Prediction in Non-Textured and Textured MeshesComments: to be published in CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Mesh saliency enhances the adaptability of 3D vision by identifying and emphasizing regions that naturally attract visual attention. To investigate the interaction between geometric structure and texture in shaping visual attention, we establish a comprehensive mesh saliency dataset, which is the first to systematically capture the differences in saliency distribution under both textured and non-textured visual conditions. Furthermore, we introduce mesh Mamba, a unified saliency prediction model based on a state space model (SSM), designed to adapt across various mesh types. Mesh Mamba effectively analyzes the geometric structure of the mesh while seamlessly incorporating texture features into the topological framework, ensuring coherence throughout appearance-enhanced modeling. More importantly, by subgraph embedding and a bidirectional SSM, the model enables global context modeling for both local geometry and texture, preserving the topological structure and improving the understanding of visual details and structural complexity. Through extensive theoretical and empirical validation, our model not only improves performance across various mesh types but also demonstrates high scalability and versatility, particularly through cross validations of various visual features.
- [34] arXiv:2504.01470 [pdf, html, other]
-
Title: Detecting Lip-Syncing Deepfakes: Vision Temporal Transformer for Analyzing Mouth InconsistenciesSubjects: Computer Vision and Pattern Recognition (cs.CV)
Deepfakes are AI-generated media in which the original content is digitally altered to create convincing but manipulated images, videos, or audio. Among the various types of deepfakes, lip-syncing deepfakes are one of the most challenging deepfakes to detect. In these videos, a person's lip movements are synthesized to match altered or entirely new audio using AI models. Therefore, unlike other types of deepfakes, the artifacts in lip-syncing deepfakes are confined to the mouth region, making them more subtle and, thus harder to discern. In this paper, we propose LIPINC-V2, a novel detection framework that leverages a combination of vision temporal transformer with multihead cross-attention to detect lip-syncing deepfakes by identifying spatiotemporal inconsistencies in the mouth region. These inconsistencies appear across adjacent frames and persist throughout the video. Our model can successfully capture both short-term and long-term variations in mouth movement, enhancing its ability to detect these inconsistencies. Additionally, we created a new lip-syncing deepfake dataset, LipSyncTIMIT, which was generated using five state-of-the-art lip-syncing models to simulate real-world scenarios. Extensive experiments on our proposed LipSyncTIMIT dataset and two other benchmark deepfake datasets demonstrate that our model achieves state-of-the-art performance. The code and the dataset are available at this https URL .
- [35] arXiv:2504.01472 [pdf, html, other]
-
Title: ANNEXE: Unified Analyzing, Answering, and Pixel Grounding for Egocentric InteractionComments: Computer Vision and Pattern RecognitionSubjects: Computer Vision and Pattern Recognition (cs.CV)
Egocentric interaction perception is one of the essential branches in investigating human-environment interaction, which lays the basis for developing next-generation intelligent systems. However, existing egocentric interaction understanding methods cannot yield coherent textual and pixel-level responses simultaneously according to user queries, which lacks flexibility for varying downstream application requirements. To comprehend egocentric interactions exhaustively, this paper presents a novel task named Egocentric Interaction Reasoning and pixel Grounding (Ego-IRG). Taking an egocentric image with the query as input, Ego-IRG is the first task that aims to resolve the interactions through three crucial steps: analyzing, answering, and pixel grounding, which results in fluent textual and fine-grained pixel-level responses. Another challenge is that existing datasets cannot meet the conditions for the Ego-IRG task. To address this limitation, this paper creates the Ego-IRGBench dataset based on extensive manual efforts, which includes over 20k egocentric images with 1.6 million queries and corresponding multimodal responses about interactions. Moreover, we design a unified ANNEXE model to generate text- and pixel-level outputs utilizing multimodal large language models, which enables a comprehensive interpretation of egocentric interactions. The experiments on the Ego-IRGBench exhibit the effectiveness of our ANNEXE model compared with other works.
- [36] arXiv:2504.01476 [pdf, html, other]
-
Title: Enhanced Cross-modal 3D Retrieval via Tri-modal ReconstructionComments: ICME 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Cross-modal 3D retrieval is a critical yet challenging task, aiming to achieve bi-directional retrieval between 3D and text modalities. Current methods predominantly rely on a certain 3D representation (e.g., point cloud), with few exploiting the 2D-3D consistency and complementary relationships, which constrains their performance. To bridge this gap, we propose to adopt multi-view images and point clouds to jointly represent 3D shapes, facilitating tri-modal alignment (i.e., image, point, text) for enhanced cross-modal 3D retrieval. Notably, we introduce tri-modal reconstruction to improve the generalization ability of encoders. Given point features, we reconstruct image features under the guidance of text features, and vice versa. With well-aligned point cloud and multi-view image features, we aggregate them as multimodal embeddings through fine-grained 2D-3D fusion to enhance geometric and semantic understanding. Recognizing the significant noise in current datasets where many 3D shapes and texts share similar semantics, we employ hard negative contrastive training to emphasize harder negatives with greater significance, leading to robust discriminative embeddings. Extensive experiments on the Text2Shape dataset demonstrate that our method significantly outperforms previous state-of-the-art methods in both shape-to-text and text-to-shape retrieval tasks by a substantial margin.
- [37] arXiv:2504.01503 [pdf, html, other]
-
Title: Luminance-GS: Adapting 3D Gaussian Splatting to Challenging Lighting Conditions with View-Adaptive Curve AdjustmentComments: CVPR 2025, project page: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
Capturing high-quality photographs under diverse real-world lighting conditions is challenging, as both natural lighting (e.g., low-light) and camera exposure settings (e.g., exposure time) significantly impact image quality. This challenge becomes more pronounced in multi-view scenarios, where variations in lighting and image signal processor (ISP) settings across viewpoints introduce photometric inconsistencies. Such lighting degradations and view-dependent variations pose substantial challenges to novel view synthesis (NVS) frameworks based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). To address this, we introduce Luminance-GS, a novel approach to achieving high-quality novel view synthesis results under diverse challenging lighting conditions using 3DGS. By adopting per-view color matrix mapping and view-adaptive curve adjustments, Luminance-GS achieves state-of-the-art (SOTA) results across various lighting conditions -- including low-light, overexposure, and varying exposure -- while not altering the original 3DGS explicit representation. Compared to previous NeRF- and 3DGS-based baselines, Luminance-GS provides real-time rendering speed with improved reconstruction quality.
- [38] arXiv:2504.01512 [pdf, html, other]
-
Title: High-fidelity 3D Object Generation from Single Image with RGBN-Volume Gaussian Reconstruction ModelComments: 12 pagesSubjects: Computer Vision and Pattern Recognition (cs.CV)
Recently single-view 3D generation via Gaussian splatting has emerged and developed quickly. They learn 3D Gaussians from 2D RGB images generated from pre-trained multi-view diffusion (MVD) models, and have shown a promising avenue for 3D generation through a single image. Despite the current progress, these methods still suffer from the inconsistency jointly caused by the geometric ambiguity in the 2D images, and the lack of structure of 3D Gaussians, leading to distorted and blurry 3D object generation. In this paper, we propose to fix these issues by GS-RGBN, a new RGBN-volume Gaussian Reconstruction Model designed to generate high-fidelity 3D objects from single-view images. Our key insight is a structured 3D representation can simultaneously mitigate the afore-mentioned two issues. To this end, we propose a novel hybrid Voxel-Gaussian representation, where a 3D voxel representation contains explicit 3D geometric information, eliminating the geometric ambiguity from 2D images. It also structures Gaussians during learning so that the optimization tends to find better local optima. Our 3D voxel representation is obtained by a fusion module that aligns RGB features and surface normal features, both of which can be estimated from 2D images. Extensive experiments demonstrate the superiority of our methods over prior works in terms of high-quality reconstruction results, robust generalization, and good efficiency.
- [39] arXiv:2504.01515 [pdf, html, other]
-
Title: Training-free Dense-Aligned Diffusion Guidance for Modular Conditional Image SynthesisSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Conditional image synthesis is a crucial task with broad applications, such as artistic creation and virtual reality. However, current generative methods are often task-oriented with a narrow scope, handling a restricted condition with constrained applicability. In this paper, we propose a novel approach that treats conditional image synthesis as the modular combination of diverse fundamental condition units. Specifically, we divide conditions into three primary units: text, layout, and drag. To enable effective control over these conditions, we design a dedicated alignment module for each. For the text condition, we introduce a Dense Concept Alignment (DCA) module, which achieves dense visual-text alignment by drawing on diverse textual concepts. For the layout condition, we propose a Dense Geometry Alignment (DGA) module to enforce comprehensive geometric constraints that preserve the spatial configuration. For the drag condition, we introduce a Dense Motion Alignment (DMA) module to apply multi-level motion regularization, ensuring that each pixel follows its desired trajectory without visual artifacts. By flexibly inserting and combining these alignment modules, our framework enhances the model's adaptability to diverse conditional generation tasks and greatly expands its application range. Extensive experiments demonstrate the superior performance of our framework across a variety of conditions, including textual description, segmentation mask (bounding box), drag manipulation, and their combinations. Code is available at this https URL.
- [40] arXiv:2504.01527 [pdf, other]
-
Title: Beyond Nearest Neighbor Interpolation in Data AugmentationComments: 6 pages, 9 figures, 1 tableSubjects: Computer Vision and Pattern Recognition (cs.CV)
Avoiding the risk of undefined categorical labels using nearest neighbor interpolation overlooks the risk of exacerbating pixel level annotation errors in data augmentation. To simultaneously avoid these risks, the author modified convolutional neural networks data transformation functions by incorporating a modified geometric transformation function to improve the quality of augmented data by removing the reliance on nearest neighbor interpolation and integrating a mean based class filtering mechanism to handle undefined categorical labels with alternative interpolation algorithms. Experiments on semantic segmentation tasks using three medical image datasets demonstrated both qualitative and quantitative improvements with alternative interpolation algorithms.
- [41] arXiv:2504.01547 [pdf, html, other]
-
Title: Semi-Supervised Biomedical Image Segmentation via Diffusion Models and Teacher-Student Co-TrainingSubjects: Computer Vision and Pattern Recognition (cs.CV)
Supervised deep learning for semantic segmentation has achieved excellent results in accurately identifying anatomical and pathological structures in medical images. However, it often requires large annotated training datasets, which limits its scalability in clinical settings. To address this challenge, semi-supervised learning is a well-established approach that leverages both labeled and unlabeled data. In this paper, we introduce a novel semi-supervised teacher-student framework for biomedical image segmentation, inspired by the recent success of generative models. Our approach leverages denoising diffusion probabilistic models (DDPMs) to generate segmentation masks by progressively refining noisy inputs conditioned on the corresponding images. The teacher model is first trained in an unsupervised manner using a cycle-consistency constraint based on noise-corrupted image reconstruction, enabling it to generate informative semantic masks. Subsequently, the teacher is integrated into a co-training process with a twin-student network. The student learns from ground-truth labels when available and from teacher-generated pseudo-labels otherwise, while the teacher continuously improves its pseudo-labeling capabilities. Finally, to further enhance performance, we introduce a multi-round pseudo-label generation strategy that iteratively improves the pseudo-labeling process. We evaluate our approach on multiple biomedical imaging benchmarks, spanning multiple imaging modalities and segmentation tasks. Experimental results show that our method consistently outperforms state-of-the-art semi-supervised techniques, highlighting its effectiveness in scenarios with limited annotated data. The code to replicate our experiments can be found at this https URL
- [42] arXiv:2504.01559 [pdf, html, other]
-
Title: RealityAvatar: Towards Realistic Loose Clothing Modeling in Animatable 3D Gaussian AvatarsSubjects: Computer Vision and Pattern Recognition (cs.CV)
Modeling animatable human avatars from monocular or multi-view videos has been widely studied, with recent approaches leveraging neural radiance fields (NeRFs) or 3D Gaussian Splatting (3DGS) achieving impressive results in novel-view and novel-pose synthesis. However, existing methods often struggle to accurately capture the dynamics of loose clothing, as they primarily rely on global pose conditioning or static per-frame representations, leading to oversmoothing and temporal inconsistencies in non-rigid regions. To address this, We propose RealityAvatar, an efficient framework for high-fidelity digital human modeling, specifically targeting loosely dressed avatars. Our method leverages 3D Gaussian Splatting to capture complex clothing deformations and motion dynamics while ensuring geometric consistency. By incorporating a motion trend module and a latentbone encoder, we explicitly model pose-dependent deformations and temporal variations in clothing behavior. Extensive experiments on benchmark datasets demonstrate the effectiveness of our approach in capturing fine-grained clothing deformations and motion-driven shape variations. Our method significantly enhances structural fidelity and perceptual quality in dynamic human reconstruction, particularly in non-rigid regions, while achieving better consistency across temporal frames.
- [43] arXiv:2504.01589 [pdf, other]
-
Title: Text Speaks Louder than Vision: ASCII Art Reveals Textual Biases in Vision-Language ModelsComments: Under review at COLM 2025Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Vision-language models (VLMs) have advanced rapidly in processing multimodal information, but their ability to reconcile conflicting signals across modalities remains underexplored. This work investigates how VLMs process ASCII art, a unique medium where textual elements collectively form visual patterns, potentially creating semantic-visual conflicts. We introduce a novel evaluation framework that systematically challenges five state-of-the-art models (including GPT-4o, Claude, and Gemini) using adversarial ASCII art, where character-level semantics deliberately contradict global visual patterns. Our experiments reveal a strong text-priority bias: VLMs consistently prioritize textual information over visual patterns, with visual recognition ability declining dramatically as semantic complexity increases. Various mitigation attempts through visual parameter tuning and prompt engineering yielded only modest improvements, suggesting that this limitation requires architectural-level solutions. These findings uncover fundamental flaws in how current VLMs integrate multimodal information, providing important guidance for future model development while highlighting significant implications for content moderation systems vulnerable to adversarial examples.
- [44] arXiv:2504.01591 [pdf, html, other]
-
Title: Leveraging Modality Tags for Enhanced Cross-Modal Video RetrievalSubjects: Computer Vision and Pattern Recognition (cs.CV)
Video retrieval requires aligning visual content with corresponding natural language descriptions. In this paper, we introduce Modality Auxiliary Concepts for Video Retrieval (MAC-VR), a novel approach that leverages modality-specific tags -- automatically extracted from foundation models -- to enhance video retrieval. We propose to align modalities in a latent space, along with learning and aligning auxiliary latent concepts, derived from the features of a video and its corresponding caption. We introduce these auxiliary concepts to improve the alignment of visual and textual latent concepts, and so are able to distinguish concepts from one other. We conduct extensive experiments on five diverse datasets: MSR-VTT, DiDeMo, TGIF, Charades and YouCook2. The experimental results consistently demonstrate that modality-specific tags improve cross-modal alignment, outperforming current state-of-the-art methods across three datasets and performing comparably or better across the other two.
- [45] arXiv:2504.01596 [pdf, html, other]
-
Title: DEPTHOR: Depth Enhancement from a Practical Light-Weight dToF Sensor and RGB ImageComments: 10 pages, 8 figures, 7 tablesSubjects: Computer Vision and Pattern Recognition (cs.CV)
Depth enhancement, which uses RGB images as guidance to convert raw signals from dToF into high-precision, dense depth maps, is a critical task in computer vision. Although existing super-resolution-based methods show promising results on public datasets, they often rely on idealized assumptions like accurate region correspondences and reliable dToF inputs, overlooking calibration errors that cause misalignment and anomaly signals inherent to dToF imaging, limiting real-world applicability. To address these challenges, we propose a novel completion-based method, named DEPTHOR, featuring advances in both the training strategy and model architecture. First, we propose a method to simulate real-world dToF data from the accurate ground truth in synthetic datasets to enable noise-robust training. Second, we design a novel network that incorporates monocular depth estimation (MDE), leveraging global depth relationships and contextual information to improve prediction in challenging regions. On the ZJU-L5 dataset, our training strategy significantly enhances depth completion models, achieving results comparable to depth super-resolution methods, while our model achieves state-of-the-art results, improving Rel and RMSE by 27% and 18%, respectively. On a more challenging set of dToF samples we collected, our method outperforms SOTA methods on preliminary stereo-based GT, improving Rel and RMSE by 23% and 22%, respectively. Our Code is available at this https URL
- [46] arXiv:2504.01597 [pdf, html, other]
-
Title: A topology-preserving three-stage framework for fully-connected coronary artery extractionSubjects: Computer Vision and Pattern Recognition (cs.CV)
Coronary artery extraction is a crucial prerequisite for computer-aided diagnosis of coronary artery disease. Accurately extracting the complete coronary tree remains challenging due to several factors, including presence of thin distal vessels, tortuous topological structures, and insufficient contrast. These issues often result in over-segmentation and under-segmentation in current segmentation methods. To address these challenges, we propose a topology-preserving three-stage framework for fully-connected coronary artery extraction. This framework includes vessel segmentation, centerline reconnection, and missing vessel reconstruction. First, we introduce a new centerline enhanced loss in the segmentation process. Second, for the broken vessel segments, we further propose a regularized walk algorithm to integrate distance, probabilities predicted by a centerline classifier, and directional cosine similarity, for reconnecting the centerlines. Third, we apply implicit neural representation and implicit modeling, to reconstruct the geometric model of the missing vessels. Experimental results show that our proposed framework outperforms existing methods, achieving Dice scores of 88.53\% and 85.07\%, with Hausdorff Distances (HD) of 1.07mm and 1.63mm on ASOCA and PDSCA datasets, respectively. Code will be available at this https URL.
- [47] arXiv:2504.01603 [pdf, html, other]
-
Title: A$^\text{T}$A: Adaptive Transformation Agent for Text-Guided Subject-Position Variable Background InpaintingYizhe Tang, Zhimin Sun, Yuzhen Du, Ran Yi, Guangben Lu, Teng Hu, Luying Li, Lizhuang Ma, Fangyuan ZouComments: Accepted by CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Image inpainting aims to fill the missing region of an image. Recently, there has been a surge of interest in foreground-conditioned background inpainting, a sub-task that fills the background of an image while the foreground subject and associated text prompt are provided. Existing background inpainting methods typically strictly preserve the subject's original position from the source image, resulting in inconsistencies between the subject and the generated background. To address this challenge, we propose a new task, the "Text-Guided Subject-Position Variable Background Inpainting", which aims to dynamically adjust the subject position to achieve a harmonious relationship between the subject and the inpainted background, and propose the Adaptive Transformation Agent (A$^\text{T}$A) for this task. Firstly, we design a PosAgent Block that adaptively predicts an appropriate displacement based on given features to achieve variable subject-position. Secondly, we design the Reverse Displacement Transform (RDT) module, which arranges multiple PosAgent blocks in a reverse structure, to transform hierarchical feature maps from deep to shallow based on semantic information. Thirdly, we equip A$^\text{T}$A with a Position Switch Embedding to control whether the subject's position in the generated image is adaptively predicted or fixed. Extensive comparative experiments validate the effectiveness of our A$^\text{T}$A approach, which not only demonstrates superior inpainting capabilities in subject-position variable inpainting, but also ensures good performance on subject-position fixed inpainting.
- [48] arXiv:2504.01619 [pdf, html, other]
-
Title: 3DBonsai: Structure-Aware Bonsai Modeling Using Conditioned 3D Gaussian SplattingComments: Accepted by ICME 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Recent advancements in text-to-3D generation have shown remarkable results by leveraging 3D priors in combination with 2D diffusion. However, previous methods utilize 3D priors that lack detailed and complex structural information, limiting them to generating simple objects and presenting challenges for creating intricate structures such as bonsai. In this paper, we propose 3DBonsai, a novel text-to-3D framework for generating 3D bonsai with complex structures. Technically, we first design a trainable 3D space colonization algorithm to produce bonsai structures, which are then enhanced through random sampling and point cloud augmentation to serve as the 3D Gaussian priors. We introduce two bonsai generation pipelines with distinct structural levels: fine structure conditioned generation, which initializes 3D Gaussians using a 3D structure prior to produce detailed and complex bonsai, and coarse structure conditioned generation, which employs a multi-view structure consistency module to align 2D and 3D structures. Moreover, we have compiled a unified 2D and 3D Chinese-style bonsai dataset. Our experimental results demonstrate that 3DBonsai significantly outperforms existing methods, providing a new benchmark for structure-aware 3D bonsai generation.
- [49] arXiv:2504.01620 [pdf, html, other]
-
Title: A Conic Transformation Approach for Solving the Perspective-Three-Point ProblemSubjects: Computer Vision and Pattern Recognition (cs.CV)
We propose a conic transformation method to solve the Perspective-Three-Point (P3P) problem. In contrast to the current state-of-the-art solvers, which formulate the P3P problem by intersecting two conics and constructing a degenerate conic to find the intersection, our approach builds upon a new formulation based on a transformation that maps the two conics to a new coordinate system, where one of the conics becomes a standard parabola in a canonical form. This enables expressing one variable in terms of the other variable, and as a consequence, substantially simplifies the problem of finding the conic intersection. Moreover, the polynomial coefficients are fast to compute, and we only need to determine the real-valued intersection points, which avoids the requirement of using computationally expensive complex arithmetic. While the current state-of-the-art methods reduce the conic intersection problem to solving a univariate cubic equation, our approach, despite resulting in a quartic equation, is still faster thanks to this new simplified formulation. Extensive evaluations demonstrate that our method achieves higher speed while maintaining robustness and stability comparable to state-of-the-art methods.
- [50] arXiv:2504.01632 [pdf, html, other]
-
Title: Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized CorruptionsComments: Under reviewSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
The robustness of DNNs is a crucial factor in safety-critical applications, particularly in complex and dynamic environments where localized corruptions can arise. While previous studies have evaluated the robustness of semantic segmentation (SS) models under whole-image natural or adversarial corruptions, a comprehensive investigation into the spatial robustness of dense vision models under localized corruptions remained underexplored. This paper fills this gap by introducing specialized metrics for benchmarking the spatial robustness of segmentation models, alongside with an evaluation framework to assess the impact of localized corruptions. Furthermore, we uncover the inherent complexity of characterizing worst-case robustness using a single localized adversarial perturbation. To address this, we propose region-aware multi-attack adversarial analysis, a method that enables a deeper understanding of model robustness against adversarial perturbations applied to specific regions. The proposed metrics and analysis were evaluated on 15 segmentation models in driving scenarios, uncovering key insights into the effects of localized corruption in both natural and adversarial forms. The results reveal that models respond to these two types of threats differently; for instance, transformer-based segmentation models demonstrate notable robustness to localized natural corruptions but are highly vulnerable to adversarial ones and vice-versa for CNN-based models. Consequently, we also address the challenge of balancing robustness to both natural and adversarial localized corruptions by means of ensemble models, thereby achieving a broader threat coverage and improved reliability for dense vision tasks.
- [51] arXiv:2504.01641 [pdf, html, other]
-
Title: Bridge 2D-3D: Uncertainty-aware Hierarchical Registration Network with Domain AlignmentComments: AAAI2025acceptSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
The method for image-to-point cloud registration typically determines the rigid transformation using a coarse-to-fine pipeline. However, directly and uniformly matching image patches with point cloud patches may lead to focusing on incorrect noise patches during matching while ignoring key ones. Moreover, due to the significant differences between image and point cloud modalities, it may be challenging to bridge the domain gap without specific improvements in design. To address the above issues, we innovatively propose the Uncertainty-aware Hierarchical Matching Module (UHMM) and the Adversarial Modal Alignment Module (AMAM). Within the UHMM, we model the uncertainty of critical information in image patches and facilitate multi-level fusion interactions between image and point cloud features. In the AMAM, we design an adversarial approach to reduce the domain gap between image and point cloud. Extensive experiments and ablation studies on RGB-D Scene V2 and 7-Scenes benchmarks demonstrate the superiority of our method, making it a state-of-the-art approach for image-to-point cloud registration tasks.
- [52] arXiv:2504.01647 [pdf, html, other]
-
Title: FlowR: Flowing from Sparse to Dense 3D ReconstructionsTobias Fischer, Samuel Rota Bulò, Yung-Hsu Yang, Nikhil Varma Keetha, Lorenzo Porzi, Norman Müller, Katja Schwarz, Jonathon Luiten, Marc Pollefeys, Peter KontschiederComments: Project page is available at this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
3D Gaussian splatting enables high-quality novel view synthesis (NVS) at real-time frame rates. However, its quality drops sharply as we depart from the training views. Thus, dense captures are needed to match the high-quality expectations of some applications, e.g. Virtual Reality (VR). However, such dense captures are very laborious and expensive to obtain. Existing works have explored using 2D generative models to alleviate this requirement by distillation or generating additional training views. These methods are often conditioned only on a handful of reference input views and thus do not fully exploit the available 3D information, leading to inconsistent generation results and reconstruction artifacts. To tackle this problem, we propose a multi-view, flow matching model that learns a flow to connect novel view renderings from possibly sparse reconstructions to renderings that we expect from dense reconstructions. This enables augmenting scene captures with novel, generated views to improve reconstruction quality. Our model is trained on a novel dataset of 3.6M image pairs and can process up to 45 views at 540x960 resolution (91K tokens) on one H100 GPU in a single forward pass. Our pipeline consistently improves NVS in sparse- and dense-view scenarios, leading to higher-quality reconstructions than prior works across multiple, widely-used NVS benchmarks.
- [53] arXiv:2504.01648 [pdf, html, other]
-
Title: ProtoGuard-guided PROPEL: Class-Aware Prototype Enhancement and Progressive Labeling for Incremental 3D Point Cloud SegmentationSubjects: Computer Vision and Pattern Recognition (cs.CV)
3D point cloud semantic segmentation technology has been widely used. However, in real-world scenarios, the environment is evolving. Thus, offline-trained segmentation models may lead to catastrophic forgetting of previously seen classes. Class-incremental learning (CIL) is designed to address the problem of catastrophic forgetting. While point clouds are common, we observe high similarity and unclear boundaries between different classes. Meanwhile, they are known to be imbalanced in class distribution. These lead to issues including misclassification between similar classes and the long-tail problem, which have not been adequately addressed in previous CIL methods. We thus propose ProtoGuard and PROPEL (Progressive Refinement Of PsEudo-Labels). In the base-class training phase, ProtoGuard maintains geometric and semantic prototypes for each class, which are combined into prototype features using an attention mechanism. In the novel-class training phase, PROPEL inherits the base feature extractor and classifier, guiding pseudo-label propagation and updates based on density distribution and semantic similarity. Extensive experiments show that our approach achieves remarkable results on both the S3DIS and ScanNet datasets, improving the mIoU of 3D point cloud segmentation by a maximum of 20.39% under the 5-step CIL scenario on S3DIS.
- [54] arXiv:2504.01655 [pdf, html, other]
-
Title: Q-Adapt: Adapting LMM for Visual Quality Assessment with Progressive Instruction TuningSubjects: Computer Vision and Pattern Recognition (cs.CV); Multimedia (cs.MM)
The rapid advancement of Large Multi-modal Foundation Models (LMM) has paved the way for the possible Explainable Image Quality Assessment (EIQA) with instruction tuning from two perspectives: overall quality explanation, and attribute-wise perception answering. However, existing works usually overlooked the conflicts between these two types of perception explanations during joint instruction tuning, leading to insufficient perception understanding. To mitigate this, we propose a new paradigm for perception-oriented instruction tuning, i.e., Q-Adapt, which aims to eliminate the conflicts and achieve the synergy between these two EIQA tasks when adapting LMM, resulting in enhanced multi-faceted explanations of IQA. Particularly, we propose a progressive instruction tuning strategy by dividing the adaption process of LMM for EIQA into two stages, where the first stage empowers the LMM with universal perception knowledge tailored for two tasks using an efficient transfer learning strategy, i.e., LoRA, and the second stage introduces the instruction-adaptive visual prompt tuning to dynamically adapt visual features for the different instructions from two tasks. In this way, our proposed Q-Adapt can achieve a lightweight visual quality evaluator, demonstrating comparable performance and, in some instances, superior results across perceptual-related benchmarks and commonly-used IQA databases. The source code is publicly available at this https URL.
- [55] arXiv:2504.01659 [pdf, html, other]
-
Title: Robust Unsupervised Domain Adaptation for 3D Point Cloud Segmentation Under Source Adversarial AttacksSubjects: Computer Vision and Pattern Recognition (cs.CV)
Unsupervised domain adaptation (UDA) frameworks have shown good generalization capabilities for 3D point cloud semantic segmentation models on clean data. However, existing works overlook adversarial robustness when the source domain itself is compromised. To comprehensively explore the robustness of the UDA frameworks, we first design a stealthy adversarial point cloud generation attack that can significantly contaminate datasets with only minor perturbations to the point cloud surface. Based on that, we propose a novel dataset, AdvSynLiDAR, comprising synthesized contaminated LiDAR point clouds. With the generated corrupted data, we further develop the Adversarial Adaptation Framework (AAF) as the countermeasure. Specifically, by extending the key point sensitive (KPS) loss towards the Robust Long-Tail loss (RLT loss) and utilizing a decoder branch, our approach enables the model to focus on long-tail classes during the pre-training phase and leverages high-confidence decoded point cloud information to restore point cloud structures during the adaptation phase. We evaluated our AAF method on the AdvSynLiDAR dataset, where the results demonstrate that our AAF method can mitigate performance degradation under source adversarial perturbations for UDA in the 3D point cloud segmentation application.
- [56] arXiv:2504.01662 [pdf, html, other]
-
Title: BioAtt: Anatomical Prior Driven Low-Dose CT DenoisingComments: 14 pagesSubjects: Computer Vision and Pattern Recognition (cs.CV)
Deep-learning-based denoising methods have significantly improved Low-Dose CT (LDCT) image quality. However, existing models often over-smooth important anatomical details due to their purely data-driven attention mechanisms. To address this challenge, we propose a novel LDCT denoising framework, BioAtt. The key innovation lies in attending anatomical prior distributions extracted from the pretrained vision-language model BiomedCLIP. These priors guide the denoising model to focus on anatomically relevant regions to suppress noise while preserving clinically relevant structures. We highlight three main contributions: BioAtt outperforms baseline and attention-based models in SSIM, PSNR, and RMSE across multiple anatomical regions. The framework introduces a new architectural paradigm by embedding anatomic priors directly into spatial attention. Finally, BioAtt attention maps provide visual confirmation that the improvements stem from anatomical guidance rather than increased model complexity.
- [57] arXiv:2504.01666 [pdf, html, other]
-
Title: CLIP-SLA: Parameter-Efficient CLIP Adaptation for Continuous Sign Language RecognitionSubjects: Computer Vision and Pattern Recognition (cs.CV)
Continuous sign language recognition (CSLR) focuses on interpreting and transcribing sequences of sign language gestures in videos. In this work, we propose CLIP sign language adaptation (CLIP-SLA), a novel CSLR framework that leverages the powerful pre-trained visual encoder from the CLIP model to sign language tasks through parameter-efficient fine-tuning (PEFT). We introduce two variants, SLA-Adapter and SLA-LoRA, which integrate PEFT modules into the CLIP visual encoder, enabling fine-tuning with minimal trainable parameters. The effectiveness of the proposed frameworks is validated on four datasets: Phoenix2014, Phoenix2014-T, CSL-Daily, and Isharah-500, where both CLIP-SLA variants outperformed several SOTA models with fewer trainable parameters. Extensive ablation studies emphasize the effectiveness and flexibility of the proposed methods with different vision-language models for CSLR. These findings showcase the potential of adapting large-scale pre-trained models for scalable and efficient CSLR, which pave the way for future advancements in sign language understanding.
- [58] arXiv:2504.01668 [pdf, html, other]
-
Title: Overlap-Aware Feature Learning for Robust Unsupervised Domain Adaptation for 3D Semantic SegmentationComments: 8 pages,6 figuresSubjects: Computer Vision and Pattern Recognition (cs.CV); Robotics (cs.RO)
3D point cloud semantic segmentation (PCSS) is a cornerstone for environmental perception in robotic systems and autonomous driving, enabling precise scene understanding through point-wise classification. While unsupervised domain adaptation (UDA) mitigates label scarcity in PCSS, existing methods critically overlook the inherent vulnerability to real-world perturbations (e.g., snow, fog, rain) and adversarial distortions. This work first identifies two intrinsic limitations that undermine current PCSS-UDA robustness: (a) unsupervised features overlap from unaligned boundaries in shared-class regions and (b) feature structure erosion caused by domain-invariant learning that suppresses target-specific patterns. To address the proposed problems, we propose a tripartite framework consisting of: 1) a robustness evaluation model quantifying resilience against adversarial attack/corruption types through robustness metrics; 2) an invertible attention alignment module (IAAM) enabling bidirectional domain mapping while preserving discriminative structure via attention-guided overlap suppression; and 3) a contrastive memory bank with quality-aware contrastive learning that progressively refines pseudo-labels with feature quality for more discriminative representations. Extensive experiments on SynLiDAR-to-SemanticPOSS adaptation demonstrate a maximum mIoU improvement of 14.3\% under adversarial attack.
- [59] arXiv:2504.01689 [pdf, html, other]
-
Title: InvFussion: Bridging Supervised and Zero-shot Diffusion for Inverse ProblemsSubjects: Computer Vision and Pattern Recognition (cs.CV)
Diffusion Models have demonstrated remarkable capabilities in handling inverse problems, offering high-quality posterior-sampling-based solutions. Despite significant advances, a fundamental trade-off persists, regarding the way the conditioned synthesis is employed: Training-based methods achieve high quality results, while zero-shot approaches trade this with flexibility. This work introduces a framework that combines the best of both worlds -- the strong performance of supervised approaches and the flexibility of zero-shot methods. This is achieved through a novel architectural design that seamlessly integrates the degradation operator directly into the denoiser. In each block, our proposed architecture applies the degradation operator on the network activations and conditions the output using the attention mechanism, enabling adaptation to diverse degradation scenarios while maintaining high performance. Our work demonstrates the versatility of the proposed architecture, operating as a general MMSE estimator, a posterior sampler, or a Neural Posterior Principal Component estimator. This flexibility enables a wide range of downstream tasks, highlighting the broad applicability of our framework. The proposed modification of the denoiser network offers a versatile, accurate, and computationally efficient solution, demonstrating the advantages of dedicated network architectures for complex inverse problems. Experimental results on the FFHQ and ImageNet datasets demonstrate state-of-the-art posterior-sampling performance, surpassing both training-based and zero-shot alternatives.
- [60] arXiv:2504.01722 [pdf, html, other]
-
Title: {GSR4B}: Biomass Map Super-Resolution with Sentinel-1/2 GuidanceKaan Karaman, Yuchang Jiang, Damien Robert, Vivien Sainte Fare Garnot, Maria João Santos, Jan Dirk WegnerComments: Accepted for an oral presentation at the ISPRS Geospatial Week 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Accurate Above-Ground Biomass (AGB) mapping at both large scale and high spatio-temporal resolution is essential for applications ranging from climate modeling to biodiversity assessment, and sustainable supply chain monitoring. At present, fine-grained AGB mapping relies on costly airborne laser scanning acquisition campaigns usually limited to regional scales. Initiatives such as the ESA CCI map attempt to generate global biomass products from diverse spaceborne sensors but at a coarser resolution. To enable global, high-resolution (HR) mapping, several works propose to regress AGB from HR satellite observations such as ESA Sentinel-1/2 images. We propose a novel way to address HR AGB estimation, by leveraging both HR satellite observations and existing low-resolution (LR) biomass products. We cast this problem as Guided Super-Resolution (GSR), aiming at upsampling LR biomass maps (sources) from $100$ to $10$ m resolution, using auxiliary HR co-registered satellite images (guides). We compare super-resolving AGB maps with and without guidance, against direct regression from satellite images, on the public BioMassters dataset. We observe that Multi-Scale Guidance (MSG) outperforms direct regression both for regression ($-780$ t/ha RMSE) and perception ($+2.0$ dB PSNR) metrics, and better captures high-biomass values, without significant computational overhead. Interestingly, unlike the RGB+Depth setting they were originally designed for, our best-performing AGB GSR approaches are those that most preserve the guide image texture. Our results make a strong case for adopting the GSR framework for accurate HR biomass mapping at scale. Our code and model weights are made publicly available (this https URL).
- [61] arXiv:2504.01724 [pdf, html, other]
-
Title: DreamActor-M1: Holistic, Expressive and Robust Human Image Animation with Hybrid GuidanceSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
While recent image-based human animation methods achieve realistic body and facial motion synthesis, critical gaps remain in fine-grained holistic controllability, multi-scale adaptability, and long-term temporal coherence, which leads to their lower expressiveness and robustness. We propose a diffusion transformer (DiT) based framework, DreamActor-M1, with hybrid guidance to overcome these limitations. For motion guidance, our hybrid control signals that integrate implicit facial representations, 3D head spheres, and 3D body skeletons achieve robust control of facial expressions and body movements, while producing expressive and identity-preserving animations. For scale adaptation, to handle various body poses and image scales ranging from portraits to full-body views, we employ a progressive training strategy using data with varying resolutions and scales. For appearance guidance, we integrate motion patterns from sequential frames with complementary visual references, ensuring long-term temporal coherence for unseen regions during complex movements. Experiments demonstrate that our method outperforms the state-of-the-art works, delivering expressive results for portraits, upper-body, and full-body generation with robust long-term consistency. Project Page: this https URL.
- [62] arXiv:2504.01732 [pdf, html, other]
-
Title: FIORD: A Fisheye Indoor-Outdoor Dataset with LIDAR Ground Truth for 3D Scene Reconstruction and BenchmarkingComments: SCIA 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
The development of large-scale 3D scene reconstruction and novel view synthesis methods mostly rely on datasets comprising perspective images with narrow fields of view (FoV). While effective for small-scale scenes, these datasets require large image sets and extensive structure-from-motion (SfM) processing, limiting scalability. To address this, we introduce a fisheye image dataset tailored for scene reconstruction tasks. Using dual 200-degree fisheye lenses, our dataset provides full 360-degree coverage of 5 indoor and 5 outdoor scenes. Each scene has sparse SfM point clouds and precise LIDAR-derived dense point clouds that can be used as geometric ground-truth, enabling robust benchmarking under challenging conditions such as occlusions and reflections. While the baseline experiments focus on vanilla Gaussian Splatting and NeRF based Nerfacto methods, the dataset supports diverse approaches for scene reconstruction, novel view synthesis, and image-based rendering.
- [63] arXiv:2504.01735 [pdf, html, other]
-
Title: AdPO: Enhancing the Adversarial Robustness of Large Vision-Language Models with Preference OptimizationSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Large Vision-Language Models (LVLMs), such as GPT-4o and LLaVA, have recently witnessed remarkable advancements and are increasingly being deployed in real-world applications. However, inheriting the sensitivity of visual neural networks, LVLMs remain vulnerable to adversarial attacks, which can result in erroneous or malicious outputs. While existing efforts utilize adversarial fine-tuning to enhance robustness, they often suffer from performance degradation on clean inputs. In this paper, we proposes AdPO, a novel adversarial defense strategy for LVLMs based on preference optimization. For the first time, we reframe adversarial training as a preference optimization problem, aiming to enhance the model's preference for generating normal outputs on clean inputs while rejecting the potential misleading outputs for adversarial examples. Notably, AdPO achieves this by solely modifying the image encoder, e.g., CLIP ViT, resulting in superior clean and adversarial performance in a variety of downsream tasks. Considering that training involves large language models (LLMs), the computational cost increases significantly. We validate that training on smaller LVLMs and subsequently transferring to larger models can achieve competitive performance while maintaining efficiency comparable to baseline methods. Our comprehensive experiments confirm the effectiveness of the proposed AdPO, which provides a novel perspective for future adversarial defense research.
- [64] arXiv:2504.01739 [pdf, html, other]
-
Title: Understanding Cross-Model Perceptual Invariances Through Ensemble MetamersSubjects: Computer Vision and Pattern Recognition (cs.CV)
Understanding the perceptual invariances of artificial neural networks is essential for improving explainability and aligning models with human vision. Metamers - stimuli that are physically distinct yet produce identical neural activations - serve as a valuable tool for investigating these invariances. We introduce a novel approach to metamer generation by leveraging ensembles of artificial neural networks, capturing shared representational subspaces across diverse architectures, including convolutional neural networks and vision transformers. To characterize the properties of the generated metamers, we employ a suite of image-based metrics that assess factors such as semantic fidelity and naturalness. Our findings show that convolutional neural networks generate more recognizable and human-like metamers, while vision transformers produce realistic but less transferable metamers, highlighting the impact of architectural biases on representational invariances.
- [65] arXiv:2504.01755 [pdf, html, other]
-
Title: Bridge the Gap between SNN and ANN for Image RestorationComments: Under reviewSubjects: Computer Vision and Pattern Recognition (cs.CV)
Models of dense prediction based on traditional Artificial Neural Networks (ANNs) require a lot of energy, especially for image restoration tasks. Currently, neural networks based on the SNN (Spiking Neural Network) framework are beginning to make their mark in the field of image restoration, especially as they typically use less than 10\% of the energy of ANNs with the same architecture. However, training an SNN is much more expensive than training an ANN, due to the use of the heuristic gradient descent strategy. In other words, the process of SNN's potential membrane signal changing from sparse to dense is very slow, which affects the convergence of the whole this http URL tackle this problem, we propose a novel distillation technique, called asymmetric framework (ANN-SNN) distillation, in which the teacher is an ANN and the student is an SNN. Specifically, we leverage the intermediate features (feature maps) learned by the ANN as hints to guide the training process of the SNN. This approach not only accelerates the convergence of the SNN but also improves its final performance, effectively bridging the gap between the efficiency of the SNN and the superior learning capabilities of ANN. Extensive experimental results show that our designed SNN-based image restoration model, which has only 1/300 the number of parameters of the teacher network and 1/50 the energy consumption of the teacher network, is as good as the teacher network in some denoising tasks.
- [66] arXiv:2504.01764 [pdf, html, other]
-
Title: Dual-stream Transformer-GCN Model with Contextualized Representations Learning for Monocular 3D Human Pose EstimationSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
This paper introduces a novel approach to monocular 3D human pose estimation using contextualized representation learning with the Transformer-GCN dual-stream model. Monocular 3D human pose estimation is challenged by depth ambiguity, limited 3D-labeled training data, imbalanced modeling, and restricted model generalization. To address these limitations, our work introduces a groundbreaking motion pre-training method based on contextualized representation learning. Specifically, our method involves masking 2D pose features and utilizing a Transformer-GCN dual-stream model to learn high-dimensional representations through a self-distillation setup. By focusing on contextualized representation learning and spatial-temporal modeling, our approach enhances the model's ability to understand spatial-temporal relationships between postures, resulting in superior generalization. Furthermore, leveraging the Transformer-GCN dual-stream model, our approach effectively balances global and local interactions in video pose estimation. The model adaptively integrates information from both the Transformer and GCN streams, where the GCN stream effectively learns local relationships between adjacent key points and frames, while the Transformer stream captures comprehensive global spatial and temporal features. Our model achieves state-of-the-art performance on two benchmark datasets, with an MPJPE of 38.0mm and P-MPJPE of 31.9mm on Human3.6M, and an MPJPE of 15.9mm on MPI-INF-3DHP. Furthermore, visual experiments on public datasets and in-the-wild videos demonstrate the robustness and generalization capabilities of our approach.
- [67] arXiv:2504.01774 [pdf, html, other]
-
Title: Memory-efficient Low-latency Remote Photoplethysmography through Temporal-Spatial State Space DualitySubjects: Computer Vision and Pattern Recognition (cs.CV)
Remote photoplethysmography (rPPG), enabling non-contact physiological monitoring through facial light reflection analysis, faces critical computational bottlenecks as deep learning introduces performance gains at the cost of prohibitive resource demands. This paper proposes ME-rPPG, a memory-efficient algorithm built on temporal-spatial state space duality, which resolves the trilemma of model scalability, cross-dataset generalization, and real-time constraints. Leveraging a transferable state space, ME-rPPG efficiently captures subtle periodic variations across facial frames while maintaining minimal computational overhead, enabling training on extended video sequences and supporting low-latency inference. Achieving cross-dataset MAEs of 5.38 (MMPD), 0.70 (VitalVideo), and 0.25 (PURE), ME-rPPG outperforms all baselines with improvements ranging from 21.3% to 60.2%. Our solution enables real-time inference with only 3.6 MB memory usage and 9.46 ms latency -- surpassing existing methods by 19.5%-49.7% accuracy and 43.2% user satisfaction gains in real-world deployments. The code and demos are released for reproducibility on this https URL.
- [68] arXiv:2504.01792 [pdf, html, other]
-
Title: UniViTAR: Unified Vision Transformer with Native ResolutionSubjects: Computer Vision and Pattern Recognition (cs.CV)
Conventional Vision Transformer simplifies visual modeling by standardizing input resolutions, often disregarding the variability of natural visual data and compromising spatial-contextual fidelity. While preliminary explorations have superficially investigated native resolution modeling, existing approaches still lack systematic analysis from a visual representation perspective. To bridge this gap, we introduce UniViTAR, a family of homogeneous vision foundation models tailored for unified visual modality and native resolution scenario in the era of multimodal. Our framework first conducts architectural upgrades to the vanilla paradigm by integrating multiple advanced components. Building upon these improvements, a progressive training paradigm is introduced, which strategically combines two core mechanisms: (1) resolution curriculum learning, transitioning from fixed-resolution pretraining to native resolution tuning, thereby leveraging ViT's inherent adaptability to variable-length sequences, and (2) visual modality adaptation via inter-batch image-video switching, which balances computational efficiency with enhanced temporal reasoning. In parallel, a hybrid training framework further synergizes sigmoid-based contrastive loss with feature distillation from a frozen teacher model, thereby accelerating early-stage convergence. Finally, trained exclusively on public datasets, externsive experiments across multiple model scales from 0.3B to 1B demonstrate its effectiveness.
- [69] arXiv:2504.01805 [pdf, html, other]
-
Title: Spatial-R1: Enhancing MLLMs in Video Spatial ReasoningSubjects: Computer Vision and Pattern Recognition (cs.CV)
Enhancing the spatial reasoning capabilities of Multi-modal Large Language Models (MLLMs) for video understanding is crucial yet challenging. We present Spatial-R1, a targeted approach involving two key contributions: the curation of SR, a new video spatial reasoning dataset from ScanNet with automatically generated QA pairs across seven task types, and the application of Task-Specific Group Relative Policy Optimization (GRPO) for fine-tuning. By training the Qwen2.5-VL-7B-Instruct model on SR using GRPO, Spatial-R1 significantly advances performance on the VSI-Bench benchmark, achieving a 7.4\% gain over the baseline and outperforming strong contemporary models. This work validates the effectiveness of specialized data curation and optimization techniques for improving complex spatial reasoning in video MLLMs.
- [70] arXiv:2504.01819 [pdf, html, other]
-
Title: Implicit Bias Injection Attacks against Text-to-Image Diffusion ModelsComments: Accept to CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
The proliferation of text-to-image diffusion models (T2I DMs) has led to an increased presence of AI-generated images in daily life. However, biased T2I models can generate content with specific tendencies, potentially influencing people's perceptions. Intentional exploitation of these biases risks conveying misleading information to the public. Current research on bias primarily addresses explicit biases with recognizable visual patterns, such as skin color and gender. This paper introduces a novel form of implicit bias that lacks explicit visual features but can manifest in diverse ways across various semantic contexts. This subtle and versatile nature makes this bias challenging to detect, easy to propagate, and adaptable to a wide range of scenarios. We further propose an implicit bias injection attack framework (IBI-Attacks) against T2I diffusion models by precomputing a general bias direction in the prompt embedding space and adaptively adjusting it based on different inputs. Our attack module can be seamlessly integrated into pre-trained diffusion models in a plug-and-play manner without direct manipulation of user input or model retraining. Extensive experiments validate the effectiveness of our scheme in introducing bias through subtle and diverse modifications while preserving the original semantics. The strong concealment and transferability of our attack across various scenarios further underscore the significance of our approach. Code is available at this https URL.
- [71] arXiv:2504.01838 [pdf, html, other]
-
Title: Prompting Medical Vision-Language Models to Mitigate Diagnosis Bias by Generating Realistic Dermoscopic ImagesComments: Paper accepted at International Symposium on Biomedical Imaging (ISBI 2025)Subjects: Computer Vision and Pattern Recognition (cs.CV)
Artificial Intelligence (AI) in skin disease diagnosis has improved significantly, but a major concern is that these models frequently show biased performance across subgroups, especially regarding sensitive attributes such as skin color. To address these issues, we propose a novel generative AI-based framework, namely, Dermatology Diffusion Transformer (DermDiT), which leverages text prompts generated via Vision Language Models and multimodal text-image learning to generate new dermoscopic images. We utilize large vision language models to generate accurate and proper prompts for each dermoscopic image which helps to generate synthetic images to improve the representation of underrepresented groups (patient, disease, etc.) in highly imbalanced datasets for clinical diagnoses. Our extensive experimentation showcases the large vision language models providing much more insightful representations, that enable DermDiT to generate high-quality images. Our code is available at this https URL
- [72] arXiv:2504.01844 [pdf, html, other]
-
Title: BOGausS: Better Optimized Gaussian SplattingSubjects: Computer Vision and Pattern Recognition (cs.CV)
3D Gaussian Splatting (3DGS) proposes an efficient solution for novel view synthesis. Its framework provides fast and high-fidelity rendering. Although less complex than other solutions such as Neural Radiance Fields (NeRF), there are still some challenges building smaller models without sacrificing quality. In this study, we perform a careful analysis of 3DGS training process and propose a new optimization methodology. Our Better Optimized Gaussian Splatting (BOGausS) solution is able to generate models up to ten times lighter than the original 3DGS with no quality degradation, thus significantly boosting the performance of Gaussian Splatting compared to the state of the art.
- [73] arXiv:2504.01872 [pdf, html, other]
-
Title: CoMatcher: Multi-View Collaborative Feature MatchingComments: 15 pages, 7 figures, to be published in CVPR 2025Journal-ref: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
This paper proposes a multi-view collaborative matching strategy for reliable track construction in complex scenarios. We observe that the pairwise matching paradigms applied to image set matching often result in ambiguous estimation when the selected independent pairs exhibit significant occlusions or extreme viewpoint changes. This challenge primarily stems from the inherent uncertainty in interpreting intricate 3D structures based on limited two-view observations, as the 3D-to-2D projection leads to significant information loss. To address this, we introduce CoMatcher, a deep multi-view matcher to (i) leverage complementary context cues from different views to form a holistic 3D scene understanding and (ii) utilize cross-view projection consistency to infer a reliable global solution. Building on CoMatcher, we develop a groupwise framework that fully exploits cross-view relationships for large-scale matching tasks. Extensive experiments on various complex scenarios demonstrate the superiority of our method over the mainstream two-view matching paradigm.
- [74] arXiv:2504.01873 [pdf, html, other]
-
Title: A Diffusion-Based Framework for Occluded Object MovementZheng-Peng Duan, Jiawei Zhang, Siyu Liu, Zheng Lin, Chun-Le Guo, Dongqing Zou, Jimmy Ren, Chongyi LiSubjects: Computer Vision and Pattern Recognition (cs.CV)
Seamlessly moving objects within a scene is a common requirement for image editing, but it is still a challenge for existing editing methods. Especially for real-world images, the occlusion situation further increases the difficulty. The main difficulty is that the occluded portion needs to be completed before movement can proceed. To leverage the real-world knowledge embedded in the pre-trained diffusion models, we propose a Diffusion-based framework specifically designed for Occluded Object Movement, named DiffOOM. The proposed DiffOOM consists of two parallel branches that perform object de-occlusion and movement simultaneously. The de-occlusion branch utilizes a background color-fill strategy and a continuously updated object mask to focus the diffusion process on completing the obscured portion of the target object. Concurrently, the movement branch employs latent optimization to place the completed object in the target location and adopts local text-conditioned guidance to integrate the object into new surroundings appropriately. Extensive evaluations demonstrate the superior performance of our method, which is further validated by a comprehensive user study.
- [75] arXiv:2504.01886 [pdf, html, other]
-
Title: GMAI-VL-R1: Harnessing Reinforcement Learning for Multimodal Medical ReasoningYanzhou Su, Tianbin Li, Jiyao Liu, Chenglong Ma, Junzhi Ning, Cheng Tang, Sibo Ju, Jin Ye, Pengcheng Chen, Ming Hu, Shixiang Tang, Lihao Liu, Bin Fu, Wenqi Shao, Xiaowei Hu, Xiangwen Liao, Yuanfeng Ji, Junjun HeSubjects: Computer Vision and Pattern Recognition (cs.CV)
Recent advances in general medical AI have made significant strides, but existing models often lack the reasoning capabilities needed for complex medical decision-making. This paper presents GMAI-VL-R1, a multimodal medical reasoning model enhanced by reinforcement learning (RL) to improve its reasoning abilities. Through iterative training, GMAI-VL-R1 optimizes decision-making, significantly boosting diagnostic accuracy and clinical support. We also develop a reasoning data synthesis method, generating step-by-step reasoning data via rejection sampling, which further enhances the model's generalization. Experimental results show that after RL training, GMAI-VL-R1 excels in tasks such as medical image diagnosis and visual question answering. While the model demonstrates basic memorization with supervised fine-tuning, RL is crucial for true generalization. Our work establishes new evaluation benchmarks and paves the way for future advancements in medical reasoning models. Code, data, and model will be released at \href{this https URL}{this link}.
- [76] arXiv:2504.01890 [pdf, html, other]
-
Title: Is Temporal Prompting All We Need For Limited Labeled Action Recognition?Comments: Accepted in CVPR-W 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Video understanding has shown remarkable improvements in recent years, largely dependent on the availability of large scaled labeled datasets. Recent advancements in visual-language models, especially based on contrastive pretraining, have shown remarkable generalization in zero-shot tasks, helping to overcome this dependence on labeled datasets. Adaptations of such models for videos, typically involve modifying the architecture of vision-language models to cater to video data. However, this is not trivial, since such adaptations are mostly computationally intensive and struggle with temporal modeling. We present TP-CLIP, an adaptation of CLIP that leverages temporal visual prompting for temporal adaptation without modifying the core CLIP architecture. This preserves its generalization abilities. TP-CLIP efficiently integrates into the CLIP architecture, leveraging its pre-trained capabilities for video data. Extensive experiments across various datasets demonstrate its efficacy in zero-shot and few-shot learning, outperforming existing approaches with fewer parameters and computational efficiency. In particular, we use just 1/3 the GFLOPs and 1/28 the number of tuneable parameters in comparison to recent state-of-the-art and still outperform it by up to 15.8% depending on the task and dataset.
- [77] arXiv:2504.01901 [pdf, html, other]
-
Title: Ross3D: Reconstructive Visual Instruction Tuning with 3D-AwarenessSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Robotics (cs.RO)
The rapid development of Large Multimodal Models (LMMs) for 2D images and videos has spurred efforts to adapt these models for interpreting 3D scenes. However, the absence of large-scale 3D vision-language datasets has posed a significant obstacle. To address this issue, typical approaches focus on injecting 3D awareness into 2D LMMs by designing 3D input-level scene representations. This work provides a new perspective. We introduce reconstructive visual instruction tuning with 3D-awareness (Ross3D), which integrates 3D-aware visual supervision into the training procedure. Specifically, it incorporates cross-view and global-view reconstruction. The former requires reconstructing masked views by aggregating overlapping information from other views. The latter aims to aggregate information from all available views to recover Bird's-Eye-View images, contributing to a comprehensive overview of the entire scene. Empirically, Ross3D achieves state-of-the-art performance across various 3D scene understanding benchmarks. More importantly, our semi-supervised experiments demonstrate significant potential in leveraging large amounts of unlabeled 3D vision-only data.
- [78] arXiv:2504.01916 [pdf, html, other]
-
Title: FineLIP: Extending CLIP's Reach via Fine-Grained Alignment with Longer Text InputsSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)
As a pioneering vision-language model, CLIP (Contrastive Language-Image Pre-training) has achieved significant success across various domains and a wide range of downstream vision-language tasks. However, the text encoders in popular CLIP models are limited to processing only 77 text tokens, which constrains their ability to effectively handle longer, detail-rich captions. Additionally, CLIP models often struggle to effectively capture detailed visual and textual information, which hampers their performance on tasks that require fine-grained analysis. To address these limitations, we present a novel approach, \textbf{FineLIP}, that extends the capabilities of CLIP. FineLIP enhances cross-modal text-image mapping by incorporating \textbf{Fine}-grained alignment with \textbf{L}onger text input within the CL\textbf{IP}-style framework. FineLIP first extends the positional embeddings to handle longer text, followed by the dynamic aggregation of local image and text tokens. The aggregated results are then used to enforce fine-grained token-to-token cross-modal alignment. We validate our model on datasets with long, detailed captions across two tasks: zero-shot cross-modal retrieval and text-to-image generation. Quantitative and qualitative experimental results demonstrate the effectiveness of FineLIP, outperforming existing state-of-the-art approaches. Furthermore, comprehensive ablation studies validate the benefits of key design elements within FineLIP.
- [79] arXiv:2504.01925 [pdf, html, other]
-
Title: Equivariant Spherical CNNs for Accurate Fiber Orientation Distribution Estimation in Neonatal Diffusion MRI with Reduced Acquisition TimeSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Early and accurate assessment of brain microstructure using diffusion Magnetic Resonance Imaging (dMRI) is crucial for identifying neurodevelopmental disorders in neonates, but remains challenging due to low signal-to-noise ratio (SNR), motion artifacts, and ongoing myelination. In this study, we propose a rotationally equivariant Spherical Convolutional Neural Network (sCNN) framework tailored for neonatal dMRI. We predict the Fiber Orientation Distribution (FOD) from multi-shell dMRI signals acquired with a reduced set of gradient directions (30% of the full protocol), enabling faster and more cost-effective acquisitions. We train and evaluate the performance of our sCNN using real data from 43 neonatal dMRI datasets provided by the Developing Human Connectome Project (dHCP). Our results demonstrate that the sCNN achieves significantly lower mean squared error (MSE) and higher angular correlation coefficient (ACC) compared to a Multi-Layer Perceptron (MLP) baseline, indicating improved accuracy in FOD estimation. Furthermore, tractography results based on the sCNN-predicted FODs show improved anatomical plausibility, coverage, and coherence compared to those from the MLP. These findings highlight that sCNNs, with their inherent rotational equivariance, offer a promising approach for accurate and clinically efficient dMRI analysis, paving the way for improved diagnostic capabilities and characterization of early brain development.
- [80] arXiv:2504.01934 [pdf, html, other]
-
Title: ILLUME+: Illuminating Unified MLLM with Dual Visual Tokenization and Diffusion RefinementRunhui Huang, Chunwei Wang, Junwei Yang, Guansong Lu, Yunlong Yuan, Jianhua Han, Lu Hou, Wei Zhang, Lanqing Hong, Hengshuang Zhao, Hang XuSubjects: Computer Vision and Pattern Recognition (cs.CV)
We present ILLUME+ that leverages dual visual tokenization and a diffusion decoder to improve both deep semantic understanding and high-fidelity image generation. Existing unified models have struggled to simultaneously handle the three fundamental capabilities in a unified model: understanding, generation, and editing. Models like Chameleon and EMU3 utilize VQGAN for image discretization, due to the lack of deep semantic interaction, they lag behind specialist models like LLaVA in visual understanding tasks. To mitigate this, LaViT and ILLUME employ semantic encoders for tokenization, but they struggle with image editing due to poor texture preservation. Meanwhile, Janus series decouples the input and output image representation, limiting their abilities to seamlessly handle interleaved image-text understanding and generation. In contrast, ILLUME+ introduces a unified dual visual tokenizer, DualViTok, which preserves both fine-grained textures and text-aligned semantics while enabling a coarse-to-fine image representation strategy for multimodal understanding and generation. Additionally, we employ a diffusion model as the image detokenizer for enhanced generation quality and efficient super-resolution. ILLUME+ follows a continuous-input, discrete-output scheme within the unified MLLM and adopts a progressive training procedure that supports dynamic resolution across the vision tokenizer, MLLM, and diffusion decoder. This design allows for flexible and efficient context-aware image editing and generation across diverse tasks. ILLUME+ (3B) exhibits competitive performance against existing unified MLLMs and specialized models across multimodal understanding, generation, and editing benchmarks. With its strong performance, ILLUME+ provides a scalable and versatile foundation for future multimodal applications. Project Page: this https URL.
- [81] arXiv:2504.01941 [pdf, html, other]
-
Title: End-to-End Driving with Online Trajectory Evaluation via BEV World ModelSubjects: Computer Vision and Pattern Recognition (cs.CV)
End-to-end autonomous driving has achieved remarkable progress by integrating perception, prediction, and planning into a fully differentiable framework. Yet, to fully realize its potential, an effective online trajectory evaluation is indispensable to ensure safety. By forecasting the future outcomes of a given trajectory, trajectory evaluation becomes much more effective. This goal can be achieved by employing a world model to capture environmental dynamics and predict future states. Therefore, we propose an end-to-end driving framework WoTE, which leverages a BEV World model to predict future BEV states for Trajectory Evaluation. The proposed BEV world model is latency-efficient compared to image-level world models and can be seamlessly supervised using off-the-shelf BEV-space traffic simulators. We validate our framework on both the NAVSIM benchmark and the closed-loop Bench2Drive benchmark based on the CARLA simulator, achieving state-of-the-art performance. Code is released at this https URL.
- [82] arXiv:2504.01952 [pdf, html, other]
-
Title: Image Difference Grounding with Natural LanguageSubjects: Computer Vision and Pattern Recognition (cs.CV)
Visual grounding (VG) typically focuses on locating regions of interest within an image using natural language, and most existing VG methods are limited to single-image interpretations. This limits their applicability in real-world scenarios like automatic surveillance, where detecting subtle but meaningful visual differences across multiple images is crucial. Besides, previous work on image difference understanding (IDU) has either focused on detecting all change regions without cross-modal text guidance, or on providing coarse-grained descriptions of differences. Therefore, to push towards finer-grained vision-language perception, we propose Image Difference Grounding (IDG), a task designed to precisely localize visual differences based on user instructions. We introduce DiffGround, a large-scale and high-quality dataset for IDG, containing image pairs with diverse visual variations along with instructions querying fine-grained differences. Besides, we present a baseline model for IDG, DiffTracker, which effectively integrates feature differential enhancement and common suppression to precisely locate differences. Experiments on the DiffGround dataset highlight the importance of our IDG dataset in enabling finer-grained IDU. To foster future research, both DiffGround data and DiffTracker model will be publicly released.
- [83] arXiv:2504.01953 [pdf, other]
-
Title: Deep Representation Learning for Unsupervised Clustering of Myocardial Fiber Trajectories in Cardiac Diffusion Tensor ImagingComments: 10 pages, 5 figures. Submitted to MICCAI 2025 (under review)Subjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
Understanding the complex myocardial architecture is critical for diagnosing and treating heart disease. However, existing methods often struggle to accurately capture this intricate structure from Diffusion Tensor Imaging (DTI) data, particularly due to the lack of ground truth labels and the ambiguous, intertwined nature of fiber trajectories. We present a novel deep learning framework for unsupervised clustering of myocardial fibers, providing a data-driven approach to identifying distinct fiber bundles. We uniquely combine a Bidirectional Long Short-Term Memory network to capture local sequential information along fibers, with a Transformer autoencoder to learn global shape features, with pointwise incorporation of essential anatomical context. Clustering these representations using a density-based algorithm identifies 33 to 62 robust clusters, successfully capturing the subtle distinctions in fiber trajectories with varying levels of granularity. Our framework offers a new, flexible, and quantitative way to analyze myocardial structure, achieving a level of delineation that, to our knowledge, has not been previously achieved, with potential applications in improving surgical planning, characterizing disease-related remodeling, and ultimately, advancing personalized cardiac care.
- [84] arXiv:2504.01954 [pdf, html, other]
-
Title: Towards Unified Referring Expression Segmentation Across Omni-Level Visual Target GranularitiesJing Liu, Wenxuan Wang, Yisi Zhang, Yepeng Tang, Xingjian He, Longteng Guo, Tongtian Yue, Xinlong WangSubjects: Computer Vision and Pattern Recognition (cs.CV)
Referring expression segmentation (RES) aims at segmenting the entities' masks that match the descriptive language expression. While traditional RES methods primarily address object-level grounding, real-world scenarios demand a more versatile framework that can handle multiple levels of target granularity, such as multi-object, single object or part-level references. This introduces great challenges due to the diverse and nuanced ways users describe targets. However, existing datasets and models mainly focus on designing grounding specialists for object-level target localization, lacking the necessary data resources and unified frameworks for the more practical multi-grained RES. In this paper, we take a step further towards visual granularity unified RES task. To overcome the limitation of data scarcity, we introduce a new multi-granularity referring expression segmentation (MRES) task, alongside the RefCOCOm benchmark, which includes part-level annotations for advancing finer-grained visual understanding. In addition, we create MRES-32M, the largest visual grounding dataset, comprising over 32.2M masks and captions across 1M images, specifically designed for part-level vision-language grounding. To tackle the challenges of multi-granularity RES, we propose UniRES++, a unified multimodal large language model that integrates object-level and part-level RES tasks. UniRES++ incorporates targeted designs for fine-grained visual feature exploration. With the joint model architecture and parameters, UniRES++ achieves state-of-the-art performance across multiple benchmarks, including RefCOCOm for MRES, gRefCOCO for generalized RES, and RefCOCO, RefCOCO+, RefCOCOg for classic RES. To foster future research into multi-grained visual grounding, our RefCOCOm benchmark, MRES-32M dataset and model UniRES++ will be publicly available at this https URL.
- [85] arXiv:2504.01955 [pdf, html, other]
-
Title: Scene-Centric Unsupervised Panoptic SegmentationComments: To appear at CVPR 2025. Christoph Reich and Oliver Hahn - both authors contributed equally. Code: this https URL Project page: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
Unsupervised panoptic segmentation aims to partition an image into semantically meaningful regions and distinct object instances without training on manually annotated data. In contrast to prior work on unsupervised panoptic scene understanding, we eliminate the need for object-centric training data, enabling the unsupervised understanding of complex scenes. To that end, we present the first unsupervised panoptic method that directly trains on scene-centric imagery. In particular, we propose an approach to obtain high-resolution panoptic pseudo labels on complex scene-centric data, combining visual representations, depth, and motion cues. Utilizing both pseudo-label training and a panoptic self-training strategy yields a novel approach that accurately predicts panoptic segmentation of complex scenes without requiring any human annotations. Our approach significantly improves panoptic quality, e.g., surpassing the recent state of the art in unsupervised panoptic segmentation on Cityscapes by 9.4% points in PQ.
- [86] arXiv:2504.01956 [pdf, html, other]
-
Title: VideoScene: Distilling Video Diffusion Model to Generate 3D Scenes in One StepComments: Project Page: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
Recovering 3D scenes from sparse views is a challenging task due to its inherent ill-posed problem. Conventional methods have developed specialized solutions (e.g., geometry regularization or feed-forward deterministic model) to mitigate the issue. However, they still suffer from performance degradation by minimal overlap across input views with insufficient visual information. Fortunately, recent video generative models show promise in addressing this challenge as they are capable of generating video clips with plausible 3D structures. Powered by large pretrained video diffusion models, some pioneering research start to explore the potential of video generative prior and create 3D scenes from sparse views. Despite impressive improvements, they are limited by slow inference time and the lack of 3D constraint, leading to inefficiencies and reconstruction artifacts that do not align with real-world geometry structure. In this paper, we propose VideoScene to distill the video diffusion model to generate 3D scenes in one step, aiming to build an efficient and effective tool to bridge the gap from video to 3D. Specifically, we design a 3D-aware leap flow distillation strategy to leap over time-consuming redundant information and train a dynamic denoising policy network to adaptively determine the optimal leap timestep during inference. Extensive experiments demonstrate that our VideoScene achieves faster and superior 3D scene generation results than previous video diffusion models, highlighting its potential as an efficient tool for future video to 3D applications. Project Page: this https URL
- [87] arXiv:2504.01957 [pdf, html, other]
-
Title: GaussianLSS -- Toward Real-world BEV Perception: Depth Uncertainty Estimation via Gaussian SplattingComments: Accepted to CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Bird's-eye view (BEV) perception has gained significant attention because it provides a unified representation to fuse multiple view images and enables a wide range of down-stream autonomous driving tasks, such as forecasting and planning. Recent state-of-the-art models utilize projection-based methods which formulate BEV perception as query learning to bypass explicit depth estimation. While we observe promising advancements in this paradigm, they still fall short of real-world applications because of the lack of uncertainty modeling and expensive computational requirement. In this work, we introduce GaussianLSS, a novel uncertainty-aware BEV perception framework that revisits unprojection-based methods, specifically the Lift-Splat-Shoot (LSS) paradigm, and enhances them with depth un-certainty modeling. GaussianLSS represents spatial dispersion by learning a soft depth mean and computing the variance of the depth distribution, which implicitly captures object extents. We then transform the depth distribution into 3D Gaussians and rasterize them to construct uncertainty-aware BEV features. We evaluate GaussianLSS on the nuScenes dataset, achieving state-of-the-art performance compared to unprojection-based methods. In particular, it provides significant advantages in speed, running 2.5x faster, and in memory efficiency, using 0.3x less memory compared to projection-based methods, while achieving competitive performance with only a 0.4% IoU difference.
- [88] arXiv:2504.01960 [pdf, html, other]
-
Title: Diffusion-Guided Gaussian Splatting for Large-Scale Unconstrained 3D Reconstruction and Novel View SynthesisNiluthpol Chowdhury Mithun, Tuan Pham, Qiao Wang, Ben Southall, Kshitij Minhas, Bogdan Matei, Stephan Mandt, Supun Samarasekera, Rakesh KumarComments: WACV ULTRRA Workshop 2025Subjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
Recent advancements in 3D Gaussian Splatting (3DGS) and Neural Radiance Fields (NeRF) have achieved impressive results in real-time 3D reconstruction and novel view synthesis. However, these methods struggle in large-scale, unconstrained environments where sparse and uneven input coverage, transient occlusions, appearance variability, and inconsistent camera settings lead to degraded quality. We propose GS-Diff, a novel 3DGS framework guided by a multi-view diffusion model to address these limitations. By generating pseudo-observations conditioned on multi-view inputs, our method transforms under-constrained 3D reconstruction problems into well-posed ones, enabling robust optimization even with sparse data. GS-Diff further integrates several enhancements, including appearance embedding, monocular depth priors, dynamic object modeling, anisotropy regularization, and advanced rasterization techniques, to tackle geometric and photometric challenges in real-world settings. Experiments on four benchmarks demonstrate that GS-Diff consistently outperforms state-of-the-art baselines by significant margins.
- [89] arXiv:2504.01961 [pdf, html, other]
-
Title: Learning from Streaming Video with Orthogonal GradientsTengda Han, Dilara Gokay, Joseph Heyward, Chuhan Zhang, Daniel Zoran, Viorica Pătrăucean, João Carreira, Dima Damen, Andrew ZissermanComments: CVPR2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
We address the challenge of representation learning from a continuous stream of video as input, in a self-supervised manner. This differs from the standard approaches to video learning where videos are chopped and shuffled during training in order to create a non-redundant batch that satisfies the independently and identically distributed (IID) sample assumption expected by conventional training paradigms. When videos are only available as a continuous stream of input, the IID assumption is evidently broken, leading to poor performance. We demonstrate the drop in performance when moving from shuffled to sequential learning on three tasks: the one-video representation learning method DoRA, standard VideoMAE on multi-video datasets, and the task of future video prediction. To address this drop, we propose a geometric modification to standard optimizers, to decorrelate batches by utilising orthogonal gradients during training. The proposed modification can be applied to any optimizer -- we demonstrate it with Stochastic Gradient Descent (SGD) and AdamW. Our proposed orthogonal optimizer allows models trained from streaming videos to alleviate the drop in representation learning performance, as evaluated on downstream tasks. On three scenarios (DoRA, VideoMAE, future prediction), we show our orthogonal optimizer outperforms the strong AdamW in all three scenarios.
New submissions (showing 89 of 89 entries)
- [90] arXiv:2504.01025 (cross-list from eess.IV) [pdf, other]
-
Title: Diagnosis of Pulmonary Hypertension by Integrating Multimodal Data with a Hybrid Graph Convolutional and Transformer NetworkFubao Zhu, Yang Zhang, Gengmin Liang, Jiaofen Nan, Yanting Li, Chuang Han, Danyang Sun, Zhiguo Wang, Chen Zhao, Wenxuan Zhou, Jian He, Yi Xu, Iokfai Cheang, Xu Zhu, Yanli Zhou, Weihua ZhouComments: 23 pages, 8 figures, 4 tablesSubjects: Image and Video Processing (eess.IV); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV); Medical Physics (physics.med-ph)
Early and accurate diagnosis of pulmonary hypertension (PH) is essential for optimal patient management. Differentiating between pre-capillary and post-capillary PH is critical for guiding treatment decisions. This study develops and validates a deep learning-based diagnostic model for PH, designed to classify patients as non-PH, pre-capillary PH, or post-capillary PH. This retrospective study analyzed data from 204 patients (112 with pre-capillary PH, 32 with post-capillary PH, and 60 non-PH controls) at the First Affiliated Hospital of Nanjing Medical University. Diagnoses were confirmed through right heart catheterization. We selected 6 samples from each category for the test set (18 samples, 10%), with the remaining 186 samples used for the training set. This process was repeated 35 times for testing. This paper proposes a deep learning model that combines Graph convolutional networks (GCN), Convolutional neural networks (CNN), and Transformers. The model was developed to process multimodal data, including short-axis (SAX) sequences, four-chamber (4CH) sequences, and clinical parameters. Our model achieved a performance of Area under the receiver operating characteristic curve (AUC) = 0.81 +- 0.06(standard deviation) and Accuracy (ACC) = 0.73 +- 0.06 on the test set. The discriminative abilities were as follows: non-PH subjects (AUC = 0.74 +- 0.11), pre-capillary PH (AUC = 0.86 +- 0.06), and post-capillary PH (AUC = 0.83 +- 0.10). It has the potential to support clinical decision-making by effectively integrating multimodal data to assist physicians in making accurate and timely diagnoses.
- [91] arXiv:2504.01027 (cross-list from cs.GR) [pdf, html, other]
-
Title: Mesh Compression with Quantized Neural Displacement FieldsSubjects: Graphics (cs.GR); Computer Vision and Pattern Recognition (cs.CV)
Implicit neural representations (INRs) have been successfully used to compress a variety of 3D surface representations such as Signed Distance Functions (SDFs), voxel grids, and also other forms of structured data such as images, videos, and audio. However, these methods have been limited in their application to unstructured data such as 3D meshes and point clouds. This work presents a simple yet effective method that extends the usage of INRs to compress 3D triangle meshes. Our method encodes a displacement field that refines the coarse version of the 3D mesh surface to be compressed using a small neural network. Once trained, the neural network weights occupy much lower memory than the displacement field or the original surface. We show that our method is capable of preserving intricate geometric textures and demonstrates state-of-the-art performance for compression ratios ranging from 4x to 380x.
- [92] arXiv:2504.01035 (cross-list from eess.IV) [pdf, other]
-
Title: Novel sparse PCA method via Runge Kutta numerical method(s) for face recognitionComments: 3 tablesSubjects: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
Face recognition is a crucial topic in data science and biometric security, with applications spanning military, finance, and retail industries. This paper explores the implementation of sparse Principal Component Analysis (PCA) using the Proximal Gradient method (also known as ISTA) and the Runge-Kutta numerical methods. To address the face recognition problem, we integrate sparse PCA with either the k-nearest neighbor method or the kernel ridge regression method. Experimental results demonstrate that combining sparse PCA-solved via the Proximal Gradient method or the Runge-Kutta numerical approach-with a classification system yields higher accuracy compared to standard PCA. Additionally, we observe that the Runge-Kutta-based sparse PCA computation consistently outperforms the Proximal Gradient method in terms of speed.
- [93] arXiv:2504.01038 (cross-list from eess.IV) [pdf, html, other]
-
Title: An Integrated AI-Enabled System Using One Class Twin Cross Learning (OCT-X) for Early Gastric Cancer DetectionXian-Xian Liu, Yuanyuan Wei, Mingkun Xu, Yongze Guo, Hongwei Zhang, Huicong Dong, Qun Song, Qi Zhao, Wei Luo, Feng Tien, Juntao Gao, Simon FongComments: 26 pages, 4 figures, 6 tablesSubjects: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV); Human-Computer Interaction (cs.HC)
Early detection of gastric cancer, a leading cause of cancer-related mortality worldwide, remains hampered by the limitations of current diagnostic technologies, leading to high rates of misdiagnosis and missed diagnoses. To address these challenges, we propose an integrated system that synergizes advanced hardware and software technologies to balance speed-accuracy. Our study introduces the One Class Twin Cross Learning (OCT-X) algorithm. Leveraging a novel fast double-threshold grid search strategy (FDT-GS) and a patch-based deep fully convolutional network, OCT-X maximizes diagnostic accuracy through real-time data processing and seamless lesion surveillance. The hardware component includes an all-in-one point-of-care testing (POCT) device with high-resolution imaging sensors, real-time data processing, and wireless connectivity, facilitated by the NI CompactDAQ and LabVIEW software. Our integrated system achieved an unprecedented diagnostic accuracy of 99.70%, significantly outperforming existing models by up to 4.47%, and demonstrated a 10% improvement in multirate adaptability. These findings underscore the potential of OCT-X as well as the integrated system in clinical diagnostics, offering a path toward more accurate, efficient, and less invasive early gastric cancer detection. Future research will explore broader applications, further advancing oncological diagnostics. Code is available at this https URL.
- [94] arXiv:2504.01204 (cross-list from cs.GR) [pdf, html, other]
-
Title: Articulated Kinematics Distillation from Video Diffusion ModelsSubjects: Graphics (cs.GR); Computer Vision and Pattern Recognition (cs.CV)
We present Articulated Kinematics Distillation (AKD), a framework for generating high-fidelity character animations by merging the strengths of skeleton-based animation and modern generative models. AKD uses a skeleton-based representation for rigged 3D assets, drastically reducing the Degrees of Freedom (DoFs) by focusing on joint-level control, which allows for efficient, consistent motion synthesis. Through Score Distillation Sampling (SDS) with pre-trained video diffusion models, AKD distills complex, articulated motions while maintaining structural integrity, overcoming challenges faced by 4D neural deformation fields in preserving shape consistency. This approach is naturally compatible with physics-based simulation, ensuring physically plausible interactions. Experiments show that AKD achieves superior 3D consistency and motion quality compared with existing works on text-to-4D generation. Project page: this https URL
- [95] arXiv:2504.01208 (cross-list from eess.IV) [pdf, html, other]
-
Title: Lightweight Deep Models for Dermatological Disease Detection: A Study on Instance Selection and Channel OptimizationIan Mateos Gonzalez, Estefani Jaramilla Nava, Abraham Sánchez Morales, Jesús García-Ramírez, Ricardo Ramos-AguilarComments: Submitted to Mexican Conference on Pattern Recognition 2025Subjects: Image and Video Processing (eess.IV); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV)
The identification of dermatological disease is an important problem in Mexico according with different studies. Several works in literature use the datasets of different repositories without applying a study of the data behavior, especially in medical images domain. In this work, we propose a methodology to preprocess dermaMNIST dataset in order to improve its quality for the classification stage, where we use lightweight convolutional neural networks. In our results, we reduce the number of instances for the neural network training obtaining a similar performance of models as ResNet.
- [96] arXiv:2504.01218 (cross-list from cs.LG) [pdf, html, other]
-
Title: Prompting Forgetting: Unlearning in GANs via Textual GuidancePiyush Nagasubramaniam (1), Neeraj Karamchandani (1), Chen Wu (2), Sencun Zhu (1) ((1) The Pennsylvania State University, (2) Meta)Subjects: Machine Learning (cs.LG); Computer Vision and Pattern Recognition (cs.CV)
State-of-the-art generative models exhibit powerful image-generation capabilities, introducing various ethical and legal challenges to service providers hosting these models. Consequently, Content Removal Techniques (CRTs) have emerged as a growing area of research to control outputs without full-scale retraining. Recent work has explored the use of Machine Unlearning in generative models to address content removal. However, the focus of such research has been on diffusion models, and unlearning in Generative Adversarial Networks (GANs) has remained largely unexplored. We address this gap by proposing Text-to-Unlearn, a novel framework that selectively unlearns concepts from pre-trained GANs using only text prompts, enabling feature unlearning, identity unlearning, and fine-grained tasks like expression and multi-attribute removal in models trained on human faces. Leveraging natural language descriptions, our approach guides the unlearning process without requiring additional datasets or supervised fine-tuning, offering a scalable and efficient solution. To evaluate its effectiveness, we introduce an automatic unlearning assessment method adapted from state-of-the-art image-text alignment metrics, providing a comprehensive analysis of the unlearning methodology. To our knowledge, Text-to-Unlearn is the first cross-modal unlearning framework for GANs, representing a flexible and efficient advancement in managing generative model behavior.
- [97] arXiv:2504.01225 (cross-list from cs.CL) [pdf, html, other]
-
Title: A Conformal Risk Control Framework for Granular Word Assessment and Uncertainty Calibration of CLIPScore Quality EstimatesSubjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV)
This study explores current limitations of learned image captioning evaluation metrics, specifically the lack of granular assessment for individual word misalignments within captions, and the reliance on single-point quality estimates without considering uncertainty. To address these limitations, we propose a simple yet effective strategy for generating and calibrating CLIPScore distributions. Leveraging a model-agnostic conformal risk control framework, we calibrate CLIPScore values for task-specific control variables, to tackle the aforementioned two limitations. Experimental results demonstrate that using conformal risk control, over the distributions produced with simple methods such as input masking, can achieve competitive performance compared to more complex approaches. Our method effectively detects misaligned words, while providing formal guarantees aligned with desired risk levels, and improving the correlation between uncertainty estimations and prediction errors, thus enhancing the overall reliability of caption evaluation metrics.
- [98] arXiv:2504.01261 (cross-list from cs.RO) [pdf, html, other]
-
Title: ForestVO: Enhancing Visual Odometry in Forest Environments through ForestGlueComments: Accepted to the IEEE Robotics and Automation LettersSubjects: Robotics (cs.RO); Computer Vision and Pattern Recognition (cs.CV)
Recent advancements in visual odometry systems have improved autonomous navigation; however, challenges persist in complex environments like forests, where dense foliage, variable lighting, and repetitive textures compromise feature correspondence accuracy. To address these challenges, we introduce ForestGlue, enhancing the SuperPoint feature detector through four configurations - grayscale, RGB, RGB-D, and stereo-vision - optimised for various sensing modalities. For feature matching, we employ LightGlue or SuperGlue, retrained with synthetic forest data. ForestGlue achieves comparable pose estimation accuracy to baseline models but requires only 512 keypoints - just 25% of the baseline's 2048 - to reach an LO-RANSAC AUC score of 0.745 at a 10° threshold. With only a quarter of keypoints needed, ForestGlue significantly reduces computational overhead, demonstrating effectiveness in dynamic forest environments, and making it suitable for real-time deployment on resource-constrained platforms. By combining ForestGlue with a transformer-based pose estimation model, we propose ForestVO, which estimates relative camera poses using matched 2D pixel coordinates between frames. On challenging TartanAir forest sequences, ForestVO achieves an average relative pose error (RPE) of 1.09 m and a kitti_score of 2.33%, outperforming direct-based methods like DSO by 40% in dynamic scenes. Despite using only 10% of the dataset for training, ForestVO maintains competitive performance with TartanVO while being a significantly lighter model. This work establishes an end-to-end deep learning pipeline specifically tailored for visual odometry in forested environments, leveraging forest-specific training data to optimise feature correspondence and pose estimation, thereby enhancing the accuracy and robustness of autonomous navigation systems.
- [99] arXiv:2504.01274 (cross-list from q-bio.NC) [pdf, html, other]
-
Title: BOLDSimNet: Examining Brain Network Similarity between Task and Resting-State fMRISubjects: Neurons and Cognition (q-bio.NC); Computer Vision and Pattern Recognition (cs.CV)
Traditional causal connectivity methods in task-based and resting-state functional magnetic resonance imaging (fMRI) face challenges in accurately capturing directed information flow due to their sensitivity to noise and inability to model multivariate dependencies. These limitations hinder the effective comparison of brain networks between cognitive states, making it difficult to analyze network reconfiguration during task and resting states. To address these issues, we propose BOLDSimNet, a novel framework utilizing Multivariate Transfer Entropy (MTE) to measure causal connectivity and network similarity across different cognitive states. Our method groups functionally similar regions of interest (ROIs) rather than spatially adjacent nodes, improving accuracy in network alignment. We applied BOLDSimNet to fMRI data from 40 healthy controls and found that children exhibited higher similarity scores between task and resting states compared to adolescents, indicating reduced variability in attention shifts. In contrast, adolescents showed more differences between task and resting states in the Dorsal Attention Network (DAN) and the Default Mode Network (DMN), reflecting enhanced network adaptability. These findings emphasize developmental variations in the reconfiguration of the causal brain network, showcasing BOLDSimNet's ability to quantify network similarity and identify attentional fluctuations between different cognitive states.
- [100] arXiv:2504.01358 (cross-list from cs.GR) [pdf, html, other]
-
Title: 3D Gaussian Inverse Rendering with Approximated Global IlluminationSubjects: Graphics (cs.GR); Computer Vision and Pattern Recognition (cs.CV)
3D Gaussian Splatting shows great potential in reconstructing photo-realistic 3D scenes. However, these methods typically bake illumination into their representations, limiting their use for physically-based rendering and scene editing. Although recent inverse rendering approaches aim to decompose scenes into material and lighting components, they often rely on simplifying assumptions that fail when editing. We present a novel approach that enables efficient global illumination for 3D Gaussians Splatting through screen-space ray tracing. Our key insight is that a substantial amount of indirect light can be traced back to surfaces visible within the current view frustum. Leveraging this observation, we augment the direct shading computed by 3D Gaussians with Monte-Carlo screen-space ray-tracing to capture one-bounce indirect illumination. In this way, our method enables realistic global illumination without sacrificing the computational efficiency and editability benefits of 3D Gaussians. Through experiments, we show that the screen-space approximation we utilize allows for indirect illumination and supports real-time rendering and editing. Code, data, and models will be made available at our project page: this https URL.
- [101] arXiv:2504.01483 (cross-list from cs.GR) [pdf, html, other]
-
Title: GarmageNet: A Dataset and Scalable Representation for Generic Garment ModelingSubjects: Graphics (cs.GR); Computer Vision and Pattern Recognition (cs.CV)
High-fidelity garment modeling remains challenging due to the lack of large-scale, high-quality datasets and efficient representations capable of handling non-watertight, multi-layer geometries. In this work, we introduce Garmage, a neural-network-and-CG-friendly garment representation that seamlessly encodes the accurate geometry and sewing pattern of complex multi-layered garments as a structured set of per-panel geometry images. As a dual-2D-3D representation, Garmage achieves an unprecedented integration of 2D image-based algorithms with 3D modeling workflows, enabling high fidelity, non-watertight, multi-layered garment geometries with direct compatibility for industrial-grade this http URL upon this representation, we present GarmageNet, a novel generation framework capable of producing detailed multi-layered garments with body-conforming initial geometries and intricate sewing patterns, based on user prompts or existing in-the-wild sewing patterns. Furthermore, we introduce a robust stitching algorithm that recovers per-vertex stitches, ensuring seamless integration into flexible simulation pipelines for downstream editing of sewing patterns, material properties, and dynamic simulations. Finally, we release an industrial-standard, large-scale, high-fidelity garment dataset featuring detailed annotations, vertex-wise correspondences, and a robust pipeline for converting unstructured production sewing patterns into GarmageNet standard structural assets, paving the way for large-scale, industrial-grade garment generation systems.
- [102] arXiv:2504.01521 (cross-list from cs.LG) [pdf, html, other]
-
Title: Domain Guidance: A Simple Transfer Approach for a Pre-trained Diffusion ModelSubjects: Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV)
Recent advancements in diffusion models have revolutionized generative modeling. However, the impressive and vivid outputs they produce often come at the cost of significant model scaling and increased computational demands. Consequently, building personalized diffusion models based on off-the-shelf models has emerged as an appealing alternative. In this paper, we introduce a novel perspective on conditional generation for transferring a pre-trained model. From this viewpoint, we propose *Domain Guidance*, a straightforward transfer approach that leverages pre-trained knowledge to guide the sampling process toward the target domain. Domain Guidance shares a formulation similar to advanced classifier-free guidance, facilitating better domain alignment and higher-quality generations. We provide both empirical and theoretical analyses of the mechanisms behind Domain Guidance. Our experimental results demonstrate its substantial effectiveness across various transfer benchmarks, achieving over a 19.6% improvement in FID and a 23.4% improvement in FD$_\text{DINOv2}$ compared to standard fine-tuning. Notably, existing fine-tuned models can seamlessly integrate Domain Guidance to leverage these benefits, without additional training.
- [103] arXiv:2504.01561 (cross-list from eess.IV) [pdf, html, other]
-
Title: STPNet: Scale-aware Text Prompt Network for Medical Image SegmentationSubjects: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV)
Accurate segmentation of lesions plays a critical role in medical image analysis and diagnosis. Traditional segmentation approaches that rely solely on visual features often struggle with the inherent uncertainty in lesion distribution and size. To address these issues, we propose STPNet, a Scale-aware Text Prompt Network that leverages vision-language modeling to enhance medical image segmentation. Our approach utilizes multi-scale textual descriptions to guide lesion localization and employs retrieval-segmentation joint learning to bridge the semantic gap between visual and linguistic modalities. Crucially, STPNet retrieves relevant textual information from a specialized medical text repository during training, eliminating the need for text input during inference while retaining the benefits of cross-modal learning. We evaluate STPNet on three datasets: COVID-Xray, COVID-CT, and Kvasir-SEG. Experimental results show that our vision-language approach outperforms state-of-the-art segmentation methods, demonstrating the effectiveness of incorporating textual semantic knowledge into medical image analysis. The code has been made publicly on this https URL.
- [104] arXiv:2504.01571 (cross-list from cs.GR) [pdf, html, other]
-
Title: Pro-DG: Procedural Diffusion Guidance for Architectural Facade GenerationComments: 12 pages, 13 figuresSubjects: Graphics (cs.GR); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
We present Pro-DG, a framework for procedurally controllable photo-realistic facade generation that combines a procedural shape grammar with diffusion-based image synthesis. Starting from a single input image, we reconstruct its facade layout using grammar rules, then edit that structure through user-defined transformations. As facades are inherently multi-hierarchical structures, we introduce hierarchical matching procedure that aligns facade structures at different levels which is used to introduce control maps to guide a generative diffusion pipeline. This approach retains local appearance fidelity while accommodating large-scale edits such as floor duplication or window rearrangement. We provide a thorough evaluation, comparing Pro-DG against inpainting-based baselines and synthetic ground truths. Our user study and quantitative measurements indicate improved preservation of architectural identity and higher edit accuracy. Our novel method is the first to integrate neuro-symbolically derived shape-grammars for modeling with modern generative model and highlights the broader potential of such approaches for precise and controllable image manipulation.
- [105] arXiv:2504.01577 (cross-list from eess.IV) [pdf, html, other]
-
Title: Instance Migration Diffusion for Nuclear Instance Segmentation in PathologySubjects: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV)
Nuclear instance segmentation plays a vital role in disease diagnosis within digital pathology. However, limited labeled data in pathological images restricts the overall performance of nuclear instance segmentation. To tackle this challenge, we propose a novel data augmentation framework Instance Migration Diffusion Model (IM-Diffusion), IM-Diffusion designed to generate more varied pathological images by constructing diverse nuclear layouts and internuclear spatial relationships. In detail, we introduce a Nuclear Migration Module (NMM) which constructs diverse nuclear layouts by simulating the process of nuclear migration. Building on this, we further present an Internuclear-regions Inpainting Module (IIM) to generate diverse internuclear spatial relationships by structure-aware inpainting. On the basis of the above, IM-Diffusion generates more diverse pathological images with different layouts and internuclear spatial relationships, thereby facilitating downstream tasks. Evaluation on the CoNSeP and GLySAC datasets demonstrate that the images generated by IM-Diffusion effectively enhance overall instance segmentation performance. Code will be made public later.
- [106] arXiv:2504.01767 (cross-list from eess.AS) [pdf, html, other]
-
Title: Leveraging Embedding Techniques in Multimodal Machine Learning for Mental Illness AssessmentSubjects: Audio and Speech Processing (eess.AS); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV)
The increasing global prevalence of mental disorders, such as depression and PTSD, requires objective and scalable diagnostic tools. Traditional clinical assessments often face limitations in accessibility, objectivity, and consistency. This paper investigates the potential of multimodal machine learning to address these challenges, leveraging the complementary information available in text, audio, and video data. Our approach involves a comprehensive analysis of various data preprocessing techniques, including novel chunking and utterance-based formatting strategies. We systematically evaluate a range of state-of-the-art embedding models for each modality and employ Convolutional Neural Networks (CNNs) and Bidirectional LSTM Networks (BiLSTMs) for feature extraction. We explore data-level, feature-level, and decision-level fusion techniques, including a novel integration of Large Language Model (LLM) predictions. We also investigate the impact of replacing Multilayer Perceptron classifiers with Support Vector Machines. We extend our analysis to severity prediction using PHQ-8 and PCL-C scores and multi-class classification (considering co-occurring conditions). Our results demonstrate that utterance-based chunking significantly improves performance, particularly for text and audio modalities. Decision-level fusion, incorporating LLM predictions, achieves the highest accuracy, with a balanced accuracy of 94.8% for depression and 96.2% for PTSD detection. The combination of CNN-BiLSTM architectures with utterance-level chunking, coupled with the integration of external LLM, provides a powerful and nuanced approach to the detection and assessment of mental health conditions. Our findings highlight the potential of MMML for developing more accurate, accessible, and personalized mental healthcare tools.
- [107] arXiv:2504.01879 (cross-list from cs.CL) [pdf, other]
-
Title: TransientTables: Evaluating LLMs' Reasoning on Temporally Evolving Semi-structured TablesComments: 19 Pages. 21 Tables, 1 figureSubjects: Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV); Information Retrieval (cs.IR)
Humans continuously make new discoveries, and understanding temporal sequence of events leading to these breakthroughs is essential for advancing science and society. This ability to reason over time allows us to identify future steps and understand the effects of financial and political decisions on our lives. However, large language models (LLMs) are typically trained on static datasets, limiting their ability to perform effective temporal reasoning. To assess the temporal reasoning capabilities of LLMs, we present the TRANSIENTTABLES dataset, which comprises 3,971 questions derived from over 14,000 tables, spanning 1,238 entities across multiple time periods. We introduce a template-based question-generation pipeline that harnesses LLMs to refine both templates and questions. Additionally, we establish baseline results using state-of-the-art LLMs to create a benchmark. We also introduce novel modeling strategies centered around task decomposition, enhancing LLM performance.
Cross submissions (showing 18 of 18 entries)
- [108] arXiv:2005.05274 (replaced) [pdf, html, other]
-
Title: Normalized Convolutional Neural NetworkSubjects: Computer Vision and Pattern Recognition (cs.CV)
We introduce a Normalized Convolutional Neural Layer, a novel approach to normalization in convolutional networks. Unlike conventional methods, this layer normalizes the rows of the im2col matrix during convolution, making it inherently adaptive to sliced inputs and better aligned with kernel structures. This distinctive approach differentiates it from standard normalization techniques and prevents direct integration into existing deep learning frameworks optimized for traditional convolution operations. Our method has a universal property, making it applicable to any deep learning task involving convolutional layers. By inherently normalizing within the convolution process, it serves as a convolutional adaptation of Self-Normalizing Networks, maintaining their core principles without requiring additional normalization layers. Notably, in micro-batch training scenarios, it consistently outperforms other batch-independent normalization methods. This performance boost arises from standardizing the rows of the im2col matrix, which theoretically leads to a smoother loss gradient and improved training stability.
- [109] arXiv:2209.12675 (replaced) [pdf, other]
-
Title: Assessing the Role of Datasets in the Generalization of Motion Deblurring Methods to Real ImagesSubjects: Computer Vision and Pattern Recognition (cs.CV)
Successfully training end-to-end deep networks for real motion deblurring requires datasets of sharp/blurred image pairs that are realistic and diverse enough to achieve generalization to real blurred images. Obtaining such datasets remains a challenging task. In this paper, we first review the limitations of existing deblurring benchmark datasets and analyze the underlying causes for deblurring networks' lack of generalization to blurry images in the wild. Based on this analysis, we propose an efficient procedural methodology to generate sharp/blurred image pairs based on a simple yet effective model. This allows for generating virtually unlimited diverse training pairs mimicking realistic blur properties. We demonstrate the effectiveness of the proposed dataset by training existing deblurring architectures on the simulated pairs and performing cross-dataset evaluation on three standard datasets of real blurred images. When training with the proposed method, we observed superior generalization performance for the ultimate task of deblurring real motion-blurred photos of dynamic scenes.
- [110] arXiv:2307.08716 (replaced) [pdf, html, other]
-
Title: Pairwise-Constrained Implicit Functions for 3D Human Heart ModellingSubjects: Computer Vision and Pattern Recognition (cs.CV)
Accurate 3D models of the human heart require not only correct outer surfaces but also realistic inner structures, such as the ventricles, atria, and myocardial layers. Approaches relying on implicit surfaces, such as signed distance functions (SDFs), are primarily designed for single watertight surfaces, making them ill-suited for multi-layered anatomical structures. They often produce gaps or overlaps in shared boundaries. Unsigned distance functions (UDFs) can model non-watertight geometries but are harder to optimize, while voxel-based methods are limited in resolution and struggle to produce smooth, anatomically realistic surfaces. We introduce a pairwise-constrained SDF approach that models the heart as a set of interdependent SDFs, each representing a distinct anatomical component. By enforcing proper contact between adjacent SDFs, we ensure that they form anatomically correct shared walls, preserving the internal structure of the heart and preventing overlaps, or unwanted gaps. Our method significantly improves inner structure accuracy over single-SDF, UDF-based, voxel-based, and segmentation-based reconstructions. We further demonstrate its generalizability by applying it to a vertebrae dataset, preventing unwanted contact between structures.
- [111] arXiv:2311.09093 (replaced) [pdf, other]
-
Title: Why Autonomous Vehicles Are Not Ready Yet: A Multi-Disciplinary Review of Problems, Attempted Solutions, and Future DirectionsXingshuai Dong, Max Cappuccio, Hamad Al Jassmi, Fady Alnajjar, Essam Debie, Milad Ghasrikhouzani, Alessandro Lanteri, Ali Luqman, Tate McGregor, Oleksandra Molloy, Alice Plebe, Michael Regan, Dongmo ZhangComments: This manuscript extends the work "Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges, and Future Directions." We have added several sections to explore autonomous vehicles from a multidisciplinary perspective. We propose changing the arXiv category to cs.RO, as the expanded content addresses broader autonomous vehicle topics aligning more closely with the Robotics domainSubjects: Computer Vision and Pattern Recognition (cs.CV); Robotics (cs.RO)
Personal autonomous vehicles are cars, trucks and bikes capable of sensing their surrounding environment, planning their route, and driving with little or no involvement of human drivers. Despite the impressive technological achievements made by the industry in recent times and the hopeful announcements made by leading entrepreneurs, to date no personal vehicle is approved for road circulation in a 'fully' or 'semi' autonomous mode (autonomy levels 4 and 5) and it is still unclear when such vehicles will eventually be mature enough to receive this kind of approval. The present review adopts an integrative and multidisciplinary approach to investigate the major challenges faced by the automative sector, with the aim to identify the problems that still trouble and delay the commercialization of autonomous vehicles. The review examines the limitations and risks associated with current technologies and the most promising solutions devised by the researchers. This negative assessment methodology is not motivated by pessimism, but by the aspiration to raise critical awareness about the technology's state-of-the-art, the industry's quality standards, and the society's demands and expectations. While the survey primarily focuses on the applications of artificial intelligence for perception and navigation, it also aims to offer an enlarged picture that links the purely technological aspects with the relevant human-centric aspects, including, cultural attitudes, conceptual assumptions, and normative (ethico-legal) frameworks. Examining the broader context serves to highlight problems that have a cross-disciplinary scope and identify solutions that may benefit from a holistic consideration.
- [112] arXiv:2312.01255 (replaced) [pdf, html, other]
-
Title: Meta ControlNet: Enhancing Task Adaptation via Meta LearningComments: Codebase link: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
Diffusion-based image synthesis has attracted extensive attention recently. In particular, ControlNet that uses image-based prompts exhibits powerful capability in image tasks such as canny edge detection and generates images well aligned with these prompts. However, vanilla ControlNet generally requires extensive training of around 5000 steps to achieve a desirable control for a single task. Recent context-learning approaches have improved its adaptability, but mainly for edge-based tasks, and rely on paired examples. Thus, two important open issues are yet to be addressed to reach the full potential of ControlNet: (i) zero-shot control for certain tasks and (ii) faster adaptation for non-edge-based tasks. In this paper, we introduce a novel Meta ControlNet method, which adopts the task-agnostic meta learning technique and features a new layer freezing design. Meta ControlNet significantly reduces learning steps to attain control ability from 5000 to 1000. Further, Meta ControlNet exhibits direct zero-shot adaptability in edge-based tasks without any finetuning, and achieves control within only 100 finetuning steps in more complex non-edge tasks such as Human Pose, outperforming all existing methods. The codes is available in this https URL.
- [113] arXiv:2312.02420 (replaced) [pdf, html, other]
-
Title: Repurposing SAM for User-Defined Semantics Aware SegmentationSubjects: Computer Vision and Pattern Recognition (cs.CV)
The Segment Anything Model (SAM) excels at generating precise object masks from input prompts but lacks semantic awareness, failing to associate its generated masks with specific object categories. To address this limitation, we propose U-SAM, a novel framework that imbibes semantic awareness into SAM, enabling it to generate targeted masks for user-specified object categories. Given only object class names as input from the user, U-SAM provides pixel-level semantic annotations for images without requiring any labeled/unlabeled samples from the test data distribution. Our approach leverages synthetically generated or web crawled images to accumulate semantic information about the desired object classes. We then learn a mapping function between SAM's mask embeddings and object class labels, effectively enhancing SAM with granularity-specific semantic recognition capabilities. As a result, users can obtain meaningful and targeted segmentation masks for specific objects they request, rather than generic and unlabeled masks. We evaluate U-SAM on PASCAL VOC 2012 and MSCOCO-80, achieving significant mIoU improvements of +17.95% and +5.20%, respectively, over state-of-the-art methods. By transforming SAM into a semantically aware segmentation model, U-SAM offers a practical and flexible solution for pixel-level annotation across diverse and unseen domains in a resource-constrained environment.
- [114] arXiv:2402.18370 (replaced) [pdf, html, other]
-
Title: Adversarial Example Soups: Improving Transferability and Stealthiness for FreeComments: Accepted by TIFS 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Transferable adversarial examples cause practical security risks since they can mislead a target model without knowing its internal knowledge. A conventional recipe for maximizing transferability is to keep only the optimal adversarial example from all those obtained in the optimization pipeline. In this paper, for the first time, we revisit this convention and demonstrate that those discarded, sub-optimal adversarial examples can be reused to boost transferability. Specifically, we propose ``Adversarial Example Soups'' (AES), with AES-tune for averaging discarded adversarial examples in hyperparameter tuning and AES-rand for stability testing. In addition, our AES is inspired by ``model soups'', which averages weights of multiple fine-tuned models for improved accuracy without increasing inference time. Extensive experiments validate the global effectiveness of our AES, boosting 10 state-of-the-art transfer attacks and their combinations by up to 13\% against 10 diverse (defensive) target models. We also show the possibility of generalizing AES to other types, \textit{e.g.}, directly averaging multiple in-the-wild adversarial examples that yield comparable success. A promising byproduct of AES is the improved stealthiness of adversarial examples since the perturbation variances are naturally reduced.
- [115] arXiv:2403.02998 (replaced) [pdf, html, other]
-
Title: Towards Calibrated Deep Clustering NetworkComments: The paper is accepted by ICLR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Deep clustering has exhibited remarkable performance; however, the over confidence problem, i.e., the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy, has been over looked in prior research. To tackle this critical issue, we pioneer the development of a calibrated deep clustering framework. Specifically, we propose a novel dual head (calibration head and clustering head) deep clustering model that can effectively calibrate the estimated confidence and the actual accuracy. The calibration head adjusts the overconfident predictions of the clustering head, generating prediction confidence that matches the model learning status. Then, the clustering head dynamically selects reliable high-confidence samples estimated by the calibration head for pseudo-label self-training. Additionally, we introduce an effective network initialization strategy that enhances both training speed and network robustness. The effectiveness of the proposed calibration approach and initialization strategy are both endorsed with solid theoretical guarantees. Extensive experiments demonstrate the proposed calibrated deep clustering model not only surpasses the state-of-the-art deep clustering methods by 5x on average in terms of expected calibration error, but also significantly outperforms them in terms of clustering accuracy. The code is available at this https URL.
- [116] arXiv:2403.04443 (replaced) [pdf, other]
-
Title: FriendNet: Detection-Friendly Dehazing NetworkComments: We identified a fundamental flaw in the theoretical framework of this submission, rendering the main argument unsound. To maintain academic rigor, we request withdrawal and will submit a revised version after thorough validationSubjects: Computer Vision and Pattern Recognition (cs.CV)
Adverse weather conditions often impair the quality of captured images, inevitably inducing cutting-edge object detection models for advanced driver assistance systems (ADAS) and autonomous driving. In this paper, we raise an intriguing question: can the combination of image restoration and object detection enhance detection performance in adverse weather conditions? To answer it, we propose an effective architecture that bridges image dehazing and object detection together via guidance information and task-driven learning to achieve detection-friendly dehazing, termed FriendNet. FriendNet aims to deliver both high-quality perception and high detection capacity. Different from existing efforts that intuitively treat image dehazing as pre-processing, FriendNet establishes a positive correlation between these two tasks. Clean features generated by the dehazing network potentially contribute to improvements in object detection performance. Conversely, object detection crucially guides the learning process of the image dehazing network under the task-driven learning scheme. We shed light on how downstream tasks can guide upstream dehazing processes, considering both network architecture and learning objectives. We design Guidance Fusion Block (GFB) and Guidance Attention Block (GAB) to facilitate the integration of detection information into the network. Furthermore, the incorporation of the detection task loss aids in refining the optimization process. Additionally, we introduce a new Physics-aware Feature Enhancement Block (PFEB), which integrates physics-based priors to enhance the feature extraction and representation capabilities. Extensive experiments on synthetic and real-world datasets demonstrate the superiority of our method over state-of-the-art methods on both image quality and detection precision. Our source code is available at this https URL.
- [117] arXiv:2404.09227 (replaced) [pdf, html, other]
-
Title: DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation ModelingSubjects: Computer Vision and Pattern Recognition (cs.CV)
Recent advances in text-to-3D creation integrate the potent prior of Diffusion Models from text-to-image generation into 3D domain. Nevertheless, generating 3D scenes with multiple objects remains challenging. Therefore, we present DreamScape, a method for generating 3D scenes from text. Utilizing Gaussian Splatting for 3D representation, DreamScape introduces 3D Gaussian Guide that encodes semantic primitives, spatial transformations and relationships from text using LLMs, enabling local-to-global optimization. Progressive scale control is tailored during local object generation, addressing training instability issue arising from simple blending in the global optimization stage. Collision relationships between objects are modeled at the global level to mitigate biases in LLMs priors, ensuring physical correctness. Additionally, to generate pervasive objects like rain and snow distributed extensively across the scene, we design specialized sparse initialization and densification strategy. Experiments demonstrate that DreamScape achieves state-of-the-art performance, enabling high-fidelity, controllable 3D scene generation.
- [118] arXiv:2404.13992 (replaced) [pdf, html, other]
-
Title: Dynamic Proxy Domain Generalizes the Crowd Localization by Better Binary SegmentationSubjects: Computer Vision and Pattern Recognition (cs.CV)
Crowd localization targets on predicting each instance precise location within an image. Current advanced methods propose the pixel-wise binary classification to tackle the congested prediction, in which the pixel-level thresholds binarize the prediction confidence of being the pedestrian head. Since the crowd scenes suffer from extremely varying contents, counts and scales, the confidence-threshold learner is fragile and under-generalized encountering domain knowledge shift. Moreover, at the most time, the target domain is agnostic in training. Hence, it is imperative to exploit how to enhance the generalization of confidence-threshold locator to the latent target domain. In this paper, we propose a Dynamic Proxy Domain (DPD) method to generalize the learner under domain shift. Concretely, based on the theoretical analysis to the generalization error risk upper bound on the latent target domain to a binary classifier, we propose to introduce a generated proxy domain to facilitate generalization. Then, based on the theory, we design a DPD algorithm which is composed by a training paradigm and proxy domain generator to enhance the domain generalization of the confidence-threshold learner. Besides, we conduct our method on five kinds of domain shift scenarios, demonstrating the effectiveness on generalizing the crowd localization. Our code will be available at this https URL.
- [119] arXiv:2404.14653 (replaced) [pdf, html, other]
-
Title: Machine Vision-Based Assessment of Fall Color Changes and its Relationship with Leaf Nitrogen ConcentrationAchyut Paudel, Jostan Brown, Priyanka Upadhyaya, Atif Bilal Asad, Safal Kshetri, Joseph R. Davidson, Cindy Grimm, Ashley Thompson, Bernardita Sallato, Matthew D. Whiting, Manoj KarkeeSubjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG)
Apple(\textit{Malus domestica} Borkh.) trees are deciduous, shedding leaves each year. This process is preceded by a gradual change in leaf color from green to yellow as chlorophyll is degraded prior to abscission. The initiation and rate of this color change are affected by many factors including leaf nitrogen (N) concentration. We predict that leaf color during this transition may be indicative of the nitrogen status of apple trees. This study assesses a machine vision-based system for quantifying the change in leaf color and its correlation with leaf nitrogen content. An image dataset was collected in color and 3D over five weeks in the fall of 2021 and 2023 at a commercial orchard using a ground vehicle-based stereovision sensor. Trees in the foreground were segmented from the point cloud using color and depth thresholding methods. Then, to estimate the proportion of yellow leaves per canopy, the color information of the segmented canopy area was quantified using a custom-defined metric, \textit{yellowness index} (a normalized ratio of yellow to green foliage in the tree) that varied from -1 to +1 (-1 being completely green and +1 being completely yellow). Both K-means-based methods and gradient boosting methods were used to estimate the \textit{yellowness index}. The gradient boosting based method proposed in this study was better than the K-means-based method (both in terms of computational time and accuracy), achieving an $R^2$ of 0.72 in estimating the \textit{yellowness index}. The metric was able to capture the gradual color transition from green to yellow over the study duration. Trees with lower leaf nitrogen showed the color transition to yellow earlier than the trees with higher nitrogen.
Keywords: Fruit Tree Nitrogen Management, Machine Vision, Point Cloud Segmentation, Precision Nitrogen Management - [120] arXiv:2404.18930 (replaced) [pdf, html, other]
-
Title: Hallucination of Multimodal Large Language Models: A SurveyComments: 228 referencesSubjects: Computer Vision and Pattern Recognition (cs.CV)
This survey presents a comprehensive analysis of the phenomenon of hallucination in multimodal large language models (MLLMs), also known as Large Vision-Language Models (LVLMs), which have demonstrated significant advancements and remarkable abilities in multimodal tasks. Despite these promising developments, MLLMs often generate outputs that are inconsistent with the visual content, a challenge known as hallucination, which poses substantial obstacles to their practical deployment and raises concerns regarding their reliability in real-world applications. This problem has attracted increasing attention, prompting efforts to detect and mitigate such inaccuracies. We review recent advances in identifying, evaluating, and mitigating these hallucinations, offering a detailed overview of the underlying causes, evaluation benchmarks, metrics, and strategies developed to address this issue. Additionally, we analyze the current challenges and limitations, formulating open questions that delineate potential pathways for future research. By drawing the granular classification and landscapes of hallucination causes, evaluation benchmarks, and mitigation methods, this survey aims to deepen the understanding of hallucinations in MLLMs and inspire further advancements in the field. Through our thorough and in-depth review, we contribute to the ongoing dialogue on enhancing the robustness and reliability of MLLMs, providing valuable insights and resources for researchers and practitioners alike. Resources are available at: this https URL.
- [121] arXiv:2405.14325 (replaced) [pdf, html, other]
-
Title: Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly DetectionComments: IEEE/CVF CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Recent studies highlighted a practical setting of unsupervised anomaly detection (UAD) that builds a unified model for multi-class images. Despite various advancements addressing this challenging task, the detection performance under the multi-class setting still lags far behind state-of-the-art class-separated models. Our research aims to bridge this substantial performance gap. In this paper, we introduce a minimalistic reconstruction-based anomaly detection framework, namely Dinomaly, which leverages pure Transformer architectures without relying on complex designs, additional modules, or specialized tricks. Given this powerful framework consisted of only Attentions and MLPs, we found four simple components that are essential to multi-class anomaly detection: (1) Foundation Transformers that extracts universal and discriminative features, (2) Noisy Bottleneck where pre-existing Dropouts do all the noise injection tricks, (3) Linear Attention that naturally cannot focus, and (4) Loose Reconstruction that does not force layer-to-layer and point-by-point reconstruction. Extensive experiments are conducted across popular anomaly detection benchmarks including MVTec-AD, VisA, and Real-IAD. Our proposed Dinomaly achieves impressive image-level AUROC of 99.6%, 98.7%, and 89.3% on the three datasets respectively, which is not only superior to state-of-the-art multi-class UAD methods, but also achieves the most advanced class-separated UAD records.
- [122] arXiv:2405.15364 (replaced) [pdf, html, other]
-
Title: NVS-Solver: Video Diffusion Model as Zero-Shot Novel View SynthesizerComments: ICLR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
By harnessing the potent generative capabilities of pre-trained large video diffusion models, we propose NVS-Solver, a new novel view synthesis (NVS) paradigm that operates \textit{without} the need for training. NVS-Solver adaptively modulates the diffusion sampling process with the given views to enable the creation of remarkable visual experiences from single or multiple views of static scenes or monocular videos of dynamic scenes. Specifically, built upon our theoretical modeling, we iteratively modulate the score function with the given scene priors represented with warped input views to control the video diffusion process. Moreover, by theoretically exploring the boundary of the estimation error, we achieve the modulation in an adaptive fashion according to the view pose and the number of diffusion steps. Extensive evaluations on both static and dynamic scenes substantiate the significant superiority of our NVS-Solver over state-of-the-art methods both quantitatively and qualitatively. \textit{ Source code in } \href{this https URL}{this https URL\_$Solver}.
