- Aanes, B. and Gullien, M. (2018). Forecasting Norwegian Inflation with Deep Neural Networks [Master Thesis, Norwegian School of Economics]. Bergen. https:// openaccess.nhh.no/nhh-xmlui/bitstream/handle/11250/2586572/masterthesis.PDF [accessed on 1 December 2023].
Paper not yet in RePEc: Add citation now
- Abramov, V., Morozov, A., Sinyakov, A. and Sterkhova, A. (2022). O roli globalânykh faktorov v inflyatsii [On the Role of Global Factors in Inflation]. Bank of Russia Analytical Note. [In Russian].
Paper not yet in RePEc: Add citation now
Almosova, A. and Andresen, N. (2023). Nonlinear Inflation Forecasting with Recurrent Neural Networks. Journal of Forecasting, 42(2), pp. 240â259. https://doi.org/10.1002/for.2901.
Angelico, C., Marcucci, J., Miccoli, M. and Quarta, F. (2022). Can We Measure Inflation Expectations Using Twitter? Journal of Econometrics, 228(2), pp. 259â277. https://doi.org/10.1016/j.jeconom.2021.12.008.
Araujo, G. and Gaglianone, W. (2023). Machine Learning Methods for Inflation Forecasting in Brazil: New Contenders Versus Classical Models. Latin American Journal of Central Banking, 4(2), Article 100087. https://doi.org/10.1016/j.latcb.2023.100087.
Athey, S. and Imbens, G. (2019). Machine Learning Methods that Economists Should Know About. Annual Review of Economics, 11, pp. 685â725. https://doi.org/10.1146/annurev-economics-080217-053433.
- Atkenson, A. and Ohanian, L. (2001). Are Phillips Curve Useful for Forecasting Inflation? Federal Reserve Bank of Minneapolis Quarterly Review, 25(1), pp. 2â11. https://doi.org/10.21034/qr.2511.
Paper not yet in RePEc: Add citation now
Barkan, O., Benchimol, J., Caspi, I., Cohen, E., Hammer, A. and Koenigstein, N. (2023). Forecasting CPI Inflation Components with Hierarchical Recurrent Neural Networks. International Journal of Forecasting, 39(3), pp. 1145â1162. https://doi.org/10.1016/j.ijforecast.2022.04.009.
Baybuza, I. (2018). Inflation Forecasting Using Machine Learning Methods. Russian Journal of Money and Finance, 77(4), pp. 42â59. https://doi.org/10.31477/rjmf.201804.42.
- Breiman, L. (1996). Bagging Predictors. Machine Learning, 24, pp. 123â140.
Paper not yet in RePEc: Add citation now
- Brownlee, J. (2018). Deep Learning for Time Series Forecasting. Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery.
Paper not yet in RePEc: Add citation now
- Chakraborty, C. and Joseph, A. (2017). Machine Learning at Central Banks. Bank of England Staff Working Paper, N 674.
Paper not yet in RePEc: Add citation now
- Chollet, F. (2021). Deep Learning with Python (2nd ed.). Shelter Island: Manning Publications Co.
Paper not yet in RePEc: Add citation now
- Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv Preprint, arXiv:1412.3555.
Paper not yet in RePEc: Add citation now
Cochrane, J. (2001). Long-Term Debt and Optimal Policy in the Fiscal Theory of the Price Level. Econometrica, 69(1), pp. 69â116. https://doi.org/10.1111/1468-0262.00179.
Coibion, O., Gorodnichenko, Y. and Kamdar, R. (2018). The Formation of Expectations, Inflation, and the Phillips Curve. Journal of Economic Literature, 56(4), pp. 1447â1491. https://doi.org/10.1257/jel.20171300.
Coulombe, P. G. (2022). A Neural Phillips Curve and a Deep Output Gap. arXiv Preprint, arXiv:2202.04146. https://doi.org/10.48550/arXiv.2202.04146.
Coulombe, P., Leroux, M., Stevanovic, D. and Surprenant, S. (2022). How Is Machine Learning Useful for Macroeconomic Forecasting? Journal of Applied Econometrics, 37(5), pp. 920â964. https://doi.org/10.1002/jae.2910.
- Ditzen, J. and Ravazzolo, F. (2022). Dominant Drivers of National Inflation. arXiv Preprint, arXiv:2212.05841. https://doi.org/10.48550/arXiv.2212.05841.
Paper not yet in RePEc: Add citation now
- Dorogush, A. V., Ershov, V. and Gulin, A. (2018). CatBoost: Gradient Boosting with Categorical Features Support. arXiv Preprint, arXiv:1810.11363.
Paper not yet in RePEc: Add citation now
- Dzhunkeev: Forecasting Inflation in Russia, pp. 53â76 73 vol. 83 no. 1 Fisher, I. (1973). I Discovered the Phillips Curve: âA Statistical Relationship Between Unemployment and Price Changesâ. Journal of Political Economy, 81(2), Part 1, pp. 496â502. https://doi.org/10.1086/260048.
Paper not yet in RePEc: Add citation now
- Dzhunkeev: Forecasting Inflation in Russia, pp. 53â76 75 vol. 83 no. 1 Nakamura, E. (2005). Inflation Forecasting Using a Neural Network. Economics Letters, 86(3), pp. 373â378. https://doi.org/10.1016/j.econlet.2004.09.003.
Paper not yet in RePEc: Add citation now
- Estrella, A. (2005). Why Does the Yield Curve Predict Output and Inflation? The Economic Journal, 115(505), pp. 722â744. https://doi.org/10.1111/j.1468-0297.2005.01017.x. Faust, J. and Wright, J. (2013). Forecasting Inflation. In: G. Elliott and A. Timmermann, eds. Handbook of Economic Forecasting, Vol. 2, Part A, pp. 2â56. Elsevier.
Paper not yet in RePEc: Add citation now
Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2003). Do Financial Variables Help Forecasting Inflation and Real Activity in the Euro Area? Journal of Monetary Economics, 50(6), pp. 1243â1255. https://doi.org/10.1016/S0304-3932(03)00079-5.
- Freund, Y. and Schapire, R. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55(1), pp. 119â139. https://doi.org/10.1006/jcss.1997.1504.
Paper not yet in RePEc: Add citation now
- Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine.
Paper not yet in RePEc: Add citation now
- Friedman, M. (1968). The Role of Monetary Policy. American Economic Review, 58(1), pp. 1â17.
Paper not yet in RePEc: Add citation now
- Gafarov, B. (2011) Phillips Curve and Development of the Labor Market in Russia. HSE Economic Journal, 15(2), pp. 155â176. [In Russian].
Paper not yet in RePEc: Add citation now
Garcia, M., Medeiros, M. and Vanconcelos, G. (2017). Real-Time Inflation Forecasting with High-Dimensional Models: The Case of Brazil. International Journal of Forecasting, 33(3), pp. 679â693. https://doi.org/10.1016/j.ijforecast.2017.02.002.
Garratt, A., Lee, K., Pesaran, H. and Shin, Y. (2003). Forecast Uncertainties in Macroeconomic Modeling: An Application to the U.K. Economy. Journal of the American Statistical Association, 98(464), pp. 829â838.
- Geerolf, F. (2020). The Phillips Curve: A Relation Between Real Exchange Rate Growth and Unemployment. https://fgeerolf.com/phillips.pdf [accessed on 1 December 2023].
Paper not yet in RePEc: Add citation now
Harding, M., Lindé, J. and Trabandt, M. (2023). Understanding Post-COVID Inflation Dynamics. Journal of Monetary Economics, 140 (Supplement), pp. S101âS118. https://doi.org/10.1016/j.jmoneco.2023.05.012.
- Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), pp. 1735â1780. https://doi.org/10.1162/neco.1997.9.8.1735.
Paper not yet in RePEc: Add citation now
https://doi.org/10.1111/j.1467-937X.2007.00436.x. Kudrin, A. (2007). Inflation: Recent Trends in Russia and in the World. Voprosy Ekonomiki, 10, pp. 4â26. [In Russian]. https://doi.org/10.32609/0042-8736-2007-10-4-26.
Inoue, A. and Kilian, L. (2008). How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation. Journal of the American Statistical Association, 103(482), pp. 511â522. https://doi.org/10.1198/016214507000000473.
- Joseph, A., Potjagailo, G., Kalamara, E., Chakraborty, C. and Kapetanios, G. (2021). Forecasting UK Inflation Bottom Up. Bank of England Staff Working Paper, N 915.
Paper not yet in RePEc: Add citation now
Kapetanios, G., Labhard, V. and Price, S. (2008). Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation. Journal of Business and Economic Statistics, 26(1), pp. 33â41.
- Karpathy, A., Johnson, J. and Fei-Fei, L. (2015). Visualizing and Understanding Recurrent Networks. arXiv Preprint, arXiv:1506.02078. https://doi.org/10.48550/arXiv.1506.02078.
Paper not yet in RePEc: Add citation now
- Ke, G., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. and Liu, T.-Y. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: I. Guyon, U.
