- Aghabozorgi, S., A. S. Shirkhorshidi, and T. Y. Wah (2015). Time-series clusteringâa decade review. Information systems 53, 16â38.
Paper not yet in RePEc: Add citation now
Andersen, T. G., T. Bollerslev, and F. X. Diebold (2007). Roughing it up: Including jump components in the measurement, modeling and forecasting of return volatility. Review of Economics and Statistics 89, 701â720.
- Andersen, T. G., T. Bollerslev, and F. X. Diebold (2010). Parametric and nonparametric volatility measurement. In Handbook of �nancial econometrics: Tools and techniques, pp. 67â137. Elsevier.
Paper not yet in RePEc: Add citation now
Andersen, T. G., T. Bollerslev, F. X. Diebold, and C. Vega (2007). Real-time price discovery in global stock, bond and foreign exchange markets. Journal of International Economics 73(2), 251â277.
- Anderson, T. G., T. Bollerslev, F. X. Diebold, and C. Vega (2003). Micro e�ects of macro announcements: Real-time price discovery in foreign exchange. American Economic Review 93(1), 38â62.
Paper not yet in RePEc: Add citation now
- Barndor�-Nielsen, O. and N. Shephard (2004a). Power and bipower variation with stochastic volatility and jumps (with discussion). Journal of Financial Econometrics 2, 1â48.
Paper not yet in RePEc: Add citation now
- Barndor�-Nielsen, O. E. and N. Shephard (2004b). How accurate is the asymptotic approximation to the distribution of realized variance. Identi�cation and inference for econometric models. A Festschri� in honour of TJ Rothenberg, 306â311.
Paper not yet in RePEc: Add citation now
Barndor�-Nielsen, O. E. and N. Shephard (2006). Econometrics of testing for jumps in �nancial economics using bipower variation. Journal of Financial Econometrics 4, 1â30.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307â327.
- Bom�m, A. N. (2003). Pre-announcement e�ects, news e�ects, and volatility: monetary policy and the stock market. Journal of Banking & Finance 27(1), 133â151.
Paper not yet in RePEc: Add citation now
- Brownlees, C. T. and G. M. Gallo (2006). Financial econometric analysis at ultraâhigh frequency: Data handling concerns. Computational Statistics and Data Analysis 51, 2232â2245.
Paper not yet in RePEc: Add citation now
- Brownlees, C. T., F. Cipollini, and G. M. Gallo (2012). Multiplicative error models. In L. Bauwens, C. Hafner, and S. Laurent (Eds.), Volatility Models and �eir Applications, pp. 223â247. Wiley.
Paper not yet in RePEc: Add citation now
Busch, T., B. J. Christensen, and M. Ã. Nielsen (2011). �e role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets. Journal of Econometrics 160(1), 48â57.
- Caiado, J. and N. Crato (2007). A GARCH-based method for clustering of �nancial time series: International stock markets evidence. In Recent advances in stochastic modeling and data analysis, pp. 542â551. World Scienti�c.
Paper not yet in RePEc: Add citation now
- Caporin, M., E. Rossi, and P. Santucci De Magistris (2017). Chasing volatility: a persistent multiplicative error model with jumps. Journal of Econometrics 198, 122â145.
Paper not yet in RePEc: Add citation now
- Cipollini, F. and G. M. Gallo (2022, may). Multiplicative error models: 20 years on. Econometrics and Statistics.
Paper not yet in RePEc: Add citation now
Cipollini, F., G. M. Gallo, and A. Palandri (2020). Realized variance modeling: decoupling forecasting from estimation. Journal of Financial Econometrics 18(3), 532â555.
Cipollini, F., G. M. Gallo, and E. Otranto (2021). Realized volatility forecasting: Robustness to measurement errors. International Journal of Forecasting 37(1), 44 â 57.
Cipollini, F., R. F. Engle, and G. M. Gallo (2013). Semiparametric vector MEM. Journal of Applied Econometrics 28, 1067â1086.
Cukierman, A. (1986). Central bank behavior and credibility: some recent theoretical developments. Federal Reserve Bank of St. Louis Review 68(5), 5â17.
- De Luca, G. and P. Zuccolo�o (2011). A tail dependence-based dissimilarity measure for �nancial time series clustering. Advances in data analysis and classi�cation 5, 323â340.
Paper not yet in RePEc: Add citation now
- De�e, H., V. Golosnoy, and J. Kellermann (2022). �e e�ect of intraday periodicity on realized volatility measures. Metrika, 1â28.
Paper not yet in RePEc: Add citation now
Engle, R. F. (2002). New frontiers for ARCH models. Journal of Applied Econometrics 17, 425â446.
Engle, R. F. and G. J. Lee (1999). A permanent and transitory component model of stock return volatility. In R. F. Engle and H. White (Eds.), Cointegration, Causality, and Forecasting: A Festschri� in Honor of Clive W. J. Granger, pp. 475â497. Oxford University Press, Oxford.
Engle, R. F. and G. M. Gallo (2006). A multiple indicators model for volatility using intra-daily data. Journal of Econometrics 131, 3â27.
Engle, R. F. and J. R. Russell (1998). Autoregressive conditional duration: A new model for irregularly spaced transaction data. Econometrica 66, 1127â62.
Forsberg, L. and E. Ghysels (2007). Why do absolute returns predict volatility so well? Journal of Financial Econometrics 5, 31â67.
- Gallo, G. M., D. Lacava, and E. Otranto (2021). On classifying the e�ects of policy announcements on volatility. International Journal of Approximate Reasoning 134, 23â33.
Paper not yet in RePEc: Add citation now
Ha�ori, M., A. Schrimpf, and V. Sushko (2016, April). �e response of tail risk perceptions to unconventional monetary policy. American Economic Journal: Macroeconomics 8(2), 111â36.
Huang, X. and G. Tauchen (2005). �e relative contribution of jumps to total price variance. Journal of �nancial econometrics 3(4), 456â499.
Hubert, L. and P. Arabie (1985). Comparing partitions. Journal of classi�cation 2, 193â218.
Johannes, M. (2004). �e statistical and economic role of jumps in continuous-time interest rate models. �e Journal of Finance 59(1), 227â260.
- Joyce, M., A. Lasaosa, I. Stevens, M. Tong, et al. (2011). �e �nancial market impact of quantitative easing in the UK. International Journal of Central Banking 7(3), 113â161.
Paper not yet in RePEc: Add citation now
- Liao, T. W. (2005). Clustering of time series dataâa survey. Pa�ern recognition 38(11), 1857â1874.
Paper not yet in RePEc: Add citation now
Liu, L. Y., A. J. Pa�on, and K. Sheppard (2015). Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics 187(1), 293â311.
- Maharaj, E. A., P. DâUrso, and J. Caiado (2019). Time series clustering and classi�cation. Chapman and Hall/CRC.
Paper not yet in RePEc: Add citation now
McAleer, M. and M. Medeiros (2008). A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries. Journal of Econometrics 147, 104â119.
Otranto, E. (2008). Clustering heteroskedastic time series by model-based procedures. Computational Statistics & Data Analysis 52(10), 4685â4698.
Otranto, E. (2015). Capturing the spillover e�ect with multiplicative error models. Communications in Statistics-�eory and Methods 44(15), 3173â3191.
Pa�on, A. J. and K. Sheppard (2015). Good volatility, bad volatility: Signed jumps and the persistence of volatility. Review of Economics and Statistics 97(3), 683â697.
- Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association 66(336), 846â850.
Paper not yet in RePEc: Add citation now
- White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48(4), 817â38.
Paper not yet in RePEc: Add citation now