AıÌt-Sahalia, Y., Cacho-Diaz, J., and Laeven, R. J. (2015). Modeling financial contagion using mutually exciting jump processes. Journal of Financial Economics, 117(3):585â606.
AıÌt-Sahalia, Y., Fan, J., and Xiu, D. (2010). High-frequency covariance estimates with noisy and asynchronous financial data. Journal of the American Statistical Association, 105(492):1504â1517.
AıÌt-Sahalia, Y., Jacod, J., and Li, J. (2012). Testing for jumps in noisy high frequency data. Journal of Econometrics, 168(2):207â222.
Amiti, M., Kong, S. H., and Weinstein, D. (2020). The effect of the us-china trade war on us investment. Technical report, National Bureau of Economic Research.
Amiti, M., Redding, S. J., and Weinstein, D. E. (2019). The impact of the 2018 tariffs on prices and welfare. Journal of Economic Perspectives, 33(4):187â210.
Andersen, T. G. and Bollerslev, T. (1997a). Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns. The journal of Finance, 52(3):975â1005.
Andersen, T. G. and Bollerslev, T. (1997b). Intraday periodicity and volatility persistence in financial markets. Journal of empirical finance, 4(2-3):115â158.
Andersen, T. G. and Bollerslev, T. (1998a). Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review, 39(4):885â905.
- Andersen, T. G. and Bollerslev, T. (1998b). Deutsche mark-dollar volatility: Intraday activity patterns, macroeconomic announcements, and longer run dependencies. The journal of Finance, 53(1):219â265.
Paper not yet in RePEc: Add citation now
Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2007). Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility. The review of economics and statistics, 89(4):701â720.
Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2):579â625.
Andrews, D. W. (1992). Generic uniform convergence. Econometric theory, 8(2):241â257.
Barndorff-Nielsen, O. E. and Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of financial Econometrics, 4(1):1â30.
Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2008). Designing realized kernels to measure the ex post variation of equity prices in the presence of noise.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3):307â327.
Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2):174â196.
Corsi, F., Pirino, D., and Reno, R. (2010). Threshold bipower variation and the impact of jumps on volatility forecasting. Journal of Econometrics, 159(2):276â288.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica: Journal of the Econometric Society, pages 987â1007.
Engle, R. F., Ito, T., and Lin, W.-L. (1990). Meteor showers or heat waves? heteroskedastic intra-daily volatility in the foreign exchange market. Econometrica, 58(3):525â542.
Fajgelbaum, P. D., Goldberg, P. K., Kennedy, P. J., and Khandelwal, A. K. (2020). The return to protectionism. The Quarterly Journal of Economics, 135(1):1â55.
Fan, J. and Kim, D. (2018). Robust high-dimensional volatility matrix estimation for highfrequency factor model. Journal of the American Statistical Association, 113(523):1268â 1283.
Fan, J. and Wang, Y. (2007). Multi-scale jump and volatility analysis for high-frequency financial data. Journal of the American Statistical Association, 102(480):1349â1362.
- Hall, P. and Heyde, C. C. (2014). Martingale limit theory and its application. Academic press.
Paper not yet in RePEc: Add citation now
Hamao, Y., Masulis, R. W., and Ng, V. (1990). Correlations in price changes and volatility across international stock markets. The review of financial studies, 3(2):281â307.
Hansen, P. R., Huang, Z., and Shek, H. H. (2012). Realized garch: a joint model for returns and realized measures of volatility. Journal of Applied Econometrics, 27(6):877â906.
Jacod, J., Li, Y., Mykland, P. A., Podolskij, M., and Vetter, M. (2009). Microstructure noise in the continuous case: the pre-averaging approach. Stochastic processes and their applications, 119(7):2249â2276.
Karolyi, G. A. (1995). A multivariate garch model of international transmissions of stock returns and volatility: The case of the united states and canada. Journal of Business & Economic Statistics, 13(1):11â25.
Kim, D. and Wang, Y. (2016). Unified discrete-time and continuous-time models and statistical inferences for merged low-frequency and high-frequency financial data. Journal of Econometrics, 194:220â230.
- Kim, D. and Wang, Y. (2021). Overnight garch-itoÌ volatility models. arXiv preprint arXiv:2102.13467.
Paper not yet in RePEc: Add citation now
Kim, D., Wang, Y., and Zou, J. (2016). Asymptotic theory for large volatility matrix estimation based on high-frequency financial data. Stochastic Processes and their Applications, 126:3527â-3577.
King, M. A. and Wadhwani, S. (1990). Transmission of volatility between stock markets. The Review of Financial Studies, 3(1):5â33.
- Li, Z. M. and Linton, O. (2021a). A remedi for microstructure noise. Econometrica, forthcoming.
Paper not yet in RePEc: Add citation now
Li, Z. M. and Linton, O. (2021b). Robust estimation of integrated volatility. Technical report, Faculty of Economics, University of Cambridge.
Lin, W.-L., Engle, R. F., and Ito, T. (1994). Do bulls and bears move across borders? international transmission of stock returns and volatility. Review of financial studies, 7(3):507â538.
- Mancini, C. (2004). Estimation of the characteristics of the jumps of a general poissondiffusion model. Scandinavian Actuarial Journal, 2004(1):42â52.
Paper not yet in RePEc: Add citation now
Patton, A. J. and Sheppard, K. (2015). Good volatility, bad volatility: Signed jumps and the persistence of volatility. Review of Economics and Statistics, 97(3):683â697.
Shephard, N. and Sheppard, K. (2010). Realising the future: forecasting with high-frequencybased volatility (heavy) models. Journal of Applied Econometrics, 25(2):197â231.
- Shin, M., Kim, D., and Fan, J. (2021). Adaptive robust large volatility matrix estimation based on high-frequency financial data. Available at SSRN 3793394.
Paper not yet in RePEc: Add citation now
Song, X., Kim, D., Yuan, H., Cui, X., Lu, Z., Zhou, Y., and Wang, Y. (2021). Volatility analysis with realized garch-itoÌ models. Journal of Econometrics, 222(1):393â410.
Tao, M., Wang, Y., and Chen, X. (2013). Fast convergence rates in estimating large volatility matrices using high-frequency financial data. Econometric Theory, 29(04):838â856.
Xiu, D. (2010). Quasi-maximum likelihood estimation of volatility with high frequency data. Journal of Econometrics, 159(1):235â250.
- Zhang, L. (2006). Efficient estimation of stochastic volatility using noisy observations: A multi-scale approach. Bernoulli, 12(6):1019â1043.
Paper not yet in RePEc: Add citation now
Zhang, L., Mykland, P. A., and AıÌt-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. Journal of the American Statistical Association, 100(472):1394â1411. A Tables