dbo:abstract
|
- In logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case. Branching quantification first appeared in a 1959 conference paper of Leon Henkin. Systems of partially ordered quantification are intermediate in strength between first-order logic and second-order logic. They are being used as a basis for Hintikka's and Gabriel Sandu's independence-friendly logic. (en)
- Kwantyfikator rozgałęziony (inaczej kwantyfikator Henkina) – zbiór częściowo uporządkowany gdzie dla W rachunku predykatów prefiks kwantyfikatorowy jest liniowym porządkiem, tzn. w formule wartość zmiennej wiązanej przez kwantyfikator zależy od wartości zmiennych wiązanych przez kwantyfikatory W formule z kwantyfikatorem rozgałęzionym może być inaczej. (pl)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9105 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- Kwantyfikator rozgałęziony (inaczej kwantyfikator Henkina) – zbiór częściowo uporządkowany gdzie dla W rachunku predykatów prefiks kwantyfikatorowy jest liniowym porządkiem, tzn. w formule wartość zmiennej wiązanej przez kwantyfikator zależy od wartości zmiennych wiązanych przez kwantyfikatory W formule z kwantyfikatorem rozgałęzionym może być inaczej. (pl)
- In logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case. (en)
|
rdfs:label
|
- Branching quantifier (en)
- Kwantyfikator rozgałęziony (pl)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |