Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Le calcul des constructions (CoC de l'anglais calculus of constructions) est un lambda-calcul typé d'ordre supérieur dans lequel les types sont des valeurs de première classe. Il est par conséquent possible, dans le CoC, de définir des fonctions qui vont des entiers vers les entiers, mais aussi des entiers vers les types ou des types vers les types. Le CoC est fortement normalisant, bien que, d'après le théorème d'incomplétude de Gödel, il soit impossible de démontrer cette propriété dans le CoC lui-même, puisqu'elle implique sa cohérence.

Property Value
dbo:abstract
  • Le calcul des constructions (CoC de l'anglais calculus of constructions) est un lambda-calcul typé d'ordre supérieur dans lequel les types sont des valeurs de première classe. Il est par conséquent possible, dans le CoC, de définir des fonctions qui vont des entiers vers les entiers, mais aussi des entiers vers les types ou des types vers les types. Le CoC est fortement normalisant, bien que, d'après le théorème d'incomplétude de Gödel, il soit impossible de démontrer cette propriété dans le CoC lui-même, puisqu'elle implique sa cohérence. Le CoC a été développé initialement par Thierry Coquand. Le CoC a été à l'origine des premières versions de l'assistant de preuves Coq. Les versions suivantes ont été construites à partir du calcul des constructions inductives qui est une extension du CoC qui intègre des types de données inductives. Dans le CoC originel, les types de données inductives devaient être émulés à l'aide de leur fonction de destruction. La façon de définir le calcul des constructions par trois types de dépendances est appelée le lambda cube et est due à Henk Barendregt. (fr)
  • Le calcul des constructions (CoC de l'anglais calculus of constructions) est un lambda-calcul typé d'ordre supérieur dans lequel les types sont des valeurs de première classe. Il est par conséquent possible, dans le CoC, de définir des fonctions qui vont des entiers vers les entiers, mais aussi des entiers vers les types ou des types vers les types. Le CoC est fortement normalisant, bien que, d'après le théorème d'incomplétude de Gödel, il soit impossible de démontrer cette propriété dans le CoC lui-même, puisqu'elle implique sa cohérence. Le CoC a été développé initialement par Thierry Coquand. Le CoC a été à l'origine des premières versions de l'assistant de preuves Coq. Les versions suivantes ont été construites à partir du calcul des constructions inductives qui est une extension du CoC qui intègre des types de données inductives. Dans le CoC originel, les types de données inductives devaient être émulés à l'aide de leur fonction de destruction. La façon de définir le calcul des constructions par trois types de dépendances est appelée le lambda cube et est due à Henk Barendregt. (fr)
dbo:isPartOf
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1119229 (xsd:integer)
dbo:wikiPageLength
  • 7138 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 155148236 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Le calcul des constructions (CoC de l'anglais calculus of constructions) est un lambda-calcul typé d'ordre supérieur dans lequel les types sont des valeurs de première classe. Il est par conséquent possible, dans le CoC, de définir des fonctions qui vont des entiers vers les entiers, mais aussi des entiers vers les types ou des types vers les types. Le CoC est fortement normalisant, bien que, d'après le théorème d'incomplétude de Gödel, il soit impossible de démontrer cette propriété dans le CoC lui-même, puisqu'elle implique sa cohérence. (fr)
  • Le calcul des constructions (CoC de l'anglais calculus of constructions) est un lambda-calcul typé d'ordre supérieur dans lequel les types sont des valeurs de première classe. Il est par conséquent possible, dans le CoC, de définir des fonctions qui vont des entiers vers les entiers, mais aussi des entiers vers les types ou des types vers les types. Le CoC est fortement normalisant, bien que, d'après le théorème d'incomplétude de Gödel, il soit impossible de démontrer cette propriété dans le CoC lui-même, puisqu'elle implique sa cohérence. (fr)
rdfs:label
  • Calcul des constructions (fr)
  • Calculus of constructions (en)
  • Cálculo de Construcciones (es)
  • Исчисление конструкций (ru)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of