Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
create a website

Using mixed-frequency and realized measures in quantile regression. (2020). Gallo, Giampiero ; Candila, Vincenzo ; Petrella, Lea.
In: Papers.
RePEc:arx:papers:2011.00552.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 54

References cited by this document

Cocites: 59

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Doubly multiplicative error models with long- and short-run components. (2024). Gallo, Giampiero ; Amendola, Alessandra ; Cipollini, F ; Candila, V.
    In: Socio-Economic Planning Sciences.
    RePEc:eee:soceps:v:91:y:2024:i:c:s0038012123002768.

    Full description at Econpapers || Download paper

  2. Quantile and expectile copula-based hidden Markov regression models for the analysis of the cryptocurrency market. (2023). Petrella, Lea ; Merlo, Luca ; Foroni, Beatrice.
    In: Papers.
    RePEc:arx:papers:2307.06400.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Amendola, A. and V. Candila (2016). Evaluation of volatility predictions in a VaR framework. Quantitative Finance 16(5), 695–709.

  2. Amendola, A., V. Candila, and G. M. Gallo (2019). On the asymmetric impact of macro–variables on volatility. Economic Modelling 76, 135–152.
    Paper not yet in RePEc: Add citation now
  3. Andersen, T. G., T. Bollerslev, P. F. Christoffersen, and F. X. Diebold (2006a). Practical volatility and correlation modeling for financial market risk management. In M. Carey and R. Stultz (Eds.), Risks of Financial Institutions. University of Chicago Press for NBER.
    Paper not yet in RePEc: Add citation now
  4. Andersen, T. G., T. Bollerslev, P. F. Christoffersen, and F. X. Diebold (2006b). Volatility and correlation forecasting. In G. Elliott, C. W. J. Granger, and A. Timmermann (Eds.), Handbook of Economic Forecasting. North Holland.
    Paper not yet in RePEc: Add citation now
  5. Berkowitz, J., P. Christoffersen, and D. Pelletier (2011). Evaluating value-at-risk models with desk-level data. Management Science 57(12), 2213–2227.

  6. Bernardi, M., A. Maruotti, and L. Petrella (2017). Multiple risk measures for multivariate dynamic heavy–tailed models. Journal of Empirical Finance 43, 1–32.

  7. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307–327.

  8. Bollerslev, T. and J. M. Wooldridge (1992). Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews 11(2), 143–172.
    Paper not yet in RePEc: Add citation now
  9. Brownlees, C. T. and G. M. Gallo (2010). Comparison of volatility measures: a risk management perspective. Journal of Financial Econometrics 8(1), 29–56.

  10. Carnero, M. A., D. Peña, and E. Ruiz (2012). Estimating GARCH volatility in the presence of outliers. Economics Letters 114(1), 86–90.

  11. Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review 39(4), 841–862.

  12. Cipollini, F., G. M. Gallo, and E. Otranto (2020). Realized volatility forecasting: Robustness to measurement errors. Forthcoming in International Journal of Forecasting.
    Paper not yet in RePEc: Add citation now
  13. Clements, A., M. Doolan, S. Hurn, and R. Becker (2009). On the efficacy of techniques for evaluating multivariate volatility forecasts. Technical report.

  14. Conrad, C. and K. Loch (2015). Anticipating long-term stock market volatility. Journal of Applied Econometrics 30(7), 1090–1114.

  15. Conrad, C. and M. Schienle (2020). Testing for an omitted multiplicative long-term component in garch models. Journal of Business & Economic Statistics 38(2), 229–242.

  16. Conrad, C. and O. Kleen (2020). Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models. Journal of Applied Econometrics 35(1), 19–45.

  17. Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance 1(2), 223–236.

  18. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4), 987–1007.

  19. Engle, R. F. (2002). New frontiers for ARCH models. Journal of Applied Econometrics 17(5), 425–446.

  20. Engle, R. F. and A. J. Patton (2001). What good is a volatility model? Quantitative Finance 1(2), 237–245.

  21. Engle, R. F. and G. J. Lee (1999). A long-run and short-run component model of stock return volatility. In R. F. Engle and H. White (Eds.), Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive W. J. Granger, pp. 475–497. Oxford University Press, Oxford.

  22. Engle, R. F. and S. Manganelli (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics 22(4), 367–381.

  23. Engle, R. F., E. Ghysels, and B. Sohn (2013). Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics 95(3), 776–797.

  24. Fissler, T., J. F. Ziegel, et al. (2016). Higher order elicitability and Osband’s principle. The Annals of Statistics 44(4), 1680–1707.
    Paper not yet in RePEc: Add citation now
  25. Gallo, G. M. (2001). Modelling the impact of overnight surprises on intra-daily volatility. Australian Economic Papers 40(4), 567–580.

  26. Gerlach, R. and C. Wang (2020). Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures. International Journal of Forecasting 36(2), 489–506.

  27. Ghysels, E. and H. Qian (2019). Estimating MIDAS regressions via OLS with polynomial parameter profiling. Econometrics and Statistics 9, 1–16.

  28. Ghysels, E., A. Sinko, and R. Valkanov (2007). MIDAS regressions: Further results and new directions. Econometric Reviews 26(1), 53–90.

  29. Glosten, L. R., R. Jagannanthan, and D. E. Runkle (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance 48(5), 1779–1801.

  30. González-Rivera, G., T.-H. Lee, and S. Mishra (2004). Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. International Journal of Forecasting 20(4), 629–645.

  31. Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic Review 35, 705–730.

  32. Hansen, P. R., A. Lunde, and J. M. Nason (2011). The Model Confidence Set. Econometrica 79(2), 453–497.

  33. Heber, G., A. Lunde, N. Shephard, and K. Sheppard (2009). Omi’s realised library, version 0.1. Technical report, Oxford–Man Institute, University of Oxford.
    Paper not yet in RePEc: Add citation now
  34. Jorion, P. (1997). Value at Risk. Chicago: Irwin.
    Paper not yet in RePEc: Add citation now
  35. Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica 46(1), 33–50.

  36. Koenker, R. and J. A. Machado (1999). Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association 94(448), 1296–1310.
    Paper not yet in RePEc: Add citation now
  37. Koenker, R. and Q. Zhao (1996). Conditional quantile estimation and inference for ARCH models. Econometric Theory 12(5), 793–813.

  38. Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives 3(2), 73–84.

  39. Laporta, A. G., L. Merlo, and L. Petrella (2018). Selection of value at risk models for energy commodities. Energy Economics 74, 628–643.

  40. Lazar, E. and X. Xue (2020). Forecasting risk measures using intraday data in a generalized autoregressive score framework. International Journal of Forecasting 36(3), 1057–1072.

  41. Lee, S. and J. Noh (2013). Quantile regression estimator for GARCH models. Scandinavian Journal of Statistics 40(1), 2–20.

  42. Manganelli, S. and R. F. Engle (2001). Value at risk models in finance. Technical report, ECB working paper.

  43. Mo, D., R. Gupta, B. Li, and T. Singh (2018). The macroeconomic determinants of commodity futures volatility: Evidence from Chinese and Indian markets. Economic Modelling 70, 543–560.

  44. Noh, J. and S. Lee (2016). Quantile regression for location-scale time series models with conditional heteroscedasticity. Scandinavian Journal of Statistics 43(3), 700–720.

  45. Petrella, L. and V. Raponi (2019). Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress. Journal of Multivariate Analysis 173, 70–84.

  46. Riskmetrics (1996). JP Morgan Technical Document. New York: JP Morgan.
    Paper not yet in RePEc: Add citation now
  47. Siddiqui, M. (1960). Distribution of quantiles in samples from a bivariate population. Journal of Research of the National Bureau of Standards 64(B)(3), 145–150.
    Paper not yet in RePEc: Add citation now
  48. Taylor, J. W. (2008). Using exponentially weighted quantile regression to estimate value at risk and expected shortfall. Journal of Financial Econometrics 6(3), 382–406.

  49. Taylor, J. W. (2019). Forecasting value at risk and expected shortfall using a semiparametric approach based on the asymmetric Laplace distribution. Journal of Business & Economic Statistics 37(1), 121–133.

  50. Taylor, S. J. (1986). Modeling Financial Time Series. Wiley, New York.
    Paper not yet in RePEc: Add citation now
  51. Xiao, Z. and R. Koenker (2009). Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models. Journal of the American Statistical Association 104(488), 1696–1712.

  52. Žikeš, F. and J. Barunı́k (2016). Semi-parametric conditional quantile models for financial returns and realized volatility. Journal of Financial Econometrics 14(1), 185–226.

  53. Zheng, Y., Q. Zhu, G. Li, and Z. Xiao (2018). Hybrid quantile regression estimation for time series models with conditional heteroscedasticity. Journal of the Royal Statistical Society Series B 80(5), 975–993.

  54. Zhu, Q., G. Li, and Z. Xiao (2020). Quantile estimation of regression models with GARCH-X errors. Forthcoming in Statistica Sinica.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. A model-free approach to do long-term volatility forecasting and its variants. (2023). Karmakar, Sayar ; Wu, Kejin.
    In: Financial Innovation.
    RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-023-00466-6.

    Full description at Econpapers || Download paper

  2. Non-Gaussian models for CoVaR estimation. (2023). Rivieccio, Giorgia ; de Luca, Giovanni ; Bianchi, Michele Leonardo.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:39:y:2023:i:1:p:391-404.

    Full description at Econpapers || Download paper

  3. Backtesting and estimation error: value-at-risk overviolation rate. (2021). Cataldo, James ; Tsafack, Georges.
    In: Empirical Economics.
    RePEc:spr:empeco:v:61:y:2021:i:3:d:10.1007_s00181-020-01905-4.

    Full description at Econpapers || Download paper

  4. Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models. (2020). Di Iorio, Francesca ; Tamvakis, Michael ; Kyriakou, Ioannis ; Marchese, Malvina.
    In: Energy Economics.
    RePEc:eee:eneeco:v:88:y:2020:i:c:s0140988320300967.

    Full description at Econpapers || Download paper

  5. Using mixed-frequency and realized measures in quantile regression. (2020). Gallo, Giampiero ; Candila, Vincenzo ; Petrella, Lea.
    In: Papers.
    RePEc:arx:papers:2011.00552.

    Full description at Econpapers || Download paper

  6. CoVaR with volatility clustering, heavy tails and non-linear dependence. (2020). Rivieccio, Giorgia ; de Luca, Giovanni ; Bianchi, Michele Leonardo.
    In: Papers.
    RePEc:arx:papers:2009.10764.

    Full description at Econpapers || Download paper

  7. Old-fashioned parametric models are still the best. A comparison of Value-at-Risk approaches in several volatility states.. (2019). Chlebus, Marcin ; Buczyski, Mateusz.
    In: Working Papers.
    RePEc:war:wpaper:2019-12.

    Full description at Econpapers || Download paper

  8. Sector Portfolio Performance Comparison between Islamic and Conventional Stock Markets. (2019). Jareño, Francisco ; Jareo, Francisco ; De, Maria ; el Haddouti, Camalea.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:17:p:4618-:d:260794.

    Full description at Econpapers || Download paper

  9. Spectral backtests of forecast distributions with application to risk management. (2019). Gordy, Michael ; McNeil, Alexander J ; Lok, Hsiao Yen .
    In: Papers.
    RePEc:arx:papers:1708.01489.

    Full description at Econpapers || Download paper

  10. Forecasting Value-at-Risk under Temporal and Portfolio Aggregation. (2017). van Dijk, Dick ; Kole, Erik ; Opschoor, Anne ; Markwat, Thijs .
    In: Tinbergen Institute Discussion Papers.
    RePEc:tin:wpaper:20150140.

    Full description at Econpapers || Download paper

  11. Systemic risk spillovers in the European banking and sovereign network. (2016). Schienle, Melanie ; Peltonen, Tuomas ; Hautsch, Nikolaus ; Betz, Frank .
    In: Working Paper Series in Economics.
    RePEc:zbw:kitwps:79.

