Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
An Entity of Type: Plant100017222, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In set theory, a tree is a partially ordered set (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation <. Frequently trees are assumed to have only one root (i.e. minimal element), as the typical questions investigated in this field are easily reduced to questions about single-rooted trees.

Property Value
dbo:abstract
  • En mathématiques, un arbre est la donnée d'un ensemble E et d'une relation symétrique R sur E telle que deux points distincts quelconques x et y de E soient reliés par un seul chemin injectif fini, ie n+1 points z0,...,zn de E distincts vérifiant x=z0, ziRzi+1 pour izn=y. L'arbre (E, R) est dit fini ou infini selon que E l'est. Par exemple si E est la réunion du bord d'un disque et de son centre c et si xRy est la relation x = c ou y = c, alors (E, R) est un arbre infini ; cependant la plupart des arbres infinis que l'on rencontre sont dénombrables. Pour les arbres finis, notre définition est équivalente à celle de la théorie des graphes dont nous utiliserons la terminologie. Pour k > 1, les treillis Nk et Zk n'ont pas de structure d'arbre naturelle. (fr)
  • In set theory, a tree is a partially ordered set (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation <. Frequently trees are assumed to have only one root (i.e. minimal element), as the typical questions investigated in this field are easily reduced to questions about single-rooted trees. (en)
  • 순서론과 집합론에서 나무(영어: tree)는 임의의 원소에 대하여 그 미만의 원소들로 구성된 부분 집합이 정렬 전순서 집합을 이루는 부분 순서 집합이다. (ko)
  • Em teoria dos conjuntos, uma árvore é um conjunto parcialmente ordenado (T, <) tal qual para cada t ∈ T, o conjunto {s ∈ T : s < t} é ordenado pela relação <. Frequentemente árvores são assumidas a ter apenas uma raiz (i.e. elemento minimal), como as questões típicas investigados neste campo são facilmente reduzidos a perguntas sobre árvores de única raiz. (pt)
  • 集合论中一个偏序结构如果满足以下条件: 对任意x∈s,集合A(x)={y∈s丨yRx}对于R是三歧的、传递的,并且对于A(x)的任意真子集总存在一个极小元,即是一个良序结构。 那么这个偏序结构便被称为树(Tree)。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 704160 (xsd:integer)
dbo:wikiPageLength
  • 7145 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1118047539 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • In set theory, a tree is a partially ordered set (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation <. Frequently trees are assumed to have only one root (i.e. minimal element), as the typical questions investigated in this field are easily reduced to questions about single-rooted trees. (en)
  • 순서론과 집합론에서 나무(영어: tree)는 임의의 원소에 대하여 그 미만의 원소들로 구성된 부분 집합이 정렬 전순서 집합을 이루는 부분 순서 집합이다. (ko)
  • Em teoria dos conjuntos, uma árvore é um conjunto parcialmente ordenado (T, <) tal qual para cada t ∈ T, o conjunto {s ∈ T : s < t} é ordenado pela relação <. Frequentemente árvores são assumidas a ter apenas uma raiz (i.e. elemento minimal), como as questões típicas investigados neste campo são facilmente reduzidos a perguntas sobre árvores de única raiz. (pt)
  • 集合论中一个偏序结构如果满足以下条件: 对任意x∈s,集合A(x)={y∈s丨yRx}对于R是三歧的、传递的,并且对于A(x)的任意真子集总存在一个极小元,即是一个良序结构。 那么这个偏序结构便被称为树(Tree)。 (zh)
  • En mathématiques, un arbre est la donnée d'un ensemble E et d'une relation symétrique R sur E telle que deux points distincts quelconques x et y de E soient reliés par un seul chemin injectif fini, ie n+1 points z0,...,zn de E distincts vérifiant x=z0, ziRzi+1 pour izn=y. Pour k > 1, les treillis Nk et Zk n'ont pas de structure d'arbre naturelle. (fr)
rdfs:label
  • Arbre (mathématiques) (fr)
  • 나무 (집합론) (ko)
  • Árvore (teoria dos conjuntos) (pt)
  • Tree (set theory) (en)
  • 树 (集合论) (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License