Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
create a website

Bayesian Bi-level Sparse Group Regressions for Macroeconomic Forecasting. (2024). Mogliani, Matteo ; Simoni, Anna.
In: Papers.
RePEc:arx:papers:2404.02671.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 34

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Andreou, E., Ghysels, E., Kourtellos, A., 2013. Should macroeconomic forecasters use daily financial data and how? Journal of Business & Economic Statistics 31 (2), 240–251.

  2. Azzalini, A., Capitanio, A., 2014. The Skew-Normal and Related Families. Institute of Mathematical Statistics Monographs. Cambridge (UK): Cambridge University Press.
    Paper not yet in RePEc: Add citation now
  3. Babii, A., Ghysels, E., Striaukas, J., 2022. Machine learning time series regressions with an application to nowcasting. Journal of Business & Economic Statistics 40 (3), 1094–1106.

  4. Banbura, M., Giannone, D., Reichlin, L., 2010. Large Bayesian vector auto regressions. Journal of Applied Econometrics 25 (1), 71–92.

  5. Belloni, A., Chernozhukov, V., Hansen, C., 2014. High-dimensional methods and inference on structural and treatment effects. Journal of Economic Perspectives 28 (2), 29–50.

  6. Bickel, P. J., Ritov, Y., Tsybakov, A. B., 2009. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics 37 (4), 1705–1732.
    Paper not yet in RePEc: Add citation now
  7. Bitto, A., Fruhwirth-Schnatter, S., 2019. Achieving shrinkage in a time-varying parameter model framework. Journal of Econometrics 210 (1), 75–97.

  8. Cai, T. T., Zhang, A. R., Zhou, Y., 2022. Sparse Group Lasso: Optimal sample complexity, convergence rate, and statistical inference. IEEE Transactions on Information Theory 68 (9), 5975–6002.
    Paper not yet in RePEc: Add citation now
  9. Carriero, A., Clark, T. E., Marcellino, M., 2015. Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility. Journal of the Royal Statistical Society: Series A (Statistics in Society) 178 (4), 837–862.

  10. Carriero, A., Clark, T. E., Marcellino, M., 2019. Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors. Journal of Econometrics 212 (1), 137–154. Carriero, A., Clark, T. E., Marcellino, M., Mertens, E., in press. Addressing COVID-19 outliers in BVARs with stochastic volatility. The Review of Economics and Statistics.

  11. Castillo, I., Schmidt-Hieber, J., Van der Vaart, A., 2015. Bayesian linear regression with sparse priors. The Annals of Statistics 43 (5), 1986–2018.
    Paper not yet in RePEc: Add citation now
  12. Chan, J. C. C., Hsiao, C., 2014. Estimation of stochastic volatility models with heavy tails and serial dependence. In: Jeliazkov, I., Yang, X.-S. (Eds.), Bayesian Inference in the Social Sciences. John Wiley & Sons, Hoboken, New Jersey, pp. 159–180.
    Paper not yet in RePEc: Add citation now
  13. Chen, R.-B., Chu, C.-H., Yuan, S., Wu, Y. N., 2016. Bayesian sparse group selection. Journal of Computational and Graphical Statistics 25 (3), 665–683.
    Paper not yet in RePEc: Add citation now
  14. Chib, S., 1995. Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90 (432), 1313–1321.
    Paper not yet in RePEc: Add citation now
  15. Chib, S., Jeliazkov, I., 2001. Marginal likelihood from the Metropolis–Hastings output. Journal of the American Statistical Association 96 (453), 270–281.

  16. Clark, T. E., 2011. Real-time density forecasts from Bayesian vector autoregressions with stochastic volatility. Journal of Business & Economic Statistics 29 (3), 327–341.

  17. Ferrara, L., Simoni, A., 2022. When are Google Data useful to nowcast GDP? an approach via preselection and shrinkage. Journal of Business & Economic Statistics 41 (4), 1188– 1202.

  18. Foroni, C., Marcellino, M., Schumacher, C., 2015. Unrestricted mixed data sampling (MIDAS) : MIDAS regressions with unrestricted lag polynomials. Journal of the Royal Statistical Society: Series A (Statistics in Society) 178 (1), 57–82.

  19. Geweke, J., Amisano, G., 2011. Optimal prediction pools. Journal of Econometrics 164 (1), 130–141.

  20. Ghysels, E., Santa-Clara, P., Valkanov, R., 2006. Predicting volatility: getting the most out of return data sampled at different frequencies. Journal of Econometrics 131 (1-2), 59–95.

  21. Ghysels, E., Sinko, A., Valkanov, R., 2007. MIDAS regressions: Further results and new directions. Econometric Reviews 26 (1), 53–90.

  22. Giacomini, R., White, H., 2006. Tests of conditional predictive ability. Econometrica 74 (6), 1545–1578.

  23. Hoffmann, M., Rousseau, J., Schmidt-Hieber, J., 2015. On adaptive posterior concentration rates. The Annals of Statistics 43 (5), 2259 – 2295.
    Paper not yet in RePEc: Add citation now
  24. Lenza, M., Primiceri, G. E., 2022. How to estimate a vector autoregression after March 2020. Journal of Applied Econometrics 37 (4), 688–699.

  25. Li, Z., Zhang, Y., Yin, J., 2022. Minimax rates for high-dimensional double sparse structure over ℓu(ℓq)-balls. arXiv:2207.11888.
    Paper not yet in RePEc: Add citation now
  26. McCracken, M. W., Ng, S., 2016. FRED-MD: A monthly database for macroeconomic research. Journal of Business & Economic Statistics 34 (4), 574–589.

  27. Moench, E., Ng, S., Potter, S., 12 2013. Dynamic Hierarchical Factor Models. The Review of Economics and Statistics 95 (5), 1811–1817.
    Paper not yet in RePEc: Add citation now
  28. Mogliani, M., Simoni, A., 2021. Bayesian MIDAS penalized regressions: Estimation, selection, and prediction. Journal of Econometrics 222 (1, Part C), 833–860.

  29. Ning, B., Jeong, S., Ghosal, S., 2020. Bayesian linear regression for multivariate responses under group sparsity. Bernoulli 26 (3), 2353–2382.
    Paper not yet in RePEc: Add citation now
  30. Raskutti, G., Wainwright, M. J., Yu, B., 2011. Minimax rates of estimation for highdimensional linear regression over ℓq-balls. IEEE Transactions on Information Theory 57 (10), 6976–6994.
    Paper not yet in RePEc: Add citation now
  31. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., Van Der Linde, A., 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B: Statistical Methodology 64 (4), 583–639.

  32. Stock, J. H., Watson, M. W., 2016. Core inflation and trend inflation. The Review of Economics and Statistics 98 (4), 770–784.

  33. Xu, X., Ghosh, M., 2015. Bayesian variable selection and estimation for Group Lasso. Bayesian Analysis 10 (4), 909–936.
    Paper not yet in RePEc: Add citation now
  34. Zhang, B., Chan, J. C. C., Cross, J. L., 2020. Stochastic volatility models with ARMA innovations: An application to G7 inflation forecasts. International Journal of Forecasting 36 (4), 1318–1328.

Cocites

Documents in RePEc which have cited the same bibliography

  1. MACROECONOMIC FORECAST MODELS – CONCEPTS AND THEORETICAL NOTIONS. (2017). Lilea, Florin Paul Costel ; Marinescu, Andreeaioana ; Costel, Florin Paul .
    In: Romanian Statistical Review Supplement.
    RePEc:rsr:supplm:v:65:y:2017:i:6:p:118-123.

    Full description at Econpapers || Download paper

  2. Forecasting oil prices. (2017). Filis, George ; Degiannakis, Stavros.
    In: MPRA Paper.
    RePEc:pra:mprapa:77531.

    Full description at Econpapers || Download paper

  3. Frequency aspects of information transmission in a network of three western equity markets. (2017). Schmidbauer, Harald ; Uluceviz, Erhan ; Rosch, Angi.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:486:y:2017:i:c:p:933-946.

    Full description at Econpapers || Download paper

  4. Improving the power of the Diebold–Mariano–West test for least squares predictions. (2017). Mayer, Walter J ; Dang, Xin ; Liu, Feng.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:33:y:2017:i:3:p:618-626.

    Full description at Econpapers || Download paper

  5. Model and survey estimates of the term structure of US macroeconomic uncertainty. (2017). Galvão, Ana ; Clements, Michael ; Galvo, Ana Beatriz.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:33:y:2017:i:3:p:591-604.

    Full description at Econpapers || Download paper

  6. Now-casting the Japanese economy. (2017). Bragoli, Daniela.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:33:y:2017:i:2:p:390-402.

    Full description at Econpapers || Download paper

  7. A mixed frequency approach to the forecasting of private consumption with ATM/POS data. (2017). Rua, António ; Rodrigues, Paulo ; Duarte, Cláudia.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:33:y:2017:i:1:p:61-75.

    Full description at Econpapers || Download paper

  8. Tests of equal accuracy for nested models with estimated factors. (2017). McCracken, Michael ; Goncalves, Silvia ; Perron, Benoit ; Gonalves, Silvia.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:198:y:2017:i:2:p:231-252.

    Full description at Econpapers || Download paper

  9. On the use of high frequency measures of volatility in MIDAS regressions. (2016). Andreou, Elena.
    In: University of Cyprus Working Papers in Economics.
    RePEc:ucy:cypeua:03-2016.

    Full description at Econpapers || Download paper

  10. A Mixed Frequency Approach to Forecast Private Consumption with ATM/POS Data. (2016). Rodrigues, Paulo ; Duarte, Cláudia ; Rua, Antonio.
    In: Working Papers.
    RePEc:ptu:wpaper:w201601.

    Full description at Econpapers || Download paper

  11. Predicting Belgium’s GDP using targeted bridge models. (2016). Piette, Christophe .
    In: Working Paper Research.
    RePEc:nbb:reswpp:201601-290.

    Full description at Econpapers || Download paper

  12. Testing weighting approaches for forecasting in a Group Wisdom Support System environment. (2016). Prokesch, Tobias ; von der Gracht, Heiko A ; Hommel, Ulrich ; Wohlenberg, Holger .
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:69:y:2016:i:10:p:4081-4094.

    Full description at Econpapers || Download paper

  13. A comparison of MIDAS and bridge equations. (2016). Schumacher, Christian.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:2:p:257-270.

    Full description at Econpapers || Download paper

  14. Combining forecasts from successive data vintages: An application to U.S. growth. (2016). Hecq, Alain ; Götz, Thomas ; Gotz, Thomas B ; Urbain, Jean-Pierre .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:1:p:61-74.

    Full description at Econpapers || Download paper

  15. Information spillover dynamics of the energy futures market sector: A novel common factor approach. (2016). Kuruppuarachchi, Duminda ; Premachandra, I M.
    In: Energy Economics.
    RePEc:eee:eneeco:v:57:y:2016:i:c:p:277-294.

    Full description at Econpapers || Download paper

  16. Estimating dynamic equilibrium models using mixed frequency macro and financial data. (2016). van der Wel, Michel ; Posch, Olaf ; Christensen, Bent Jesper.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:194:y:2016:i:1:p:116-137.

    Full description at Econpapers || Download paper

  17. On the use of high frequency measures of volatility in MIDAS regressions. (2016). Andreou, Elena.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:193:y:2016:i:2:p:367-389.

    Full description at Econpapers || Download paper

  18. A MIDAS approach to modeling first and second moment dynamics. (2016). Pettenuzzo, Davide ; Valkanov, Rossen ; Timmermann, Allan.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:193:y:2016:i:2:p:315-334.

    Full description at Econpapers || Download paper

  19. A multi-country approach to forecasting output growth using PMIs. (2016). Pesaran, M ; Chudik, Alexander ; Grossman, Valerie.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:192:y:2016:i:2:p:349-365.

    Full description at Econpapers || Download paper

  20. On the use of high frequency measures of volatility in MIDAS regressions. (2016). Andreou, Elena.
    In: CEPR Discussion Papers.
    RePEc:cpr:ceprdp:11307.

