Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons

Abstract

Cortical inhibitory neurons contact each other to form a network of inhibitory synaptic connections. Our knowledge of the connectivity pattern underlying this inhibitory network is, however, still incomplete. Here we describe a simple and complementary interaction scheme between three large, molecularly distinct interneuron populations in mouse visual cortex: parvalbumin-expressing interneurons strongly inhibit one another but provide little inhibition to other populations. In contrast, somatostatin-expressing interneurons avoid inhibiting one another yet strongly inhibit all other populations. Finally, vasoactive intestinal peptide–expressing interneurons preferentially inhibit somatostatin-expressing interneurons. This scheme occurs in supragranular and infragranular layers, suggesting that inhibitory networks operate similarly at the input and output of the visual cortex. Thus, as the specificity of connections between excitatory neurons forms the basis for the cortical canonical circuit, the scheme described here outlines a standard connectivity pattern among cortical inhibitory neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three non-overlapping Cre lines.
Figure 2: Five molecularly distinct interneuron categories defined by scRT-PCR.
Figure 3: Individual neuronal contributions of the three interneuron classes onto pyramidal cells.
Figure 4: Pvalb cells mainly inhibit one another.
Figure 5: Sst cells inhibit all other categories but one another.
Figure 6: Vip cells preferentially inhibit Sst cells.
Figure 7: Comparing individual neuronal contributions among cortical interneurons.

Similar content being viewed by others

References

  1. Isaacson, J.S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Freund, T.F. & Buzsaki, G. Interneurons of the hippocampus. Hippocampus 6, 347–470 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Ascoli, G.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Staiger, J.F., Freund, T.F. & Zilles, K. Interneurons immunoreactive for vasoactive intestinal polypeptide (Vip) are extensively innervated by parvalbumin-containing boutons in rat primary somatosensory cortex. Eur. J. Neurosci. 9, 2259–2268 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Staiger, J.F. et al. Calbindin-containing interneurons are a target for Vip-immunoreactive synapses in rat primary somatosensory cortex. J. Comp. Neurol. 468, 179–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Dalezios, Y. et al. Enrichment of mGluR7a in the presynaptic active zones of GABAergic and non-GABAergic terminals on interneurons in the rat somatosensory cortex. Cereb. Cortex 12, 961–974 (2002).

    Article  PubMed  Google Scholar 

  9. Somogyi, P. et al. Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26, 113–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Gibson, J.R., Beierlein, M. & Connors, B.W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Caputi, A. et al. Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. Cereb. Cortex 19, 1345–1359 (2009).

    Article  PubMed  Google Scholar 

  12. Galarreta, M. et al. Cannabinoid sensitivity and synaptic properties of 2 GABAergic networks in the neocortex. Cereb. Cortex 18, 2296–2305 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ma, Y., Hu, H. & Agmon, A. Short-term plasticity of unitary inhibitory-to-inhibitory synapses depends on the presynaptic interneuron subtype. J. Neurosci. 32, 983–988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Olah, S. et al. Output of neurogliaform cells to various neuron types in the human and rat cerebral cortex. Front Neural Circuits 1, 4 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jiang, X. et al. The organization of two new cortical interneuronal circuits. Nat. Neurosci. 16, 210–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Avermann, M. et al. Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. J. Neurophysiol. 107, 3116–3134 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Blatow, M. et al. A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38, 805–817 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hu, H., Ma, Y. & Agmon, A. Submillisecond firing synchrony between different subtypes of cortical interneurons connected chemically but not electrically. J. Neurosci. 31, 3351–3361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Defelipe, J. et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci. 14, 202–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lambolez, B. et al. AMPA receptor subunits expressed by single Purkinje cells. Neuron 9, 247–258 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Xu, X., Roby, K.D. & Callaway, E.M. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J. Comp. Neurol. 518, 389–404 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lee, S. et al. The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J. Neurosci. 30, 16796–16808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaneko, T. et al. Characterization of neocortical non-pyramidal neurons expressing preprotachykinins A and B: a double immunofluorescence study in the rat. Neuroscience 86, 765–781 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99–107 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Vruwink, M. et al. Substance P and nitric oxide signaling in cerebral cortex: anatomical evidence for reciprocal signaling between two classes of interneurons. J. Comp. Neurol. 441, 288–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Glickfeld, L.L. & Scanziani, M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nat. Neurosci. 9, 807–815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fino, E. & Yuste, R. Dense inhibitory connectivity in neocortex. Neuron 69, 1188–1203 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Packer, A.M. & Yuste, R. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J. Neurosci. 31, 13260–13271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams, S.R. & Mitchell, S.J. Direct measurement of somatic voltage clamp errors in central neurons. Nat. Neurosci. 11, 790–798 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Cauli, B. et al. Molecular and physiological diversity of cortical nonpyramidal cells. J. Neurosci. 17, 3894–3906 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Galarreta, M. & Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402, 72–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Kawaguchi, Y. & Kubota, Y. Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J. Neurosci. 16, 2701–2715 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kubota, Y. et al. Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb. Cortex 21, 1803–1817 (2011).

    Article  PubMed  Google Scholar 

  37. Toledo-Rodriguez, M. et al. Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J. Physiol. (Lond.) 567, 401–413 (2005).

    Article  CAS  Google Scholar 

  38. Wang, Y. et al. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J. Physiol. (Lond.) 561, 65–90 (2004).

    Article  CAS  Google Scholar 

  39. Dumitriu, D. et al. Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. Cereb. Cortex 17, 81–91 (2007).

    Article  PubMed  Google Scholar 

  40. Woodruff, A. et al. Depolarizing effect of neocortical chandelier neurons. Front Neural Circuits 3, 15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ma, Y. et al. Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice. J. Neurosci. 26, 5069–5082 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McGarry, L.M. et al. Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes. Front Neural Circuits 4, 12 (2010).

    PubMed  PubMed Central  Google Scholar 

  43. Vucurovic, K. et al. Serotonin 3A receptor subtype as an early and protracted marker of cortical interneuron subpopulations. Cereb. Cortex 20, 2333–2347 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu, X., Roby, K.D. & Callaway, E.M. Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J. Comp. Neurol. 499, 144–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Reyes, A. et al. Target-cell-specific facilitation and depression in neocortical circuits. Nat. Neurosci. 1, 279–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Staiger, J.F. et al. Innervation of interneurons immunoreactive for Vip by intrinsically bursting pyramidal cells and fast-spiking interneurons in infragranular layers of juvenile rat neocortex. Eur. J. Neurosci. 16, 11–20 (2002).

    Article  PubMed  Google Scholar 

  47. Pouille, F. & Scanziani, M. Routing of spike series by dynamic circuits in the hippocampus. Nature 429, 717–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Atallah, B.V. et al. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73, 159–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Tamamaki, N. et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J. Comp. Neurol. 467, 60–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Oliva, A.A. Jr. et al. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci. 20, 3354–3368 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chattopadhyaya, B. et al. Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J. Neurosci. 24, 9598–9611 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Evora for help with genotyping and mouse husbandry, M. Chan for immunohistochemical labeling, J. Isaacson for critical reading of the manuscript and the members of the Scanziani and Isaacson laboratories for advice during the course of the study. This work was supported in part by grants from the National Alliance for Research on Schizophrenia and Depression and US National Institutes of Health (NS047101). C.K.P. was supported by a European Molecular Biology Organization long-term fellowship (EMBO LTF 1114_2009) and the Howard Hughes Medical Institute. M.X. was supported by a fellowship from Jane Coffin Childs Memorial Fund for Medical Research. M.S. was supported by the Gatsby charitable foundation and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.K.P. and M.S. designed the study. C.K.P. conducted all experiments and analysis. M.X. contributed paired-recordings. Z.J.H. and M.H. contributed Vip-IRES-Cre mice. C.K.P. and M.S. wrote the paper.

Corresponding authors

Correspondence to Carsten K Pfeffer or Massimo Scanziani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 14747 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeffer, C., Xue, M., He, M. et al. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16, 1068–1076 (2013). https://doi.org/10.1038/nn.3446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing