Abstract
Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288â290 (1986).
Ashkin, A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Elec. 6, 841â856 (2000).
Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Methods Cell Biol. 55, 1â27 (1998).
Svoboda, K. & Block, S. M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930â932 (1994).
Ke, P. C. & Gu, M. Characterization of trapping force on metallic Mie particles. Appl. Opt. 38, 160â167 (1999).
Ghislain, L. P., Switz, N. A. & Webb, W. W. Measurement of small forces using an optical trap. Rev. Sci. Instr. 65, 2762â2768 (1994).
Rohrbach, A. & Stelzer, E. H. K. Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Appl. Opt. 41, 2494â2507 (2002).
Litvinov, R. I., Shuman, H., Bennett, J. S. & Weisel, J. W. Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc. Natl Acad. Sci. 99, 7426â7431 (2002).
Gittes, F. & Schmidt, C. F. Signals and noise in micromechanical measurements. Methods Cell Biol. 55, 129â156 (1998).
Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7â9 (1998).
Pralle, A., Prummer, M., Florin, E. L., Stelzer, E. H. K. & Horber, J. K. H. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44, 378â386 (1999).
Svoboda, K., Mitra, P. P. & Block, S. M. Fluctuation analysis of motor protein movement and single enzyme-kinetics. Proc. Natl Acad. Sci. 91, 11782â11786 (1994).
Bustamante, C., Smith, S. B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279â285 (2000).
Berns, M. W., Tadir, Y., Liang, H. & Tromberg, B. Laser scissors and tweezers. Methods Cell Biol. 55, 71â98 (1998).
Wright, G., Tucker, M. J., Morton, P. C., Sweitzer-Yoder, C. L. & Smith, S. E. Micromanipulation in assisted reproduction: A review of current technology. Curr. Opin. Obstet. Gyn. 10, 221â226 (1998).
Crocker, J. C. & Grier, D. G. Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett. 73, 352â355 (1994).
Crocker, J. C. & Grier, D. G. When like charges attract: The effects of geometrical confinement on long-range colloidal interactions. Phys. Rev. Lett. 77, 1897â1900 (1996).
Ohshima, Y. N. Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure. Phys. Rev. Lett. 78, 3963â3966 (1997).
Crocker, J. C., Matteo, J. A., Dinsmore, A. D. & Yodh, A. G. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys. Rev. Lett. 82, 4352â4355 (1999).
Verma, R., Crocker, J. C., Lubensky, T. C. & Yodh, A. G. Attractions between hard colloidal spheres in semiflexible polymer solutions. Macromolecules 33, 177â186 (2000).
Yodh, A. G. et al. Entropically driven self-assembly and interaction in suspension. Phil. Trans. R. Soc. A 359, 921â937 (2001).
Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. & Evans, D. J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002).
Sasaki, K., Koshio, M., Misawa, H., Kitamura, N. & Masuhara, H. Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt. Lett. 16, 1463â1465 (1991).
Sasaki, K., Fujiwara, H. & Masuhara, H. Optical manipulation of a lasing microparticle and its application to near-field microspectroscopy. J. Vacuum Sci. Tech. B 15, 2786â2790 (1997).
Mio, C., Gong, T., Terray, A. & Marr, D. W. M. Morphological control of mesoscale colloidal models. Fluid Phase Equilibria 185, 157â163 (2001).
Faucheux, L. P., Bourdieu, L. S., Kaplan, P. D. & Libchaber, A. J. Optical thermal ratchet. Phys. Rev. Lett. 74, 1504â1507 (1995).
Verma, R., Crocker, J. C., Lubensky, T. C. & Yodh, A. G. Entropic colloidal interactions in concentrated DNA solutions. Phys. Rev. Lett. 81, 4004â4007 (1998).
Dufresne, E. R. & Grier, D. G. Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instr. 69, 1974â1977 (1998).
Dufresne, E. R., Spalding, G. C., Dearing, M. T., Sheets, S. A. & Grier, D. G. Computer-generated holographic optical tweezer arrays. Rev. Sci. Instr. 72, 1810â1816 (2001).
Liesener, J., Reicherter, M., Haist, T. & Tiziani, H. J. Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185, 77â82 (2000).
Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169â175 (2002).
Reicherter, M., Haist, T., Wagemann, E. U. & Tiziani, H. J. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24, 608â610 (1999).
Mogensen, P. C. & Glückstad, J. Dynamic array generation and pattern formation for optical tweezers. Opt. Comm. 175, 75â81 (2000).
Rodrigo, P. J., Eriksen, R. L., Daria, V. R. & Glückstad, J. Interactive light-driven and parallel manipulation of inhomogeneous particles. Opt. Exp. 10, 1550â1556 (2002).
Korda, P. T., Taylor, M. B. & Grier, D. G. Kinetically locked-in colloidal transport in an array of optical tweezers. Phys. Rev. Lett. 89, 128301 (2002).
Ladavac, K., Kasza, K. & Grier, D. G. Optical fractionation. Phys. Rev. Lett. (in the press).
Korda, P. T., Spalding, G. C. & Grier, D. G. Evolution of a colloidal critical state in an optical pinning potential. Phys. Rev. B 66, 024504 (2002).
Mangold, K., Leiderer, P. & Bechinger, C. Phase transitions of colloidal monolayers in periodic pinning arrays. Phys. Rev. Lett. 90, 158302 (2003).
Chowdhury, A., Ackerson, B. J. & Clark, N. A. Laser-induced freezing. Phys. Rev. Lett. 55, 833â836 (1985).
Loudiyi, K. & Ackerson, B. J. Direct observation of laser-induced freezing. Physica A 184, 1â25 (1992).
Wei, X. et al. T cell activation studied by optical trap. Biophys. J. 74, A378 (1998).
Bechinger, C., Brunner, M. & Leiderer, P. Phase behavior of two-dimensional colloidal systems in the presence of periodic light fields. Phys. Rev. Lett. 86, 930â933 (2001).
Brunner, M. & Bechinger, C. Phase behavior of colloidal molecular crystals on triangular light lattices. Phys. Rev. Lett. 88, 248302 (2002).
Reimann, P. Brownian motors: Noisy transport far from equilibrium. Phys. Rep. 361, 57â265 (2002).
Koss, B. A. & Grier, D. G. Optical peristalsis. Appl. Phys. Lett. 82, 3985â3987 (2003).
Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared-laser beams. Nature 330, 608â609 (1987).
Liang, H., Wright, W. H., Cheng, S., He, W. & Berns, M. W. Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). Exp. Cell Res. 204, 110â120 (1992).
Bayles, C. J., Aist, J. R. & Berns, M. W. The mechanics of anaphase-B in A basidomycete as revealed by laser microbeam microsurgery. Exp. Mycology 17, 191â199 (1993).
Fuhr, G. et al. Processing of micro-particles by UV laser irradiation in a field cage. Appl. Phys. A 69, 611â616 (1999).
Galajda, P. & Ormos, P. Complex micromachines produced and driven by light. Appl. Phys. Lett. 78, 249â251 (2001).
Lachish-Zalait, A., Zbaida, D., Klein, E. & Elbaum, M. Direct surface patterning from solutions: Localized microchemistry using a focused laser. Adv. Funct. Mat. 11, 218â223 (2001).
Lee, W. M., Pruzinsky, S. A. & Braun, P. V. Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals. Adv. Mat. 14, 271â274 (2002).
Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals (Princeton Univ., Princeton, 1995).
Taton, T. A. & Norris, D. J. Device physics: Defective promise in photonics. Nature 416, 685â686 (2002).
Terray, A., Oakey, J. & Marr, D. W. M. Fabrication of linear colloidal structures for microfluidic applications. Appl. Phys. Lett. 81, 1555â1557 (2002).
Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185â8189 (1992).
O'Neil, A. T. & Padgett, M. J. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt. Commun. 185, 139â143 (2000).
Rubinsztein-Dunlop, H., Nieminen, T. A., Friese, M. E. J. & Heckenberg, N. R. Optical trapping of absorbing particles. Adv. Quantum Chem. 30, 469â492 (1998).
Gahagan, K. T. & Swartzlander, G. A. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B 15, 524â534 (1998).
Gahagan, K. T. & Swartzlander, G. A. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap. J. Opt. Soc. Am. B 16, 533â537 (1999).
Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569â582 (1992).
Simpson, N. B., McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45, 1943â1949 (1998).
O'Neil, A. T. & Padgett, M. J. Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers. Opt. Commun. 193, 45â50 (2001).
He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826â829 (1995).
Allen, L., Padgett, M. J. & Babiker, M. The orbital angular momentum of light. Prog. Opt. 39, 291â372 (1999).
O'Neil, A. T., MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).
Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).
Gahagan, K. T. & Swartzlander, G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827â829 (1996).
Simpson, N. B., Allen, L. & Padgett, M. J. Optical tweezers and optical spanners with Laguerre-Gaussian modes. J. Mod. Opt. 43, 2485â2491 (1996).
Simpson, N. B., Dholakia, K., Allen, L. & Padgett, M. J. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner. Opt. Lett. 22, 52â54 (1997).
Padgett, M. J. & Allen, L. The Poynting vector in Laguerre-Gaussian modes. Opt. Commun. 121, 36â40 (1995).
Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Phys. Rev. E 59, 3676â3681 (1999).
Higurashi, E., Sawada, R. & Ito, T. Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer. J. Micromech. Microeng. 11, 140â145 (2001).
Friese, M. E. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547â549 (2001).
Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912â914 (2001).
MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101â1103 (2002).
Curtis, J. E. & Grier, D. G. Modulated optical vortices. Opt. Lett. 28, 872â874 (2003).
Arlt, J. & Padgett, M. J. Generation of a beam with a dark focus surrounded by regions of higher intensity: The optical bottle beam. Opt. Lett. 25, 191â193 (2000).
McGloin, D., Spalding, G. C., Melville, H., Sibbet, W. & Dholakia, K. Applications of spatial light modulators in atom optics. Opt. Exp. 11, 158â166 (2003).
Gustavson, T. L. et al. Transport of Bose-Einstein condensates with optical tweezers. Phys. Rev. Lett. 88, 020401 (2002).
Chikkatur, A. P. et al. A continuous source of Bose-Einstein condensed atoms. Science 296, 2193â2195 (2002).
Arlt, J., Garces-Chavez, V., Sibbett, W. & Dholakia, K. Optical micromanipulation using a Bessel light beam. Opt. Commun. 197, 239â245 (2001).
Garces-Chavez, V., McGloin, D., Melville, H., Sibbett, W. & Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145â147 (2002).
Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevicecs. Nature 412, 697â698 (2001).
Terray, A., Oakey, J. & Marr, D. W. M. Microfluidic control using colloidal devices. Science 296, 1841â1844 (2002).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Grier, D. A revolution in optical manipulation. Nature 424, 810â816 (2003). https://doi.org/10.1038/nature01935
Issue Date:
DOI: https://doi.org/10.1038/nature01935
This article is cited by
-
Efficient generation and amplification of intense vortex and vector laser pulses via strongly-coupled stimulated Brillouin scattering in plasmas
Communications Physics (2024)
-
Non-Hermitian non-equipartition theory for trapped particles
Nature Communications (2024)
-
3D integral imaging of acoustically trapped objects
Scientific Reports (2024)
-
Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes
Scientific Reports (2024)
-
Perturbation theory of transverse modes in the off-axis pumping cavity
Applied Physics B (2024)