    Full description at Econpapers || Download paper

  12. Measuring spot variance spillovers when (co)variances are time-varying - the case of multivariate GARCH models. (2016). Fengler, Matthias ; Herwartz, Helmut.
    In: MPRA Paper.
    RePEc:pra:mprapa:72197.

    Full description at Econpapers || Download paper

  13. Frontiers in VaR forecasting and backtesting. (2016). Ruiz, Esther ; Nieto, Maria Rosa .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:2:p:475-501.

    Full description at Econpapers || Download paper

  14. TENET: Tail-Event driven NETwork risk. (2016). Härdle, Wolfgang ; Hardle, Wolfgang Karl ; Yu, Lining ; Wang, Weining.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:192:y:2016:i:2:p:499-513.

    Full description at Econpapers || Download paper

  15. Managing risk with a realized copula parameter. (2016). Fengler, Matthias ; Okhrin, Ostap.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:100:y:2016:i:c:p:131-152.

    Full description at Econpapers || Download paper

  16. Are benefits from oil-stocks diversification gone? New evidence from a dynamic copula and high frequency data. (2015). Baruník, Jozef ; Avdulaj, Krenar ; Barunik, Jozef.
    In: FinMaP-Working Papers.
    RePEc:zbw:fmpwps:32.

    Full description at Econpapers || Download paper

  17. Measuring spot variance spillovers when (co)variances are time-varying – the case of multivariate GARCH models. (2015). Fengler, Matthias ; Herwartz, Helmut.
    In: Economics Working Paper Series.
    RePEc:usg:econwp:2015:17.

    Full description at Econpapers || Download paper

  18. Exploiting Spillovers to forecast Crashes. (2015). Kole, Erik ; Franses, Philip Hans ; Gresnigt, Francine.
    In: Tinbergen Institute Discussion Papers.
    RePEc:tin:wpaper:20150118.

    Full description at Econpapers || Download paper

  19. Do Long Memory and Asymmetries Matter When Assessing Downside Return Risk?. (2015). Katzke, Nico ; Garbers, Chris.
    In: Working Papers.
    RePEc:sza:wpaper:wpapers238.

    Full description at Econpapers || Download paper

  20. Computing electricity spot price prediction intervals using quantile regression and forecast averaging. (2015). Weron, Rafał ; Nowotarski, Jakub.
    In: Computational Statistics.
    RePEc:spr:compst:v:30:y:2015:i:3:p:791-803.

    Full description at Econpapers || Download paper

  21. Backtesting Value-at-Risk: A Generalized Markov Framework. (2015). Pajhede, Thor .
    In: Discussion Papers.
    RePEc:kud:kuiedp:1518.

    Full description at Econpapers || Download paper

  22. A framework for assessing comprehensive income risk exposure over varying time horizons. (2015). Cataldo, James .
    In: Review of Quantitative Finance and Accounting.
    RePEc:kap:rqfnac:v:45:y:2015:i:4:p:819-844.

    Full description at Econpapers || Download paper

  23. Backtesting Expected Shortfall: Accounting for Tail Risk. (2015). Escanciano, Juan Carlos ; Du, Zaichao.
    In: Caepr Working Papers.
    RePEc:inu:caeprp:2015001.

    Full description at Econpapers || Download paper

  24. CoMargin. (2015). Harris, Jeffrey ; Cruz Lopez, Jorge ; Hurlin, Christophe ; Perignon, Christophe.
    In: Working Papers.
    RePEc:hal:wpaper:halshs-00979440.

    Full description at Econpapers || Download paper

  25. Estimation and Performance Assessment of Value-at-Risk and Expected Shortfall Based on Long-Memory GARCH-Class Models. (2015). Aloui, Chaker ; ben Hamida, Hela .
    In: Czech Journal of Economics and Finance (Finance a uver).
    RePEc:fau:fauart:v:65:y:2015:i:1:p:30-54.

    Full description at Econpapers || Download paper

  26. A comparison of Expected Shortfall estimation models. (2015). Righi, Marcelo Brutti ; Ceretta, Paulo Sergio.
    In: Journal of Economics and Business.
    RePEc:eee:jebusi:v:78:y:2015:i:c:p:14-47.

    Full description at Econpapers || Download paper

  27. Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data. (2015). Baruník, Jozef ; Avdulaj, Krenar.
    In: Energy Economics.
    RePEc:eee:eneeco:v:51:y:2015:i:c:p:31-44.

    Full description at Econpapers || Download paper

  28. Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?. (2015). Wied, Dominik ; Berens, Tobias ; Weiß, Gregor N. F., .
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:32:y:2015:i:c:p:135-152.

    Full description at Econpapers || Download paper

  29. Are benefits from oil - stocks diversification gone? New evidence from a dynamic copula and high frequency data. (2015). Baruník, Jozef ; Avdulaj, Krenar.
    In: Papers.
    RePEc:arx:papers:1307.5981.

    Full description at Econpapers || Download paper

  30. Systemic risk spillovers in the European banking and sovereign network. (2014). Peltonen, Tuomas ; Hautsch, Nikolaus ; Betz, Frank ; Schienle, Melanie.
    In: CFS Working Paper Series.
    RePEc:zbw:cfswop:467.

    Full description at Econpapers || Download paper

  31. A Likelihood Ratio and Markov Chain Based Method to Evaluate Density Forecasting. (2014). Li, Yushu ; Andersson, Jonas.
    In: Discussion Papers.
    RePEc:hhs:nhhfms:2014_012.

    Full description at Econpapers || Download paper

  32. Implied Risk Exposures. (2014). Hurlin, Christophe ; Perignon, Christophe ; Benoit, Sylvain.
    In: Working Papers.
    RePEc:hal:wpaper:halshs-00836280.

    Full description at Econpapers || Download paper

  33. An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis. (2014). O'Brien, James M. ; Szerszen, Pawel J..
    In: Finance and Economics Discussion Series.
    RePEc:fip:fedgfe:2014-21.

    Full description at Econpapers || Download paper

  34. Forecasting VaR and ES of stock index portfolio: A Vine copula method. (2014). Zhang, Bangzheng ; Peng, Zhenfeng ; Wei, YU ; Lai, Xiaodong ; Yu, Jiang.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:416:y:2014:i:c:p:112-124.

    Full description at Econpapers || Download paper

  35. A new set of improved Value-at-Risk backtests. (2014). Wied, Dominik ; Ziggel, Daniel ; Weiß, Gregor N. F., ; Berens, Tobias .
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:48:y:2014:i:c:p:29-41.

    Full description at Econpapers || Download paper

  36. Electricity price forecasting: A review of the state-of-the-art with a look into the future. (2014). Weron, Rafał.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:30:y:2014:i:4:p:1030-1081.

    Full description at Econpapers || Download paper

  37. Evaluating the accuracy of value-at-risk forecasts: New multilevel tests. (2014). Urga, Giovanni ; Leccadito, Arturo ; Boffelli, Simona .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:30:y:2014:i:2:p:206-216.

    Full description at Econpapers || Download paper

  38. The role of the information set for forecasting - with applications to risk management. (2014). Holzmann, Hajo ; Eulert, Matthias .
    In: Papers.
    RePEc:arx:papers:1404.7653.

    Full description at Econpapers || Download paper

  39. Financial network systemic risk contributions. (2013). Schienle, Melanie ; Schaumburg, Julia ; Hautsch, Nikolaus.
    In: CFS Working Paper Series.
    RePEc:zbw:cfswop:201320.

    Full description at Econpapers || Download paper

  40. Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets. (2013). Baruník, Jozef ; Avdulaj, Krenar.
    In: Czech Journal of Economics and Finance (Finance a uver).
    RePEc:fau:fauart:v:63:y:2013:i:5:p:425-442.

    Full description at Econpapers || Download paper

  41. Risk models–at–risk. (2013). Maillet, Bertrand ; Danielsson, Jon ; Boucher, Christophe M. ; Kouontchou, Patrick S..
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:59299.

    Full description at Econpapers || Download paper

  42. Forecasting Value-at-Risk with a duration-based POT method. (2013). Santos, Araujo P. ; Fraga Alves, M. I., .
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:94:y:2013:i:c:p:295-309.

    Full description at Econpapers || Download paper

  43. Dynamic factor Value-at-Risk for large heteroskedastic portfolios. (2013). Wu, Jason ; Giudice Rodriguez, Marius del, ; Aramonte, Sirio.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:37:y:2013:i:11:p:4299-4309.

    Full description at Econpapers || Download paper

  44. The Risk Map: A new tool for validating risk models. (2013). Hurlin, Christophe ; Perignon, Christophe ; Colletaz, Gilbert.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:37:y:2013:i:10:p:3843-3854.

    Full description at Econpapers || Download paper

  45. Energy risk management through self-exciting marked point process. (2013). Herrera, Rodrigo.
    In: Energy Economics.
    RePEc:eee:eneeco:v:38:y:2013:i:c:p:64-76.

    Full description at Econpapers || Download paper

  46. Value at risk forecasts by extreme value models in a conditional duration framework. (2013). Herrera, Rodrigo ; Schipp, Bernhard .
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:23:y:2013:i:c:p:33-47.

    Full description at Econpapers || Download paper

  47. Risk analysis with contractual default. Does covenant breach matter?. (2013). Borgonovo, Emanuele ; Gatti, Stefano.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:230:y:2013:i:2:p:431-443.

    Full description at Econpapers || Download paper

  48. Quantile Prediction. (2013). Komunjer, Ivana .
    In: Handbook of Economic Forecasting.
    RePEc:eee:ecofch:2-961.

    Full description at Econpapers || Download paper

  49. Testing for Granger causality in distribution tails: An application to oil markets integration. (2013). Tokpavi, Sessi ; Joëts, Marc ; Candelon, Bertrand ; Joets, Marc.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:31:y:2013:i:c:p:276-285.

    Full description at Econpapers || Download paper

  50. Risk index based models for portfolio adjusting problem with returns subject to experts evaluations. (2013). Ying, Haiyao ; Huang, Xiaoxia.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:30:y:2013:i:c:p:61-66.

    Full description at Econpapers || Download paper

  51. Can we still benefit from international diversification? The case of the Czech and German stock markets. (2013). Baruník, Jozef ; Avdulaj, Krenar.
    In: Papers.
    RePEc:arx:papers:1308.6120.

    Full description at Econpapers || Download paper

  52. Semiparametric Conditional Quantile Models for Financial Returns and Realized Volatility. (2013). Baruník, Jozef ; Zikes, Filip.
    In: Papers.
    RePEc:arx:papers:1308.4276.

    Full description at Econpapers || Download paper

  53. Margin Backtesting. (2012). Hurlin, Christophe ; Perignon, Christophe.
    In: Working Papers.
    RePEc:hal:wpaper:halshs-00746274.

    Full description at Econpapers || Download paper

  54. The Risk Map: A New Tool for Validating Risk Models. (2012). Hurlin, Christophe ; Perignon, Christophe ; Colletaz, Gilbert.
    In: Working Papers.
    RePEc:hal:wpaper:halshs-00746273.

    Full description at Econpapers || Download paper

  55. Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests. (2012). Dumitrescu, Elena Ivona ; Hurlin, Christophe ; Pham, Vinson .
    In: Working Papers.
    RePEc:hal:wpaper:halshs-00671658.

    Full description at Econpapers || Download paper

  56. Pitfalls in backtesting Historical Simulation VaR models. (2012). Escanciano, Juan Carlos ; Pei, Pei.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:36:y:2012:i:8:p:2233-2244.

    Full description at Econpapers || Download paper

  57. Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range. (2012). McAleer, Michael ; Chen, Cathy W. S. ; Chen, Cathy W. S., ; Gerlach, Richard ; Hwang, Bruce B. K., .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:28:y:2012:i:3:p:557-574.

    Full description at Econpapers || Download paper

  58. Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range. (2011). McAleer, Michael ; Chen, Cathy W. S. ; Chen, C. W. S., ; Gerlach, R. ; Hwang, B. B. K., .
    In: Econometric Institute Research Papers.
    RePEc:ems:eureir:23795.

    Full description at Econpapers || Download paper

  59. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-03-04 09:15:47 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.