- Barndorff-Nielsen, O.E., 1997. Normal inverse gaussian distributions and stochastic volatility modelling. Scandinavian Journal of statistics 24, 1â13.
Paper not yet in RePEc: Add citation now
- Bauwens, L., Lubrano, M., Richard, J., 1999. Bayesian inference in dynamic econometric models. Oxford University Press, USA.
Paper not yet in RePEc: Add citation now
- Belmonte, M.A., Koop, G., Korobilis, D., 2014. Hierarchical Shrinkage in Time-Varying Parameter Models: Hierarchical Shrinkage in Time-Varying Parameter Models. Journal of Forecasting 33, 80â94. doi:10. 1002/for.2276.
Paper not yet in RePEc: Add citation now
Bertsche, D., Braun, R., 2022. Identification of Structural Vector Autoregressions by Stochastic Volatility.
Bitto, A., FruÌhwirth-Schnatter, S., 2019. Achieving shrinkage in a time-varying parameter model framework. Journal of Econometrics 210, 75â97.
- Blanchard, O., Perotti, R., 2002. An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output. The Quarterly Journal of Economics 117, 1329â1368. doi:10.1162/003355302320935043.
Paper not yet in RePEc: Add citation now
Cadonna, A., FruÌhwirth-Schnatter, S., Knaus, P., 2020. Triple the gamma unifying shrinkage prior for variance and variable selection in sparse state space and tvp models. Econometrics 8, 20.
Callealta Barroso, F.J., GarcıÌa-PeÌrez, C., Prieto-Alaiz, M., 2020. Modelling income distribution using the log Studentâs t distribution: New evidence for European Union countries. Economic Modelling 89, 512â522. doi:10.1016/j.econmod.2019.11.021.
- Camehl, A., WozÌniak, T., 2024. Time-varying identification of monetary policy shocks. arXiv preprint arXiv:2311.05883 .
Paper not yet in RePEc: Add citation now
- Carriero, A., Clark, T.E., Marcellino, M., 2019. Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors. Journal of Econometrics 212, 137â154. doi:10.1016/j.jeconom. 2019.04.024.
Paper not yet in RePEc: Add citation now
- Chan, J., Jeliazkov, I., 2009. Efficient Simulation and Integrated Likelihood Estimation in State Space Models. International Journal of Mathematical Modelling and Numerical Optimisation 1, 101â120.
Paper not yet in RePEc: Add citation now
Chan, J.C., Eisenstat, E., 2018. Bayesian model comparison for time-varying parameter vars with stochastic volatility. Journal of Applied Econometrics 33, 509â532.
Chan, J.C.C., 2018. Specification tests for time-varying parameter models with stochastic volatility.
Chan, J.C.C., Koop, G., Yu, X., 2024. Large order-invariant bayesian vars with stochastic volatility. Journal of Business & Economic Statistics 42, 825â837. doi:10.1080/07350015.2023.2252039.
Clark, T.E., Ravazzolo, F., 2015. Macroeconomic Forecasting Performance Under Alternative Specification of Time-Varying Volatility. Journal of Applied Econometrics 30, 551â575.
Cogley, T., Sargent, T.J., 2005. Drifts and volatilities: Monetary policies and outcomes in the post WWII US. Review of Economic Dynamics 8, 262â302.
- Doan, T., Litterman, R.B., Sims, C.A., 1984. Forecasting and Conditional Projection Using Realistic Prior Distributions. Econometric Reviews 3, 37â41.
Paper not yet in RePEc: Add citation now
Eddelbuettel, D., François, R., Allaire, J., Ushey, K., Kou, Q., Russel, N., Chambers, J., Bates, D., 2011. Rcpp: Seamless r and c++ integration. Journal of statistical software 40, 1â18.
Eddelbuettel, D., Sanderson, C., 2014. RcppArmadillo: Accelerating R with high-performance C++ linear algebra. Computational Statistics & Data Analysis 71, 1054â1063.
Francis, N., Ramey, V.A., 2009. Measures of per capita hours and their implications for the technology-hours debate. Journal of Money, credit and Banking 41, 1071â1097.
FruÌhwirth-Schnatter, S., Wagner, H., 2010. Stochastic model specification search for Gaussian and partial non-Gaussian state space models. Journal of Econometrics 154, 85â100.
- Gelfand, A.E., Smith, A.F.M., 1990. Sampling-Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association 85, 398â409. doi:10.2307/2289776.
Paper not yet in RePEc: Add citation now
Giannone, D., Lenza, M., Primiceri, G.E., 2015. Prior selection for vector autoregressions. Review of Economics and Statistics 97, 436â451.
Herwartz, H., LuÌtkepohl, H., 2014. Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks. Journal of Econometrics 183, 104â116.
Hogg, R.V., Klugman, S.A., 1983. On the estimation of long tailed skewed distributions with actuarial applications. Journal of Econometrics 23, 91â102. doi:10.1016/0304-4076(83)90077-5.
- HoÌrmann, W., Leydold, J., 2014. Generating generalized inverse gaussian random variates. Statistics and Computing 24, 547â557.
Paper not yet in RePEc: Add citation now
Hosszejni, D., Kastner, G., 2021. Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol. Journal of Statistical Software 100.
- JarocinÌski, M., 2024. Estimating the fedâs unconventional policy shocks. Journal of Monetary Economics .
Paper not yet in RePEc: Add citation now
- Kass, R.E., Raftery, A.E., 1995. Bayes Factors. Journal of the American Statistical Association 90, 773â795. doi:10.1080/01621459.1995.10476572.
Paper not yet in RePEc: Add citation now
Kastner, G., FruÌhwirth-Schnatter, S., 2014. Ancillarity-sufficiency interweaving strategy (asis) for boosting mcmc estimation of stochastic volatility models. Computational Statistics & Data Analysis 76, 408â423.
Kilian, L., LuÌtkepohl, H., 2017. Structural Vector Autoregressive Analysis. Cambridge University Press, Cambridge.
Lanne, M., LuÌtkepohl, H., 2008. Identifying monetary policy shocks via changes in volatility. Journal of Money, Credit and Banking 40, 1131â1149.
Lanne, M., LuÌtkepohl, H., Maciejowska, K., 2010. Structural vector autoregressions with Markov switching. Journal of Economic Dynamics and Control 34, 121â131.
Lanne, M., Luoto, J., 2021. Gmm estimation of non-gaussian structural vector autoregression. Journal of Business & Economic Statistics 39, 69â81. doi:10.1080/07350015.2019.1629940.
Lewis, D.J., 2021. Identifying Shocks via Time-Varying Volatility. The Review of Economic Studies 88, 3086â3124. doi:10.1093/restud/rdab009.
- Leydold, J., HoÌrmann, W., 2017. GIGrvg: Random Variate Generator for the GIG Distribution. URL: https://CRAN.R-project.org/package=GIGrvg. r package version 0.5. LuÌtkepohl, H., 2005. New Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.
Paper not yet in RePEc: Add citation now
- Louis. URL: https://fred.stlouisfed.org/series/CNP16OV. Retrieved from FRED database [accessed January 2, 2024].
Paper not yet in RePEc: Add citation now
LuÌtkepohl, H., Meitz, M., NetsÌunajev, A., Saikkonen, P., 2021. Testing identification via heteroskedasticity in structural vector autoregressive models. The Econometrics Journal 24, 1â22.
LuÌtkepohl, H., Milunovich, G., 2016. Testing for identification in SVAR-GARCH models. Journal of Economic Dynamics and Control 73, 241â258.
- LuÌtkepohl, H., NetsÌunajev, A., 2017. Structural vector autoregressions with smooth transition in variances. Journal of Economic Dynamics and Control 84, 43â57.
Paper not yet in RePEc: Add citation now
LuÌtkepohl, H., Velinov, A., 2016. Structural vector autoregressions: Checking identifying long-run restrictions via heteroskedasticity. Journal of Economic Surveys 30, 377â392.
- LuÌtkepohl, H., WozÌniak, T., 2020. Bayesian inference for structural vector autoregressions identified by Markov-switching heteroskedasticity. Journal of Economic Dynamics and Control 113, 103862. doi:10. 1016/j.jedc.2020.103862.
Paper not yet in RePEc: Add citation now
- McCausland, W.J., Miller, S., Pelletier, D., 2011. Simulation smoothing for stateâspace models: A computational efficiency analysis. Computational Statistics & Data Analysis 55, 199â212.
Paper not yet in RePEc: Add citation now
- Meade, B., Lafayette, L., Sauter, G., Tosello, D., 2017. Spartan HPC-Cloud Hybrid: Delivering Performance and Flexibility. University of Melbourne doi:https://doi.org/10.4225/49/58ead90dceaaa.
Paper not yet in RePEc: Add citation now
Mertens, K., Ravn, M.O., 2014. A reconciliation of SVAR and narrative estimates of tax multipliers. Journal of Monetary Economics 68, S1âS19. doi:10.1016/j.jmoneco.2013.04.004.
Mountford, A., Uhlig, H., 2009. What are the effects of fiscal policy shocks? Journal of Applied Econometrics 24, 960â992. doi:10.1002/jae.1079.
- NetsÌunajev, A., 2013. Reaction to technology shocks in Markov-switching structural VARs: Identification via heteroskedasticity. Journal of Macroeconomics 36, 51â62.
Paper not yet in RePEc: Add citation now
- Olmsted, J., 2017. RcppTN: Rcpp-Based Truncated Normal Distribution RNG and Family. URL: https: //CRAN.R-project.org/package=RcppTN. r package version 0.2-2.
Paper not yet in RePEc: Add citation now
Omori, Y., Chib, S., Shephard, N., Nakajima, J., 2007. Stochastic Volatility with Leverage: Fast and Efficient Likelihood Inference. Journal of Econometrics 140, 425â449.
Ramey, V.A., 2016. Macroeconomic shocks and their propagation. Handbook of macroeconomics 2, 71â162.
Rigobon, R., 2003. Identification through heteroskedasticity. Review of Economics and Statistics 85, 777â792.
Rigobon, R., Sack, B., 2003. Measuring the reaction of monetary policy to the stock market. Quarterly Journal of Economics 118, 639â669.
- Robert, C.P., 1995. Simulation of truncated normal variables. Statistics and computing 5, 121â125.
Paper not yet in RePEc: Add citation now
Romer, C.D., Romer, D.H., 2010. The Macroeconomic Effects of Tax Changes: Estimates Based on a New Measure of Fiscal Shocks. American Economic Review 100, 763â801. doi:10.1257/aer.100.3.763.
Rubio-RamıÌrez, J.F., Waggoner, D.F., Zha, T., 2010. Structural Vector Autoregressions: Theory of Identification and Algorithms for Inference. Review of Economic Studies 77, 665â696.
Sentana, E., Fiorentini, G., 2001. Identification, estimation and testing of conditionally heteroskedastic factor models. Journal of Econometrics 102, 143â164.
- U.S. Bureau of Economic Analysis, 2024a. Table 1.1.5. Gross Domestic Product. Data. URL: https: //apps.bea.gov/iTable/. Retrieved from NIPA Tables [accessed January 2, 2024].
Paper not yet in RePEc: Add citation now
- U.S. Bureau of Economic Analysis, 2024b. Table 1.1.9. Implicit Price Deflators for Gross Domestic Product.
Paper not yet in RePEc: Add citation now
- U.S. Bureau of Economic Analysis, 2024c. Table 3.2. Federal Government Current Receipts and Expenditures.
Paper not yet in RePEc: Add citation now
- U.S. Bureau of Economic Analysis, 2024d. Table 3.9.5. Government Consumption Expenditures and Gross Investment. Data. URL: https://apps.bea.gov/iTable/. Retrieved from NIPA Tables [accessed January 2, 2024].
Paper not yet in RePEc: Add citation now
- U.S. Bureau of Labor Statistics, 2024. Population Level [CNP16OV]. Data. Federal Reserve Bank of St.
Paper not yet in RePEc: Add citation now
- Verdinelli, I., Wasserman, L., 1995. Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio. Journal of the American Statistical Association 90, 614â618.
Paper not yet in RePEc: Add citation now
Waggoner, D.F., Zha, T., 2003a. A Gibbs sampler for structural vector autoregressions. Journal of Economic Dynamics & Control 28, 349â366.
Waggoner, D.F., Zha, T., 2003b. Likelihood preserving normalization in multiple equation models. Journal of Econometrics 114, 329â347. doi:10.1016/S0304-4076(03)00087-3.
- WozÌniak, T., 2024a. bsvars: Bayesian Estimation of Structural Vector Autoregressive Models. URL: https: //CRAN.R-project.org/package=bsvars. R package version 3.0.0. WozÌniak, T., 2024b. Fast and Efficient Bayesian Analysis of Structural Vector Autoregressions Using the R package bsvars. Unpublished Manuscript. University of Melbourne.
Paper not yet in RePEc: Add citation now
- WozÌniak, T., Droumaguet, M., 2015. Assessing Monetary Policy Models: Bayesian Inference for Heteroskedastic Structural VARs. University of Melbourne Working Papers Series 2017.
Paper not yet in RePEc: Add citation now