Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians: These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision.

Property Value
dbo:abstract
  • Unter der Kleinwinkelnäherung wird die mathematische Näherung verstanden, bei der angenommen wird, der Winkel sei so hinreichend klein, dass man seinen Sinus oder Tangens durch den Winkel selbst (in Radiant) und den Kosinus durch ersetzen kann: (de)
  • La aproximación para ángulos pequeños es una simplificación conveniente de las leyes trigonométricas que tiene una precisión aceptable cuando el ángulo tiende a cero. Surge de la linealización de las funciones trigonométricas, que se puede entender como un truncamiento de las correspondientes series de Taylor. Para un ángulo especificado en radianes: , ó , aproximación de segundo orden El error para sen x ≈ x es de 1% alrededor de los 14 grados sexagesimales (0,244 radianes). La aproximación para ángulos pequeños es empleada para abreviar cálculos de electromagnetismo, óptica (ver: aproximación paraxial), cartografía y astronomía.​​ (es)
  • Pada optika geometris, pendekatan paraksial (en:paraxial approximation, small angle approximation) adalah sebuah pendekatan yang dipergunakan dalam penelusuran sinar (en:ray tracing) cahaya pada suatu . Sebuah sinar paraksial akan membuat sudut (θ) yang sangat kecil terhadap sumbu optis. Hal ini memungkinkan tiga pendekatan (untuk θ dalam radian) perhitungan arah rambat sinar: (in)
  • The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians: These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision. There are a number of ways to demonstrate the validity of the small-angle approximations. The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation, is approximated as either or as . (en)
  • 작은 각도 근사(small-angle approximation)는 삼각함수의 값이 0에 가까워질 때 성립할 수 있는 근사이다. 이때 의 단위는 라디안. 작은 각도 근사는 역학, 전자기학, 광학, , 천문학,컴퓨터 과학 등 광범한 분야에서 유용하게 사용된다. (ko)
  • L'approssimazione per angoli piccoli consiste nel semplificare le funzioni trigonometriche di base a funzioni più semplici quando l'angolo è molto piccolo e tende a zero. L'approssimazione si basa sugli sviluppi di Taylor-MacLaurin troncati al secondo ordine. Si ha: dove è l'angolo in radianti. Questa approssimazione è utile in molti ambiti di fisica e di ingegneria, tra cui meccanica, elettromagnetismo, ottica, e così via. (it)
  • A aproximação para ângulos pequenos é uma simplificação útil das leis da trigonometria que é apenas aproximadamente verdadeira para ângulos não-nulos, mas correta no limite em que o ângulo se aproxima de zero. Ela envolve a linearização das funções trigonométricas (truncamento de suas séries de Taylor) de forma que, quando o ângulo x é medido radianos, ou para a A aproximação para ângulos pequenos é útil em muitas áreas da física, incluindo eletromagnetismo, óptica (onde ela é a base da aproximação paraxial), cartografia, astronomia, entre outras. A aproximação sen x ≈ x chega a um erro de 1% em cerca de 14 graus, que corresponde a cerca de 0,244 radianos. (pt)
  • Малокутове наближення або апроксимація малих кутів це корисне спрощення базових тригонометричних функцій, яке буде досить точним при ліміті коли кут. Вони є усіченим рядом Тейлора для базових тригонометричних функцій за допомогою властивостей . Таке спрощення дає наступну формулу: , де θ це кут в радіанах. Апроксимація малих кутів корисна в багатьох застосуваннях фізики, включаючи механіку, електромагнетизм, оптику (де воно є основою паралаксіальної оптики), картографії, астрономії, та ін. (uk)
  • 小角度近似(small-angle approximations)可以在角度以弧度表示,且角度很小的情形下,近似部份三角函数的值: 上述的近似常用在物理学和工程学的各分支學科中,包括力学、电磁学、光学、地图学、天文學和计算机科学。近似的一個理由是可以大幅簡化微分方程的計算,可以用在不需要精確解的情形下。 小角度近似可以用許多的方式說明,最直接的是用三角函數的馬克勞林級數,依照不同,可以近似為或.。 (zh)
dbo:thumbnail
dbo:wikiPageID
  • 2009207 (xsd:integer)
dbo:wikiPageLength
  • 11723 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1102249405 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Unter der Kleinwinkelnäherung wird die mathematische Näherung verstanden, bei der angenommen wird, der Winkel sei so hinreichend klein, dass man seinen Sinus oder Tangens durch den Winkel selbst (in Radiant) und den Kosinus durch ersetzen kann: (de)
  • Pada optika geometris, pendekatan paraksial (en:paraxial approximation, small angle approximation) adalah sebuah pendekatan yang dipergunakan dalam penelusuran sinar (en:ray tracing) cahaya pada suatu . Sebuah sinar paraksial akan membuat sudut (θ) yang sangat kecil terhadap sumbu optis. Hal ini memungkinkan tiga pendekatan (untuk θ dalam radian) perhitungan arah rambat sinar: (in)
  • 작은 각도 근사(small-angle approximation)는 삼각함수의 값이 0에 가까워질 때 성립할 수 있는 근사이다. 이때 의 단위는 라디안. 작은 각도 근사는 역학, 전자기학, 광학, , 천문학,컴퓨터 과학 등 광범한 분야에서 유용하게 사용된다. (ko)
  • L'approssimazione per angoli piccoli consiste nel semplificare le funzioni trigonometriche di base a funzioni più semplici quando l'angolo è molto piccolo e tende a zero. L'approssimazione si basa sugli sviluppi di Taylor-MacLaurin troncati al secondo ordine. Si ha: dove è l'angolo in radianti. Questa approssimazione è utile in molti ambiti di fisica e di ingegneria, tra cui meccanica, elettromagnetismo, ottica, e così via. (it)
  • Малокутове наближення або апроксимація малих кутів це корисне спрощення базових тригонометричних функцій, яке буде досить точним при ліміті коли кут. Вони є усіченим рядом Тейлора для базових тригонометричних функцій за допомогою властивостей . Таке спрощення дає наступну формулу: , де θ це кут в радіанах. Апроксимація малих кутів корисна в багатьох застосуваннях фізики, включаючи механіку, електромагнетизм, оптику (де воно є основою паралаксіальної оптики), картографії, астрономії, та ін. (uk)
  • 小角度近似(small-angle approximations)可以在角度以弧度表示,且角度很小的情形下,近似部份三角函数的值: 上述的近似常用在物理学和工程学的各分支學科中,包括力学、电磁学、光学、地图学、天文學和计算机科学。近似的一個理由是可以大幅簡化微分方程的計算,可以用在不需要精確解的情形下。 小角度近似可以用許多的方式說明,最直接的是用三角函數的馬克勞林級數,依照不同,可以近似為或.。 (zh)
  • La aproximación para ángulos pequeños es una simplificación conveniente de las leyes trigonométricas que tiene una precisión aceptable cuando el ángulo tiende a cero. Surge de la linealización de las funciones trigonométricas, que se puede entender como un truncamiento de las correspondientes series de Taylor. Para un ángulo especificado en radianes: , ó , aproximación de segundo orden El error para sen x ≈ x es de 1% alrededor de los 14 grados sexagesimales (0,244 radianes). (es)
  • The small-angle approximations can be used to approximate the values of the main trigonometric functions, provided that the angle in question is small and is measured in radians: These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science. One reason for this is that they can greatly simplify differential equations that do not need to be answered with absolute precision. (en)
  • A aproximação para ângulos pequenos é uma simplificação útil das leis da trigonometria que é apenas aproximadamente verdadeira para ângulos não-nulos, mas correta no limite em que o ângulo se aproxima de zero. Ela envolve a linearização das funções trigonométricas (truncamento de suas séries de Taylor) de forma que, quando o ângulo x é medido radianos, ou para a A aproximação para ângulos pequenos é útil em muitas áreas da física, incluindo eletromagnetismo, óptica (onde ela é a base da aproximação paraxial), cartografia, astronomia, entre outras. (pt)
rdfs:label
  • Kleinwinkelnäherung (de)
  • Aproximación para ángulos pequeños (es)
  • Pendekatan paraksial (in)
  • Approssimazione per angoli piccoli (it)
  • 작은 각도 근사 (ko)
  • Small-angle approximation (en)
  • Aproximação para ângulos pequenos (pt)
  • 小角度近似 (zh)
  • Малокутове наближення (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License