Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A revolution in optical manipulation

Abstract

Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical tweezers use a strongly focused beam of light to trap objects.
Figure 2: Creation of a large number of optical tweezers by using a computer-generated holograms.
Figure 3: Polysterene and silica spheres in two- and three-dimensional configurations of holographic optical tweezers created from a single laser beam with a computer-designed hologram of a single beam's wavefront.
Figure 4: The diffraction-limited focus of an optical tweezer is ideal for spatially localized photochemistry.
Figure 5: Optical pump and valve constructed of colloidal particles in microfluidic channels activated with optical tweezers.
Figure 6: Optical vortices and optical spanners created from helical modes of light.
Figure 7: Generalizations of the optical vortex principle.
Figure 8: The radial phase profile ϕ(ρ) = γρ creates a diffractionless Bessel beam that focuses to a long axial trap that can extend for millimetres.

Similar content being viewed by others

References

  1. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  CAS  PubMed  Google Scholar 

  2. Ashkin, A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Sel. Top. Quantum Elec. 6, 841–856 (2000).

    ADS  CAS  Google Scholar 

  3. Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Methods Cell Biol. 55, 1–27 (1998).

    CAS  PubMed  Google Scholar 

  4. Svoboda, K. & Block, S. M. Optical trapping of metallic Rayleigh particles. Opt. Lett. 19, 930–932 (1994).

    ADS  CAS  PubMed  Google Scholar 

  5. Ke, P. C. & Gu, M. Characterization of trapping force on metallic Mie particles. Appl. Opt. 38, 160–167 (1999).

    ADS  CAS  PubMed  Google Scholar 

  6. Ghislain, L. P., Switz, N. A. & Webb, W. W. Measurement of small forces using an optical trap. Rev. Sci. Instr. 65, 2762–2768 (1994).

    ADS  CAS  Google Scholar 

  7. Rohrbach, A. & Stelzer, E. H. K. Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Appl. Opt. 41, 2494–2507 (2002).

    ADS  PubMed  Google Scholar 

  8. Litvinov, R. I., Shuman, H., Bennett, J. S. & Weisel, J. W. Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc. Natl Acad. Sci. 99, 7426–7431 (2002).

    ADS  CAS  PubMed  Google Scholar 

  9. Gittes, F. & Schmidt, C. F. Signals and noise in micromechanical measurements. Methods Cell Biol. 55, 129–156 (1998).

    CAS  PubMed  Google Scholar 

  10. Gittes, F. & Schmidt, C. F. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23, 7–9 (1998).

    ADS  CAS  PubMed  Google Scholar 

  11. Pralle, A., Prummer, M., Florin, E. L., Stelzer, E. H. K. & Horber, J. K. H. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44, 378–386 (1999).

    CAS  PubMed  Google Scholar 

  12. Svoboda, K., Mitra, P. P. & Block, S. M. Fluctuation analysis of motor protein movement and single enzyme-kinetics. Proc. Natl Acad. Sci. 91, 11782–11786 (1994).

    ADS  CAS  PubMed  Google Scholar 

  13. Bustamante, C., Smith, S. B., Liphardt, J. & Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10, 279–285 (2000).

    CAS  PubMed  Google Scholar 

  14. Berns, M. W., Tadir, Y., Liang, H. & Tromberg, B. Laser scissors and tweezers. Methods Cell Biol. 55, 71–98 (1998).

    CAS  PubMed  Google Scholar 

  15. Wright, G., Tucker, M. J., Morton, P. C., Sweitzer-Yoder, C. L. & Smith, S. E. Micromanipulation in assisted reproduction: A review of current technology. Curr. Opin. Obstet. Gyn. 10, 221–226 (1998).

    CAS  Google Scholar 

  16. Crocker, J. C. & Grier, D. G. Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys. Rev. Lett. 73, 352–355 (1994).

    ADS  CAS  PubMed  Google Scholar 

  17. Crocker, J. C. & Grier, D. G. When like charges attract: The effects of geometrical confinement on long-range colloidal interactions. Phys. Rev. Lett. 77, 1897–1900 (1996).