    Full description at Econpapers || Download paper

  21. CONNECTION OF EUROPEAN ECONOMIC GROWTH WITH THE DYNAMICS OF VOLATILITY OF STOCK MARKET RETURNS. (2015). Calin, Adrian Cantemir ; Clin, Adrian Cantemir.
    In: Studii Financiare (Financial Studies).
    RePEc:vls:finstu:v:19:y:2015:i:1:p:53-66.

    Full description at Econpapers || Download paper

  22. Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model. (2015). Barsoum, Fady.
    In: Working Paper Series of the Department of Economics, University of Konstanz.
    RePEc:knz:dpteco:1519.

    Full description at Econpapers || Download paper

  23. The State and the Future of Cyprus Macroeconomic Forecasting. (2015). Andreou, Elena ; Kourtellos, Andros.
    In: Cyprus Economic Policy Review.
    RePEc:erc:cypepr:v:9:y:2015:i:1:p:73-90.

    Full description at Econpapers || Download paper

  24. Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach. (2015). Ghysels, Eric ; Ozkan, Nazire .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:31:y:2015:i:4:p:1009-1020.

    Full description at Econpapers || Download paper

  25. Markov-switching mixed-frequency VAR models. (2015). Marcellino, Massimiliano ; Guérin, Pierre ; Foroni, Claudia.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:31:y:2015:i:3:p:692-711.

    Full description at Econpapers || Download paper

  26. Do high-frequency financial data help forecast oil prices? The MIDAS touch at work. (2015). Kilian, Lutz ; Guérin, Pierre ; Baumeister, Christiane.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:31:y:2015:i:2:p:238-252.

    Full description at Econpapers || Download paper

  27. Forecasting GDP growth using mixed-frequency models with switching regimes. (2015). Barsoum, Fady ; Stankiewicz, Sandra .
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:31:y:2015:i:1:p:33-50.

    Full description at Econpapers || Download paper

  28. Disaggregation methods based on MIDAS regression. (2015). Guay, Alain ; Maurin, Alain .
    In: Economic Modelling.
    RePEc:eee:ecmode:v:50:y:2015:i:c:p:123-129.

    Full description at Econpapers || Download paper

  29. Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices. (2015). Etienne, Xiaoli.
    In: 2015 Conference, August 9-14, 2015, Milan, Italy.
    RePEc:ags:iaae15:211626.

    Full description at Econpapers || Download paper

  30. Financialization of Agricultural Commodity Markets: Do Financial Data Help to Forecast Agricultural Prices?. (2015). Etienne, Xiaoli.
    In: 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California.
    RePEc:ags:aaea15:205124.

    Full description at Econpapers || Download paper

  31. MIDAS regressions with time-varying parameters: An application to corporate bond spreads and GDP in the Euro area. (2014). Schumacher, Christian.
    In: Annual Conference 2014 (Hamburg): Evidence-based Economic Policy.
    RePEc:zbw:vfsc14:100289.

    Full description at Econpapers || Download paper

  32. MIDAS and bridge equations. (2014). Schumacher, Christian.
    In: Discussion Papers.
    RePEc:zbw:bubdps:262014.

    Full description at Econpapers || Download paper

  33. A MIXED FREQUENCY ANALYSIS OF CONNECTIONS BETWEEN MACROECONOMIC VARIABLES AND STOCK MARKETS IN CENTRAL AND EASTERN EUROPE. (2014). Lupu, Radu ; Calin, Adrian Cantemir.
    In: Studii Financiare (Financial Studies).
    RePEc:vls:finstu:v:18:y:2014:i:2:p:69-79.

    Full description at Econpapers || Download paper

  34. Combining distributions of real-time forecasts: An application to U.S. growth. (2014). Urbain, Jean-Pierre ; Hecq, Alain ; Götz, Thomas ; Gotz T. B., ; Urbain J. R. Y. J., ; Hecq A. W., .
    In: Research Memorandum.
    RePEc:unm:umagsb:2014027.

    Full description at Econpapers || Download paper

  35. Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series. (2014). Miller, J..
    In: Working Papers.
    RePEc:umc:wpaper:1412.

