Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.4108/ICST.VALUETOOLS2009.7907acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvaluetoolsConference Proceedingsconference-collections
research-article

Regenerative systems: challenges and opportunities for modeling, simulation, and visualization

Published: 20 October 2009 Publication History

Abstract

Regenerative systems are able to overcome significant perturbations, and maintain autonomously their functionality in dynamic and uncertain environments. More and more this ability of biological systems plays a role in designing technical systems, e.g., in sensor networks, as well. Important properties of regenerative systems are their dynamic structures and their operation on different spatial and temporal scales. Those propel the development of new modeling, simulation, and visualization methods. Among them, variants of the π-calculus formalism, a portfolio of Gillespie related spatial simulation algorithms, means for automatically configuring simulators, and the integrated visualization methods, that make use of innovative layouts and linked and coordinated views target challenges in analyzing biological regenerative systems. They provide a basis for analyzing regenerative systems in general by means of simulation.

References

[1]
R. Z. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of Modern Physics, 47, 2002.
[2]
M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for using multiple views in information visualization. In AVI '00: Proc. of the working conference on Advanced visual interfaces, pages 110--119, New York, NY, USA, 2000. ACM.
[3]
G.-Q. Bi and M.-M. Poo. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci., 18(24):10464--10472, 1998.
[4]
G. Broderick and E. Rubin. The realistic modeling of biological systems: A workshop synopsis. ComPlexUs Modeling in Systems Biology, Social Cognitive and Information Science, 3(4):217--230, 2006.
[5]
K. Burrage, P. M. Burrage, N. Hamilton, and T. Tian. Compute intensive simulations for cellular models. In A. Y. Zomaya, editor, Parallel Computation for Bioinformatics and Computational Biology. Wiley, 2005.
[6]
Y. Cao, D. T. Gillespie, and L. R. Petzold. Efficient step size selection for the tau-leaping simulation method. J Chem Phys, 124(4), January 2006.
[7]
L. Dematté and T. Mazza. On parallel stochastic simulation of diffusive systems. In CMSB, pages 191--210, 2008.
[8]
J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Systems Biology, IEE Proc., 1(2):230--236, 2004.
[9]
R. Ewald, J. Himmelspach, and A. M. Uhrmacher. An algorithm selection approach for simulation systems. In Proc. of Principles of Advanced and Distributed Simulation, pages 91--98. IEEE Computer Society, 2008.
[10]
R. Ewald, S. Leye, and A. M. Uhrmacher. An efficient and adaptive mechanism for parallel simulation replication. In Proc. of Principles of Advanced and Distributed Simulation, 2009.
[11]
A. Ferscha, J. Johnson, and S. J. Turner. Distributed simulation performance data mining. Future Generation Computer Systems, pages 157--174, September 2001.
[12]
R. M. Fujimoto, M. Hunter, J. Sirichoke, M. Palekar, H. Kyoung Kim, and W. Suh. Ad hoc distributed simulations. In Proc. of Principles of Advanced and Distributed Simulation, pages 15--24. IEEE Computer Society, 2007.
[13]
M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem., 104:1876--1889, 2000.
[14]
D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25):2340--2361, 1977.
[15]
M. Handy, M. Haase, and D. Timmermann. Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In in IEEE MWCN, pages 368--372, 2002.
[16]
D. O. Hebb. The Organization of Behavior: A Neuropsychological Theory. Wiley, 1949.
[17]
J. Himmelspach and A. M. Uhrmacher. Plug'n simulate. In Proc. of the Annual Simulation Symposium, pages 137--143. IEEE Computer Society, 2007.
[18]
M. C. Huebscher and J. A. McCann. A survey of autonomic computing - degrees, models, and applications. ACM Comput. Surv., 40(3), 2008.
[19]
M. Jeschke and R. Ewald. Large-scale design space exploration of SSA. In Proc. of Computational Methods in Systems Biology, volume 5307 of LNCS, pages 211--230, Berlin / Heidelberg, 2008. Springer.
[20]
M. Jeschke, A. Park, R. Ewald, R. Fujimoto, and A. M. Uhrmacher. Parallel and distributed spatial simulation of chemical reactions. In Proc. of Principles of Advanced and Distributed Simulation, pages 51--59, 2008.
[21]
M. Jeschke and A. M. Uhrmacher. Multi-resolution spatial simulation for molecular crowding. In Proc. of the Winter Simulation Conference, pages 1384--1392. WSC, 2008.
[22]
M. Jeschke and A. M. Uhrmacher. Multi-resolution spatial simulation for molecular crowding. In Proc. of the Winter Simulation Conference, pages 1384--1392. WSC, 2008.
[23]
M. John, R. Ewald, and A. M. Uhrmacher. A spatial extension to the pi calculus. In Proc. of From Biology To Concurrency and back, volume 194 of Electronic Notes in Theoretical Computer Science, pages 133--148, 2008.
[24]
M. John, C. Lhoussaine, and J. Niehren. Dynamic compartments in the imperative pi-calculus. In Proc. Computational Methods in Systems Biology, LNCS. Springer Verlag, 2009 (to appear).
[25]
M. John, C. Lhoussaine, J. Niehren, and A. M. Uhrmacher. The attributed pi calculus. In Proc. Computational Methods in Systems Biology, volume 5307 of LNBI, pages 83--102. Springer Verlag, 2008.
[26]
M. John, H.-J. Schulz, H. Schumann, A. M. Uhrmacher, and A. Unger. Exploring time-varying hypergraphs. In Poster Compendium of the IEEE InfoVis, 2009.
[27]
H. Kitano, editor. Foundations of Systems Biology. MIT Press, 2001.
[28]
F. Klan, M. Röhl, B. König-Ries, and A. M. Uhrmacher. Using context information to evaluate cooperativeness. In Proc. of ACM symposium on QoS and security for wireless and mobile networks, pages 98--105, New York, NY, USA, 2008. ACM.
[29]
J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proc. of the 32nd ACM Symposium on Theory of Computing, pages 163--170, 2000.
[30]
E. Lee, A. Salic, R. Krüger, R. Heinrich, and M. W. Kirschner. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol, 1(1):116--132, 2003.
[31]
S. Leye, J. Himmelspach, M. Jeschke, R. Ewald, and A. M. Uhrmacher. A grid-inspired mechanism for coarse-grained experiment execution. In Proc. of Distributed Simulation and Real-Time Applications, pages 7--16. IEEE Computer Society, IEEE Press, 2008.
[32]
S. Leye, C. Priami, and A. M. Uhrmacher. A bounded-optimistic, parallel beta-binders simulator. In Proc. of Distributed Simulation and Real-Time Applications, pages 139--148. IEEE Computer Society, IEEE Press, 2008.
[33]
O. Mazemondet, M. John, C. Maus, A. M. Uhrmacher, and A. Rolfs. Integrating diverse reaction types into stochastic models - a signaling pathway case study in the imperative pi-calculus. In Proc. of the Winter Simulation Conference. WSC, 2009 (to appear).
[34]
C. McGeoch. Experimental algorithmics. Communications of the ACM, 50(11):27--31, November 2007.
[35]
R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge University Press, 1999.
[36]
A. Morrison, M. Diesmann, and W. Gerstner. Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98(6):459--478, 2008.
[37]
D. M. Nicol, O. Balci, R. M. Fujimoto, P. A. Fishwick, P. L'Ecuyer, and R. Smith. Strategic directions in simulation research (panel). In Proc. of Winter Simulation Conference, pages 1509--1520. WSC, 1999. Chairman-Page, Ernest H.
[38]
D. M. Nicol and G. Yan. Discrete event fluid modeling of background TCP traffic. ACM Trans. Model. Comput. Simul., 14(3):211--250, 2004.
[39]
K. Pawlikowski, H.-D.J. Jeong, and J.-S.R. Lee. On credibility of simulation studies of telecommunication networks. Communications Magazine, IEEE, 40(1):132--139, Jan 2002.
[40]
A. Phillips and L. Cardelli. Efficient, correct simulation of biological processes in the stochastic pi-calculus. In Proc. Computational Methods in Systems Biology, pages 184--199. Springer, 2007.
[41]
A. Regev and E. Shapiro. Cells as Computation. Nature, 419:343, 2002.
[42]
F. Reichenbach, A. Bobek, P. Hagen, and D. Timmermann. Increasing lifetime of wireless sensor networks with energy-aware role-changing. In Self-Managed Networks, Systems, and Services, 2nd IEEE Workshop, Proc., volume 3996 of LNCS, pages 157--170. Springer, 2006.
[43]
J. Salzmann, R. Behnke, M. Gag, and D. Timmermann. 4-MASCLE - improved coverage aware clustering with self healing abilities. In Proc. of Multidisciplinary Autonomous Networks and Systems, 2009.
[44]
J. Salzmann, R. Behnke, D. Lieckfeldt, and D. Timmermann. 2-MASCLE - a coverage aware clustering algorithm with self healing abilities. In Proc. of Intelligent Sensors, Sensor Networks and Information Processing, pages 739--744, 2007.
[45]
J. Salzmann, S. Kubisch, F. Reichenbach, and D. Timmermann. Energy and coverage aware routing algorithm in self organized sensor networks. In Proc. of Networked Sensing Systems, pages 77--80, 2007.
[46]
H. M. Sauro, D. Harel, M. Kwiatkowska, C. A. Shaffer, A. M. Uhrmacher, M. Hucka, P. Mendes, L. Strömback, and J. J. Tyson. Challenges for modeling and simulation methods in systems biology. In Proc. of the Winter Simulation Conference, pages 1720--1730. WSC, 2006.
[47]
A. Schäfer and M. John. Conceptional modeling and analysis of spatio-temporal processes in biomolecular systems. In Proc. Asia-Pacific Conference on Conceptual Modelling, pages 39--48, 2009.
[48]
R. Sisneros, M. Glatter, B. Langley, J. Huang, F. Hoffman, and D. J. Erickson III. Time-varying multivariate visualization for understanding terrestrial biogeochemistry. Journal of Physics: Conference Series, 125(1):012093, 2008.
[49]
K. Takahashi, S. N. V. Arjunan, and M. Tomita. Space in systems biology of signaling pathways - towards intracellular molecular crowding in silico. FEBS Letters, 579(8):1783--1788, March 2005.
[50]
K. Takahashi, K. Kaizu, B. Hu, and M. Tomita. A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics, 20(4):538--546, March 2004.
[51]
W. F. Tichy. Should computer scientists experiment more? Computer, 31(5):32--40, 1998.
[52]
C. Tominski, J. Abello, and H. Schumann. CGV -- an interactive graph visualization systemy. Computers & Graphics, 2009. to appear.
[53]
A. M. Uhrmacher, J. Himmelspach, and R. Ewald. Effective and efficient modeling and simulation with devs variants. In Discrete-Event Modeling and Simulation: Theory and Applications. CRC Press. Taylor and Francis., to appear.
[54]
A. M. Uhrmacher and D. Weyns, editors. Multi-Agent Systems: Simulation and Applications. Taylor and Francis, 2009.
[55]
A. Unger, E. Gutzeit, M. Jeschke, and H. Schumann. Viones -- visual support for the analysis of the next-sub-volume method. In Proc. of the IEEE IV, pages 10--17, 2009.
[56]
A. Unger and H. Schumann. Visual support for the understanding of simulation processes. In IEEE PacificVis, pages 57--64, 2009.
[57]
B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Simulation. Academic Press, London, 2000.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
VALUETOOLS '09: Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools
October 2009
628 pages
ISBN:9789639799707

Sponsors

  • ICST

In-Cooperation

Publisher

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)

Brussels, Belgium

Publication History

Published: 20 October 2009

Check for updates

Qualifiers

  • Research-article

Conference

VALUETOOLS '09
Sponsor:

Acceptance Rates

VALUETOOLS '09 Paper Acceptance Rate 27 of 71 submissions, 38%;
Overall Acceptance Rate 90 of 196 submissions, 46%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 87
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media