Abstract
The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bennett, C. L. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl. 148, 1â27 (2003)
Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175â194 (2003)
Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009â1038 (1998)
Perlmutter, S. et al. Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565â586 (1999)
White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. The baryon content of galaxy clusters: a challenge to cosmological orthodoxy. Nature 366, 429â433 (1993)
Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371â394 (1985)
Colberg, J. M. et al. Clustering of galaxy clusters in cold dark matter universes. Mon. Not. R. Astron. Soc. 319, 209â214 (2000)
Evrard, A. E. et al. Galaxy clusters in Hubble volume simulations: Cosmological constraints from sky survey populations. Astrophys. J. 573, 7â36 (2002)
Wambsganss, J., Bode, P. & Ostriker, J. P. Giant arc statistics in concord with a concordance lambda cold dark matter universe. Astrophys. J. 606, L93âL96 (2004)
Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 380, 603â606 (1996)
Jenkins, A. et al. The mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 321, 372â384 (2001)
Reed, D. et al. Evolution of the mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 346, 565â572 (2003)
Sheth, R. K. & Tormen, G. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier. Mon. Not. R. Astron. Soc. 329, 61â75 (2002)
Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425â438 (1974)
Efstathiou, G. & Rees, M. J. High-redshift quasars in the Cold Dark Matter cosmogony. Mon. Not. R. Astron. Soc. 230, 5â11 (1988)
Springel, V., White, S. D. M., Tormen, G. & Kauffmann, G. Populating a cluster of galaxies. â I. Results at z = 0. Mon. Not. R. Astron. Soc. 328, 726â750 (2001)
Kauffmann, G. & Haehnelt, M. A unified model for the evolution of galaxies and quasars. Mon. Not. R. Astron. Soc. 311, 576â588 (2000)
White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52â79 (1991)
Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201â218 (1993)
Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F. & Zepf, S. E. A recipe for galaxy formation. Mon. Not. R. Astron. Soc. 271, 781â806 (1994)
Baugh, C. M., Cole, S. & Frenk, C. S. Evolution of the Hubble sequence in hierarchical models for galaxy formation. Mon. Not. R. Astron. Soc. 283, 1361â1378 (1996)
Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local Universe. Mon. Not. R. Astron. Soc. 310, 1087â1110 (1999)
Kauffmann, G., Colberg, J. M., Diaferio, A. & White, S. D. M. Clustering of galaxies in a hierarchical universe. â I. Methods and results at z = 0. Mon. Not. R. Astron. Soc. 303, 188â206 (1999)
Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. II. Discovery of three additional quasars at z > 6. Astron. J. 125, 1649â1659 (2003)
Fan, X. et al. A survey of z > 5.7 quasars in the Sloan Digital Sky Survey. III. Discovery of five additional quasars. Astron. J. 128, 515â522 (2004)
Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion correlation. Astrophys. J. 574, 740â753 (2002)
Merritt, D. & Ferrarese, L. Black hole demographics from the MBH-Ï relation. Mon. Not. R. Astron. Soc. 320, L30âL34 (2001)
Hawkins, E. et al. The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the universe. Mon. Not. R. Astron. Soc. 346, 78â96 (2003)
Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M. & Lacey, C. G. The nature of galaxy bias and clustering. Mon. Not. R. Astron. Soc. 311, 793â808 (2000)
Weinberg, D. H., Davé, R., Katz, N. & Hernquist, L. Galaxy clustering and galaxy bias in a ÎCDM universe. Astrophys. J. 601, 1â21 (2004)
Padilla, N. D. & Baugh, C. M. The power spectrum of galaxy clustering in the APM survey. Mon. Not. R. Astron. Soc. 343, 796â812 (2003)
Zehavi, I. et al. On departures from a power law in the galaxy correlation function. Astrophys. J. 608, 16â24 (2004)
Norberg, P. et al. The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering. Mon. Not. R. Astron. Soc. 328, 64â70 (2001)
Zehavi, I. et al. Galaxy clustering in early Sloan Digital Sky Survey redshift data. Astrophys. J. 571, 172â190 (2002)
Madgwick, D. S. et al. The 2dF Galaxy Redshift Survey: galaxy clustering per spectral type. Mon. Not. R. Astron. Soc. 344, 847â856 (2003)
de Bernardis, P. et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955â959 (2000)
Mauskopf, P. D. et al. Measurement of a peak in the Cosmic Microwave Background power spectrum from the North American test flight of Boomerang. Astrophys. J. 536, L59âL62 (2000)
Blake, C. & Glazebrook, K. Probing dark energy using baryonic oscillations in the galaxy power spectrum as a cosmological ruler. Astrophys. J. 594, 665â673 (2003)
Jenkins, A. et al. Evolution of structure in cold dark matter universes. Astrophys. J. 499, 20â40 (1998)
Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15â61 (1986)
Adelberger, K. L. et al. A counts-in-cells analysis of Lyman-break galaxies at redshift Z = 3. Astrophys. J. 505, 18â24 (1998)
Cole, S. et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications. Mon. Not. R. Astron. Soc. (submitted); preprint at http://xxx.lanl.gov/astro-ph/0501174 (2005)
Eisenstein, D. J. et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. (submitted); preprint at http://xxx.lanl.gov/astro-ph/0501171 (2005)
Springel, V., Yoshida, N. & White, S. D. M. GADGET: a code for collisionless and gasdynamical cosmological simulations. N. Astron. 6, 79â117 (2001)
Xu, G. A new parallel n-body gravity solver: TPM. Astrophys. J. Suppl. 98, 355â366 (1995)
Barnes, J. & Hut, P. A hierarchical O(N logN) force-calculation algorithm. Nature 324, 446â449 (1986)
Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles Ch. 5 (McGraw-Hill, New York, 1981)
Colless, M. et al. The 2dF Galaxy Redshift Survey: spectra and redshifts. Mon. Not. R. Astron. Soc. 328, 1039â1063 (2001)
White, S. D. M. in Cosmology and Large-Scale Structure (eds Schaefer, R., Silk, J., Spiro, M. & Zinn-Justin, J.) Ch. 8 (Elsevier, Dordrecht, 1996)
Seljak, U. & Zaldarriaga, M. A line-of-sight integration approach to Cosmic Microwave Background anisotropies. Astrophys. J. 469, 437â444 (1996)
Acknowledgements
The computations reported here were performed at the Rechenzentrum der Max-Planck-Gesellschaft in Garching, Germany.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.
Supplementary information
Supplementary Methods
This details the physical model used to compute the galaxy population, and gives a short summary of the simulation method. Where appropriate, further references to relevant literature for our methodology are included. (PDF 255 kb)
Supplementary Video
This computer animation visualizes the dark matter distribution of the simulated universe at the present epoch, in a slice of thickness 15 Mpc/h. A zoom over several decades in length-scale onto one of the many rich clusters of galaxies is shown, highlighting the morphology of structure of the universe on different scales as well as the large dynamic range of the millennium simulation. (To play this high-resolution movie on Windows or Apple computers, you may have to install the `divx'-codec, available for free at www.divx.com). (AVI 11065 kb)
Rights and permissions
About this article
Cite this article
Springel, V., White, S., Jenkins, A. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629â636 (2005). https://doi.org/10.1038/nature03597
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature03597
This article is cited by
-
Dark matter halo mass functions and density profiles from mass and energy cascade
Scientific Reports (2023)
-
Strong gravitational lensing by AGNs as a probe of the quasarâhost relations in the distant Universe
Nature Astronomy (2023)
-
Black hole evolution in the BondiâHoyleâLyttleton accretion model
General Relativity and Gravitation (2023)
-
Multi-wavelength search for quasi-periodic oscillations in BL Lac 4FGL J0112.1+2245
Astrophysics and Space Science (2022)