Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In drug discovery, protonation states and tautomerization are easily overlooked. Through a Merck–Rutgers collaboration, this paper re-examined the initial settings and preparations for the Thermodynamic Integration (TI) calculation in AMBER Free-Energy Workflows, demonstrating the value of careful consideration of ligand protonation and tautomer state. Finally, promising results comparing AMBER TI and Schrödinger FEP+ are shown that should encourage others to explore the value of TI in routine Structure-based Drug Design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

TI:

Thermodynamic integration

FEP:

Free energy perturbation

MM-GBSA:

Molecular mechanics-generalized born surface area

MM-PBSA:

Molecular mechanics-Poisson Boltzmann surface area

LIE:

Linear interaction energy

MCSS:

Maximum common substructure search

FEW:

Free-energy workflows

SBDD:

Structure-based drug design

MD:

Molecular dynamics

References

  1. Lovering F, Aevazelis C, Chang J, Dehnhardt C, Fitz L, Han S, Janz K, Lee J, Kaila N, McDonald J, Moore W (2016) Imidazotriazines: spleen tyrosine kinase (Syk) inhibitors identified by free-energy perturbation (FEP). ChemMedChem 11:217–233

    Article  CAS  Google Scholar 

  2. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 137:2695–2703

    Article  CAS  Google Scholar 

  3. Armacost KA, Goh GB, Brooks CL III (2015) Biasing potential replica exchange multisite λ-dynamics for efficient free energy calculations. J Chem Theory Comput 11:1267–1277

    Article  CAS  Google Scholar 

  4. Jiang W, Roux B (2010) Free energy perturbation Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) for absolute ligand binding free energy calculations. J Chem Theory Comput 6:2559–2565

    Article  CAS  Google Scholar 

  5. Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol 21:150–160

    Article  CAS  Google Scholar 

  6. Michel J, Essex JW (2010) Prediction of protein–ligand binding affinity by free energy simulations: assumptions pitfalls and expectations. J Comput Aided Mol Des 24:639–658

    Article  CAS  Google Scholar 

  7. Jorgensen WL, Tirado-Rives J (2005) Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J Comput Chem 26:1689–1700

    Article  CAS  Google Scholar 

  8. Loeffler HH, Michel J, Woods C (2015) FESetup: automating setup for alchemical free energy simulations. J Chem Inf Model 55:2485–2490

    Article  CAS  Google Scholar 

  9. Liu S, Wu Y, Lin T, Abel R, Redmann JP, Summa CM, Jaber VR, Lim NM, Mobley DL (2013) Lead optimization mapper: automating free energy calculations for lead optimization. J Comput Aided Mol Des 27:755–770

    Article  CAS  Google Scholar 

  10. Klimovich PV, Shirts MR, Mobley DL (2015) Guidelines for the analysis of free energy calculations. J Comput Aided Mol Des 29:397–411

    Article  CAS  Google Scholar 

  11. Klimovich PV, Shirts MR, Mobley DL (2015) A Python tool to set up relative free energy calculations in GROMACS. J Comput Aided Mol Des 29:1007–1014

    Article  CAS  Google Scholar 

  12. Gapsys V, Michielssens S, Seeliger D, de Groot BL (2015) pmx: automated protein structure and topology generation for alchemical perturbations. J Comput Chem 36:348–354

    Article  CAS  Google Scholar 

  13. Sadiq SK, Wright D, Watson SJ, Zasada SJ, Stoica I, Coveney PV (2008) Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases. J Chem Inf Model 48:1909–1919

    Article  CAS  Google Scholar 

  14. Homeyer N, Gohlke H (2013) FEW: a workflow tool for free energy calculations of ligand binding. J Comput Chem 34:965–973

    Article  CAS  Google Scholar 

  15. Homeyer N, Gohlke H (2015) Extension of the free energy workflow FEW towards implicit solvent/implicit membrane MM–PBSA calculations. Biochim Biophys Acta Gen Subj 1850:972–982

    Article  CAS  Google Scholar 

  16. Liao CZ, Nicklaus MC (2009) Comparison of nine programs predicting pK(a) values of pharmaceutical substances. J Chem Inf Model 49:2801–2812

    Article  CAS  Google Scholar 

  17. Meloun M, Bordovska S (2007) Benchmarking and validating algorithms that estimate pK(a) values of drugs based on their molecular structures. Anal Bioanal Chem 389:1267–1281

    Article  CAS  Google Scholar 

  18. Pinto DJ, Orwat MJ, Wang S, Fevig JM, Quan ML, Amparo E, Cacciola J, Rossi KA, Alexander RS, Smallwood AM, Luettgen JM (2001) Discovery of 1-[3-(Amino-methyl) phenyl]-N-[3-fluoro-2′-(methylsulfonyl)-[11′-biphenyl]-4-yl]-3-(trifluoromethyl)-1 H-pyrazole-5-carboxamide (DPC423) a highly potent selective and orally bioavailable inhibitor of blood coagulation factor Xa 1. J Med Chem 44:566–578

    Article  CAS  Google Scholar 

  19. Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Luchko T, Luo R, Madej B, Merz KM, Monard G, Needham P, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe, Roitberg A, Salomon-Ferrer R, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, York DM, Kollman PA (2015) AMBER 2015. University of California, San Francisco

    Google Scholar 

  20. Wang J, Wolf R, Caldwell J, Kollamn P, Case D (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  21. Jakalian A, Bush B, Jack D, Bayly C (2000) Fast efficient generation of high-quality atomic charges AM1-BCC model: I Method. J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  22. Jakalian A, Jack D, Bayly C (2002) Fast efficient generation of high-quality atomic charges AM1-BCC model: II parameterization and validation. J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  23. Steinbrecher T, Joung I, Case DA (2011) Soft-core potentials in thermodynamic integration: comparing one and two-step transformations. J Comput Chem 32:3253–3263

    Article  CAS  Google Scholar 

  24. Desmond Molecular Dynamics System, version 4.3, D. E. Shaw Research, New York, NY, 2015. Maestro-Desmond Interoperability Tools, version 4.3, Schrödinger, New York, NY, 2015

  25. Zwanzig RW (1954) High-temperature equation of state by a perturbation method I nonpolar gases. J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

  26. Storer J, Giesen D, Cramer C, Truhlar D (1995) Class IV charge models: a new semiempirical approach in quantum chemistry. J Comput Aided Mol Des 9:87–110

    Article  CAS  Google Scholar 

  27. Liu P, Kim B, Friesner RA, Berne B (2005) Replica exchange with solute tempering: a method for sampling biological systems in explicit water. J Proc Natl Acad Sci USA 102:13749–13754

    Article  CAS  Google Scholar 

  28. Wang L, Berne BJ, Friesner RA (2012) On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities. Proc Natl Acad Sci USA 109:1937–1942

    Article  CAS  Google Scholar 

  29. Wang L, Lin T, Abel R, Schrödinger LLc (2013) Cycle closure estimation of relative binding affinities and errors. US Patent Application 13/840039

  30. Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016. University of California, San Francisco

    Google Scholar 

Download references

Acknowledgments

We are grateful to Merck Research Laboratories (MRL) Postdoctoral Research Fellows Program for financial support provided by a fellowship (Y. H.). We thank the AMBER FEW developers Nadine Homeyer and Holger Gohlke for valuable help and discussions in building the workflows. We thank the High Performance Computing (HPC) support at Merck.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Hu, Darrin M. York or Zhuyan Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Sherborne, B., Lee, TS. et al. The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP. J Comput Aided Mol Des 30, 533–539 (2016). https://doi.org/10.1007/s10822-016-9920-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9920-5

Keywords