Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Oct 2024 (v1), last revised 12 Nov 2024 (this version, v2)]
Title:HYPNOS : Highly Precise Foreground-focused Diffusion Finetuning for Inanimate Objects
View PDF HTML (experimental)Abstract:In recent years, personalized diffusion-based text-to-image generative tasks have been a hot topic in computer vision studies. A robust diffusion model is determined by its ability to perform near-perfect reconstruction of certain product outcomes given few related input samples. Unfortunately, the current prominent diffusion-based finetuning technique falls short in maintaining the foreground object consistency while being constrained to produce diverse backgrounds in the image outcome. In the worst scenario, the overfitting issue may occur, meaning that the foreground object is less controllable due to the condition above, for example, the input prompt information is transferred ambiguously to both foreground and background regions, instead of the supposed background region only. To tackle the issues above, we proposed Hypnos, a highly precise foreground-focused diffusion finetuning technique. On the image level, this strategy works best for inanimate object generation tasks, and to do so, Hypnos implements two main approaches, namely: (i) a content-centric prompting strategy and (ii) the utilization of our additional foreground-focused discriminative module. The utilized module is connected with the diffusion model and finetuned with our proposed set of supervision mechanism. Combining the strategies above yielded to the foreground-background disentanglement capability of the diffusion model. Our experimental results showed that the proposed strategy gave a more robust performance and visually pleasing results compared to the former technique. For better elaborations, we also provided extensive studies to assess the fruitful outcomes above, which reveal how personalization behaves in regard to several training conditions.
Submission history
From: Jonathan Samuel Lumentut [view email][v1] Fri, 18 Oct 2024 08:20:37 UTC (3,501 KB)
[v2] Tue, 12 Nov 2024 09:58:13 UTC (3,501 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.