Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the conductor-discriminant formula or Führerdiskriminantenproduktformel, introduced by Hasse for abelian extensions and by Artin for Galois extensions, is a formula calculating the relative discriminant of a finite Galois extension of local or global fields from the Artin conductors of the irreducible characters of the Galois group .

Property Value
dbo:abstract
  • In mathematics, the conductor-discriminant formula or Führerdiskriminantenproduktformel, introduced by Hasse for abelian extensions and by Artin for Galois extensions, is a formula calculating the relative discriminant of a finite Galois extension of local or global fields from the Artin conductors of the irreducible characters of the Galois group . (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21145474 (xsd:integer)
dbo:wikiPageLength
  • 4105 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1107543512 (xsd:integer)
dbo:wikiPageWikiLink
dbp:authorlink
  • Helmut Hasse (en)
dbp:last
  • Hasse (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 1926 (xsd:integer)
  • 1930 (xsd:integer)
dct:subject
rdfs:comment
  • In mathematics, the conductor-discriminant formula or Führerdiskriminantenproduktformel, introduced by Hasse for abelian extensions and by Artin for Galois extensions, is a formula calculating the relative discriminant of a finite Galois extension of local or global fields from the Artin conductors of the irreducible characters of the Galois group . (en)
rdfs:label
  • Conductor-discriminant formula (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License