Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2887352.2887354guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

SPLENDID: SPARQL endpoint federation exploiting VOID descriptions

Published: 23 October 2011 Publication History

Abstract

In order to leverage the full potential of the Semantic Web it is necessary to transparently query distributed RDF data sources in the same way as it has been possible with federated databases for ages. However, there are significant differences between the Web of (linked) Data and the traditional database approaches. Hence, it is not straightforward to adapt successful database techniques for RDF federation. Reasons are the missing cooperation between SPARQL end-points and the need for detailed data statistics for estimating the costs of query execution plans. We have implemented SPLENDID, a query optimization strategy for federating SPARQL endpoints based on statistical data obtained from voiD descriptions.

References

[1]
K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing Linked Datasets - On the Design and Usage of voiD, the "Vocabulary Of Interlinked Datasets". In Proceedings of the Linked Data on the Web Workshop, Madrid, Spain, 2009.
[2]
F. Belleau, M.A. Nolin, N. Tourigny, P. Rigault, and J. Morissette. Bio2RDF: Towards a mashup to build bioinformatics knowledge systems. Journal of biomedical informatics, 41(5):706-716, 2008.
[3]
C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. International Journal on Semantic Web and Information Systems, 5(2):1-24, 2009.
[4]
C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics and Optimization of the SPARQL 1.1 Federation Extension. In 8th Extended Semantic Web Conference, Heraklion, Greece, 2011.
[5]
K. Cheung, H. R. Frost, M. S. Marshall, E. Prud' hommeaux, M. Samwald, J. Zhao, and A. Paschke. A journey to Semantic Web query federation in the life sciences. BMC bioin-formatics, 10 Suppl 1, January 2009.
[6]
S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and Oranges: A Comparison of RDF Benchmarks and Real RDF Datasets. In Proceedings of the International Conference on Management of Data (SIGMOD), page 145, New York, New York, USA, 2011.
[7]
L.M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing Queries across Diverse Data Sources. In Proceedings of the 23rd International Conference on Very Large Data Bases, pages 276-285, Athens, Greece, 1997.
[8]
S. Harris and A. Seaborne. SPARQL Query Language 1.1, W3C Working Draft 26 January 2010. http://www.w3.org/TR/sparql11-query/.
[9]
A. Harth, K. Hose, M. Karnstedt, A. Polleres, K-U. Sattler, and J. Umbrich. Data Summaries for On-Demand Queries over Linked Data. In Proceedings of the 19th International World Wide Web Conference, pages 411-420, Raleigh, NC, USA, 2010.
[10]
G. Ladwig and T. Tran. Linked Data Query Processing Strategies. In Proceedings of the 9th International Semantic Web Conference, pages 453-469, 2010.
[11]
F. Manola and E. Miller. RDF Primer, W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-primer/.
[12]
T. Neumann and G. Weikum. RDF-3X: a RISC-style Engine for RDF. In Proceedings of the 34th International Conference on Very Large Data Bases, pages 647-659, Auckland, New Zealand, 2008.
[13]
B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with SPARQL. In Proceedings of the 5th European Semantic Web Conference, pages 524-538, Tenerife, Canary Islands, Spain, 2008.
[14]
S. Schenk and S. Staab. Networked Graphs: A Declarative Mechanism for SPARQL Rules, SPARQL Views and RDF Data Integration on the Web. In Proceeding of the 17th International World Wide Web Conference, pages 585-594, Beijing, China, 2008.
[15]
M. Schmidt, O. Görlitz, P. Haase, A. Schwarte, G. Ladwig, and T. Tran. FedBench: A Benchmark Suite for Federated Semantic Data Query Processing. In Proceedings of the 10th International Semantic Web Conference, Bonn, Germany, 2011.
[16]
M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Performance Benchmark. In Proceedings of the 25th International Conference on Data Engineering, pages 222-233, Shanghai, 2009.
[17]
A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization Techniques for Federated Query Processing on Linked Data. In Proceedings of the 10th International Semantic Web Conference, Bonn, Germany, 2011.
[18]
P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in a Relational Database Management System. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 23-34, Boston, MA, USA, 1979.
[19]
H. Stuckenschmidt, R. Vdovjak, G-J. Houben, and J. Broekstra. Index Structures and Algorithms for Querying Distributed RDF Repositories. In Proceedings of the 13th International World Wide Web Conference, pages 631-639, New York, NY, USA, 2004.
[20]
M.E. Vidal, E. Ruckhaus, T. Lampo, A. Martínez, J. Sierra, and A. Polleres. Efficiently Joining Group Patterns in SPARQL Queries. In 7th Extended Semantic Web Conference, pages 228-242, Heraklion, Crete, Greece, 2010. Springer.
[21]
C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Semantic Web Data Management. In Proceedings of the 34th International Conference on Very Large Data Bases, pages 1008-1019, Auckland, New Zealand, 2008.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Guide Proceedings
COLD'11: Proceedings of the Second International Conference on Consuming Linked Data - Volume 782
October 2011
142 pages
  • Editors:
  • Olaf Hartig,
  • Andreas Harth,
  • Juan Sequeda

Publisher

CEUR-WS.org

Aachen, Germany

Publication History

Published: 23 October 2011

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Subgraph matching over graph federationProceedings of the VLDB Endowment10.14778/3494124.349412915:3(437-450)Online publication date: 1-Nov-2021
  • (2020)FedQPLProceedings of the 22nd International Conference on Information Integration and Web-based Applications & Services10.1145/3428757.3429120(436-445)Online publication date: 30-Nov-2020
  • (2019)Large-scale Semantic Integration of Linked DataACM Computing Surveys10.1145/334555152:5(1-40)Online publication date: 13-Sep-2019
  • (2019)Topic-based indexing of federated datasetsProceedings of the 34th ACM/SIGAPP Symposium on Applied Computing10.1145/3297280.3297387(1090-1098)Online publication date: 8-Apr-2019
  • (2018)Analytics for the Internet of ThingsACM Computing Surveys10.1145/320494751:4(1-36)Online publication date: 25-Jul-2018
  • (2018)RDF Data Storage and Query Processing SchemesACM Computing Surveys10.1145/317785051:4(1-36)Online publication date: 6-Sep-2018
  • (2017)Extended Adaptive Join Operator with Bind-Bloom Join for Federated SPARQL QueriesInternational Journal of Data Warehousing and Mining10.4018/IJDWM.201707010313:3(47-72)Online publication date: 1-Jul-2017
  • (2017)An adaptive plan-based approach to integrating semantic streams with remote RDF dataJournal of Information Science10.1177/016555151667027843:6(852-865)Online publication date: 1-Dec-2017
  • (2017)Supporting virtual integration of Linked Data with just-in-time query recompilationProceedings of the 13th International Conference on Semantic Systems10.1145/3132218.3132227(112-119)Online publication date: 11-Sep-2017
  • (2017)SMJoinProceedings of the 13th International Conference on Semantic Systems10.1145/3132218.3132220(104-111)Online publication date: 11-Sep-2017
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media