Amendola, A. and V. Candila (2016). Evaluation of volatility predictions in a VaR framework. Quantitative Finance 16(5), 695–709.
- Amendola, A., V. Candila, and G. M. Gallo (2019). On the asymmetric impact of macro–variables on volatility. Economic Modelling 76, 135–152.
Paper not yet in RePEc: Add citation now
- Andersen, T. G., T. Bollerslev, P. F. Christoffersen, and F. X. Diebold (2006a). Practical volatility and correlation modeling for financial market risk management. In M. Carey and R. Stultz (Eds.), Risks of Financial Institutions. University of Chicago Press for NBER.
Paper not yet in RePEc: Add citation now
- Andersen, T. G., T. Bollerslev, P. F. Christoffersen, and F. X. Diebold (2006b). Volatility and correlation forecasting. In G. Elliott, C. W. J. Granger, and A. Timmermann (Eds.), Handbook of Economic Forecasting. North Holland.
Paper not yet in RePEc: Add citation now
Berkowitz, J., P. Christoffersen, and D. Pelletier (2011). Evaluating value-at-risk models with desk-level data. Management Science 57(12), 2213–2227.
Bernardi, M., A. Maruotti, and L. Petrella (2017). Multiple risk measures for multivariate dynamic heavy–tailed models. Journal of Empirical Finance 43, 1–32.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307–327.
- Bollerslev, T. and J. M. Wooldridge (1992). Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews 11(2), 143–172.
Paper not yet in RePEc: Add citation now
Brownlees, C. T. and G. M. Gallo (2010). Comparison of volatility measures: a risk management perspective. Journal of Financial Econometrics 8(1), 29–56.
Carnero, M. A., D. Peña, and E. Ruiz (2012). Estimating GARCH volatility in the presence of outliers. Economics Letters 114(1), 86–90.
Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review 39(4), 841–862.
- Cipollini, F., G. M. Gallo, and E. Otranto (2020). Realized volatility forecasting: Robustness to measurement errors. Forthcoming in International Journal of Forecasting.
Paper not yet in RePEc: Add citation now
Clements, A., M. Doolan, S. Hurn, and R. Becker (2009). On the efficacy of techniques for evaluating multivariate volatility forecasts. Technical report.
Conrad, C. and K. Loch (2015). Anticipating long-term stock market volatility. Journal of Applied Econometrics 30(7), 1090–1114.
Conrad, C. and M. Schienle (2020). Testing for an omitted multiplicative long-term component in garch models. Journal of Business & Economic Statistics 38(2), 229–242.
Conrad, C. and O. Kleen (2020). Two are better than one: Volatility forecasting using multiplicative component GARCH-MIDAS models. Journal of Applied Econometrics 35(1), 19–45.
Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance 1(2), 223–236.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4), 987–1007.
Engle, R. F. (2002). New frontiers for ARCH models. Journal of Applied Econometrics 17(5), 425–446.
Engle, R. F. and A. J. Patton (2001). What good is a volatility model? Quantitative Finance 1(2), 237–245.
Engle, R. F. and G. J. Lee (1999). A long-run and short-run component model of stock return volatility. In R. F. Engle and H. White (Eds.), Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive W. J. Granger, pp. 475–497. Oxford University Press, Oxford.
Engle, R. F. and S. Manganelli (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics 22(4), 367–381.
Engle, R. F., E. Ghysels, and B. Sohn (2013). Stock market volatility and macroeconomic fundamentals. Review of Economics and Statistics 95(3), 776–797.
- Fissler, T., J. F. Ziegel, et al. (2016). Higher order elicitability and Osband’s principle. The Annals of Statistics 44(4), 1680–1707.
Paper not yet in RePEc: Add citation now
Gallo, G. M. (2001). Modelling the impact of overnight surprises on intra-daily volatility. Australian Economic Papers 40(4), 567–580.
Gerlach, R. and C. Wang (2020). Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures. International Journal of Forecasting 36(2), 489–506.
Ghysels, E. and H. Qian (2019). Estimating MIDAS regressions via OLS with polynomial parameter profiling. Econometrics and Statistics 9, 1–16.
Ghysels, E., A. Sinko, and R. Valkanov (2007). MIDAS regressions: Further results and new directions. Econometric Reviews 26(1), 53–90.
Glosten, L. R., R. Jagannanthan, and D. E. Runkle (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance 48(5), 1779–1801.
GonzaÃŒÂlez-Rivera, G., T.-H. Lee, and S. Mishra (2004). Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood. International Journal of Forecasting 20(4), 629–645.
Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic Review 35, 705–730.
Hansen, P. R., A. Lunde, and J. M. Nason (2011). The Model Confidence Set. Econometrica 79(2), 453–497.
- Heber, G., A. Lunde, N. Shephard, and K. Sheppard (2009). Omi’s realised library, version 0.1. Technical report, Oxford–Man Institute, University of Oxford.
Paper not yet in RePEc: Add citation now
- Jorion, P. (1997). Value at Risk. Chicago: Irwin.
Paper not yet in RePEc: Add citation now
Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica 46(1), 33–50.
- Koenker, R. and J. A. Machado (1999). Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association 94(448), 1296–1310.
Paper not yet in RePEc: Add citation now
Koenker, R. and Q. Zhao (1996). Conditional quantile estimation and inference for ARCH models. Econometric Theory 12(5), 793–813.
Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives 3(2), 73–84.
Laporta, A. G., L. Merlo, and L. Petrella (2018). Selection of value at risk models for energy commodities. Energy Economics 74, 628–643.
Lazar, E. and X. Xue (2020). Forecasting risk measures using intraday data in a generalized autoregressive score framework. International Journal of Forecasting 36(3), 1057–1072.
Lee, S. and J. Noh (2013). Quantile regression estimator for GARCH models. Scandinavian Journal of Statistics 40(1), 2–20.
Manganelli, S. and R. F. Engle (2001). Value at risk models in finance. Technical report, ECB working paper.
Mo, D., R. Gupta, B. Li, and T. Singh (2018). The macroeconomic determinants of commodity futures volatility: Evidence from Chinese and Indian markets. Economic Modelling 70, 543–560.
Noh, J. and S. Lee (2016). Quantile regression for location-scale time series models with conditional heteroscedasticity. Scandinavian Journal of Statistics 43(3), 700–720.
Petrella, L. and V. Raponi (2019). Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress. Journal of Multivariate Analysis 173, 70–84.
- Riskmetrics (1996). JP Morgan Technical Document. New York: JP Morgan.
Paper not yet in RePEc: Add citation now
- Siddiqui, M. (1960). Distribution of quantiles in samples from a bivariate population. Journal of Research of the National Bureau of Standards 64(B)(3), 145–150.
Paper not yet in RePEc: Add citation now
Taylor, J. W. (2008). Using exponentially weighted quantile regression to estimate value at risk and expected shortfall. Journal of Financial Econometrics 6(3), 382–406.
Taylor, J. W. (2019). Forecasting value at risk and expected shortfall using a semiparametric approach based on the asymmetric Laplace distribution. Journal of Business & Economic Statistics 37(1), 121–133.
- Taylor, S. J. (1986). Modeling Financial Time Series. Wiley, New York.
Paper not yet in RePEc: Add citation now
Xiao, Z. and R. Koenker (2009). Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models. Journal of the American Statistical Association 104(488), 1696–1712.
Žikeš, F. and J. BarunıÌÂk (2016). Semi-parametric conditional quantile models for financial returns and realized volatility. Journal of Financial Econometrics 14(1), 185–226.
Zheng, Y., Q. Zhu, G. Li, and Z. Xiao (2018). Hybrid quantile regression estimation for time series models with conditional heteroscedasticity. Journal of the Royal Statistical Society Series B 80(5), 975–993.
- Zhu, Q., G. Li, and Z. Xiao (2020). Quantile estimation of regression models with GARCH-X errors. Forthcoming in Statistica Sinica.
Paper not yet in RePEc: Add citation now