    Full description at Econpapers || Download paper

  36. Bayesian Stochastic Search for the Best Predictors: Nowcasting GDP Growth. (2014). Hess, Dieter ; Hautsch, Nikolaus.
    In: University of East Anglia Applied and Financial Economics Working Paper Series.
    RePEc:uea:aepppr:2012_56.

    Full description at Econpapers || Download paper

  37. Central Bank Macroeconomic Forecasting During the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences. (2014). Potter, Simon ; Peach, Richard ; onorante, luca ; Alessi, Lucia ; Ghysels, Eric.
    In: Journal of Business & Economic Statistics.
    RePEc:taf:jnlbes:v:32:y:2014:i:4:p:483-500.

    Full description at Econpapers || Download paper

  38. Autoregressive augmentation of MIDAS regressions. (2014). Duarte, Cláudia.
    In: Working Papers.
    RePEc:ptu:wpaper:w201401.

    Full description at Econpapers || Download paper

  39. GDPNow: A Model for GDP Nowcasting. (2014). Higgins, Patrick.
    In: FRB Atlanta Working Paper.
    RePEc:fip:fedawp:2014-07.

    Full description at Econpapers || Download paper

  40. Forecasting growth during the Great Recession: is financial volatility the missing ingredient?. (2014). Marsilli, Clément ; Ferrara, Laurent ; Ortega, Juan-Pablo.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:36:y:2014:i:c:p:44-50.

    Full description at Econpapers || Download paper

  41. Markov-Switching Mixed-Frequency VAR Models. (2014). Marcellino, Massimiliano ; Guérin, Pierre ; Foroni, Claudia.
    In: CEPR Discussion Papers.
    RePEc:cpr:ceprdp:9815.

    Full description at Econpapers || Download paper

  42. Can we Automate Earnings Forecasts and Beat Analysts?. (2014). Ghysels, Eric ; Ball, Ryan ; Zhou, Huan.
    In: CEPR Discussion Papers.
    RePEc:cpr:ceprdp:10186.

    Full description at Econpapers || Download paper

  43. Density forecasts with MIDAS models. (2014). Ravazzolo, Francesco ; Foroni, Claudia ; Aastveit, Knut Are.
    In: Working Papers.
    RePEc:bny:wpaper:0021.

    Full description at Econpapers || Download paper

  44. Variable Selection in Predictive MIDAS Models. (2014). Marsilli, Clément.
    In: Working papers.
    RePEc:bfr:banfra:520.

    Full description at Econpapers || Download paper

  45. Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work. (2014). Kilian, Lutz ; Guérin, Pierre ; Baumeister, Christiane ; Guerin, Pierre .
    In: Staff Working Papers.
    RePEc:bca:bocawp:14-11.

    Full description at Econpapers || Download paper

  46. Do high-frequency financial data help forecast oil prices? The MIDAS touch at work. (2013). Kilian, Lutz ; Guérin, Pierre ; Baumeister, Christiane.
    In: CFS Working Paper Series.
    RePEc:zbw:cfswop:201322.

    Full description at Econpapers || Download paper

  47. Greece in Recession: Economic predictions, mispredictions and policy implications. (2013). Prodromidis, Prodromos ; Petralias, Athanassios ; Petros, Sotirios .
    In: GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe.
    RePEc:hel:greese:75.

    Full description at Econpapers || Download paper

  48. Greece in recession: economic predictions, mispredictions and policy implications. (2013). Prodromidis, Prodromos ; Petralias, Athanassios ; Petros, Sotirios .
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:52626.

    Full description at Econpapers || Download paper

  49. Forecasting growth during the Great Recession: is financial volatility the missing ingredient?. (2013). Marsilli, Clément ; Ferrara, Laurent ; Ortega, J-P., .
    In: Working papers.
    RePEc:bfr:banfra:454.

    Full description at Econpapers || Download paper

  50. Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling. (2013). Ng, Serena ; Wright, Jonathan H..
    In: Journal of Economic Literature.
    RePEc:aea:jeclit:v:51:y:2013:i:4:p:1120-54.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-02-15 08:49:08 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.