    ADS  CAS  PubMed  Google Scholar 

  18. Ohshima, Y. N. Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure. Phys. Rev. Lett. 78, 3963–3966 (1997).

    ADS  CAS  Google Scholar 

  19. Crocker, J. C., Matteo, J. A., Dinsmore, A. D. & Yodh, A. G. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys. Rev. Lett. 82, 4352–4355 (1999).

    ADS  CAS  Google Scholar 

  20. Verma, R., Crocker, J. C., Lubensky, T. C. & Yodh, A. G. Attractions between hard colloidal spheres in semiflexible polymer solutions. Macromolecules 33, 177–186 (2000).

    ADS  CAS  Google Scholar 

  21. Yodh, A. G. et al. Entropically driven self-assembly and interaction in suspension. Phil. Trans. R. Soc. A 359, 921–937 (2001).

    ADS  CAS  Google Scholar 

  22. Wang, G. M., Sevick, E. M., Mittag, E., Searles, D. J. & Evans, D. J. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89, 050601 (2002).

    ADS  CAS  PubMed  Google Scholar 

  23. Sasaki, K., Koshio, M., Misawa, H., Kitamura, N. & Masuhara, H. Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt. Lett. 16, 1463–1465 (1991).

    ADS  CAS  PubMed  Google Scholar 

  24. Sasaki, K., Fujiwara, H. & Masuhara, H. Optical manipulation of a lasing microparticle and its application to near-field microspectroscopy. J. Vacuum Sci. Tech. B 15, 2786–2790 (1997).

    CAS  Google Scholar 

  25. Mio, C., Gong, T., Terray, A. & Marr, D. W. M. Morphological control of mesoscale colloidal models. Fluid Phase Equilibria 185, 157–163 (2001).

    CAS  Google Scholar 

  26. Faucheux, L. P., Bourdieu, L. S., Kaplan, P. D. & Libchaber, A. J. Optical thermal ratchet. Phys. Rev. Lett. 74, 1504–1507 (1995).

    ADS  CAS  PubMed  Google Scholar 

  27. Verma, R., Crocker, J. C., Lubensky, T. C. & Yodh, A. G. Entropic colloidal interactions in concentrated DNA solutions. Phys. Rev. Lett. 81, 4004–4007 (1998).

    ADS  CAS  Google Scholar 

  28. Dufresne, E. R. & Grier, D. G. Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instr. 69, 1974–1977 (1998).

    ADS  CAS  Google Scholar 

  29. Dufresne, E. R., Spalding, G. C., Dearing, M. T., Sheets, S. A. & Grier, D. G. Computer-generated holographic optical tweezer arrays. Rev. Sci. Instr. 72, 1810–1816 (2001).

    ADS  CAS  Google Scholar 

  30. Liesener, J., Reicherter, M., Haist, T. & Tiziani, H. J. Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185, 77–82 (2000).

    ADS  CAS  Google Scholar 

  31. Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    ADS  CAS  Google Scholar 

  32. Reicherter, M., Haist, T., Wagemann, E. U. & Tiziani, H. J. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24, 608–610 (1999).

    ADS  CAS  PubMed  Google Scholar 

  33. Mogensen, P. C. & Glückstad, J. Dynamic array generation and pattern formation for optical tweezers. Opt. Comm. 175, 75–81 (2000).

    ADS  CAS  Google Scholar 

  34. Rodrigo, P. J., Eriksen, R. L., Daria, V. R. & Glückstad, J. Interactive light-driven and parallel manipulation of inhomogeneous particles. Opt. Exp. 10, 1550–1556 (2002).

    ADS  Google Scholar 

  35. Korda, P. T., Taylor, M. B. & Grier, D. G. Kinetically locked-in colloidal transport in an array of optical tweezers. Phys. Rev. Lett. 89, 128301 (2002).

    ADS  PubMed  Google Scholar 

  36. Ladavac, K., Kasza, K. & Grier, D. G. Optical fractionation. Phys. Rev. Lett. (in the press).

  37. Korda, P. T., Spalding, G. C. & Grier, D. G. Evolution of a colloidal critical state in an optical pinning potential. Phys. Rev. B 66, 024504 (2002).

    ADS  Google Scholar 

  38. Mangold, K., Leiderer, P. & Bechinger, C. Phase transitions of colloidal monolayers in periodic pinning arrays. Phys. Rev. Lett. 90, 158302 (2003).

    ADS  PubMed  Google Scholar 

  39. Chowdhury, A., Ackerson, B. J. & Clark, N. A. Laser-induced freezing. Phys. Rev. Lett. 55, 833–836 (1985).

    ADS  CAS  PubMed  Google Scholar 

  40. Loudiyi, K. & Ackerson, B. J. Direct observation of laser-induced freezing. Physica A 184, 1–25 (1992).

    ADS  CAS  Google Scholar 

  41. Wei, X. et al. T cell activation studied by optical trap. Biophys. J. 74, A378 (1998).

    Google Scholar 

  42. Bechinger, C., Brunner, M. & Leiderer, P. Phase behavior of two-dimensional colloidal systems in the presence of periodic light fields. Phys. Rev. Lett. 86, 930–933 (2001).

    ADS  CAS  PubMed  Google Scholar 

  43. Brunner, M. & Bechinger, C. Phase behavior of colloidal molecular crystals on triangular light lattices. Phys. Rev. Lett. 88, 248302 (2002).

    ADS  PubMed  Google Scholar 

  44. Reimann, P. Brownian motors: Noisy transport far from equilibrium. Phys. Rep. 361, 57–265 (2002).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  45. Koss, B. A. & Grier, D. G. Optical peristalsis. Appl. Phys. Lett. 82, 3985–3987 (2003).

    ADS  CAS  Google Scholar 

  46. Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared-laser beams. Nature 330, 608–609 (1987).

    ADS  Google Scholar 

  47. Liang, H., Wright, W. H., Cheng, S., He, W. & Berns, M. W. Micromanipulation of chromosomes in PtK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). Exp. Cell Res. 204, 110–120 (1992).

    Google Scholar 

  48. Bayles, C. J., Aist, J. R. & Berns, M. W. The mechanics of anaphase-B in A basidomycete as revealed by laser microbeam microsurgery. Exp. Mycology 17, 191–199 (1993).

    Google Scholar 

  49. Fuhr, G. et al. Processing of micro-particles by UV laser irradiation in a field cage. Appl. Phys. A 69, 611–616 (1999).

    ADS  CAS  Google Scholar 

  50. Galajda, P. & Ormos, P. Complex micromachines produced and driven by light. Appl. Phys. Lett. 78, 249–251 (2001).

    ADS  CAS  Google Scholar 

  51. Lachish-Zalait, A., Zbaida, D., Klein, E. & Elbaum, M. Direct surface patterning from solutions: Localized microchemistry using a focused laser. Adv. Funct. Mat. 11, 218–223 (2001).

    CAS  Google Scholar 

  52. Lee, W. M., Pruzinsky, S. A. & Braun, P. V. Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals. Adv. Mat. 14, 271–274 (2002).

    CAS  Google Scholar 

  53. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals (Princeton Univ., Princeton, 1995).

    MATH  Google Scholar 

  54. Taton, T. A. & Norris, D. J. Device physics: Defective promise in photonics. Nature 416, 685–686 (2002).

    ADS  CAS  PubMed  Google Scholar 

  55. Terray, A., Oakey, J. & Marr, D. W. M. Fabrication of linear colloidal structures for microfluidic applications. Appl. Phys. Lett. 81, 1555–1557 (2002).

    ADS  CAS  Google Scholar 

  56. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  CAS  PubMed  Google Scholar 

  57. O'Neil, A. T. & Padgett, M. J. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt. Commun. 185, 139–143 (2000).

    ADS  CAS  Google Scholar 

  58. Rubinsztein-Dunlop, H., Nieminen, T. A., Friese, M. E. J. & Heckenberg, N. R. Optical trapping of absorbing particles. Adv. Quantum Chem. 30, 469–492 (1998).

