Abstract
Unlike conventional magnets where the magnetic moments are partially or completely static in the ground state, in a quantum spin liquid they remain in collective motion down to the lowest temperatures. The importance of this state is that it is coherent and highly entangled without breaking local symmetries. In the case of magnets with isotropic interactions, spin-liquid behaviour is sought in simple lattices with antiferromagnetic interactions that favour antiparallel alignments of the magnetic moments and are incompatible with the lattice geometries. Despite an extensive search, experimental realizations remain very few. Here we investigate the novel, unexplored magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of several different isotropic interactions and where the ferromagnetic couplings are stronger than the antiferromagnetic ones. We show both experimentally and theoretically that it displays all the features expected of a quantum spin liquid. Thus spin-liquid behaviour in isotropic magnets is not restricted to the simple idealized models currently investigated, but can be compatible with complex structures and ferromagnetic interactions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153â160 (1973).
Balents, L. Spin liquids in frustrated magnets. Nature 464, 199â208 (2010).
Fennell, T. et al. Magnetic coulomb phase in the spin ice Ho2Ti2O7 . Science 326, 415â417 (2009).
Morris, D. J. P. et al. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7 . Science 326, 411â414 (2009).
Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2â111 (2006).
Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nature Mater. http://dx.doi.org/10.1038/nmat4604 (2016).
Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the s = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173â1176 (2011).
Depenbrock, S., McCulloch, I. P. & Schollwöck, U. Nature of the spin-liquid ground state of the s = 1/2 Heisenberg model on the kagome lattice. Phys. Rev. Lett. 109, 067201 (2012).
Wan, Y. & Tchernyshyov, O. Phenomenological Z2 lattice gauge theory of the spin-liquid state of the kagome Heisenberg antiferromagnet. Phys. Rev. B 87, 104408 (2013).
Iqbal, Y., Becca, F., Sorella, S. & Poilblanc, D. Gapless spin-liquid phase in the kagome spin-1/2 Heisenberg antiferromagnet. Phys. Rev. B 87, 060405 (2013).
Punk, M., Chowdhury, D. & Sachdev, S. Topological excitations and the dynamic structure factor of spin liquids on the kagome lattice. Nature Phys. 10, 289â293 (2014).
Suttner, R., Platt, C., Reuther, J. & Thomale, R. Renormalization group analysis of competing quantum phases in the J1âJ2 Heisenberg model on the kagome lattice. Phys. Rev. B 89, 020408 (2014).
Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406â410 (2012).
Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet. Science 350, 655â658 (2015).
Gyepesova, D. & Langer, V. Ca10(CrVO4)6(CrVIO4), a disordered mixed-valence chromium compound exhibiting inversion twinning. Acta Cryst. C69, 111â113 (2013).
Read, N. & Sachdev, S. Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets. Phys. Rev. Lett. 62, 1694â1697 (1989).
Mydosh, J. A. Spin Glasses: An Experimental Introduction (Taylor and Francis, 1993).
Mehlawat, K., Sharma, G. & Singh, Y. Fragile magnetic order in the honeycomb lattice iridate Na2IrO3 revealed by magnetic impurity doping. Phys. Rev. B 92, 134412 (2015).
Cole, K. S. & Cole, R. H. Dispersion and absorption in dielectrics i. Alternating current characteristics. J. Chem. Phys. 9, 341â351 (1941).
Yaouanc, A. & Dalmas de Rotier, P. Muon Spin Rotation, Relaxation and Resonance (Oxford Univ. Press, 2011).
Mendels, P. et al. Quantum magnetism in the paratacamite family: towards an ideal kagomé lattice. Phys. Rev. Lett. 98, 077204 (2007).
Fåk, B. et al. Kapellasite: a kagome quantum spin liquid with competing interactions. Phys. Rev. Lett. 109, 037208 (2012).
Clark, L. et al. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride kagome antiferromagnet [NH4]2[C7H14N][V7O6F18]. Phys. Rev. Lett. 110, 207208 (2013).
Squires, G. L. Introduction to the Theory of Thermal Neutron Scattering (Dover, 1996).
Carlo, J. P. et al. Triplet and in-gap magnetic states in the ground state of the quantum frustrated fcc antiferromagnet Ba2YMoO6 . Phys. Rev. B 84, 100404 (2011).
de Vries, M. A., Mclaughlin, A. C. & Bos, J.-W. G. Valence bond glass on an fcc lattice in the double perovskite Ba2YMoO6 . Phys. Rev. Lett. 104, 177202 (2010).
Faddeev, L. D. & Takhtajan, L. A. What is the spin of a spin wave? Phys. Lett. A 85, 375â377 (1981).
Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nature Mater. 4, 329â334 (2005).
Caux, J.-S. & Hagemans, R. The four-spinon dynamical structure factor of the Heisenberg chain. J. Stat. Mech. P12013 (2006).
Lake, B. et al. Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain. Phys. Rev. Lett. 111, 137205 (2013).
Mourigal, M. et al. Fractional spinon excitations in the quantum Heisenberg antiferromagnetic chain. Nature Phys. 9, 435â441 (2013).
Balz, C. et al. Quantum spin chain as a potential realization of the NersesyanâTsvelik model. Phys. Rev. B 90, 060409 (2014).
Liang, S., Doucot, B. & Anderson, P. W. Some new variational resonating-valence-bond-type wave functions for the spin-1/2 antiferromagnetic Heisenberg model on a square lattice. Phys. Rev. Lett. 61, 365â368 (1988).
Read, N. & Chakraborty, B. Statistics of the excitations of the resonating-valence-bond state. Phys. Rev. B 40, 7133â7140 (1989).
Read, N. & Sachdev, S. Large-N expansion for frustrated quantum antiferromagnets. Phys. Rev. Lett. 66, 1773â1776 (1991).
Wen, X. G. Mean-field theory of spin-liquid states with finite energy gap and topological orders. Phys. Rev. B 44, 2664â2672 (1991).
Wen, X.-G. Quantum orders and symmetric spin liquids. Phys. Rev. B 65, 165113 (2002).
Coldea, R. et al. Direct measurement of the spin Hamiltonian and observation of condensation of magnons in the 2D frustrated quantum magnet Cs2CuCl4 . Phys. Rev. Lett. 88, 137203 (2002).
Ross, K. A., Savary, L., Gaulin, B. D. & Balents, L. Quantum excitations in quantum spin ice. Phys. Rev. X 1, 021002 (2011).
Toth, S. & Lake, B. Linear spin wave theory for single-Q incommensurate magnetic structures. J. Phys. Condens. Matter 27, 166002 (2015).
Reuther, J. & Wölfle, P. J1âJ2 frustrated two-dimensional Heisenberg model: random phase approximation and functional renormalization group. Phys. Rev. B 81, 144410 (2010).
Reuther, J. & Thomale, R. Functional renormalization group for the anisotropic triangular antiferromagnet. Phys. Rev. B 83, 024402 (2011).
Reuther, J., Thomale, R. & Rachel, S. Spiral order in the honeycomb iridate Li2IrO3 . Phys. Rev. B 90, 100405 (2014).
Chernyshev, A. L. & Zhitomirsky, M. E. Spin waves in a triangular lattice antiferromagnet: decays, spectrum renormalization, and singularities. Phys. Rev. B 79, 144416 (2009).
Frontzek, M. et al. Magnetic excitations in the geometric frustrated multiferroic CuCrO2 . Phys. Rev. B 84, 094448 (2011).
Kubo, R. & Toyabe, T. Magnetic Resonance and Relaxation (North-Holland, 1967).
Suter, A. & Wojek, B. M. Musrfit: a free platform-independent framework for μsr data analysis. Phys. Proc. 30, 69â73 (2012).
Metzner, W., Salmhofer, M., Honerkamp, C., Meden, V. & Schönhammer, K. Functional renormalization group approach to correlated fermion systems. Rev. Mod. Phys. 84, 299â352 (2012).
Platt, C., Hanke, W. & Thomale, R. Functional renormalization group for multi-orbital fermi surface instabilities. Adv. Phys. 62, 453â562 (2013).
Acknowledgements
We thank S. Toth for his help with the SpinW program and E. J. Bergholtz for helpful discussions. We acknowledge the Helmholtz Gemeinschaft for funding via the Helmholtz Virtual Institute (Project No. HVI-521) and DFG through Research Training Group GRK 1621 and SFB 1143. We also acknowledge the support of the HLD-HZDR, a member of the European Magnetic Field Laboratory (EMFL). This work used facilities supported in part by the National Science Foundation under Agreement No. DMR-1508249. J.R. was supported by the Freie Universität Berlin, within the Excellence Initiative of the German Research Foundation.
Author information
Authors and Affiliations
Contributions
C.B. performed or participated in all measurements, and analysed the data with help from the other authors. B.L. directed the project, participated in most measurements, and wrote the manuscript with contributions from all authors. J.R. carried out the PFFRG calculations and provided theoretical insight. Y.S. introduced the compound and made the powder, while the crystals were grown by Y.S. and A.T.M.N.I.; H.R. carried out the specific heat measurements; R.S. and T.H. performed the AC susceptibility measurements and helped with the analysis; C.B. and H.L. helped with the μSR measurements and with their analysis; E.M.W., J.A.R.-R., T.G. and G.G.S. supported the INS measurements.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 16502 kb)
Rights and permissions
About this article
Cite this article
Balz, C., Lake, B., Reuther, J. et al. Physical realization of a quantum spin liquid based on a complex frustration mechanism. Nature Phys 12, 942â949 (2016). https://doi.org/10.1038/nphys3826
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3826
This article is cited by
-
Dichotomy in temporal and thermal spin correlations observed in the breathing pyrochlore LiGa1âxInxCr4O8
npj Quantum Materials (2021)
-
Survival of itinerant excitations and quantum spin state transitions in YbMgGaO4 with chemical disorder
Nature Communications (2021)
-
Synthesis of a d1-titanium fluoride kagome lattice antiferromagnet
Nature Chemistry (2020)
-
Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na2BaCo(PO4)2
Nature Communications (2020)
-
Evidence for a three-dimensional quantum spin liquid in PbCuTe2O6
Nature Communications (2020)