- [123] arXiv:2405.16625 (replaced) [pdf, html, other]
-
Title: Consistency-Guided Asynchronous Contrastive Tuning for Few-Shot Class-Incremental Tuning of Foundation ModelsComments: Accepted in Transactions on Machine Learning Research (TMLR)Subjects: Computer Vision and Pattern Recognition (cs.CV)
We propose Consistency-guided Asynchronous Contrastive Tuning (CoACT), a novel method for continuously tuning foundation models to learn new classes in few-shot settings. CoACT consists of three key components:(i) asynchronous contrastive tuning, which learns new classes by including LoRA modules in the pre-trained encoder while enforcing consistency between two asynchronous encoders; (ii) controlled fine-tuning, which facilitates effective tuning of a subset of the foundation model; and (iii) consistency-guided incremental tuning, which enforces additional regularization during later sessions to reduce forgetting of the learned classes. We evaluate our proposed solution on Few-Shot Class-Incremental Learning (FSCIL) as well as a new and more challenging setup called Few-Shot Class-Incremental Tuning (FSCIT), which facilitates the continual tuning of vision foundation models to learn new classes with only a few samples per class. Unlike traditional FSCIL, FSCIT does not require a large in-distribution base session for initial fully supervised training prior to the incremental few-shot sessions. We conduct extensive evaluations across 16 diverse datasets, demonstrating the effectiveness of CoACT in both FSCIL and FSCIT setups. CoACT outperforms existing methods by up to 5.02% in FSCIL and up to 12.51% in FSCIT for individual datasets, with an average improvement of 2.47%. Furthermore, CoACT exhibits reduced forgetting and enhanced robustness in low-shot experiments. Detailed ablation and sensitivity studies highlight the contribution of each component of CoACT. We make our code publicly available at this https URL.
- [124] arXiv:2406.10462 (replaced) [pdf, html, other]
-
Title: CoMM: A Coherent Interleaved Image-Text Dataset for Multimodal Understanding and GenerationComments: 22 pages, Accepted by CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Interleaved image-text generation has emerged as a crucial multimodal task, aiming at creating sequences of interleaved visual and textual content given a query. Despite notable advancements in recent multimodal large language models (MLLMs), generating integrated image-text sequences that exhibit narrative coherence and entity and style consistency remains challenging due to poor training data quality. To address this gap, we introduce CoMM, a high-quality Coherent interleaved image-text MultiModal dataset designed to enhance the coherence, consistency, and alignment of generated multimodal content. Initially, CoMM harnesses raw data from diverse sources, focusing on instructional content and visual storytelling, establishing a foundation for coherent and consistent content. To further refine the data quality, we devise a multi-perspective filter strategy that leverages advanced pre-trained models to ensure the development of sentences, consistency of inserted images, and semantic alignment between them. Various quality evaluation metrics are designed to prove the high quality of the filtered dataset. Meanwhile, extensive few-shot experiments on various downstream tasks demonstrate CoMM's effectiveness in significantly enhancing the in-context learning capabilities of MLLMs. Moreover, we propose four new tasks to evaluate MLLMs' interleaved generation abilities, supported by a comprehensive evaluation framework. We believe CoMM opens a new avenue for advanced MLLMs with superior multimodal in-context learning and understanding ability.
- [125] arXiv:2406.14874 (replaced) [pdf, html, other]
-
Title: TraceNet: Segment one thing efficientlySubjects: Computer Vision and Pattern Recognition (cs.CV)
Efficient single instance segmentation is essential for unlocking features in the mobile imaging applications, such as capture or editing. Existing on-the-fly mobile imaging applications scope the segmentation task to portraits or the salient subject due to the computational constraints. Instance segmentation, despite its recent developments towards efficient networks, is still heavy due to the cost of computation on the entire image to identify all instances. To address this, we propose and formulate a one tap driven single instance segmentation task that segments a single instance selected by a user via a positive tap. This task, in contrast to the broader task of segmenting anything as suggested in the Segment Anything Model \cite{sam}, focuses on efficient segmentation of a single instance specified by the user. To solve this problem, we present TraceNet, which explicitly locates the selected instance by way of receptive field tracing. TraceNet identifies image regions that are related to the user tap and heavy computations are only performed on selected regions of the image. Therefore overall computation cost and memory consumption are reduced during inference. We evaluate the performance of TraceNet on instance IoU average over taps and the proportion of the region that a user tap can fall into for a high-quality single-instance mask. Experimental results on MS-COCO and LVIS demonstrate the effectiveness and efficiency of the proposed approach. TraceNet can jointly achieve the efficiency and interactivity, filling in the gap between needs for efficient mobile inference and recent research trend towards multimodal and interactive segmentation models.
- [126] arXiv:2408.05366 (replaced) [pdf, html, other]
-
Title: The DeepSpeak DatasetSubjects: Computer Vision and Pattern Recognition (cs.CV)
We describe a large-scale dataset - DeepSpeak - of real and deepfake footage of people talking and gesturing in front of their webcams. The real videos in this dataset consist of a total of 50 hours of footage from 500 diverse individuals. Constituting more than 50 hours of footage, the fake videos consist of a range of different state-of-the-art avatar, face-swap, and lip-sync deepfakes with natural and AI-generated voices. We are regularly releasing updated versions of this dataset with the latest deepfake technologies. This preprint describes the construction of versions 1.0, 1.1, and 2.0. This dataset is made freely available for research and non-commercial uses; requests for commercial use will be considered.
- [127] arXiv:2408.11535 (replaced) [pdf, html, other]
-
Title: SAM-REF: Introducing Image-Prompt Synergy during Interaction for Detail Enhancement in the Segment Anything ModelSubjects: Computer Vision and Pattern Recognition (cs.CV)
Interactive segmentation is to segment the mask of the target object according to the user's interactive prompts. There are two mainstream strategies: early fusion and late fusion. Current specialist models utilize the early fusion strategy that encodes the combination of images and prompts to target the prompted objects, yet repetitive complex computations on the images result in high latency. Late fusion models extract image embeddings once and merge them with the prompts in later interactions. This strategy avoids redundant image feature extraction and improves efficiency significantly. A recent milestone is the Segment Anything Model (SAM). However, this strategy limits the models' ability to extract detailed information from the prompted target zone. To address this issue, we propose SAM-REF, a two-stage refinement framework that fully integrates images and prompts by using a lightweight refiner into the interaction of late fusion, which combines the accuracy of early fusion and maintains the efficiency of late fusion. Through extensive experiments, we show that our SAM-REF model outperforms the current state-of-the-art method in most metrics on segmentation quality without compromising efficiency.
- [128] arXiv:2408.16807 (replaced) [pdf, html, other]
-
Title: STEREO: A Two-Stage Framework for Adversarially Robust Concept Erasing from Text-to-Image Diffusion ModelsComments: Accepted to CVPR-2025. Code: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
The rapid proliferation of large-scale text-to-image diffusion (T2ID) models has raised serious concerns about their potential misuse in generating harmful content. Although numerous methods have been proposed for erasing undesired concepts from T2ID models, they often provide a false sense of security; concept-erased models (CEMs) can still be manipulated via adversarial attacks to regenerate the erased concept. While a few robust concept erasure methods based on adversarial training have emerged recently, they compromise on utility (generation quality for benign concepts) to achieve robustness and/or remain vulnerable to advanced embedding space attacks. These limitations stem from the failure of robust CEMs to thoroughly search for "blind spots" in the embedding space. To bridge this gap, we propose STEREO, a novel two-stage framework that employs adversarial training as a first step rather than the only step for robust concept erasure. In the first stage, STEREO employs adversarial training as a vulnerability identification mechanism to search thoroughly enough. In the second robustly erase once stage, STEREO introduces an anchor-concept-based compositional objective to robustly erase the target concept in a single fine-tuning stage, while minimizing the degradation of model utility. We benchmark STEREO against seven state-of-the-art concept erasure methods, demonstrating its superior robustness to both white-box and black-box attacks, while largely preserving utility.
- [129] arXiv:2409.06633 (replaced) [pdf, html, other]
-
Title: SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank AdaptationComments: Accepted by ICLR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
In recent years, the development of diffusion models has led to significant progress in image and video generation tasks, with pre-trained models like the Stable Diffusion series playing a crucial role. Inspired by model pruning which lightens large pre-trained models by removing unimportant parameters, we propose a novel model fine-tuning method to make full use of these ineffective parameters and enable the pre-trained model with new task-specified capabilities. In this work, we first investigate the importance of parameters in pre-trained diffusion models, and discover that the smallest 10% to 20% of parameters by absolute values do not contribute to the generation process. Based on this observation, we propose a method termed SaRA that re-utilizes these temporarily ineffective parameters, equating to optimizing a sparse weight matrix to learn the task-specific knowledge. To mitigate overfitting, we propose a nuclear-norm-based low-rank sparse training scheme for efficient fine-tuning. Furthermore, we design a new progressive parameter adjustment strategy to make full use of the re-trained/finetuned parameters. Finally, we propose a novel unstructural backpropagation strategy, which significantly reduces memory costs during fine-tuning. Our method enhances the generative capabilities of pre-trained models in downstream applications and outperforms traditional fine-tuning methods like LoRA in maintaining model's generalization ability. We validate our approach through fine-tuning experiments on SD models, demonstrating significant improvements. SaRA also offers a practical advantage that requires only a single line of code modification for efficient implementation and is seamlessly compatible with existing methods.
- [130] arXiv:2409.15273 (replaced) [pdf, html, other]
-
Title: MaterialFusion: Enhancing Inverse Rendering with Material Diffusion PriorsYehonathan Litman, Or Patashnik, Kangle Deng, Aviral Agrawal, Rushikesh Zawar, Fernando De la Torre, Shubham TulsianiComments: 3DV 2025. Project Page, Data, & Code: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
Recent works in inverse rendering have shown promise in using multi-view images of an object to recover shape, albedo, and materials. However, the recovered components often fail to render accurately under new lighting conditions due to the intrinsic challenge of disentangling albedo and material properties from input images. To address this challenge, we introduce MaterialFusion, an enhanced conventional 3D inverse rendering pipeline that incorporates a 2D prior on texture and material properties. We present StableMaterial, a 2D diffusion model prior that refines multi-lit data to estimate the most likely albedo and material from given input appearances. This model is trained on albedo, material, and relit image data derived from a curated dataset of approximately ~12K artist-designed synthetic Blender objects called BlenderVault. we incorporate this diffusion prior with an inverse rendering framework where we use score distillation sampling (SDS) to guide the optimization of the albedo and materials, improving relighting performance in comparison with previous work. We validate MaterialFusion's relighting performance on 4 datasets of synthetic and real objects under diverse illumination conditions, showing our diffusion-aided approach significantly improves the appearance of reconstructed objects under novel lighting conditions. We intend to publicly release our BlenderVault dataset to support further research in this field.
- [131] arXiv:2409.16902 (replaced) [pdf, html, other]
-
Title: Underwater Camouflaged Object Tracking Meets Vision-Language SAM2Comments: Preprint. this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Over the past decade, significant progress has been made in visual object tracking, largely due to the availability of large-scale datasets. However, these datasets have primarily focused on open-air scenarios and have largely overlooked underwater animal tracking-especially the complex challenges posed by camouflaged marine animals. To bridge this gap, we take a step forward by proposing the first large-scale multi-modal underwater camouflaged object tracking dataset, namely UW-COT220. Based on the proposed dataset, this work first comprehensively evaluates current advanced visual object tracking methods, including SAM- and SAM2-based trackers, in challenging underwater environments, \eg, coral reefs. Our findings highlight the improvements of SAM2 over SAM, demonstrating its enhanced ability to handle the complexities of underwater camouflaged objects. Furthermore, we propose a novel vision-language tracking framework called VL-SAM2, based on the video foundation model SAM2. Experimental results demonstrate that our VL-SAM2 achieves state-of-the-art performance on the UW-COT220 dataset. The dataset and codes are available at~\href{this https URL}{\color{magenta}{here}}.
- [132] arXiv:2410.02757 (replaced) [pdf, html, other]
-
Title: Loong: Generating Minute-level Long Videos with Autoregressive Language ModelsComments: Project page: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
It is desirable but challenging to generate content-rich long videos in the scale of minutes. Autoregressive large language models (LLMs) have achieved great success in generating coherent and long sequences of tokens in the domain of natural language processing, while the exploration of autoregressive LLMs for video generation is limited to generating short videos of several seconds. In this work, we conduct a deep analysis of the challenges that prevent autoregressive LLM-based video generators from generating long videos. Based on the observations and analysis, we propose Loong, a new autoregressive LLM-based video generator that can generate minute-long videos. Specifically, we model the text tokens and video tokens as a unified sequence for autoregressive LLMs and train the model from scratch. We propose progressive short-to-long training with a loss re-weighting scheme to mitigate the loss imbalance problem for long video training. We further investigate inference strategies, including video token re-encoding and sampling strategies, to diminish error accumulation during inference. Our proposed Loong can be trained on 10-second videos and be extended to generate minute-level long videos conditioned on text prompts, as demonstrated by the results. More samples are available at: this https URL.
- [133] arXiv:2410.15235 (replaced) [pdf, html, other]
-
Title: Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable ImagesSubjects: Computer Vision and Pattern Recognition (cs.CV)
Image memorability refers to the phenomenon where certain images are more likely to be remembered than others. It is a quantifiable and intrinsic image attribute, defined as the likelihood of an image being remembered upon a single exposure. Despite advances in understanding human visual perception and memory, it is unclear what features contribute to an image's memorability. To address this question, we propose a deep learning-based computational modeling approach. We employ an autoencoder-based approach built on VGG16 convolutional neural networks (CNNs) to learn latent representations of images. The model is trained in a single-epoch setting, mirroring human memory experiments that assess recall after a single exposure. We examine the relationship between autoencoder reconstruction error and memorability, analyze the distinctiveness of latent space representations, and develop a multi-layer perceptron (MLP) model for memorability prediction. Additionally, we perform interpretability analysis using Integrated Gradients (IG) to identify the key visual characteristics that contribute to memorability. Our results demonstrate a significant correlation between the images' memorability score and the autoencoder's reconstruction error, as well as the robust predictive performance of its latent representations. Distinctiveness in these representations correlated significantly with memorability. Additionally, certain visual characteristics were identified as features contributing to image memorability in our model. These findings suggest that autoencoder-based representations capture fundamental aspects of image memorability, providing new insights into the computational modeling of human visual memory.
- [134] arXiv:2411.16863 (replaced) [pdf, html, other]
-
Title: Augmenting Multimodal LLMs with Self-Reflective Tokens for Knowledge-based Visual Question AnsweringComments: CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL); Multimedia (cs.MM)
Multimodal LLMs (MLLMs) are the natural extension of large language models to handle multimodal inputs, combining text and image data. They have recently garnered attention due to their capability to address complex tasks involving both modalities. However, their effectiveness is limited to the knowledge acquired during training, which restricts their practical utility. In this work, we introduce a novel method to enhance the adaptability of MLLMs by integrating external knowledge sources. Our proposed model, Reflective LLaVA (ReflectiVA), utilizes reflective tokens to dynamically determine the need for external knowledge and predict the relevance of information retrieved from an external database. Tokens are trained following a two-stage two-model training recipe. This ultimately enables the MLLM to manage external knowledge while preserving fluency and performance on tasks where external knowledge is not needed. Through our experiments, we demonstrate the efficacy of ReflectiVA for knowledge-based visual question answering, highlighting its superior performance compared to existing methods. Source code and trained models are publicly available at this https URL.
- [135] arXiv:2412.07360 (replaced) [pdf, html, other]
-
Title: Efficient 3D Recognition with Event-driven Spike Sparse ConvolutionComments: Accepted by AAAI 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Spiking Neural Networks (SNNs) provide an energy-efficient way to extract 3D spatio-temporal features. Point clouds are sparse 3D spatial data, which suggests that SNNs should be well-suited for processing them. However, when applying SNNs to point clouds, they often exhibit limited performance and fewer application scenarios. We attribute this to inappropriate preprocessing and feature extraction methods. To address this issue, we first introduce the Spike Voxel Coding (SVC) scheme, which encodes the 3D point clouds into a sparse spike train space, reducing the storage requirements and saving time on point cloud preprocessing. Then, we propose a Spike Sparse Convolution (SSC) model for efficiently extracting 3D sparse point cloud features. Combining SVC and SSC, we design an efficient 3D SNN backbone (E-3DSNN), which is friendly with neuromorphic hardware. For instance, SSC can be implemented on neuromorphic chips with only minor modifications to the addressing function of vanilla spike convolution. Experiments on ModelNet40, KITTI, and Semantic KITTI datasets demonstrate that E-3DSNN achieves state-of-the-art (SOTA) results with remarkable efficiency. Notably, our E-3DSNN (1.87M) obtained 91.7\% top-1 accuracy on ModelNet40, surpassing the current best SNN baselines (14.3M) by 3.0\%. To our best knowledge, it is the first direct training 3D SNN backbone that can simultaneously handle various 3D computer vision tasks (e.g., classification, detection, and segmentation) with an event-driven nature. Code is available: this https URL.
- [136] arXiv:2412.09213 (replaced) [pdf, html, other]
-
Title: Enhancing Implicit Neural Representations via Symmetric Power TransformationComments: Accepted by AAAI 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
We propose symmetric power transformation to enhance the capacity of Implicit Neural Representation~(INR) from the perspective of data transformation. Unlike prior work utilizing random permutation or index rearrangement, our method features a reversible operation that does not require additional storage consumption. Specifically, we first investigate the characteristics of data that can benefit the training of INR, proposing the Range-Defined Symmetric Hypothesis, which posits that specific range and symmetry can improve the expressive ability of INR. Based on this hypothesis, we propose a nonlinear symmetric power transformation to achieve both range-defined and symmetric properties simultaneously. We use the power coefficient to redistribute data to approximate symmetry within the target range. To improve the robustness of the transformation, we further design deviation-aware calibration and adaptive soft boundary to address issues of extreme deviation boosting and continuity breaking. Extensive experiments are conducted to verify the performance of the proposed method, demonstrating that our transformation can reliably improve INR compared with other data transformations. We also conduct 1D audio, 2D image and 3D video fitting tasks to demonstrate the effectiveness and applicability of our method.
- [137] arXiv:2412.09612 (replaced) [pdf, html, other]
-
Title: Olympus: A Universal Task Router for Computer Vision TasksComments: Accepted to CVPR 2025, Project webpage: this http URLSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Computation and Language (cs.CL)
We introduce Olympus, a new approach that transforms Multimodal Large Language Models (MLLMs) into a unified framework capable of handling a wide array of computer vision tasks. Utilizing a controller MLLM, Olympus delegates over 20 specialized tasks across images, videos, and 3D objects to dedicated modules. This instruction-based routing enables complex workflows through chained actions without the need for training heavy generative models. Olympus easily integrates with existing MLLMs, expanding their capabilities with comparable performance. Experimental results demonstrate that Olympus achieves an average routing accuracy of 94.75% across 20 tasks and precision of 91.82% in chained action scenarios, showcasing its effectiveness as a universal task router that can solve a diverse range of computer vision tasks. Project page: this http URL
- [138] arXiv:2412.10028 (replaced) [pdf, html, other]
-
Title: Mr. DETR: Instructive Multi-Route Training for Detection TransformersSubjects: Computer Vision and Pattern Recognition (cs.CV)
Existing methods enhance the training of detection transformers by incorporating an auxiliary one-to-many assignment. In this work, we treat the model as a multi-task framework, simultaneously performing one-to-one and one-to-many predictions. We investigate the roles of each component in the transformer decoder across these two training targets, including self-attention, cross-attention, and feed-forward network. Our empirical results demonstrate that any independent component in the decoder can effectively learn both targets simultaneously, even when other components are shared. This finding leads us to propose a multi-route training mechanism, featuring a primary route for one-to-one prediction and two auxiliary training routes for one-to-many prediction. We enhance the training mechanism with a novel instructive self-attention that dynamically and flexibly guides object queries for one-to-many prediction. The auxiliary routes are removed during inference, ensuring no impact on model architecture or inference cost. We conduct extensive experiments on various baselines, achieving consistent improvements as shown in Figure 1. Project page: this https URL
- [139] arXiv:2412.10153 (replaced) [pdf, html, other]
-
Title: EVOS: Efficient Implicit Neural Training via EVOlutionary SelectorComments: Accepted by CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV); Multimedia (cs.MM); Neural and Evolutionary Computing (cs.NE)
We propose EVOlutionary Selector (EVOS), an efficient training paradigm for accelerating Implicit Neural Representation (INR). Unlike conventional INR training that feeds all samples through the neural network in each iteration, our approach restricts training to strategically selected points, reducing computational overhead by eliminating redundant forward passes. Specifically, we treat each sample as an individual in an evolutionary process, where only those fittest ones survive and merit inclusion in training, adaptively evolving with the neural network dynamics. While this is conceptually similar to Evolutionary Algorithms, their distinct objectives (selection for acceleration vs. iterative solution optimization) require a fundamental redefinition of evolutionary mechanisms for our context. In response, we design sparse fitness evaluation, frequency-guided crossover, and augmented unbiased mutation to comprise EVOS. These components respectively guide sample selection with reduced computational cost, enhance performance through frequency-domain balance, and mitigate selection bias from cached evaluation. Extensive experiments demonstrate that our method achieves approximately 48%-66% reduction in training time while ensuring superior convergence without additional cost, establishing state-of-the-art acceleration among recent sampling-based strategies.
- [140] arXiv:2412.11535 (replaced) [pdf, html, other]
-
Title: Scale-adaptive UAV Geo-localization via Height-aware Partition LearningComments: In Peer ReviewSubjects: Computer Vision and Pattern Recognition (cs.CV)
UAV Geo-Localization faces significant challenges due to the drastic appearance discrepancy between dronecaptured images and satellite views. Existing methods typically assume a consistent scaling factor across views and rely on predefined partition alignment to extract viewpoint-invariant representations through part-level feature construction. However, this scaling assumption often fails in real-world scenarios, where variations in drone flight states lead to scale mismatches between cross-view images, resulting in severe performance degradation. To address this issue, we propose a scale-adaptive partition learning framework that leverages known drone flight height to predict scale factors and dynamically adjust feature extraction. Our key contribution is a height-aware adjustment strategy, which calculates the relative height ratio between drone and satellite views, dynamically adjusting partition sizes to explicitly align semantic information between partition pairs. This strategy is integrated into a Scale-adaptive Local Partition Network (SaLPN), building upon an existing square partition strategy to extract both finegrained and global features. Additionally, we propose a saliencyguided refinement strategy to enhance part-level features, further improving retrieval accuracy. Extensive experiments validate that our height-aware, scale-adaptive approach achieves stateof-the-art geo-localization accuracy in various scale-inconsistent scenarios and exhibits strong robustness against scale variations. The code will be made publicly available.
- [141] arXiv:2412.14123 (replaced) [pdf, other]
-
Title: AnySat: One Earth Observation Model for Many Resolutions, Scales, and ModalitiesSubjects: Computer Vision and Pattern Recognition (cs.CV)
Geospatial models must adapt to the diversity of Earth observation data in terms of resolutions, scales, and modalities. However, existing approaches expect fixed input configurations, which limits their practical applicability. We propose AnySat, a multimodal model based on joint embedding predictive architecture (JEPA) and scale-adaptive spatial encoders, allowing us to train a single model on highly heterogeneous data in a self-supervised manner. To demonstrate the advantages of this unified approach, we compile GeoPlex, a collection of $5$ multimodal datasets with varying characteristics and $11$ distinct sensors. We then train a single powerful model on these diverse datasets simultaneously. Once fine-tuned or probed, we reach state-of-the-art results on the test sets of GeoPlex and for $6$ external datasets across various environment monitoring tasks: land cover mapping, tree species identification, crop type classification, change detection, climate type classification, and segmentation of flood, burn scar, and deforestation. The code and models are available at this https URL.
- [142] arXiv:2412.15119 (replaced) [pdf, html, other]
-
Title: Parallelized Autoregressive Visual GenerationYuqing Wang, Shuhuai Ren, Zhijie Lin, Yujin Han, Haoyuan Guo, Zhenheng Yang, Difan Zou, Jiashi Feng, Xihui LiuComments: CVPR 2025 Accepted - Project Page: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
Autoregressive models have emerged as a powerful approach for visual generation but suffer from slow inference speed due to their sequential token-by-token prediction process. In this paper, we propose a simple yet effective approach for parallelized autoregressive visual generation that improves generation efficiency while preserving the advantages of autoregressive modeling. Our key insight is that parallel generation depends on visual token dependencies-tokens with weak dependencies can be generated in parallel, while strongly dependent adjacent tokens are difficult to generate together, as their independent sampling may lead to inconsistencies. Based on this observation, we develop a parallel generation strategy that generates distant tokens with weak dependencies in parallel while maintaining sequential generation for strongly dependent local tokens. Our approach can be seamlessly integrated into standard autoregressive models without modifying the architecture or tokenizer. Experiments on ImageNet and UCF-101 demonstrate that our method achieves a 3.6x speedup with comparable quality and up to 9.5x speedup with minimal quality degradation across both image and video generation tasks. We hope this work will inspire future research in efficient visual generation and unified autoregressive modeling. Project page: this https URL.
- [143] arXiv:2501.00289 (replaced) [pdf, html, other]
-
Title: Dual Diffusion for Unified Image Generation and UnderstandingSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
Diffusion models have gained tremendous success in text-to-image generation, yet still lag behind with visual understanding tasks, an area dominated by autoregressive vision-language models. We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation that significantly improves on existing diffusion-based multimodal models, and is the first of its kind to support the full suite of vision-language modeling capabilities. Inspired by the multimodal diffusion transformer (MM-DiT) and recent advances in discrete diffusion language modeling, we leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly under a single loss function, which is back-propagated through both branches of the diffusion transformer. The resulting model is highly flexible and capable of a wide range of tasks including image generation, captioning, and visual question answering. Our model attained competitive performance compared to recent unified image understanding and generation models, demonstrating the potential of multimodal diffusion modeling as a promising alternative to autoregressive next-token prediction models.
- [144] arXiv:2501.07171 (replaced) [pdf, html, other]
-
Title: BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific LiteratureAlejandro Lozano, Min Woo Sun, James Burgess, Liangyu Chen, Jeffrey J Nirschl, Jeffrey Gu, Ivan Lopez, Josiah Aklilu, Austin Wolfgang Katzer, Collin Chiu, Anita Rau, Xiaohan Wang, Yuhui Zhang, Alfred Seunghoon Song, Robert Tibshirani, Serena Yeung-LevySubjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL)
The development of vision-language models (VLMs) is driven by large-scale and diverse multimodal datasets. However, progress toward generalist biomedical VLMs is limited by the lack of annotated, publicly accessible datasets across biology and medicine. Existing efforts are restricted to narrow domains, missing the full diversity of biomedical knowledge encoded in scientific literature. To address this gap, we introduce BIOMEDICA, a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset. Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles. Metadata and expert-guided annotations are also provided. We demonstrate the utility and accessibility of our resource by releasing BMCA-CLIP, a suite of CLIP-style models continuously pre-trained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally. On average, our models achieve state-of-the-art performance across 40 tasks - spanning pathology, radiology, ophthalmology, dermatology, surgery, molecular biology, parasitology, and cell biology - excelling in zero-shot classification with a 6.56% average improvement (as high as 29.8% and 17.5% in dermatology and ophthalmology, respectively), and stronger image-text retrieval, all while using 10x less compute. To foster reproducibility and collaboration, we release our codebase and dataset for the broader research community.
- [145] arXiv:2501.11218 (replaced) [pdf, html, other]
-
Title: Leveraging GANs For Active Appearance Models Optimized Model FittingComments: 7 pages, new version adds missed citations, improves literature overview, adds differentiating elements, adds more specifics in implementation details, adds limitations found since first version, future work cited is in progressSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
Active Appearance Models (AAMs) are a well-established technique for fitting deformable models to images, but they are limited by linear appearance assumptions and can struggle with complex variations. In this paper, we explore if the AAM fitting process can benefit from a Generative Adversarial Network (GAN). We uses a U-Net based generator and a PatchGAN discriminator for GAN-augmented framework in an attempt to refine the appearance model during fitting. This approach attempts to addresses challenges such as non-linear appearance variations and occlusions that traditional AAM optimization methods may fail to handle. Limited experiments on face alignment datasets demonstrate that the GAN-enhanced AAM can achieve higher accuracy and faster convergence than classic approaches with some manual interventions. These results establish feasibility of GANs as a tool for improving deformable model fitting in challenging conditions while maintaining efficient performance, and establishes the need for more future work to evaluate this approach at scale.
- [146] arXiv:2501.13432 (replaced) [pdf, html, other]
-
Title: Emotion estimation from video footage with LSTMComments: 12 pages, 5 figures, 34 references, 4 tables, 3 equationsSubjects: Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG); Robotics (cs.RO)
Emotion estimation in general is a field that has been studied for a long time, and several approaches exist using machine learning. in this paper, we present an LSTM model, that processes the blend-shapes produced by the library MediaPipe, for a face detected in a live stream of a camera, to estimate the main emotion from the facial expressions, this model is trained on the FER2013 dataset and delivers a result of 71% accuracy and 62% f1-score which meets the accuracy benchmark of the FER2013 dataset, with significantly reduced computation costs. this https URL
- [147] arXiv:2502.06682 (replaced) [pdf, html, other]
-
Title: Transfer Your Perspective: Controllable 3D Generation from Any Viewpoint in a Driving SceneTai-Yu Pan, Sooyoung Jeon, Mengdi Fan, Jinsu Yoo, Zhenyang Feng, Mark Campbell, Kilian Q. Weinberger, Bharath Hariharan, Wei-Lun ChaoComments: Accepted to CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
Self-driving cars relying solely on ego-centric perception face limitations in sensing, often failing to detect occluded, faraway objects. Collaborative autonomous driving (CAV) seems like a promising direction, but collecting data for development is non-trivial. It requires placing multiple sensor-equipped agents in a real-world driving scene, simultaneously! As such, existing datasets are limited in locations and agents. We introduce a novel surrogate to the rescue, which is to generate realistic perception from different viewpoints in a driving scene, conditioned on a real-world sample - the ego-car's sensory data. This surrogate has huge potential: it could potentially turn any ego-car dataset into a collaborative driving one to scale up the development of CAV. We present the very first solution, using a combination of simulated collaborative data and real ego-car data. Our method, Transfer Your Perspective (TYP), learns a conditioned diffusion model whose output samples are not only realistic but also consistent in both semantics and layouts with the given ego-car data. Empirical results demonstrate TYP's effectiveness in aiding in a CAV setting. In particular, TYP enables us to (pre-)train collaborative perception algorithms like early and late fusion with little or no real-world collaborative data, greatly facilitating downstream CAV applications.
- [148] arXiv:2502.07531 (replaced) [pdf, html, other]
-
Title: VidCRAFT3: Camera, Object, and Lighting Control for Image-to-Video GenerationSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine Learning (cs.LG); Multimedia (cs.MM)
Recent image-to-video generation methods have demonstrated success in enabling control over one or two visual elements, such as camera motion or object motion. However, these methods are unable to offer control over multiple visual elements due to limitations in data and network efficacy. In this paper, we introduce VidCRAFT3, a novel framework for precise image-to-video generation that enables control over camera motion, object motion, and lighting direction simultaneously. VidCRAFT3 integrates three core components: Image2Cloud generates 3D point cloud from a reference image; ObjMotionNet encodes sparse object trajectories using multi-scale optical flow features; and Spatial Triple-Attention Transformer incorporates lighting direction embeddings via parallel cross-attention modules. Additionally, we introduce the VideoLightingDirection dataset, providing synthetic yet realistic video clips with accurate per-frame lighting direction annotations, effectively mitigating the lack of annotated real-world datasets. We further adopt a three-stage training strategy, ensuring robust learning even without joint multi-element annotations. Extensive experiments show that VidCRAFT3 produces high-quality video content, outperforming state-of-the-art methods in control granularity and visual coherence. Code and data will be publicly available.
- [149] arXiv:2502.07631 (replaced) [pdf, other]
-
Title: Divide and Merge: Motion and Semantic Learning in End-to-End Autonomous DrivingSubjects: Computer Vision and Pattern Recognition (cs.CV)
Perceiving the environment and its changes over time corresponds to two fundamental yet heterogeneous types of information: semantics and motion. Previous end-to-end autonomous driving works represent both types of information in a single feature vector. However, including motion related tasks, such as prediction and planning, impairs detection and tracking performance, a phenomenon known as negative transfer in multi-task learning. To address this issue, we propose Neural-Bayes motion decoding, a novel parallel detection, tracking, and prediction method that separates semantic and motion learning. Specifically, we employ a set of learned motion queries that operate in parallel with detection and tracking queries, sharing a unified set of recursively updated reference points. Moreover, we employ interactive semantic decoding to enhance information exchange in semantic tasks, promoting positive transfer. Experiments on the nuScenes dataset with UniAD and SparseDrive confirm the effectiveness of our divide and merge approach, resulting in performance improvements across perception, prediction, and planning. Our code is available at this https URL.
- [150] arXiv:2502.09980 (replaced) [pdf, html, other]
-
Title: V2V-LLM: Vehicle-to-Vehicle Cooperative Autonomous Driving with Multi-Modal Large Language ModelsComments: Our project website: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV); Robotics (cs.RO)
Current autonomous driving vehicles rely mainly on their individual sensors to understand surrounding scenes and plan for future trajectories, which can be unreliable when the sensors are malfunctioning or occluded. To address this problem, cooperative perception methods via vehicle-to-vehicle (V2V) communication have been proposed, but they have tended to focus on perception tasks like detection or tracking. How those approaches contribute to overall cooperative planning performance is still under-explored. Inspired by recent progress using Large Language Models (LLMs) to build autonomous driving systems, we propose a novel problem setting that integrates a Multi-Modal LLM into cooperative autonomous driving, with the proposed Vehicle-to-Vehicle Question-Answering (V2V-QA) dataset and benchmark. We also propose our baseline method Vehicle-to-Vehicle Multi-Modal Large Language Model (V2V-LLM), which uses an LLM to fuse perception information from multiple connected autonomous vehicles (CAVs) and answer various types of driving-related questions: grounding, notable object identification, and planning. Experimental results show that our proposed V2V-LLM can be a promising unified model architecture for performing various tasks in cooperative autonomous driving, and outperforms other baseline methods that use different fusion approaches. Our work also creates a new research direction that can improve the safety of future autonomous driving systems. The code and data will be released to the public to facilitate open-source research in this field. Our project website: this https URL .
- [151] arXiv:2502.11897 (replaced) [pdf, html, other]
-
Title: DLFR-VAE: Dynamic Latent Frame Rate VAE for Video GenerationZhihang Yuan, Siyuan Wang, Rui Xie, Hanling Zhang, Tongcheng Fang, Yuzhang Shang, Shengen Yan, Guohao Dai, Yu WangSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
In this paper, we propose the Dynamic Latent Frame Rate VAE (DLFR-VAE), a training-free paradigm that can make use of adaptive temporal compression in latent space. While existing video generative models apply fixed compression rates via pretrained VAE, we observe that real-world video content exhibits substantial temporal non-uniformity, with high-motion segments containing more information than static scenes. Based on this insight, DLFR-VAE dynamically adjusts the latent frame rate according to the content complexity. Specifically, DLFR-VAE comprises two core innovations: (1) A Dynamic Latent Frame Rate Scheduler that partitions videos into temporal chunks and adaptively determines optimal frame rates based on information-theoretic content complexity, and (2) A training-free adaptation mechanism that transforms pretrained VAE architectures into a dynamic VAE that can process features with variable frame rates. Our simple but effective DLFR-VAE can function as a plug-and-play module, seamlessly integrating with existing video generation models and accelerating the video generation process.
- [152] arXiv:2503.01845 (replaced) [pdf, html, other]
-
Title: Denoising Functional Maps: Diffusion Models for Shape CorrespondenceComments: CVPR 2025; Project page: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
Estimating correspondences between pairs of deformable shapes remains a challenging problem. Despite substantial progress, existing methods lack broad generalization capabilities and require category-specific training data. To address these limitations, we propose a fundamentally new approach to shape correspondence based on denoising diffusion models. In our method, a diffusion model learns to directly predict the functional map, a low-dimensional representation of a point-wise map between shapes. We use a large dataset of synthetic human meshes for training and employ two steps to reduce the number of functional maps that need to be learned. First, the maps refer to a template rather than shape pairs. Second, the functional map is defined in a basis of eigenvectors of the Laplacian, which is not unique due to sign ambiguity. Therefore, we introduce an unsupervised approach to select a specific basis by correcting the signs of eigenvectors based on surface features. Our model achieves competitive performance on standard human datasets, meshes with anisotropic connectivity, non-isometric humanoid shapes, as well as animals compared to existing descriptor-based and large-scale shape deformation methods. See our project page for the source code and the datasets.
- [153] arXiv:2503.02175 (replaced) [pdf, html, other]
-
Title: DivPrune: Diversity-based Visual Token Pruning for Large Multimodal ModelsComments: Accepted to CVPR 2025Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)
Large Multimodal Models (LMMs) have emerged as powerful models capable of understanding various data modalities, including text, images, and videos. LMMs encode both text and visual data into tokens that are then combined and processed by an integrated Large Language Model (LLM). Including visual tokens substantially increases the total token count, often by thousands. The increased input length for LLM significantly raises the complexity of inference, resulting in high latency in LMMs. To address this issue, token pruning methods, which remove part of the visual tokens, are proposed. The existing token pruning methods either require extensive calibration and fine-tuning or rely on suboptimal importance metrics which results in increased redundancy among the retained tokens. In this paper, we first formulate token pruning as Max-Min Diversity Problem (MMDP) where the goal is to select a subset such that the diversity among the selected {tokens} is maximized. Then, we solve the MMDP to obtain the selected subset and prune the rest. The proposed method, DivPrune, reduces redundancy and achieves the highest diversity of the selected tokens. By ensuring high diversity, the selected tokens better represent the original tokens, enabling effective performance even at high pruning ratios without requiring fine-tuning. Extensive experiments with various LMMs show that DivPrune achieves state-of-the-art accuracy over 16 image- and video-language datasets. Additionally, DivPrune reduces both the end-to-end latency and GPU memory usage for the tested models. The code is available $\href{this https URL}{\text{here}}$.
- [154] arXiv:2503.10732 (replaced) [pdf, html, other]
-
Title: Sparse Dictionary Learning for Image Recovery by Iterative ShrinkageComments: 19 pages, 5 Figures, IntelliSys 2025Subjects: Computer Vision and Pattern Recognition (cs.CV)
In this paper we study the sparse coding problem in the context of sparse dictionary learning for image recovery. To this end, we consider and compare several state-of-the-art sparse optimization methods constructed using the shrinkage operation. As the mathematical setting of these methods, we consider an online approach as algorithmical basis together with the basis pursuit denoising problem that arises by the convex optimization approach to the dictionary learning problem.
By a dedicated construction of datasets and corresponding dictionaries, we study the effect of enlarging the underlying learning database on reconstruction quality making use of several error measures. Our study illuminates that the choice of the optimization method may be practically important in the context of availability of training data. In the context of different settings for training data as may be considered part of our study, we illuminate the computational efficiency of the assessed optimization methods. - [155] arXiv:2503.11005 (replaced) [pdf, html, other]
-
Title: Cyclic Contrastive Knowledge Transfer for Open-Vocabulary Object DetectionComments: 10 pages, 5 figures, Published as a conference paper at ICLR 2025Journal-ref: Proceedings of the 13th International Conference on Learning Representations (ICLR 2025), Paper ID: 4226Subjects: Computer Vision and Pattern Recognition (cs.CV)
In pursuit of detecting unstinted objects that extend beyond predefined categories, prior arts of open-vocabulary object detection (OVD) typically resort to pretrained vision-language models (VLMs) for base-to-novel category generalization. However, to mitigate the misalignment between upstream image-text pretraining and downstream region-level perception, additional supervisions are indispensable, eg, image-text pairs or pseudo annotations generated via self-training strategies. In this work, we propose CCKT-Det trained without any extra supervision. The proposed framework constructs a cyclic and dynamic knowledge transfer from language queries and visual region features extracted from VLMs, which forces the detector to closely align with the visual-semantic space of VLMs. Specifically, 1) we prefilter and inject semantic priors to guide the learning of queries, and 2) introduce a regional contrastive loss to improve the awareness of queries on novel objects. CCKT-Det can consistently improve performance as the scale of VLMs increases, all while requiring the detector at a moderate level of computation overhead. Comprehensive experimental results demonstrate that our method achieves performance gain of +2.9% and +10.2% AP50 over previous state-of-the-arts on the challenging COCO benchmark, both without and with a stronger teacher model.
- [156] arXiv:2503.14489 (replaced) [pdf, other]
-
Title: Stable Virtual Camera: Generative View Synthesis with Diffusion ModelsJensen Zhou, Hang Gao, Vikram Voleti, Aaryaman Vasishta, Chun-Han Yao, Mark Boss, Philip Torr, Christian Rupprecht, Varun JampaniSubjects: Computer Vision and Pattern Recognition (cs.CV)
We present Stable Virtual Camera (Seva), a generalist diffusion model that creates novel views of a scene, given any number of input views and target cameras. Existing works struggle to generate either large viewpoint changes or temporally smooth samples, while relying on specific task configurations. Our approach overcomes these limitations through simple model design, optimized training recipe, and flexible sampling strategy that generalize across view synthesis tasks at test time. As a result, our samples maintain high consistency without requiring additional 3D representation-based distillation, thus streamlining view synthesis in the wild. Furthermore, we show that our method can generate high-quality videos lasting up to half a minute with seamless loop closure. Extensive benchmarking demonstrates that Seva outperforms existing methods across different datasets and settings. Project page with code and model: this https URL.
- [157] arXiv:2503.14492 (replaced) [pdf, html, other]
-
Title: Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal ControlNVIDIA: Hassan Abu Alhaija, Jose Alvarez, Maciej Bala, Tiffany Cai, Tianshi Cao, Liz Cha, Joshua Chen, Mike Chen, Francesco Ferroni, Sanja Fidler, Dieter Fox, Yunhao Ge, Jinwei Gu, Ali Hassani, Michael Isaev, Pooya Jannaty, Shiyi Lan, Tobias Lasser, Huan Ling, Ming-Yu Liu, Xian Liu, Yifan Lu, Alice Luo, Qianli Ma, Hanzi Mao, Fabio Ramos, Xuanchi Ren, Tianchang Shen, Xinglong Sun, Shitao Tang, Ting-Chun Wang, Jay Wu, Jiashu Xu, Stella Xu, Kevin Xie, Yuchong Ye, Xiaodong Yang, Xiaohui Zeng, Yu ZengSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI); Machine Learning (cs.LG); Robotics (cs.RO)
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at this https URL.
- [158] arXiv:2503.18583 (replaced) [pdf, html, other]
-
Title: Adapting Video Diffusion Models for Time-Lapse MicroscopySubjects: Computer Vision and Pattern Recognition (cs.CV)
We present a domain adaptation of video diffusion models to generate highly realistic time-lapse microscopy videos of cell division in HeLa cells. Although state-of-the-art generative video models have advanced significantly for natural videos, they remain underexplored in microscopy domains. To address this gap, we fine-tune a pretrained video diffusion model on microscopy-specific sequences, exploring three conditioning strategies: (1) text prompts derived from numeric phenotypic measurements (e.g., proliferation rates, migration speeds, cell-death frequencies), (2) direct numeric embeddings of phenotype scores, and (3) image-conditioned generation, where an initial microscopy frame is extended into a complete video sequence. Evaluation using biologically meaningful morphological, proliferation, and migration metrics demonstrates that fine-tuning substantially improves realism and accurately captures critical cellular behaviors such as mitosis and migration. Notably, the fine-tuned model also generalizes beyond the training horizon, generating coherent cell dynamics even in extended sequences. However, precisely controlling specific phenotypic characteristics remains challenging, highlighting opportunities for future work to enhance conditioning methods. Our results demonstrate the potential for domain-specific fine-tuning of generative video models to produce biologically plausible synthetic microscopy data, supporting applications such as in-silico hypothesis testing and data augmentation.
- [159] arXiv:2503.18950 (replaced) [pdf, other]
-
Title: Target-Aware Video Diffusion ModelsComments: The project page is available at this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
We present a target-aware video diffusion model that generates videos from an input image in which an actor interacts with a specified target while performing a desired action. The target is defined by a segmentation mask and the desired action is described via a text prompt. Unlike existing controllable image-to-video diffusion models that often rely on dense structural or motion cues to guide the actor's movements toward the target, our target-aware model requires only a simple mask to indicate the target, leveraging the generalization capabilities of pretrained models to produce plausible actions. This makes our method particularly effective for human-object interaction (HOI) scenarios, where providing precise action guidance is challenging, and further enables the use of video diffusion models for high-level action planning in applications such as robotics. We build our target-aware model by extending a baseline model to incorporate the target mask as an additional input. To enforce target awareness, we introduce a special token that encodes the target's spatial information within the text prompt. We then fine-tune the model with our curated dataset using a novel cross-attention loss that aligns the cross-attention maps associated with this token with the input target mask. To further improve performance, we selectively apply this loss to the most semantically relevant transformer blocks and attention regions. Experimental results show that our target-aware model outperforms existing solutions in generating videos where actors interact accurately with the specified targets. We further demonstrate its efficacy in two downstream applications: video content creation and zero-shot 3D HOI motion synthesis.
- [160] arXiv:2503.19416 (replaced) [pdf, html, other]
-
Title: EmoHead: Emotional Talking Head via Manipulating Semantic Expression ParametersSubjects: Computer Vision and Pattern Recognition (cs.CV)
Generating emotion-specific talking head videos from audio input is an important and complex challenge for human-machine interaction. However, emotion is highly abstract concept with ambiguous boundaries, and it necessitates disentangled expression parameters to generate emotionally expressive talking head videos. In this work, we present EmoHead to synthesize talking head videos via semantic expression parameters. To predict expression parameter for arbitrary audio input, we apply an audio-expression module that can be specified by an emotion tag. This module aims to enhance correlation from audio input across various emotions. Furthermore, we leverage pre-trained hyperplane to refine facial movements by probing along the vertical direction. Finally, the refined expression parameters regularize neural radiance fields and facilitate the emotion-consistent generation of talking head videos. Experimental results demonstrate that semantic expression parameters lead to better reconstruction quality and controllability.
- [161] arXiv:2503.19474 (replaced) [pdf, html, other]
-
Title: A-MESS: Anchor based Multimodal Embedding with Semantic Synchronization for Multimodal Intent RecognitionComments: Accepted by ICME2025Subjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
In the domain of multimodal intent recognition (MIR), the objective is to recognize human intent by integrating a variety of modalities, such as language text, body gestures, and tones. However, existing approaches face difficulties adequately capturing the intrinsic connections between the modalities and overlooking the corresponding semantic representations of intent. To address these limitations, we present the Anchor-based Multimodal Embedding with Semantic Synchronization (A-MESS) framework. We first design an Anchor-based Multimodal Embedding (A-ME) module that employs an anchor-based embedding fusion mechanism to integrate multimodal inputs. Furthermore, we develop a Semantic Synchronization (SS) strategy with the Triplet Contrastive Learning pipeline, which optimizes the process by synchronizing multimodal representation with label descriptions produced by the large language model. Comprehensive experiments indicate that our A-MESS achieves state-of-the-art and provides substantial insight into multimodal representation and downstream tasks.
- [162] arXiv:2503.22346 (replaced) [pdf, html, other]
-
Title: ArchCAD-400K: An Open Large-Scale Architectural CAD Dataset and New Baseline for Panoptic Symbol SpottingRuifeng Luo, Zhengjie Liu, Tianxiao Cheng, Jie Wang, Tongjie Wang, Xingguang Wei, Haomin Wang, YanPeng Li, Fu Chai, Fei Cheng, Shenglong Ye, Wenhai Wang, Yanting Zhang, Yu Qiao, Hongjie Zhang, Xianzhong ZhaoSubjects: Computer Vision and Pattern Recognition (cs.CV)
Recognizing symbols in architectural CAD drawings is critical for various advanced engineering applications. In this paper, we propose a novel CAD data annotation engine that leverages intrinsic attributes from systematically archived CAD drawings to automatically generate high-quality annotations, thus significantly reducing manual labeling efforts. Utilizing this engine, we construct ArchCAD-400K, a large-scale CAD dataset consisting of 413,062 chunks from 5538 highly standardized drawings, making it over 26 times larger than the largest existing CAD dataset. ArchCAD-400K boasts an extended drawing diversity and broader categories, offering line-grained annotations. Furthermore, we present a new baseline model for panoptic symbol spotting, termed Dual-Pathway Symbol Spotter (DPSS). It incorporates an adaptive fusion module to enhance primitive features with complementary image features, achieving state-of-the-art performance and enhanced robustness. Extensive experiments validate the effectiveness of DPSS, demonstrating the value of ArchCAD-400K and its potential to drive innovation in architectural design and construction.
- [163] arXiv:2503.22405 (replaced) [pdf, html, other]
-
Title: Modeling Multiple Normal Action Representations for Error Detection in Procedural TasksSubjects: Computer Vision and Pattern Recognition (cs.CV)
Error detection in procedural activities is essential for consistent and correct outcomes in AR-assisted and robotic systems. Existing methods often focus on temporal ordering errors or rely on static prototypes to represent normal actions. However, these approaches typically overlook the common scenario where multiple, distinct actions are valid following a given sequence of executed actions. This leads to two issues: (1) the model cannot effectively detect errors using static prototypes when the inference environment or action execution distribution differs from training; and (2) the model may also use the wrong prototypes to detect errors if the ongoing action label is not the same as the predicted one. To address this problem, we propose an Adaptive Multiple Normal Action Representation (AMNAR) framework. AMNAR predicts all valid next actions and reconstructs their corresponding normal action representations, which are compared against the ongoing action to detect errors. Extensive experiments demonstrate that AMNAR achieves state-of-the-art performance, highlighting the effectiveness of AMNAR and the importance of modeling multiple valid next actions in error detection. The code is available at this https URL.
- [164] arXiv:2503.23064 (replaced) [pdf, html, other]
-
Title: VGRP-Bench: Visual Grid Reasoning Puzzle Benchmark for Large Vision-Language ModelsYufan Ren, Konstantinos Tertikas, Shalini Maiti, Junlin Han, Tong Zhang, Sabine Süsstrunk, Filippos KokkinosComments: 8 pages; Project page: this https URLSubjects: Computer Vision and Pattern Recognition (cs.CV)
Large Vision-Language Models (LVLMs) struggle with puzzles, which require precise perception, rule comprehension, and logical reasoning. Assessing and enhancing their performance in this domain is crucial, as it reflects their ability to engage in structured reasoning - an essential skill for real-world problem-solving. However, existing benchmarks primarily evaluate pre-trained models without additional training or fine-tuning, often lack a dedicated focus on reasoning, and fail to establish a systematic evaluation framework. To address these limitations, we introduce VGRP-Bench, a Visual Grid Reasoning Puzzle Benchmark featuring 20 diverse puzzles. VGRP-Bench spans multiple difficulty levels, and includes extensive experiments not only on existing chat LVLMs (e.g., GPT-4o), but also on reasoning LVLMs (e.g., Gemini-Thinking). Our results reveal that even the state-of-the-art LVLMs struggle with these puzzles, highlighting fundamental limitations in their puzzle-solving capabilities. Most importantly, through systematic experiments, we identify and analyze key factors influencing LVLMs' puzzle-solving performance, including the number of clues, grid size, and rule complexity. Furthermore, we explore two Supervised Fine-Tuning (SFT) strategies that can be used in post-training: SFT on solutions (S-SFT) and SFT on synthetic reasoning processes (R-SFT). While both methods significantly improve performance on trained puzzles, they exhibit limited generalization to unseen ones. We will release VGRP-Bench to facilitate further research on LVLMs for complex, real-world problem-solving. Project page: this https URL.
- [165] arXiv:2503.23130 (replaced) [pdf, html, other]
-
Title: Can DeepSeek Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted SurgeryComments: Technical ReportSubjects: Computer Vision and Pattern Recognition (cs.CV); Computation and Language (cs.CL); Robotics (cs.RO)
DeepSeek series have demonstrated outstanding performance in general scene understanding, question-answering (QA), and text generation tasks, owing to its efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of the DeepSeek model in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our comprehensive evaluation results indicate that, when provided with specific prompts, DeepSeek-V3 performs well in surgical instrument and tissue recognition tasks However, DeepSeek-V3 exhibits significant limitations in spatial position analysis and struggles to understand surgical actions accurately. Additionally, our findings reveal that, under general prompts, DeepSeek-V3 lacks the ability to effectively analyze global surgical concepts and fails to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek-V3 is not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
- [166] arXiv:2503.23368 (replaced) [pdf, html, other]
-
Title: Towards Physically Plausible Video Generation via VLM PlanningXindi Yang, Baolu Li, Yiming Zhang, Zhenfei Yin, Lei Bai, Liqian Ma, Zhiyong Wang, Jianfei Cai, Tien-Tsin Wong, Huchuan Lu, Xu JiaComments: 18 pages, 11 figuresSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: this https URL.
- [167] arXiv:2504.00457 (replaced) [pdf, html, other]
-
Title: Distilling Multi-view Diffusion Models into 3D GeneratorsSubjects: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
We introduce DD3G, a formulation that Distills a multi-view Diffusion model (MV-DM) into a 3D Generator using gaussian splatting. DD3G compresses and integrates extensive visual and spatial geometric knowledge from the MV-DM by simulating its ordinary differential equation (ODE) trajectory, ensuring the distilled generator generalizes better than those trained solely on 3D data. Unlike previous amortized optimization approaches, we align the MV-DM and 3D generator representation spaces to transfer the teacher's probabilistic flow to the student, thus avoiding inconsistencies in optimization objectives caused by probabilistic sampling. The introduction of probabilistic flow and the coupling of various attributes in 3D Gaussians introduce challenges in the generation process. To tackle this, we propose PEPD, a generator consisting of Pattern Extraction and Progressive Decoding phases, which enables efficient fusion of probabilistic flow and converts a single image into 3D Gaussians within 0.06 seconds. Furthermore, to reduce knowledge loss and overcome sparse-view supervision, we design a joint optimization objective that ensures the quality of generated samples through explicit supervision and implicit verification. Leveraging existing 2D generation models, we compile 120k high-quality RGBA images for distillation. Experiments on synthetic and public datasets demonstrate the effectiveness of our method. Our project is available at: this https URL
- [168] arXiv:2410.12836 (replaced) [pdf, html, other]
-
Title: EditRoom: LLM-parameterized Graph Diffusion for Composable 3D Room Layout EditingKaizhi Zheng, Xiaotong Chen, Xuehai He, Jing Gu, Linjie Li, Zhengyuan Yang, Kevin Lin, Jianfeng Wang, Lijuan Wang, Xin Eric WangSubjects: Graphics (cs.GR); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV); Human-Computer Interaction (cs.HC)
Given the steep learning curve of professional 3D software and the time-consuming process of managing large 3D assets, language-guided 3D scene editing has significant potential in fields such as virtual reality, augmented reality, and gaming. However, recent approaches to language-guided 3D scene editing either require manual interventions or focus only on appearance modifications without supporting comprehensive scene layout changes. In response, we propose EditRoom, a unified framework capable of executing a variety of layout edits through natural language commands, without requiring manual intervention. Specifically, EditRoom leverages Large Language Models (LLMs) for command planning and generates target scenes using a diffusion-based method, enabling six types of edits: rotate, translate, scale, replace, add, and remove. To address the lack of data for language-guided 3D scene editing, we have developed an automatic pipeline to augment existing 3D scene synthesis datasets and introduced EditRoom-DB, a large-scale dataset with 83k editing pairs, for training and evaluation. Our experiments demonstrate that our approach consistently outperforms other baselines across all metrics, indicating higher accuracy and coherence in language-guided scene layout editing.
- [169] arXiv:2411.07751 (replaced) [pdf, html, other]
-
Title: SAV-SE: Scene-aware Audio-Visual Speech Enhancement with Selective State Space ModelComments: accepted by IEEE Journal of Selected Topics in Signal ProcessingSubjects: Sound (cs.SD); Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV); Multimedia (cs.MM); Audio and Speech Processing (eess.AS)
Speech enhancement plays an essential role in various applications, and the integration of visual information has been demonstrated to bring substantial advantages. However, the majority of current research concentrates on the examination of facial and lip movements, which can be compromised or entirely inaccessible in scenarios where occlusions occur or when the camera view is distant. Whereas contextual visual cues from the surrounding environment have been overlooked: for example, when we see a dog bark, our brain has the innate ability to discern and filter out the barking noise. To this end, in this paper, we introduce a novel task, i.e. SAV-SE. To our best knowledge, this is the first proposal to use rich contextual information from synchronized video as auxiliary cues to indicate the type of noise, which eventually improves the speech enhancement performance. Specifically, we propose the VC-S$^2$E method, which incorporates the Conformer and Mamba modules for their complementary strengths. Extensive experiments are conducted on public MUSIC, AVSpeech and AudioSet datasets, where the results demonstrate the superiority of VC-S$^2$E over other competitive methods. We will make the source code publicly available. Project demo page: this https URL
- [170] arXiv:2502.02624 (replaced) [pdf, html, other]
-
Title: Muographic Image Upsampling with Machine Learning for Built Infrastructure ApplicationsJournal-ref: ODonnell, W.; Mahon, D.; Yang, G.; Gardner, S. Muographic Image Upsampling with Machine Learning for Built Infrastructure Applications. Particles 2025, 8, 33Subjects: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV)
The civil engineering industry faces a critical need for innovative non-destructive evaluation methods, particularly for ageing critical infrastructure, such as bridges, where current techniques fall short. Muography, a non-invasive imaging technique, constructs three-dimensional density maps by detecting interactions of naturally occurring cosmic-ray muons within the scanned volume. Cosmic-ray muons provide deep penetration and inherent safety due to their high momenta and natural source. However, the technology's reliance on this source results in constrained muon flux, leading to prolonged acquisition times, noisy reconstructions and image interpretation challenges. To address these limitations, we developed a two-model deep learning approach. First, we employed a conditional Wasserstein generative adversarial network with gradient penalty (cWGAN-GP) to perform predictive upsampling of undersampled muography images. Using the Structural Similarity Index Measure (SSIM), 1-day sampled images matched the perceptual qualities of a 21-day image, while the Peak Signal-to-Noise Ratio (PSNR) indicated noise improvement equivalent to 31 days of sampling. A second cWGAN-GP model, trained for semantic segmentation, quantitatively assessed the upsampling model's impact on concrete sample features. This model achieved segmentation of rebar grids and tendon ducts, with Dice-Sørensen accuracy coefficients of 0.8174 and 0.8663. Notably, it could mitigate or remove z-plane smearing artifacts caused by muography's inverse imaging problem. Both models were trained on a comprehensive Geant4 Monte-Carlo simulation dataset reflecting realistic civil infrastructure scenarios. Our results demonstrate significant improvements in acquisition speed and image quality, marking a substantial step toward making muography more practical for reinforced concrete infrastructure monitoring applications.
- [171] arXiv:2502.11570 (replaced) [pdf, html, other]
-
Title: Towards a Trustworthy Anomaly Detection for Critical Applications through Approximated Partial AUC LossSubjects: Machine Learning (cs.LG); Computer Vision and Pattern Recognition (cs.CV)
Anomaly Detection is a crucial step for critical applications such in the industrial, medical or cybersecurity domains. These sectors share the same requirement of handling differently the different types of classification errors. Indeed, even if false positives are acceptable, false negatives are not, because it would reflect a missed detection of a quality issue, a disease or a cyber threat. To fulfill this requirement, we propose a method that dynamically applies a trustworthy approximated partial AUC ROC loss (tapAUC). A binary classifier is trained to optimize the specific range of the AUC ROC curve that prevents the True Positive Rate (TPR) to reach 100% while minimizing the False Positive Rate (FPR). The optimal threshold that does not trigger any false negative is then kept and used at the test step. The results show a TPR of 92.52% at a 20.43% FPR for an average across 6 datasets, representing a TPR improvement of 4.3% for a FPR cost of 12.2% against other state-of-the-art methods. The code is available at this https URL.
- [172] arXiv:2503.09423 (replaced) [pdf, html, other]
-
Title: Efficient Alignment of Unconditioned Action Prior for Language-conditioned Pick and Place in ClutterSubjects: Robotics (cs.RO); Computer Vision and Pattern Recognition (cs.CV)
We study the task of language-conditioned pick and place in clutter, where a robot should grasp a target object in open clutter and move it to a specified place. Some approaches learn end-to-end policies with features from vision foundation models, requiring large datasets. Others combine foundation models in a zero-shot setting, suffering from cascading errors. In addition, they primarily leverage vision and language foundation models, focusing less on action priors. In this paper, we aim to develop an effective policy by integrating foundation priors from vision, language, and action. We propose A$^2$, an action prior alignment method that aligns unconditioned action priors with 3D vision-language priors by learning one attention layer. The alignment formulation enables our policy to train with less data and preserve zero-shot generalization capabilities. We show that a shared policy for both pick and place actions enhances the performance for each task, and introduce a policy adaptation scheme to accommodate the multi-modal nature of actions. Extensive experiments in simulation and the real-world show that our policy achieves higher task success rates with fewer steps for both pick and place tasks in clutter, effectively generalizing to unseen objects and language instructions. Videos and codes are available at this https URL.
- [173] arXiv:2503.14485 (replaced) [pdf, html, other]
-
Title: Lux Post Facto: Learning Portrait Performance Relighting with Conditional Video Diffusion and a Hybrid DatasetYiqun Mei, Mingming He, Li Ma, Julien Philip, Wenqi Xian, David M George, Xueming Yu, Gabriel Dedic, Ahmet Levent Taşel, Ning Yu, Vishal M. Patel, Paul DebevecComments: CVPR 2025Subjects: Graphics (cs.GR); Computer Vision and Pattern Recognition (cs.CV)
Video portrait relighting remains challenging because the results need to be both photorealistic and temporally stable. This typically requires a strong model design that can capture complex facial reflections as well as intensive training on a high-quality paired video dataset, such as dynamic one-light-at-a-time (OLAT). In this work, we introduce Lux Post Facto, a novel portrait video relighting method that produces both photorealistic and temporally consistent lighting effects. From the model side, we design a new conditional video diffusion model built upon state-of-the-art pre-trained video diffusion model, alongside a new lighting injection mechanism to enable precise control. This way we leverage strong spatial and temporal generative capability to generate plausible solutions to the ill-posed relighting problem. Our technique uses a hybrid dataset consisting of static expression OLAT data and in-the-wild portrait performance videos to jointly learn relighting and temporal modeling. This avoids the need to acquire paired video data in different lighting conditions. Our extensive experiments show that our model produces state-of-the-art results both in terms of photorealism and temporal consistency.
- [174] arXiv:2503.15558 (replaced) [pdf, html, other]
-
Title: Cosmos-Reason1: From Physical Common Sense To Embodied ReasoningNVIDIA: Alisson Azzolini, Hannah Brandon, Prithvijit Chattopadhyay, Huayu Chen, Jinju Chu, Yin Cui, Jenna Diamond, Yifan Ding, Francesco Ferroni, Rama Govindaraju, Jinwei Gu, Siddharth Gururani, Imad El Hanafi, Zekun Hao, Jacob Huffman, Jingyi Jin, Brendan Johnson, Rizwan Khan, George Kurian, Elena Lantz, Nayeon Lee, Zhaoshuo Li, Xuan Li, Tsung-Yi Lin, Yen-Chen Lin, Ming-Yu Liu, Alice Luo, Andrew Mathau, Yun Ni, Lindsey Pavao, Wei Ping, David W. Romero, Misha Smelyanskiy, Shuran Song, Lyne Tchapmi, Andrew Z. Wang, Boxin Wang, Haoxiang Wang, Fangyin Wei, Jiashu Xu, Yao Xu, Xiaodong Yang, Zhuolin Yang, Xiaohui Zeng, Zhe ZhangSubjects: Artificial Intelligence (cs.AI); Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG); Robotics (cs.RO)
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements. To facilitate the development of Physical AI, we will make our code and pre-trained models available under the NVIDIA Open Model License at this https URL.
- [175] arXiv:2503.22876 (replaced) [pdf, html, other]
-
Title: VizFlyt: Perception-centric Pedagogical Framework For Autonomous Aerial RobotsComments: Accepted at ICRA 2025. Projected Page: this https URLSubjects: Robotics (cs.RO); Computer Vision and Pattern Recognition (cs.CV)
Autonomous aerial robots are becoming commonplace in our lives. Hands-on aerial robotics courses are pivotal in training the next-generation workforce to meet the growing market demands. Such an efficient and compelling course depends on a reliable testbed. In this paper, we present VizFlyt, an open-source perception-centric Hardware-In-The-Loop (HITL) photorealistic testing framework for aerial robotics courses. We utilize pose from an external localization system to hallucinate real-time and photorealistic visual sensors using 3D Gaussian Splatting. This enables stress-free testing of autonomy algorithms on aerial robots without the risk of crashing into obstacles. We achieve over 100Hz of system update rate. Lastly, we build upon our past experiences of offering hands-on aerial robotics courses and propose a new open-source and open-hardware curriculum based on VizFlyt for the future. We test our framework on various course projects in real-world HITL experiments and present the results showing the efficacy of such a system and its large potential use cases. Code, datasets, hardware guides and demo videos are available at this https URL
- [176] arXiv:2504.00022 (replaced) [pdf, html, other]
-
Title: Autonomous AI for Multi-Pathology Detection in Chest X-Rays: A Multi-Site Study in the Indian Healthcare SystemBargava Subramanian, Shajeev Jaikumar, Praveen Shastry, Naveen Kumarasami, Kalyan Sivasailam, Anandakumar D, Keerthana R, Mounigasri M, Kishore Prasath VenkateshComments: 27 pages , 8 figuresSubjects: Image and Video Processing (eess.IV); Computer Vision and Pattern Recognition (cs.CV)
Study Design: The study outlines the development of an autonomous AI system for chest X-ray (CXR) interpretation, trained on a vast dataset of over 5 million X rays sourced from healthcare systems across India. This AI system integrates advanced architectures including Vision Transformers, Faster R-CNN, and various U Net models (such as Attention U-Net, U-Net++, and Dense U-Net) to enable comprehensive classification, detection, and segmentation of 75 distinct pathologies. To ensure robustness, the study design includes subgroup analyses across age, gender, and equipment type, validating the model's adaptability and performance across diverse patient demographics and imaging environments.
Performance: The AI system achieved up to 98% precision and over 95% recall for multi pathology classification, with stable performance across demographic and equipment subgroups. For normal vs. abnormal classification, it reached 99.8% precision, 99.6% recall, and 99.9% negative predictive value (NPV). It was deployed in 17 major healthcare systems in India including diagnostic centers, large hospitals, and government hospitals. Over the deployment period, the system processed over 150,000 scans, averaging 2,000 chest X rays daily, resulting in reduced reporting times and improved diagnostic accuracy.
Conclusion: The high precision and recall validate the AI's capability as a reliable tool for autonomous normal abnormal classification, pathology localization, and segmentation. This scalable AI model addresses diagnostic gaps in underserved areas, optimizing radiology workflows and enhancing patient care across diverse healthcare settings in India. - [177] arXiv:2504.00487 (replaced) [pdf, html, other]
-
Title: FortisAVQA and MAVEN: a Benchmark Dataset and Debiasing Framework for Robust Multimodal ReasoningComments: Under ReviewSubjects: Multimedia (cs.MM); Computation and Language (cs.CL); Computer Vision and Pattern Recognition (cs.CV)
Audio-Visual Question Answering (AVQA) is a challenging multimodal reasoning task requiring intelligent systems to answer natural language queries based on paired audio-video inputs accurately. However, existing AVQA approaches often suffer from overfitting to dataset biases, leading to poor robustness. Moreover, current datasets may not effectively diagnose these methods. To address these challenges, we first introduce a novel dataset, FortisAVQA, constructed in two stages: (1) rephrasing questions in the test split of the public MUSIC-AVQA dataset and (2) introducing distribution shifts across questions. The first stage expands the test space with greater diversity, while the second enables a refined robustness evaluation across rare, frequent, and overall question distributions. Second, we introduce a robust Multimodal Audio-Visual Epistemic Network (MAVEN) that leverages a multifaceted cycle collaborative debiasing strategy to mitigate bias learning. Experimental results demonstrate that our architecture achieves state-of-the-art performance on FortisAVQA, with a notable improvement of 7.81\%. Extensive ablation studies on both datasets validate the effectiveness of our debiasing components. Additionally, our evaluation reveals the limited robustness of existing multimodal QA methods. We also verify the plug-and-play capability of our strategy by integrating it with various baseline models across both datasets. Our dataset and code are available at this https URL.