Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
Vol. 21
Latest Volume
All Volumes
PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-05-06
Higher Order Finite Element Method for Inhomogeneous Axisymmetric Resonators
By
Progress In Electromagnetics Research B, Vol. 21, 189-201, 2010
Abstract
To analyze resonances in an axisymmetric inhomogeneous cavity, a higher-order finite element method (FEM) is developed. Mixed higher-order node-based and edge-based elements are applied to eigenvalue analysis for the azimuthal component and meridian components of the field, respectively. Compared with the lower-order FEM, the higher-order FEM can improve accuracy with the same number of unknowns and can reduce the CPU time and memory requirement for specified accuracy. Numerical results are given to demonstrate the validity and efficiency of the proposed method.
Citation
Xi Rui, Jun Hu, and Qing Huo Liu, "Higher Order Finite Element Method for Inhomogeneous Axisymmetric Resonators," Progress In Electromagnetics Research B, Vol. 21, 189-201, 2010.
doi:10.2528/PIERB10031605
References

1. Andreasen, M. G., "Scattering from bodies of revolution," IEEE Trans. Antennas Propag., Vol. 13, 303-310, Mar. 1965.
doi:10.1109/TAP.1965.1138406

2. Mautz, J. R. and R. F. Harrington, "Radiation and scattering from bodies of revolution," Appl. Sci. Res., Vol. 20, 405-435, Jun. 1969.
doi:10.1007/BF00382412

3. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, 709-718, Sep.-Oct. 1977.
doi:10.1029/RS012i005p00709

4. Medgyesi-Mitschg, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans. Antennas Propag., Vol. 32, 797-806, Aug. 1984.
doi:10.1109/TAP.1984.1143430

5. Huddleston, P. L., L. N. Medgyesi-Mitschg, and J. M. Putnam, "Combined field integral equation formulation for scattering by dielectrically coated conducting bodies," IEEE Trans. Antennas Propag., Vol. 34, 510-520, Apr. 1986.
doi:10.1109/TAP.1986.1143846

6. Liu, Q. H. and W. C. Chew, "Diffraction of nonaxisymmetric waves in cylindrically layered media by horizontal discontinuities," Radio Sci., Vol. 27, No. 5, 569-581, 1992.
doi:10.1029/92RS00910

7. Liu, Q. H., "Electromagnetic field generated by an off-axis source in a cylindrically layered medium with an arbitrary number of horizontal discontinuities," Geophysics, Vol. 58, No. 5, 616-625, 1993.
doi:10.1190/1.1443445

8. Cao, X.-Y. and J. Gao, "The singularity problem at the wire/surface junction region for antenna and arrays with bodies of revolution," Progress In Electromagnetics Research B, Vol. 10, 117-130, 2008.
doi:10.2528/PIERB08092304

9. Rui, X., J. Hu, and Q. H. Liu, "Fast inhomogeneous plane wave algorithm for homogeneous dielectric body of revolution," Commun. Comput. Phys., accepted.

10. Qiu, Z. and C. M. Butler, "Analysis of a wire in the presence of an open body of revolution," Progress In Electromagnetics Research, Vol. 15, 1-26, 1997.
doi:10.2528/PIER95121500

11. Abdelmageed, A. K., "Efficient evaluation of modal Green's functions arising in EM scattering by bodies of revolution," Progress In Electromagnetics Research, Vol. 27, 337-356, 2000.
doi:10.2528/PIER99061601

12. Lee, J. F., G. Wilkins, and R. Mittra, "Finite-element analysis of axisymmetric cavity resonator using a hybrid edge element technique ," IEEE Trans. Microwave Theory Tech., Vol. 41, 1981-1987, 1993.

13. Wong, M. F., M. Park, and V. Frouad Hanna, "Axisymmetric edge-based finite element formulation for bodies of revolution: Application to dielectric resonators," IEEE Microwave Symp. MTT-S, Orlando, FL, 1995.

14. Richalot, E., M. F. Wong, V. Frouad Hanna, and H. Naudrand, "Analysis of radiating axisymmetric structures using a 2-D finite-element and spherical mode expansion," Microwave Opt. Technol. Lett., Vol. 20, 8-13, 1999.
doi:10.1002/(SICI)1098-2760(19990105)20:1<8::AID-MOP2>3.0.CO;2-9

15. Hoppe, D. J., L. W. Epp, and J. F. Lee, "A hybrid symmetric FEM/MOM formulation applied to scattering by inhomogeneous bodies of revolution," IEEE Trans. Antennas Propag., Vol. 42, 798-805, Jun. 1994.
doi:10.1109/8.301698

16. Moneum, M. A. A., Z. Shen, J. L. Volakis, and O. Graham, "Hybrid PO-MoM analysis of large axi-symmetric radomes," IEEE Trans. Antennas Propag., Vol. 49, 1657-1666, Dec. 2001.
doi:10.1109/8.982444

17. Rao, S. M., D. R. Wilton, and A. W. Glission, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

18. Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK User's Guide, 3rd Ed., SIAM, Philadelphia, 1999.

19. Jin, J. M., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 1993.

20. Peterson, A. F., S. L. Ray, and R. Mittra, "Computational Methods for Electromagnetics," IEEE Press, 1998.

21. Greenwood, A. D. and J. M. Jin, "A novel efficient algorithm for scattering from a complex BOR using mixed finite elements and cylindrical PML," IEEE Trans. Antennas Propag., Vol. 47, 620-629, 1999.
doi:10.1109/8.768800

22. Greenwood, A. D. and J. M. Jin, "Finite-element analysis of complex axisymmetric radiating structures," IEEE Trans. Antennas Propag., Vol. 47, 1260-1266, 1999.
doi:10.1109/8.791941

23. Savage, J. S. and A. F. Peterson, "Higher order vector finite elements for tetrahedral cells," IEEE Trans. Microwave Theory Tech., Vol. 44, 874-879, 1996.
doi:10.1109/22.506446

24. Lebaric, J. E. and D. Kajfez, "Analysis of dielectric resonator cavities using the finite integration technique," IEEE Trans. Microwave Theory Tech., Vol. 37, 1740-1748, 1989.
doi:10.1109/22.41039