    ADS  CAS  Google Scholar 

  59. Gahagan, K. T. & Swartzlander, G. A. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B 15, 524–534 (1998).

    ADS  CAS  Google Scholar 

  60. Gahagan, K. T. & Swartzlander, G. A. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap. J. Opt. Soc. Am. B 16, 533–537 (1999).

    ADS  CAS  Google Scholar 

  61. Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simpson, N. B., McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45, 1943–1949 (1998).

    ADS  Google Scholar 

  63. O'Neil, A. T. & Padgett, M. J. Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers. Opt. Commun. 193, 45–50 (2001).

    ADS  CAS  Google Scholar 

  64. He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

    ADS  CAS  PubMed  Google Scholar 

  65. Allen, L., Padgett, M. J. & Babiker, M. The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999).

    ADS  MathSciNet  Google Scholar 

  66. O'Neil, A. T., MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

    ADS  CAS  PubMed  Google Scholar 

  67. Curtis, J. E. & Grier, D. G. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).

    ADS  PubMed  Google Scholar 

  68. Gahagan, K. T. & Swartzlander, G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996).

    ADS  CAS  PubMed  Google Scholar 

  69. Simpson, N. B., Allen, L. & Padgett, M. J. Optical tweezers and optical spanners with Laguerre-Gaussian modes. J. Mod. Opt. 43, 2485–2491 (1996).

    ADS  Google Scholar 

  70. Simpson, N. B., Dholakia, K., Allen, L. & Padgett, M. J. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner. Opt. Lett. 22, 52–54 (1997).

    ADS  CAS  PubMed  Google Scholar 

  71. Padgett, M. J. & Allen, L. The Poynting vector in Laguerre-Gaussian modes. Opt. Commun. 121, 36–40 (1995).

    ADS  CAS  Google Scholar 

  72. Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Phys. Rev. E 59, 3676–3681 (1999).

    ADS  CAS  Google Scholar 

  73. Higurashi, E., Sawada, R. & Ito, T. Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer. J. Micromech. Microeng. 11, 140–145 (2001).

    ADS  CAS  Google Scholar 

  74. Friese, M. E. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547–549 (2001).

    ADS  CAS  Google Scholar 

  75. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

    ADS  CAS  PubMed  Google Scholar 

  76. MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101–1103 (2002).

    ADS  CAS  PubMed  Google Scholar 

  77. Curtis, J. E. & Grier, D. G. Modulated optical vortices. Opt. Lett. 28, 872–874 (2003).

    ADS  PubMed  Google Scholar 

  78. Arlt, J. & Padgett, M. J. Generation of a beam with a dark focus surrounded by regions of higher intensity: The optical bottle beam. Opt. Lett. 25, 191–193 (2000).

    ADS  CAS  PubMed  Google Scholar 

  79. McGloin, D., Spalding, G. C., Melville, H., Sibbet, W. & Dholakia, K. Applications of spatial light modulators in atom optics. Opt. Exp. 11, 158–166 (2003).

    ADS  Google Scholar 

  80. Gustavson, T. L. et al. Transport of Bose-Einstein condensates with optical tweezers. Phys. Rev. Lett. 88, 020401 (2002).

    ADS  CAS  PubMed  Google Scholar 

  81. Chikkatur, A. P. et al. A continuous source of Bose-Einstein condensed atoms. Science 296, 2193–2195 (2002).

    ADS  CAS  PubMed  Google Scholar 

  82. Arlt, J., Garces-Chavez, V., Sibbett, W. & Dholakia, K. Optical micromanipulation using a Bessel light beam. Opt. Commun. 197, 239–245 (2001).

    ADS  CAS  Google Scholar 

  83. Garces-Chavez, V., McGloin, D., Melville, H., Sibbett, W. & Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002).

    ADS  CAS  PubMed  Google Scholar 

  84. Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevicecs. Nature 412, 697–698 (2001).

    ADS  CAS  PubMed  Google Scholar 

  85. Terray, A., Oakey, J. & Marr, D. W. M. Microfluidic control using colloidal devices. Science 296, 1841–1844 (2002).

    ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grier, D. A revolution in optical manipulation. Nature 424, 810–816 (2003). https://doi.org/10.1038/nature01935

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01935

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing