Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In applied mathematics, the Ostrogradsky instability is a feature of some solutions of theories having equations of motion with more than two time derivatives (higher-derivative theories). It is suggested by a theorem of Mikhail Ostrogradsky in classical mechanics according to which a non-degenerate Lagrangian dependent on time derivatives higher than the first corresponds to a Hamiltonian unbounded from below. As usual, the Hamiltonian is associated with the Lagrangian via a Legendre transform. The Ostrogradsky instability has been proposed as an explanation as to why no differential equations of higher order than two appear to describe physical phenomena.However, Ostrogradsky's theorem does not imply that all solutions of higher-derivative theories are unstable as many counterexamples ar

Property Value
dbo:abstract
  • In applied mathematics, the Ostrogradsky instability is a feature of some solutions of theories having equations of motion with more than two time derivatives (higher-derivative theories). It is suggested by a theorem of Mikhail Ostrogradsky in classical mechanics according to which a non-degenerate Lagrangian dependent on time derivatives higher than the first corresponds to a Hamiltonian unbounded from below. As usual, the Hamiltonian is associated with the Lagrangian via a Legendre transform. The Ostrogradsky instability has been proposed as an explanation as to why no differential equations of higher order than two appear to describe physical phenomena.However, Ostrogradsky's theorem does not imply that all solutions of higher-derivative theories are unstable as many counterexamples are known. (en)
  • オストログラドスキーの定理 (オストログラドスキーのていり、theorem of Ostrogradsky) とは、の高階微分を運動方程式に含む物理系のハミルトニアンが下に非有界となることを述べる定理である。1850年にミハイル・オストログラドスキーにより証明された。この定理は、運動方程式に高階微分項が含まれる系には一定の条件を満足する場合を除き物理的に不安定なモードが存在するため、そのような系は物理的ではないことを示している。2007年の Woodard の講義録で紹介されたことにより修正重力理論および宇宙論の文脈でこの定理への関心が高まった。 (ja)
dbo:wikiPageID
  • 44481226 (xsd:integer)
dbo:wikiPageLength
  • 7360 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117663325 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • オストログラドスキーの定理 (オストログラドスキーのていり、theorem of Ostrogradsky) とは、の高階微分を運動方程式に含む物理系のハミルトニアンが下に非有界となることを述べる定理である。1850年にミハイル・オストログラドスキーにより証明された。この定理は、運動方程式に高階微分項が含まれる系には一定の条件を満足する場合を除き物理的に不安定なモードが存在するため、そのような系は物理的ではないことを示している。2007年の Woodard の講義録で紹介されたことにより修正重力理論および宇宙論の文脈でこの定理への関心が高まった。 (ja)
  • In applied mathematics, the Ostrogradsky instability is a feature of some solutions of theories having equations of motion with more than two time derivatives (higher-derivative theories). It is suggested by a theorem of Mikhail Ostrogradsky in classical mechanics according to which a non-degenerate Lagrangian dependent on time derivatives higher than the first corresponds to a Hamiltonian unbounded from below. As usual, the Hamiltonian is associated with the Lagrangian via a Legendre transform. The Ostrogradsky instability has been proposed as an explanation as to why no differential equations of higher order than two appear to describe physical phenomena.However, Ostrogradsky's theorem does not imply that all solutions of higher-derivative theories are unstable as many counterexamples ar (en)
rdfs:label
  • オストログラドスキーの定理 (ja)
  • Ostrogradsky instability (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License