- : (B.2) Proof. Let ^ f (i) Y (y) for i = 1; 2 be the ith derivative of the kernel marginal density estimator. Using standard methods for kernel estimators (c.f. Robinson, 1983), we obtain under the assumptions of the lemma that, as n ! 1; h ! 0, and nh1+2i ! 1, p nh1+2i ^ f (i) Y (y) f (i) Y (y) h2 2f (i+2) Y (y) !d N (0; Vi (y)) (B.3) where Vi (y) = fY (y) R
Paper not yet in RePEc: Add citation now
- Aït-Sahalia, Y., 1996a. Nonparametric pricing of interest rate derivatives. Econometrica 64, 527560. Aït-Sahalia, Y., 1996b. Testing continuous-time models of the spot interest rate. Review of Financial Studies 9, 385-426.
Paper not yet in RePEc: Add citation now
- Aït-Sahalia, Y., 2002. Maximum likelihood estimation of discretely sampled diusions: a closedform approximation Approach. Econometrica 70, 223-262.
Paper not yet in RePEc: Add citation now
- Aït-Sahalia, Y., Fan, J., Peng, H., 2009. Nonparametric transition-based tests for jump-diusions.
Paper not yet in RePEc: Add citation now
Aït-Sahalia, Y., R. Kimmel., 2007. Maximum likelihood estimation of stochastic volatility models. Journal of Financial Economics 83, 413-452.
Bandi, F.M., Phillips, P.C.B., 2003, Fully nonparametric estimation of scalar diusion models. Econometrica, 71, 241-283.
Beare, B.K., 2010. Copulas and temporal dependence. Econometrica 78, 395-410.
- Bladt, M., Sørensen, M., 2014. Simple simulation of diusion bridges with application to likelihood inference for diusions. Bernoulli 20, 645-675.
Paper not yet in RePEc: Add citation now
- Bu, R., Cheng, J., Hadri, K., 2017. Speci…cation analysis in regime-switching continuous-time diusion models for market volatility. Studies in Nonlinear Dynamics and Econometrics 21(1), 65-80.
Paper not yet in RePEc: Add citation now
- Bu, R., Fredj, J., Li, Y., 2017. An empirical comparison of transformed diusion models for VIX and VIX futures. Journal of International Financial Markets, Institutions and Money 46, 116-127.
Paper not yet in RePEc: Add citation now
Bu, R., Giet, L., Hadri, K., Lubrano, M., 2011. Modelling multivariate interest rates using timevarying copulas and reducible non-linear stochastic dierential equations. Journal of Financial Econometrics 9, 198-236.
Chen, X., Fan, Y., 2006. Estimation of copula-based semiparametric time series models. Journal of Econometrics 130, 307-335.
Chen, X., Hansen, L.P., Carrasco, M., 2010. Nonlinearity and temporal dependence. Journal of Econometrics 155, 155-169.
Chen, X., Hansen, L.P., Scheinkman, J., 2009. Nonlinear principal components and long run implications of multivariate diusions. Annals of Statistics 37, 4279-4312.
Chen, X., Wu, W.B., Yi, Y., 2009. E cient estimation of copula-based semiparametric Markov models. Annals of Statistics 37, 4214-4253.
Choi, S., 2009. Regime-switching univariate diusion models of the short-term interest rate. Studies in Nonlinear Dynamics and Econometrics 13(1), Article 4.
Conley, T., Hansen, L., Luttmer, E., Scheinkman, J., 1997. Short-term interest rates as subordinated diusions. Review of Financial Studies 10, 525-577.
Cox, J., Ingersoll, J., Ross, S., 1985. In intertemporal general equilibrium model of asset prices. Econometrica 53, 363-384.
Eraker, B., Wang, J., 2015. A non-linear dynamic model of the variance risk premium, Journal of Econometrics 187, 547-556.
Fermanian, J.D., 2005. Goodness-of-…t tests for copulas. Journal of Multivariate Analysis 95, 119152.
Florens, J.P., Renault, E., Touzi, N., 1998. Testing embeddability by stationary reversible continuous-time Markov processes. Econometric Theory 14, 744-769.
- Forman, J.L., Sørensen, M., 2014. A transformation approach to modelling multi-modal diusions. Journal of Statistical Planning and Inference 146, 56-69.
Paper not yet in RePEc: Add citation now
- fX (U (y) ; 0) p nh ^ fY (y) fY (y) h2 2f (2) Y (y) + oP (1) : Using (B.3) and the same arguments as in Kristensen (2011, Proof of Theorem 1), we arrive at (B.1). Meanwhile, from (4.3) we have ^ U00 (y) = ^ f0 Y (y) fX( ^ U (y) ; ^) f0 X( ^ U (y) ; ^) ^ fY (y)2 fX( ^ U (y) ; ^)3 : De…ne ~ U00 (y) = ^ f0 Y (y) fX (U (y) ; 0) f0 X (U (y) ; 0) fY (y)2 fX (U (y) ; 0)3 ; and a similar argument leads to p nh3 ^ U00 (y) U00 (y) h2 2f (3) Y (y) fX (U (y) ; 0) = p nh3 ~ U00 (y) U00 (y) h2 2f (3) Y (y) fX (U (y) ; 0) + op (1) = fX (U (y) ; 0) p nh3 f0 Y (y) f0 Y (y) h2 2f (3) Y (y) + op (1) which together with (B.3) yield (B.2).
Paper not yet in RePEc: Add citation now
- Genest, C., Rémillard, B., 2008. Validity of the parametric bootstrap for goodness-of-…t testing in semiparametric models. Annales de l’ Institut Henri Poincaré, Probabilités et Statistiques 44, 1096-1127.
Paper not yet in RePEc: Add citation now
- Gobet, E., Homann, M., Reiß , M., 2004. Nonparametric estimation of scalar diusions based on low frequency data. Annals of Statistics 32, 2223-2253.
Paper not yet in RePEc: Add citation now
Hansen, B., 1994. Autoregressive conditional density estimation. International Economic Review 35, 705-730.
Hansen, L.P., Scheinkman, J., Touzi, N., 1998. Spectral methods for identifying scalar diusions. Journal of Econometrics 86, 1-32.
Hong, Y., Li, H., 2005. Nonparametric speci…cation testing for continuous-time models with application to spot interest rates. Review of Financial Studies 18, 37-84.
Jiang, G., Knight, J., 1997. A nonparametric approach to the estimation of diusion processes with an application to a short-term interest rate model. Econometric Theory 13, 615-645.
- Joe, H., 1997. Multivariate Models and Dependence Concepts. Chapman & Hall, London.
Paper not yet in RePEc: Add citation now
Jondeau, E., Rockinger, M., 2006. The copula-GARCH model of conditional dependencies - an international stock application. Journal of International Money and Finance, 25, 827-853.
- Kanaya, S., 2008. Non-parametric speci…cation testing for continuous-time Markov processes: Do the processes follow diusions? Manuscript. Oxford University.
Paper not yet in RePEc: Add citation now
- Karatzas, I., Shreve, S., 1991. Brownian Motion and Stochastic Calculus, 2nd ed. Springer-Verlag, New York.
Paper not yet in RePEc: Add citation now
- Kessler, M., Sørensen, M., 1999. Estimating equations based on eigenfunctions for a discretely observed diusion process. Bernoulli 5, 299-314.
Paper not yet in RePEc: Add citation now
Kristensen, D., 2010. Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models. Journal of Econometrics 156, 239-259.
Kristensen, D., 2011. Semi-nonparametric estimation and misspeci…cation testing of diusion models. Journal of Econometrics 164, 382-403.
Kristensen, D., Shin, Y., 2012. Estimation of dynamic models with nonparametric simulated maximum likelihood. Journal of Econometrics 167, 76-94.
- Li, C., 2013. Maximum-likelihood estimation for diusion processes via closed-form density expansions, Annals of Statistics 41, 1350-1380.
Paper not yet in RePEc: Add citation now
- McKean, H.P., 1969. Stochastic Integrals. Academic Press. New York.
Paper not yet in RePEc: Add citation now
- Newey, W.K., McFadden, D., 1994. Large sample estimation and hypothesis testing. In: Engle, R.F., McFadden, D. (Eds.), Handbook of Econometrics, vol. 4. North-Holland, Amsterdam (chapter 36).
Paper not yet in RePEc: Add citation now
Patton, A., 2004. On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. Journal of Financial Econometrics 2, 130-168.
Pritsker, M., 1998. Nonparametric density estimation of tests of continuous time interest rate models. Review of Financial Studies 11, 449-487.
- Proof of Theorem 4.1. We …rst note that the PMLE takes the same form as the one analyzed in Chen and Fan (2006) with the general copula considered in their work satisfying eq. (2.13). The desired result will follow if we can verify that the conditions stated in their proof are satis…ed by our assumptions: First, by Assumptions 2.1, the discrete sample fXi : i = 0; 1; : : : ; ng generated by the UPD X is …rst-order Markovian and has absolutely continuous marginal distribution FX (x; ), marginal density fX (x; ) and transition density pX (xjx0; ) with respect to the Lebesgue measure. Hence, the copula density cX (u0; u; ) in (2.13) implied by X is absolutely continuous with respect to the Lebesgue measure on [0; 1]2 due to its continuity in FX (x; ), fX (x; ) and pX (xjx0; ).
Paper not yet in RePEc: Add citation now
- R K(i) (z)2 dz. Assumptions 2.1 and 4.4 ensure that fY (y) is su ciently smooth so that f (2) Y (y) and f (3) Y (y) exist. Assumption 4.2(i) and 4.6 regulate the mixing property of Y and the kernel function, respectively, as required by Robinson (1983). From (4.2) we have ^ U0 (y) = ^ fY (y) =fX( ^ U (y) ; ^). Now de…ne ~ U0 (y) = ^ fY (y) =fX(U (y) ; 0) and note that Assumption 4.4 and 4.5 together with the delta-method implies ^ U0 (y) ~ U0 (y) = OP (1= p n) =oP (1= p nh). It then follows that p nh ^ U0 (y) U0 (y) h2 2f (2) Y (y) fX (U (y) ; 0) = p nh ^ U0 (y) ~ U0 (y) + ~ U0 (y) U0 (y) h2 2f (2) Y (y) fX (U (y) ; 0) = p nh oP 1= p nh + ~ U0 (y) U0 (y) h2 2f (2) Y (y) fX (U (y) ; 0) = p nh ~ U0 (y) U0 (y) h2 2f (2) Y (y) fX (U (y) ; 0) + oP (1) =
Paper not yet in RePEc: Add citation now
Robinson, P., 1983. Nonparametric estimators for time series. Journal of Time Series Analysis 4, 185-207.
- Silverman, B.W., 1986. Density estimation for statistics and data analysis. Chapman and Hall, London.
Paper not yet in RePEc: Add citation now
Stanton, R., 1997. A nonparametric model of term structure dynamics and the market price of interest rate risk. Journal of Finance 52, 1973-2002.