dbo:abstract
|
- In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation. (en)
- Eine (mathematische) Kategorie heißt kartesisch abgeschlossen, wenn – grob ausgedrückt – die Morphismenmengen wieder Objekten der Kategorie entsprechen. (de)
- En teoría de categorías, una categoría es cartesiana cerrada si existen en ella un objeto final, todos los productos binarios y un objeto exponencial. Son especialmente importantes importantes en lógica matemática y en la teoría de los lenguajes de programación, en tanto que el lenguaje interno de las categorías cartesianas cerradas es el cálculo lambda simplemente tipado. Las categorías monoidales cerradas son una generalización, y su lenguaje interno es útil para modelar tanto la computación cuántica como la clásica. (es)
- Une catégorie cartésienne est, en mathématiques — et plus précisément en théorie des catégories — une catégorie munie d'un objet terminal et du produit binaire. Dans une catégorie cartésienne, la notion de morphisme entre morphismes n'a pas encore de sens. C'est pourquoi l'on définit l'exponentiation, c'est-à-dire l'objet BA qui représente l'« ensemble » des morphismes de A dans B. Munie de cette propriété de clôture qu'est l'exponentiation, une catégorie cartésienne devient une catégorie cartésienne fermée. (fr)
- 범주론에서 데카르트 닫힌 범주(Descartes닫힌範疇, 영어: Cartesian closed category, 약자 CCC)는 사상 집합을 대상으로 간주할 수 있어, 정의역이 곱 대상인 사상을, 사상 집합을 공역으로 갖는 사상으로 치환할 수 있는 범주이다. (ko)
- 圏論において、圏がデカルト閉(デカルトへい、英語: cartesian closed)であるとは、大雑把に言えば任意の二つの対象の直積上で定義される射が直積因子の一方で定義される射と自然に同一視できることである。デカルト閉な圏はラムダ計算の自然な設定ができるという点で数理論理学およびプログラミングの理論において特に重要である。デカルト閉圏の概念はモノイド圏に一般化される(モノイド閉圏を参照)。 (ja)
- Декартово замкнутая категория — категория, допускающая каррирование, то есть содержащая для каждого класса морфизмов некоторый объект , представляющий его. Декартово замкнутые категории занимают в некотором смысле промежуточное положение между абстрактными категориями и множествами, так как позволяют корректно оперировать с функциями, но не позволяют, к примеру, оперировать с подобъектами. С точки зрения программирования декартово замкнутые категории реализуют инкапсуляцию аргументов функций — каждый аргумент представляется объектом категории и используется как чёрный ящик. Вместе с тем выразительности декартово замкнутых категорий вполне достаточно, чтобы оперировать с функциями способом, принятым в λ-исчислении. Это делает их естественными категорными моделями типизированного λ-исчисления. (ru)
- 在范畴论中,如果任何积的态射都可通过其某个因子的态射来自然确定,那么称该范畴具有笛卡儿闭性。此类范畴在数理逻辑和程序设计理论中尤为重要。 (zh)
- Декартово замкнуті категорії — тип категорій у математиці у яких, грубо кажучи, кожен морфізм заданий на добутку двох об'єктів можна природно ідентифікувати із морфізмом на одному із множників. Декартово замкнуті категорії особливо широко використовуються у математичній логіці і програмуванні. З точки зору програмування декартово замкнуті категорії реалізують інкапсуляції аргументів функцій — кожен аргумент представляється об'єктом категорії і використовується як чорний ящик. Разом з тим виразності декартово замкнутих категорій цілком достатньо, щоб оперувати з функціями способом, прийнятим в λ-численні. Це робить їх природними категорного моделями типізованого λ-числення. (uk)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 17786 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:id
|
- cartesian+closed+category (en)
|
dbp:title
|
- Cartesian closed category (en)
|
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by closed monoidal categories, whose internal language, linear type systems, are suitable for both quantum and classical computation. (en)
- Eine (mathematische) Kategorie heißt kartesisch abgeschlossen, wenn – grob ausgedrückt – die Morphismenmengen wieder Objekten der Kategorie entsprechen. (de)
- En teoría de categorías, una categoría es cartesiana cerrada si existen en ella un objeto final, todos los productos binarios y un objeto exponencial. Son especialmente importantes importantes en lógica matemática y en la teoría de los lenguajes de programación, en tanto que el lenguaje interno de las categorías cartesianas cerradas es el cálculo lambda simplemente tipado. Las categorías monoidales cerradas son una generalización, y su lenguaje interno es útil para modelar tanto la computación cuántica como la clásica. (es)
- Une catégorie cartésienne est, en mathématiques — et plus précisément en théorie des catégories — une catégorie munie d'un objet terminal et du produit binaire. Dans une catégorie cartésienne, la notion de morphisme entre morphismes n'a pas encore de sens. C'est pourquoi l'on définit l'exponentiation, c'est-à-dire l'objet BA qui représente l'« ensemble » des morphismes de A dans B. Munie de cette propriété de clôture qu'est l'exponentiation, une catégorie cartésienne devient une catégorie cartésienne fermée. (fr)
- 범주론에서 데카르트 닫힌 범주(Descartes닫힌範疇, 영어: Cartesian closed category, 약자 CCC)는 사상 집합을 대상으로 간주할 수 있어, 정의역이 곱 대상인 사상을, 사상 집합을 공역으로 갖는 사상으로 치환할 수 있는 범주이다. (ko)
- 圏論において、圏がデカルト閉(デカルトへい、英語: cartesian closed)であるとは、大雑把に言えば任意の二つの対象の直積上で定義される射が直積因子の一方で定義される射と自然に同一視できることである。デカルト閉な圏はラムダ計算の自然な設定ができるという点で数理論理学およびプログラミングの理論において特に重要である。デカルト閉圏の概念はモノイド圏に一般化される(モノイド閉圏を参照)。 (ja)
- 在范畴论中,如果任何积的态射都可通过其某个因子的态射来自然确定,那么称该范畴具有笛卡儿闭性。此类范畴在数理逻辑和程序设计理论中尤为重要。 (zh)
- Декартово замкнутая категория — категория, допускающая каррирование, то есть содержащая для каждого класса морфизмов некоторый объект , представляющий его. Декартово замкнутые категории занимают в некотором смысле промежуточное положение между абстрактными категориями и множествами, так как позволяют корректно оперировать с функциями, но не позволяют, к примеру, оперировать с подобъектами. (ru)
- Декартово замкнуті категорії — тип категорій у математиці у яких, грубо кажучи, кожен морфізм заданий на добутку двох об'єктів можна природно ідентифікувати із морфізмом на одному із множників. Декартово замкнуті категорії особливо широко використовуються у математичній логіці і програмуванні. (uk)
|
rdfs:label
|
- Cartesian closed category (en)
- Kartesisch abgeschlossene Kategorie (de)
- Categoría cartesiana cerrada (es)
- Catégorie cartésienne (fr)
- デカルト閉圏 (ja)
- 데카르트 닫힌 범주 (ko)
- Декартово замкнутая категория (ru)
- 笛卡儿闭范畴 (zh)
- Декартово замкнута категорія (uk)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |