Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Jan 2018 (v1), last revised 3 Oct 2018 (this version, v2)]
Title:From BoW to CNN: Two Decades of Texture Representation for Texture Classification
View PDFAbstract:Texture is a fundamental characteristic of many types of images, and texture representation is one of the essential and challenging problems in computer vision and pattern recognition which has attracted extensive research attention. Since 2000, texture representations based on Bag of Words (BoW) and on Convolutional Neural Networks (CNNs) have been extensively studied with impressive performance. Given this period of remarkable evolution, this paper aims to present a comprehensive survey of advances in texture representation over the last two decades. More than 200 major publications are cited in this survey covering different aspects of the research, which includes (i) problem description; (ii) recent advances in the broad categories of BoW-based, CNN-based and attribute-based methods; and (iii) evaluation issues, specifically benchmark datasets and state of the art results. In retrospect of what has been achieved so far, the survey discusses open challenges and directions for future research.
Submission history
From: Li Liu [view email][v1] Wed, 31 Jan 2018 07:06:12 UTC (5,754 KB)
[v2] Wed, 3 Oct 2018 20:55:57 UTC (3,633 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.