Paper not yet in RePEc: Add citation now
- Kingma, D. and Ba, J. (2017). Adam: A Method for Stochastic Optimization. arXiv Preprint, arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980.
Paper not yet in RePEc: Add citation now
- Kinlaw, W., Kritzman, M., Metcalfe, M. and Turkington, D. (2023). The Determinants of Inflation. Journal of Investment Management, 21(3), pp.29â41.
Paper not yet in RePEc: Add citation now
Kiselev, A. and Zhivaykina, A. (2020). The Role of Global Relative Price Changes in International Comovement of Inflation. Journal of Economic Asymmetries, 22, Article e00175. https://doi.org/10.1016/j.jeca.2020.e00175.
- Kohlscheen, E. (2022). What Does Machine Learning Says about the Drivers of Inflation? BIS Working Papers, N 980.
Paper not yet in RePEc: Add citation now
Koop, G. and Korobilis, D. (2012). Forecasting Inflation Using Dynamic Model Averaging. International Economic Review, 53(3), pp. 867â886. https://doi.org/10.1111/j.1468-2354.2012.00704.x. Koop, G. and Potter, S. (2007). Estimation and Forecasting in Models with Multiple Breaks. Review of Economic Studies, 74(3), pp. 763â789.
- Longo, L. and Soltanieh-ha, M. (2023). SHAPoly: A Novel Shapley-Polynomial Framework for Estimating Nonlinear Dynamics in Macroeconomic Data Using Deep Neural Networks. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4350978.
Paper not yet in RePEc: Add citation now
- Lundberg, S., and Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions.
Paper not yet in RePEc: Add citation now
Maheu, J. and Gordon, S. (2008). Learning, Forecasting and Structural Breaks. Journal of Applied Econometrics, 23(5), pp. 553â583. https://doi.org/10.1002/jae.1018.
- Mamedli, M. and Shibitov, D. (2021). Forecasting Russian CPI with Data Vintages and Machine Learning Techniques. Bank of Russia Working Paper Series.
Paper not yet in RePEc: Add citation now
Masini, R., Medeiros, M. and Mendes, E. (2023). Machine Learning Advances for Time Series Forecasting. Journal of Economic Surveys, 37(1), pp. 76â111. https://doi.org/10.1111/joes.12429.
- Medeiros, M., Schutte, E. and Soussi, T. (2023). Global Inflation: Implications for Forecasting and Monetary Policy. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4145665.
Paper not yet in RePEc: Add citation now
Medeiros, M., Vasconcelos, G., Veiga, A. and Zilberman, E. (2019). Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods.
Nagy, E. and Tengey, V. (2018). External and Domestic Drivers of Inflation: The Case Study of Hungary. Russian Journal of Money and Finance, 77(3), pp. 49â64. https://doi.org/10.31477/rjmf.201803.49.
- Orlov, D. and Postnikov, E. (2020). Krivaya Fillipsa: inflyatsiya i NAIRU v rossiyskikh regionakh [Phillips Curve: Inflation and NAIRU in Russian Regions]. Bank of Russia Working Paper Series. [In Russian].
Paper not yet in RePEc: Add citation now
Paranhos, L. (2021). Predicting Inflation with Neural Networks. arXiv Preprint, arXiv:2104.03757. https://doi.org/10.48550/arXiv.2104.03757.
Pavlov, E. (2020). Forecasting Inflation in Russia Using Neural Networks. Russian Journal of Money and Finance, 79(1), pp. 57â73. https://doi.org/10.31477/rjmf.202001.57.
- Perevyshin, Y. (2022). Short-Term Inflation Forecasting in the Russian Economy.
Paper not yet in RePEc: Add citation now
Phelps, E. (1968). Money-Wage Dynamics and Labor-Market Equilibrium. Journal of Political Economy, 76(4), pp. 678â711. https://doi.org/10.1086/259438.
- Phillips, A. (1958). The Relation Between Unemployment and the Rate of Change of Money Rates in the United Kingdom, 1861â1957. Economica, 25(100), pp. 283â299. https://doi.org/10.2307/2550759.
Paper not yet in RePEc: Add citation now
Ponomarev, Y., Trunin, P. and Ulyukayev, A. (2014). Exchange Rate Pass-Through in Russia. Voprosy Ekonomiki, 3, pp. 21â35. [In Russian]. https://doi.org/10.32609/0042-8736-2014-3-21-35.
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. and Gulin, A. (2018). CatBoost: Unbiased Boosting with Categorical Features. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPSâ18), pp. 6639â6649. Curran Associates Inc.
Paper not yet in RePEc: Add citation now
- Russian Journal of Money and Finance 72 march 2024 Banbura, M. and Bobeica, E. (2023). Does the Phillips Curve help to Forecast Euro Area Inflation? International Journal of Forecasting, 39(1), pp. 364â390. https://doi.org/10.1016/j.ijforecast.2021.12.001.
Paper not yet in RePEc: Add citation now
- Russian Journal of Money and Finance 74 march 2024 Khabibullin, R. (2019). What Measures of Real Economic Activity Slack are Helpful for Forecasting Russian Inflation? Bank of Russia Working Paper Series, N 50. [In Russian].
Paper not yet in RePEc: Add citation now
- Russian Journal of Money and Finance 76 march 2024 Stock, J. and Watson, M. (2007). Why Has U.S. Inflation Become Harder to Forecast? Journal of Money, Credit and Banking, 39(s1), pp. 3â33. https://doi.org/10.1111/j.1538-4616.2007.00014.x. Stock, J. and Watson, M. (2008). Phillips Curve Inflation Forecasts. NBER Working Paper, N 14322.
Paper not yet in RePEc: Add citation now
- Saul, S. (2021). Do Global Output Gaps Help Forecast Inflation in Russia? Bank of Russia Working Paper Series, N 85.
Paper not yet in RePEc: Add citation now
Semiturkin, O. and Shevelev, A. (2023). Correct Comparison of Predictive Features of Machine Learning Methods: The Case of Forecasting Inflation Rates in Siberia. Russian Journal of Money and Finance, 82(1), pp. 87â103.
Shulyak, E. (2022). Macroeconomic Forecasting Using Data from Social Media. Russian Journal of Money and Finance, 81(4), pp. 86â112.
- Sims, C. (2010). Stepping on a Rake: The Role of Fiscal Policy in the Inflation of the 1970s. European Economic Review, 55(1), pp. 48â56. https://doi.org/10.1016/j.euroecorev.2010.11.010.
Paper not yet in RePEc: Add citation now
Sinyakov, A., Chernyadyev, D. and Sapova, A. (2019). Estimating the Exchange Rate Pass-Through Effect on Producer Prices of Final Products Based on Micro-Data of Russian Companies. Journal of the New Economic Association, 1(41), pp. 128â157.
- Stella, A. and Stock, J. (2012). A State-Dependent Model for Inflation Forecasting. Board of Governors of the Federal Reserve System International Finance Discussion Papers, N 1062.
Paper not yet in RePEc: Add citation now
Stock, J. and Watson, M. (1999). Forecasting Inflation. Journal of Monetary Economics, 44(2), pp. 293â335. https://doi.org/10.1016/S0304-3932(99)00027-6.
Stock, J. and Watson, M. (2003). Forecasting Output and Inflation: The Role of Asset Prices. Journal of Economic Literature, 41(3), pp. 788â829. https://doi.org/10.1257/002205103322436197.
Stock, J. and Watson, M. (2010). Modeling Inflation After the Crisis. NBER Working Paper, N 16488.
Styrin, K. (2019). Forecasting Inflation in Russia by Dynamic Model Averaging. Russian Journal of Money and Finance, 78(1), pp. 3â18. https://doi.org/10.31477/rjmf.201901.03.
Styrin, K. and Zamulin, O. (2012). A Real Exchange Rate Based Phillips Curve. CEFIR / NES Working Paper Series, N 179.
- Svensson, L. (2010). Inflation Targeting. In: B. Friedman and M. Woodford, eds.
Paper not yet in RePEc: Add citation now
Szafranek, K. (2019). Bagged Neural Networks for Forecasting Polish (Low) Inflation.
- Tretyakov, D. and Fokin, N. (2021). Does the High-Frequency Data is Helpful for Forecasting Russian inflation? St Petersburg University Journal of Economic Studies, 37(2), pp. 318â343.
Paper not yet in RePEc: Add citation now
- Van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A. and Kavukcuoglu, K. (2016). WaveNet: A Generative Model for Raw Audio. arXiv Preprint, arXiv:1609.03499.
Paper not yet in RePEc: Add citation now
- von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett, eds. Advances in Neural Information Processing Systems, Vol. 30 (Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, USA), pp. 3149â3157.
Paper not yet in RePEc: Add citation now
Zeng, J. (2017). Forecasting Aggregates with Disaggregate Variables: Does Boosting Help to Select the Most Relevant Predictors? Journal of Forecasting, 36(1), pp. 74â90. https://doi.org/10.1002/for.2415.